
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

On Symbolic Analysis of Discrete Event
Systems Modeled as Automata with Variables

Zhennan Fei

Department of Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

On Symbolic Analysis of Discrete Event Systems Modeled as Au-
tomata with Variables
Zhennan Fei

c© Zhennan Fei, 2012.

Technical report number: R007/2012
ISSN 1403-266X

Department of Department of Signals and Systems
Chalmers University of Technology
SE--412 96 Göteborg
Sweden
Telephone + 46 (0)31 -- 772 1000

Typeset by the author using LATEX.

Chalmers Reproservice
Göteborg, Sweden 2012

to my family

Abstract
In benefit of the current revolution in computer technology, nowadays, society
is dependent on dedicated computer-aided systems more than ever to assist us
in every aspect of daily life. Thereby, designing reliable control logic of those
systems to avoid malfunctioning behavior is of importance.

At some certain level of abstraction, the dynamics of many computer-aided
systems can be characterized by a set of states and the state evolution depends
entirely on the occurrence of discrete events. Such dynamic systems are referred
to as discrete event systems (DES), which is the main subject of this thesis.

Supervisory Control Theory (SCT) is a formal methodology for generating
control function for DESs based on a model of an uncontrolled plant and speci-
fications that the closed-loop system must fulfill. SCT makes it easier to handle
changes for the system to be controlled. This is, for example, important for man-
ufacturing systems where both the products to be produced and the production
equipment may change frequently. With such a model-based framework, it is
possible to use algorithms to generate large parts of the control logic.

Although SCT shows great promise to assist control engineers to create cor-
rect control functions, industrial acceptance has been limited so far. One of
the main obstacles with SCT is the state-space explosion problem which arises
from the failure of explicit enumerating and storing large number of states due
to lack of memory. To alleviate this problem, a well-known strategy is to utilize
compact data structures such Binary Decision Diagrams (BDDs) to efficiently
represent set of states. By encoding system models, the computation of control
functions can be carried out implicitly (symbolically).

In this thesis, DESs are modeled as Extended Finite Automata (EFAs), which
are ordinary automata augmented with variables. By taking advantage of the
EFA structure, this thesis presents a set of BDD-based algorithms and formal
analysis for exploring the state-space of large-scale DESs. Specifically, by using
one of the partitioning techniques, the algorithms partition the state-space of a
considered DES into a set of BDDs according to the included events and explore
them in an efficient and structural manner. The work presented in this thesis has
been implemented and integrated into the SCT tool Supremica and the algorithm
efficiency is demonstrated on a set of academic and industrial examples.

Keywords: Discrete Event Systems, Supervisory Control Theory, Extended Fi-
nite Automata, Binary Decision Diagrams, Partitioning Techniques

ii

Acknowledgments

Truth be told, life is full of surprises and sometimes it just takes the breath away.
I still remember the afternoon when Bengt called, telling me that I was offered
to pursue my Ph.D. degree in Automation group. I was so happy, surprisingly.
To be honest, I never expected that I would obtain so much from these two and
half years. However, I truly did and even my life has been changed. Now, half
of the journey has passed by, I would like to take this opportunity to express my
heartfelt thanks to a number of people, without whom the thesis would never be
possibly done.

Foremost, how can I ever express my thanks to Knut, my main supervisor?
Your patient guidance, insightful suggestions and brilliant ideas are the most
generous gifts on the whole thesis work. Thank you so much! Secondly, my
great gratitude goes to Bengt, my co-supervisor for your unlimited support and
encouragement. Thank Spyros for giving me such a great opportunity to visit
you and have good discussions at Georgia Tech. Besides I also would like to
thank all of my colleagues at the division, especially the DK members in the
Automation group. You guys are amazing. Special thanks to Sahar for sharing
feelings and exchanging life experiences as foreigners, and Alexey for constantly
helping me solving problems about programming. I am also grateful to Sajed. I
really appreciate the time of discussing our ideas in front of the white board(s).
It is a great pleasure to work with you. At the administrative level, I would like
to thank our IT administrator Lars and secretaries Madeleine and Christine for
always being so kind and helpful.

Moreover, I am indebted to my family and all the friends in Sweden and far
away from China (6385.71 km) for believing in me and backing me up for good
and bad times. At last, but definitely not at least, I want to express my greatest
gratitude to Xuan. You mean the most to me.

Zhennan Fei
Atlanta, May 2012

iii

iv

List of Publications

This thesis is based on the following appended papers:

Paper 1 Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson: Sym-
bolic State-Space Exploration and Guard Generation in Supervisory Con-
trol Theory, will appear as a book chapter in volume 0271 of the Commu-
nications in Computer and Information Science (CCIS) series, 2012.

Paper 2 Zhennan Fei, Knut Åkesson, Bengt Lennartson: Symbolic Reachability
Computation using the Disjunctive Partitioning Technique in Supervisory
Control Theory, Proceedings of the 2011 IEEE Conference on Robotics
and Automation (ICRA 2011), pp. 4364-4369, 2012.

Paper 3 Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson: Efficient
Supervisory Synthesis to Large-Scale Discrete Event Systems Modeled as
Extended Finite Automata, Submitted to for possible journal publication,
2012.

Paper 4 Zhennan Fei, Sajed Miremadi, Knut Åkesson: Modeling Sequential Re-
source Allocation Systems using Extended Finite Automata, Proceedings
of the Seventh Annual IEEE Conference on Automation Science and Engi-
neering (CASE 2011), pp. 444-449, 2011.

The individual contributions of each paper are outlined in Chapter 5.

Other publications

The following publication, authored or co-authored by the author of this thesis,
is relevant but is not included in the thesis:

Paper 5 Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson: A Sym-
bolic Approach to Large-Scale Discrete Event Systems Modeled as Finite
Automata with Variables, Submitted to the Eighth Annual IEEE Confer-
ence on Automation Science and Engineering (CASE 2012), 2012.

v

LIST OF PUBLICATIONS

Paper 6 Sajed Miremadi, Zhennan Fei, Knut Åkesson, Bengt Lennartson: Sym-
bolic Nonblocking Computation of Timed Discrete Event Systems, Sub-
mitted to the 51st Annual IEEE Conference on Decision and Control (CDC
2012), invited paper, 2012.

Paper 7 Sajed Miremadi, Zhennan Fei, Knut Åkesson, Bengt Lennartson: Sym-
bolic Nonblocking Computation of Timed Discrete Event Systems-Extended
Version, Manuscript to be submitted for possible journal publication .

Paper 8 Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson: Effi-
cient Symbolic Supervisory Synthesis and Guard Generation - Evaluating
Partitioning Techniques for the State-space Exploration, Proceedings of
the 2011 International Conference on Agents and Artificial Intelligence
(ICAART 2011): 106-115, 2011.

vi

Contents

Abstract i

Acknowledgments iii

List of Publications v

Contents vii

I Introductory Chapters

1 Introduction 1
1.1 Contributions . 4
1.2 Outline . 4

2 Supervisory Control Theory 7
2.1 Modeling Formalisms . 9

2.1.1 Extended Finite Automata (EFAs) 9
2.1.2 Deterministic Finite Automata (DFAs) 12
2.1.3 Composition of Subsystems 12

2.2 Supervisory Synthesis . 14
2.2.1 Desired Properties of Supervisors 14
2.2.2 Safe-State Algorithm 15
2.2.3 Representing Supervisors with Guards 17

3 Symbolic Computation of Supervisors 19
3.1 Binary Decision Diagrams . 20

3.1.1 Representation of Models 21
3.1.2 BDD-Based Safe-State Algorithm 22

3.2 Symbolic Synthesis for EFAs 24
3.2.1 The Monolithic Approach 24
3.2.2 The Partitioning Approach 26
3.2.3 Structural State-Space Exploration 29

vii

CONTENTS

4 User Cases 33
4.1 Modeling Sequential Resource Allocation Systems using EFAs . 33
4.2 Experimental Results . 40

5 Summary of Included Papers 45

6 Conclusions and Future Work 47

References 49

II Included Papers

Paper 1 Symbolic State-Space Exploration and Guard Generation in
Supervisory Control Theory 59
1 Introduction . 59
2 Motivating Example . 61
3 Preliminaries . 63

3.1 Supervisory Control Theory 63
3.2 Binary Decision Diagrams (BDD) 65

4 BDD-Based Partitioning Computation 66
4.1 Efficient State Space Search 66
4.2 Workset Based Strategies 68

5 Supervisor as Guards . 70
5.1 Computation of the Basic State Sets 71
5.2 Guard Generation . 71

6 Case Studies . 72
6.1 Benchmark Examples 72
6.2 Approach Evaluation 73

7 Conclusions . 74
References . 75

Paper 2 Symbolic Reachability Computation using the Disjunctive Par-
titioning Technique in Supervisory Control Theory 81
1 Introduction . 81
2 Preliminaries . 82

2.1 Deterministic Finite Automata 82
2.2 Supervisory Control theory 83
2.3 Binary Decision Diagrams 85

3 Efficient Reachability Computation 85
3.1 Partitioning of the Full Synchronous Composition . . . 86
3.2 Workset Strategy . 88

viii

CONTENTS

4 Algorithm Efficiency . 93
5 Conclusions . 94
References . 94

Paper 3 Efficient Supervisory Synthesis to Large-Scale Discrete Event
Systems Modeled as Extended Finite Automata 99
1 Introduction . 99
2 Preliminaries . 102

2.1 Extended Finite Automata 102
2.2 Binary Decision Diagrams 105
2.3 Supervisory Control Theory 107

3 A Motivation Example . 108
4 Partitioning of the full synchronous composition 111
5 Efficient Reachability Computation 117

5.1 An Event-based Forward Reachability Algorithm 118
5.2 The Proposed Algorithm is Correct 120
5.3 Several Variants Of The Algorithm 121

6 Case Studies . 122
6.1 Benchmark Examples 122
6.2 Results . 126

7 Conclusions . 128
References . 128

Paper 4 Modeling Sequential Resource Allocation Systems using Ex-
tended Finite Automata 135
1 Introduction . 135
2 Preliminaries . 137

2.1 Conjunctive/Disjunctive Resource Allocation System . . 137
2.2 Extended Finite Automaton (EFA) 138
2.3 Supervisory Control Theory (SCT) 138

3 the proposed modeling approach 140
3.1 Model Single-Unit (SU) RAS 140
3.2 Model C/D RAS . 142
3.3 Model the Abnormal Behavior 144

4 Case Studies . 145
4.1 Benchmark Examples 146

5 Conclusions . 147
6 Acknowledgement . 148
References . 148

ix

x

Part I

Introductory Chapters

Chapter 1

Introduction

We are living in a fast changing era -- the era in which almost every aspect of
daily life is being fundamentally changed with the current revolution in computer
technology. From the very moment of waking up in the morning, human beings
are surrounded themselves with diversely dedicated hardware and software sys-
tems, e.g., mobile phones, transportation facilities, communication tools, medi-
cal devices.

As such systems are widely used, our reliance on the functioning of them is
growing unprecedentedly. As a consequence, failure, is unacceptable. We are
annoyed when our mobile phones malfunction, or when two robots in a manufac-
turing system moves unexpectedly and collide with each other. These errors do
not threaten our lives but have substantially financial consequences for the man-
ufacturer. In the early nineties, a bug in Intel’s Pentium II floating-point division
unit [1] caused a loss of about 455 million US dollars to replace faulty processors.
It also severely damaged Intel’s reputation as a reliable chip manufacturer. It is
not only about money, but also safety. Errors can be catastrophic too. A recent
example of such a failure is the Ariane-5 rocket [2], which exploded on June 4,
1996, less than forty seconds after it was launched. The accident was caused by
a software error in the computer that was responsible for calculating the rocket’s
movement. During the launch, an exception occurred when a large 64-bit float-
ing point number was converted to a 16-bit signed integer. This conversion was
not protected. The same error also caused the backup computer to fail. As a
result, incorrect attitude data was transmitted to the on-board computer, which
caused the destruction of the rocket.

The increasing reliance of critical applications necessitates the development
of formal methods for rigorously modeling systems and accurately assessing
their functional properties. With respect to system modeling, classical control
theory deals with systems whose behavior can be formulated as a set of dif-
ferential or difference equations. Such systems are time-driven, since the sys-
tem equations are parameterized by time. On the other hand, at a certain level

1

CHAPTER 1. INTRODUCTION

of abstraction, the behavior of systems such as automated manufacturing sys-
tems, computer networks and embedded systems can be profitably modeled as
sequences of events. A system, characterized by a set of states, where the state
evolution depends entirely on the occurrence of asynchronous events at discrete
points time, is referred to as a discrete event system (DES) [3]. A comprehensi-
ble example that can be modeled a DES is the traffic light system. At a certain
level of abstraction, the traffic light system consists of three states denoting ei-
ther green, amber or red, as well as a series of events modeling the alternation
between the lights, e.g., the light turns green to amber.

During the last two decades, research in formal methods has led to some
promising verification and synthesis approaches that ease the burden of design-
ing reliable systems. One such approach towards the correctness of computer-
based systems is model checking [4, 5], a formal verification technique allowing
for desired behavioral properties of a given system to be verified on the basis
of a model of the system automatically. While verification generally terminates
with a yes or no answer to the satisfiability of the system with respect to proper-
ties, synthesis goes further and directly generates such a desirable system where
properties are fulfilled. In 1987, Ramadge and Wonham proposed a model-based
framework called Supervisory Control Theory (SCT) [6, 7], which automatically
generates a correct control function, referred to as the supervisor for discrete
event systems. Given a model of the system to be controlled, the plant, and a
model of the desired behavior of the controlled system, the specification, the
supervisor, can be automatically generated, synthesized, to control the plant ac-
cording to the specification. In SCT, DESs are often formally represented deter-
ministic finite automata (DFAs) [8] or extended finite automata (EFAs) [9] that
are DFAs augmented with variables. Besides, it is assumed that all of events
are generated from the plant and the resultant supervisor is minimally restrictive,
meaning that the plant is given the greatest amount of freedom to generate events
without dissatisfying the specification.

In today’s industry, designing and implementing control functions is still
carried out manually through a series of verification steps, which is both time-
consuming and error-prone. By applying SCT, the control function can be auto-
matically generated in an algorithmic and systematical way, and thus the reliabil-
ity of resultant control functions is enhanced. SCT has been applied to different
research areas, such as manufacturing systems [10, 11], chemical batch process-
ing systems [12, 13], and communication systems [14].

Similar to model checking, synthesis needs explore all possible system states.
In the standard approach, these states are enumerated and stored explicitly dur-
ing verification or synthesis. However, nowadays, the magnitude of systems, as
well as their complexity, grows rapidly. They are not stand-alone, but are typi-
cally embedded in a larger context, connecting and interacting with several other

2

systems. To synthesize the supervisor for such complex applications, explicit
enumeration quickly becomes a serious impediment and might suffer from the
state-space explosion problem due to lack of available memory. In general, two
well-known strategies can be utilized to alleviate the state-space problem and
thus handle complex industrial applications: compositional approach or sym-
bolic approach. Regarding the former, by exploiting the modularity structure of
automata and applying a series of abstractions, the synthesis task can be substan-
tially improved [15, 16, 17]. The latter strategy, the main focus in this thesis,
is achieve by the introduction of Binary Decision Diagrams (BDDs) [18, 19],
compact and operation-efficient data structures for manipulating Boolean func-
tions. After encoding system states and associated events, i.e. system transitions,
the explicit supervisory synthesis algorithm can be translated to the correspond-
ing counterpart where the supervisory synthesis can be carried out implicitly or
symbolically in BDDs. However, the symbolic computation is not a silver bul-
let. Transforming from the explicit state-space traversal algorithm into a BDD-
based computation scheme does not guarantee that the algorithm will become
remarkably efficient. During the synthesis computation, the state-space explo-
sion problem still occurs due to the huge size of BDD nodes, even though the
resultant BDD representation is manageable. Regarding this issue, inspired from
the model checking community, partitioning techniques [20] come in handy for
the reduction of intermediate size of BDDs. The idea is to split the monolithic
transition under full synchronous composition into a set of less complex compo-
nents with some logic connection in between. According to some heuristics, one
small component is selected at a time for participating the symbolic computation
and thus the chance of causing the explosion, comparing to having a huge mono-
lithic transition of a given DES, is reduced. From prior work, such techniques
have been applied to DESs represented as DFAs [21, 22] and relatively compli-
cated applications can be solved that were not possible with explicit enumeration
methods. In the light of the remarks above, the main objectives in this thesis is
to enhance the results from prior work and meanwhile, apply partitioning tech-
niques to DESs modeled as EFAs where the analysis is more difficult due to the
introduction of variables.

With the computation efficiency brought by the application of BDDs, it is
possible to synthesize supervisors of complex industrial examples with signifi-
cantly huge state-space. Meanwhile, another problem arises from the interpreta-
tion of supervisors represented symbolically. Since the original models (DFAs
or EFAs) have been reformulated and encoded, it is cumbersome for the users
to relate each state with the corresponding BDD variables. Therefore, it is more
convenient and natural to represent the supervisor in a form similar to the models.
In [23], a promising approach is presented, where a set of minimal and tractable
logic expressions, referred to as guards, are extracted from the supervisor and

3

CHAPTER 1. INTRODUCTION

attached to the original models. The guard generation approach [23] is used to
generate guards from supervisors as soon as they are symbolically computed.

As a supplement, the work presented in this thesis has been integrated into the
modeling and synthesis framework from prior work. Overall, the whole frame-
work provides the convenience for users to model systems and obtain control
functions in the same model domain. All symbolic computations are performed
efficiently by BDDs, which are transparent and the only interface users deal with
is the modeling formalism provide by the framework. The presented symbolic
algorithms have been implemented in the SCT tool Supremica [24, 25], and the
efficiency is demonstrated on a set of academic and industrial applications.

1.1 Contributions

The contributions of this thesis are:

• Identified a problem with a previously published algorithm for supervi-
sory synthesis. Suggested a modification to the algorithm and proved the
correctness.

• Adapted the symbolic SCT algorithm to take advantage of the EFA struc-
ture and thus avoiding a costly pre-processing step that translated EFA to
DFA models.

• Suggested and benchmarked several ways to partition the symbolic repre-
sentations of the DFA and EFA models such that the intermediate blow up
of internal nodes in the BDD representation are kept small.

• Proposed an approach to modeling and efficient synthesis of control logic
for resource allocations systems with routing flexibility and error handling.

• Adapted the suggested SCT algorithms to the guard generation procedure,
making it more applicable for industrially interesting applications.

• Implemented all the suggested algorithms in Supremica.

1.2 Outline

The scope of this thesis is constituted by two parts. Serving as a general intro-
duction to this field, Part I provides the preliminaries and puts the papers into the
context. Part II contains the papers, authored or co-authored. Regarding Part I,
Chapter 2 describes several modeling formalisms, the core concepts in SCT and
the main synthesis algorithm. Chapter 3 focuses on the symbolic computation

4

1.2. OUTLINE

where a set of symbolic algorithms are described and discussed. In Chapter 4, an
approach to modeling sequential resource allocation systems is firstly detailed.
Then we show the experimental results by applying the symbolic algorithms in
this thesis to a set of benchmark examples. A summary of the appended papers
is provided in Chapter 5. Finally, some concluding remarks and future work are
given in Chapter 6.

5

6

Chapter 2

Supervisory Control Theory

Supervisory Control Theory, SCT [6, 7, 26, 3], developed by Ramadge and Won-
ham in the 80’s, is a formal framework for control and analysis of discrete event
systems (DESs). In the theory, the plant which is the model of a given un-
controlled system, is assumed to spontaneously generate all physically possible
events. An important feature of the SCT is the partitioning of events as control-
lable or uncontrollable. If Σ is an event set, then Σc ⊆ Σ denotes the subset
of controllable events and its complement Σu ⊆ Σ the subset of uncontrollable
events. Note that only controllable events can be prevented from occurring by
a supervisor. For synthesis, a specification is needed. A specification is a de-
scription of the intended behavior of the closed-loop system. The task of the
supervisor is to restrict the uncontrolled behavior of the plant such that the spec-
ification is fulfilled.

Given a system to be controlled, plant, and the intended behavior of the close-
loop system, specification, the algorithm provided by SCT can automatically
synthesize a supervisor which restricts the conduct of the plant to ensure that
the close-loop system never violates the given specification. Figure 2.1 shows
the interaction between the plant and the supervisor. By following the generated
events from the plant, the supervisor only restricts the controllable events that
can be generated in the current state of the plant. It is worth mentioning that,
typically the supervisor is not unique. A class of supervisors that do not allow
anything to happen also fulfills the specification in the sense that the plant is not
allowed to do anything outside the specification. However, such supervisor is
not useful. In SCT, supervisors are assumed to be minimally restrictive, which
means plants are give the greatest amount of freedom to generate events and
controllable events are only disabled when necessary in order to prevent systems
from reaching undesirable states. It has been proved that such supervisor exists
and is unique with respect to a given plant and specification. Therefore, unless
otherwise noted, in this work we will only consider synthesis of supervisors with
minimally restrictive closed-loop behavior.

7

CHAPTER 2. SUPERVISORY CONTROL THEORY

SCT shows great promise to help control engineers to create correct control
functions for discrete event systems. Comparing to the current approach adopted
in industry, where the generation of control functions is still carried out manually,
SCT provides a formal and algorithmic methodology for analyzing properties of
DESs and automatically generating reliable control functions. Unfortunately,
industrial acceptance has been limited so far. One fact is that SCT problems are
inherently hard to solve while industrial systems usually have high complexity.
It has been well-know that computing the minimal restrictive supervisor is NP-
hard. This implies in the worst case we cannot expect a solution that is faster than
the brute-force solution. Therefore, there is a need to develop more intelligent
algorithms.

Although SCT originates from the control engineering community, it does
have some similarities with some well-known and widely accepted research ar-
eas in computer science, such as planning in Artificial Intelligence and model
checking. In planning [27], given a set of feasible steps or operations together
with one or more objectives, a plan is generated containing a series of valid op-
erations that are capable of taking the model to the desired state. There is a
difference between planning and SCT is that in SCT, a supervisor is required
to be minimally restrictive by including every possible feasible solutions while
in planning, the algorithm terminates when one solution is found. Nevertheless,
both SCT and AI planning suffer from the same complexity problems. There
are a number of researches dedicated to the improvement of planning algorithms.
Some of the best known approaches can be applied to the context of SCT, such
as partial-order planning [28], symbolic computation [29, 30].

As mentioned in the introduction, the major difference between SCT and
modeling checking is that unlike model checking, where the goal is to verify
whether a model satisfies a given specification, SCT yields a correct model
which behaves according to the specification. In addition, in model checking
the specification is usually a temporary logic formula, while in SCT, the mod-
eling formalism such as automata is used to model both plant and specification.
Because of the strong relation between SCT and model checking, in particular,
symbolic model checking [31, 20, 32, 33], a number of promising approaches
have been accommodated and applied in SCT. The approaches proposed in the
thesis and attached papers are inspired by them.

In this chapter, a number of preliminaries and extensions in SCT such sys-
tem modeling, synthesis algorithm and supervisor representation are introduced,
which are used throughout the thesis.

8

2.1. MODELING FORMALISMS

Plant

Supervisor

Σc ∪ Σu f(·)

Figure 2.1: The interaction between plant and supervisor. Σc and Σu denote
controllable and uncontrollable events respectively. f(·) is an event disabling
function [3].

2.1 Modeling Formalisms

When it comes to representation and manipulation of discrete event systems,
there are a number of modeling formalisms that can be used depending on the
different objectives of analysis. In our work, to improve the expressiveness and
compactness of system models, we use an extended variant of ordinary automata,
where variables are introduced [9].

In general, a DES can be non-deterministic, which means that some transi-
tions can occur because of some internal, non-observable behavior of the system.
On the occurrence of a certain event in a certain state, the system may transit to
different states at different occasions. For a deterministic system on the other
hand, the next state is uniquely determined by the current state of the system and
the event itself. In this thesis, the focus is on deterministic models.

2.1.1 Extended Finite Automata (EFAs)

An EFA, introduced in [9], is an augmentation of the ordinary finite automaton
(FA) with guards predicates and actions functions. The guard predicates and
actions are associated to the transitions of automata. A transition in an EFA is
enabled if and only if its corresponding guard predicate is evaluated to true,
and when a transition is taken, updating actions of a set of variables may follow.
Guard predicates can be realized by their characteristic functions.

Definition 2.1.1 (Characteristic Function). Let W be a finite set so that W ⊆ U ,
where U is the finite universal set. A characteristic function χW : U → B is
defined by

χW (a) =

{
1 iff a ∈ W

0 iff a /∈ W
.

9

CHAPTER 2. SUPERVISORY CONTROL THEORY

Let n be the number of elements in U , in practice its elements are represented
with numbers in Zn or binary m-tuples in Bm(m = �logn

2�). For binary charac-
teristic functions, an injective function θ : U → Bm is used to map the elements
in U to elements in Bm. In general, χW (a) is constructed as

χW (a) =
∨
w∈W

a ↔ θ(w),

where ↔ on two m-tuples v1 and v2 is defined as

v1 ↔ v2 �
∧

0≤i<m

(vi1 ↔ vi2),

where vi denotes the i:th element in the binary m-tuple v. As we will see later,
characteristic functions can also be used to represent BDDs.

Definition 2.1.2 (Extended Finite Automata). An extended finite automaton E

is a 6-tuple
E = 〈LE × V ,ΣE,G,A,→, (�E0 , v0)〉,

where:

• LE × V is the extended finite set of states, denoted by Q, where LE is a
set of locations and V is the domain of definition of the variables;

• ΣE is a non-empty finite set of events, called alphabet;

• G = {χW | W ∈ 2V } is the set of guard predicates over V ;

• A = {a | a : V → V } is a collection of action functions;

• →⊆ LE × ΣE × G ×A× LE is the transition relation;

• (�E0 , v0) ∈ LE × V is the initial state.

The finite set V = V 1 × . . . × V n is the domain of definition of an n-tuple
of variables v = (v1, . . . , vn) with the initial values v0 = (v10, . . . , v

n
0) ∈ V . A

guard g(v) is a predicate over the variables that relate each element of V to either
1 (true) or 0 (false). Actions are written as

v́ : = a(v) = (a1(v), . . . , an(v)),where v́ ∈ V .

The symbol ξ is used to denote implicit actions that do not update the values of
variables. For instance, if ai(v) = ξ, it means that action ai does not update
variable vi, i.e. v́i = vi.

The transition relation can be written as �
σ→g/a �́, where �, �́ ∈ L, σ ∈

Σ, g ∈ G and a ∈ A. If g is absent, denoted by �
σ→a �́, it is assumed that

10

2.1. MODELING FORMALISMS

g always evaluates to true. If a is absent, denoted by �
σ→g �́, it is assumed

that a(v) = Ξ, where Ξ is the vector notation for (ξ, ξ, . . . , ξ), indicating that no
variable is updated during the transition.

For convenience, the states (locations and variable values) can be explicitly
written in system transitions according to the following definition.

Definition 2.1.3 (Explicit State Transition Relation). Let E = 〈LE × V ,ΣE , �→
, (�E0 , v0)〉 be an EFA. The explicit state transition relation of E is defined as

�→E � {(�E, v, σ, �́E, v́) ∈ LE × V × Σ× LE × V |
∃�E σ→g/a �́

E : v ∈ SATG(g) ∧ (v, v́ ∈ SATA(a))},

where v and v́ are the values of the variables before and after executing the tran-
sition, respectively; SATG denotes the set of variable assignments that satisfies
the guard g(v),

SATG(g) � {v ∈ V | v � g};

and SATA denotes the following set:

SATA(a) � {(v, v́) ∈ V × V | v́ = a(v)}.

For brevity, we denote the explicit representation of a transition �
σ→g/a �́ by

�→
�
σ→g/a �́

. Besides, since we are interested in deterministic systems, we merely
focus on deterministic EFAs which are defined as follows. In the sequel, for the
sake of brevity, we simply write EFAs for deterministic EFAs.

Definition 2.1.4 (Deterministic EFA). An EFA E = 〈LE × V ,Σ, �→, (�E0 , v0)〉
is deterministic if (�E, v)

σ�→ (�E1 , v1) and (�E, v)
σ�→ (�E2 , v2) always implies

(�E1 , v1) = (�E2 , v2).

Example 1. In this example, we model a mathematical strategy game, called
stick-picking game by using EFAs. Supposing that there are five sticks on a
table, two players take turn by remove one or two sticks from the table. The
winner is the player that takes the last stick. Fig. 2.2 shows the EFA model for
this game. The EFA contains two locations denoting the two players in the game.
Each location has two outgoing transitions label by the events in correspondence
with the two options: remove one or two sticks. Furthermore, one variable sticks
is declared to maintain the number of sticks on the table and the value is updated
when players remove sticks by taking different transitions.

11

CHAPTER 2. SUPERVISORY CONTROL THEORY

PLAYER_1

PLAYER_2

player2_remove_two player2_remove_one

player1_remove_two player1_remove_one

sticks > 0

sticks > 0

sticks > 1

sticks > 1

sticks-=2

sticks-=2

sticks-=1

sticks-=1

Figure 2.2: The EFA model for the stick-picking game

2.1.2 Deterministic Finite Automata (DFAs)

Deterministic Finite automata (DFAs) [8], from which EFAs are generalized,
can be considered as a special case of EFAs where no variables are defined.
Specifically, a deterministic finite automaton (DFA) can be reduced from the
definition of deterministic EFA to a 4-tuple 〈Q,Σ,→, q0〉, whereQ and q0 denote
a finite set of states and the initial state of a DFA, corresponding to the finite
location set and the initial location of an EFA where no variables are defined.
Σ, same as EFA, is a non-empty finite set of events (the alphabet). For an EFA,
since no variables are defined, guards and actions in the transition relation are
thus omitted. This leads to →⊆ Q×Σ×Q, the state transition relation of DFA.

2.1.3 Composition of Subsystems

Usually, a considered DES can be modeled by a set of partially independent com-
ponents (DFAs or EFAs). The total system is a composition of these subsystems.
The composition of two concurrent subsystems can be done in several different
ways. In our work, full synchronous composition (FSC) (Definition 2.1.5) and
its extension, extended full synchronous composition (EFSC) (Definition 2.1.6)
are used.

Definition 2.1.5 (Full Synchronous Composition [34]). LetAk = 〈QAk ,ΣAk ,→Ak

, qAk
0 〉, k = 1, 2 be two DFAs. The Full Synchronous Composition (FSC) of A1

and A2 is

A1 ‖ A2 = 〈QA1 ×QA2 ,ΣA1 ∪ ΣA2 ,→, (qA1
0 , qA2

0)〉

12

2.1. MODELING FORMALISMS

where the state transition relation → is defined as


〈(qA1, qA2), σ, (q́A1, q́A2)〉 if 〈qA1, σ, q́A1〉 ∈→A1 ∧〈qA2, σ, q́A2〉 ∈→A2

〈(qA1, qA2), σ, (q́A1, qA2)〉 if 〈qA1, σ, q́A1〉 ∈→A1 ∧σ /∈ ΣA2

〈(qA1, qA2), σ, (qA1, q́A2)〉 if 〈qA2, σ, q́A2〉 ∈→A2 ∧σ /∈ ΣA1

undefined otherwise

Definition 2.1.6 (Extended Full Synchronous Composition [9]). LetEk = 〈LEk×
V ,ΣEk ,→Ek

, (�Ek
0 , v0)〉, k = 1, 2, be two EFAs with the shared variables v =

(v1, . . . , vn). The Extended Full Synchronous Composition (EFSC) of E1 and
E2 is

E1 ‖ E2 = 〈LE1 × LE2 × V ,ΣE1 ∪ ΣE2 ,→, (�E1
0 , �E2

0 , v0)〉
where the state transition relation → is defined as

1. (�E1 , �E2)
σ→g/a (�́

E1 , �́E2), σ ∈ Σ1 ∩ Σ2 if
∃�E1

σ→g1/a1 �́
E1 ∈→E1 and

∃�E2
σ→g2/a2 �́

E2 ∈→E2 such that:

• g = g1 ∧ g2,

• For i = 1, . . . , n and ∀v ∈ V :

ai(v) =




ai1(v) if ai1(v) = ai2(v)

ai1(v) if ai2(v) = ξ
ai2(v) if ai1(v) = ξ

vi otherwise

2. (�E1 , �E2)
σ→g/a (�́

E1 , �́E2), σ ∈ Σ1\Σ2 if
(�E1, σ, g, a, �E1) ∈→E1 and �E2 = �́E2 ;

3. (�E1 , �E2)
σ→g/a (�́

E1 , �́E2), σ ∈ Σ2\Σ1 if
(�E2, σ, g, a, �E2) ∈→E2 and �E1 = �́E1 .

Note that, in the case where the action functions of E1 and E2 explicitly try
to update a shared variable to different values, we assume that the variable is not
updated. Such situation is usually a consequence of bad modeling, and thus it is
reasonable to inform the user by a message rather than disabling the transition.
However, we wanted the EFSC to always be well defined and thus we made the
decision to keep the value in this situation.

Normally, a plant is described by a number of sub-plants P1, . . . , Pl. To
obtain the plant P , FSC or EFSC can be used and thus the total plant P is defined
by P1 ‖ . . . ‖ Pl. Similarly, if the specification is described as a series of
sub-specifications, Sp = Sp1 ‖ . . . ‖ Spm. Additionally, some states of an
automaton which is typically a (sub-)specification, are considered as marked

13

CHAPTER 2. SUPERVISORY CONTROL THEORY

states, denoted by Qm. The marked states are these states that can be reached
from the initial state. The set of marked states of a composed automaton E1 ‖ E2

is the Cartesian product of the corresponding sets of marked states. Note that for
EFAs, a state is marked only if the location as well as the values of variables
are both marked. Besides, some states can be specified as forbidden states, Qex,
which are the states that should be forbidden. The set of forbidden states of a
composed automaton E1 ‖ E2 is QE1

ex ×QE2 ∪QE1 ×QE2
ex .

2.2 Supervisory Synthesis

As mentioned earlier, the supervisor to be computed is assumed to minimally
restrictive meaning that the plant is give the greatest amount of freedom to gen-
erate events and the resultant supervisor only disables certain controllable events
when necessary. To synthesize such a supervisor, the closed-loop systemP ‖ Sp

is firstly computed, which we refer to as S0 in the sequel. During the synthesis
procedure, some states are identified either blocking or uncontrollable, referred
to as forbidden states, which should be excluded from S0 in order to obtain the
safe states, i.e. the states belonging to the supervisor.

2.2.1 Desired Properties of Supervisors

In addition to the basic property that the plant P under the control of the superior
S should fulfill the given specification Sp, typically, there are two additional
properties [6, 7] which supervisors are desired to have:

1. Non-blocking.

2. Controllable with respect to the plant P .

A non-blocking automaton is an automaton where at least one of the marked
states Qm should be reached by every reachable state. This is a liveness property
where unmarked deadlock and livelock states should be avoided. A state with
no outgoing transitions is called a deadlock state. The situation where a system
enters a set of states that are strongly connected, but without any transition going
out of the set, is called livelock. The union of unmarked deadlock and livelock
states of an automaton A are referred to blocking states.

Definition 2.2.1 (Blocking States Qbl). Given an automaton A, which is either a
DFA or an EFA, the blocking states Qbl of A can be defined as follows.

• A is a DFA, then

Qbl = {q ∈ QA
reach | �q́ ∈ Qm ⇒ 〈q, σ, q́〉 ∈ →A}

14

2.2. SUPERVISORY SYNTHESIS

where QA
reach denotes all the states in A which can reached by the initial

state qA0 and →A is the state transition relation of A.

• A is an EFA, then

Qbl = {(�, v) ∈ QA
reach | �(�́, v́) ∈ Lm × Vm ⇒ 〈�, v, σ, �́, v́〉 ∈ �→A}

where QA
reach denotes all the states in A which can be reached by the initial

state (�A0 , v0) and �→A is the explicit transition relation of the EFA A. Lm

and Vm denote the marked locations and values of variables.

The controllability is a safety property, saying that a supervisor is control-
lable with respect to the plant if the supervisor is able to follow all uncontrollable
events that generated by the plant. Precisely, a supervisor S is controllable with
respect to the plant P if, from any reachable state in S ‖ P , an enabled uncon-
trollable event σu in P is either enabled in S as well or σu is not included in the
alphabet of S.

Definition 2.2.2 (Uncontrollable States Quc). Given a supervisor S and a plant
P , if S is not controllable with respect to P , the corresponding uncontrollable
states, denoted by Quc, can be defined as follows.

• Both P and S are DFAs, then

Quc = {〈qP , qS〉 ∈ Q
P‖S
reach | ∃σu ∈ ΣP

u ∩ ΣS

⇒ 〈qP , σu, q́
P 〉 ∈ →P ∧ 〈qS, σuq́

S〉 /∈→S}
where ΣP

u is the uncontrollable event set of P . →P and →S are the state
transition relations of P and S.

• Either P or S is an EFA, then

Quc = {(�P , �S, v) ∈ Q
P‖S
reach | ∃σu ∈ ΣP

u ∩ ΣS

⇒ (�P , v, σu, �́
P , v́) ∈ �→P ∧ (�S, v, σu, �́

S, v́) /∈ �→S}
where ΣP

u is the uncontrollable event set of P . �→P and �→S are the explicit
transition relations of P and S.

2.2.2 Safe-State Algorithm

The algorithm synthesizes the supervisor by first building the closed-loop S0 =
P ‖ Sp, then removing forbidden states from QS0 until the remaining safe states
are both nonblocking and controllable. In this thesis, the synthesis algorithm that
is used to calculate the maximally restrictive supervisor is called the safe-state-
synthesis, introduced in [22].

15

CHAPTER 2. SUPERVISORY CONTROL THEORY

As Algorithm 1 shows, given a set of forbidden states Qx that could either
be explicit forbidden states or forbidden states due to the controllability, the
algorithm computes the set of safe statesQS by iteratively removing the blocking
states (Algorithm 2) and the uncontrollable states (Algorithm 3). Note that after
the termination of the algorithm, not all of the safe states are reachable from the
initial state. Therefore, a forward reachability search (Algorithm 4) is needed to
exclude the safe states which are not reachable.

Algorithm 1: Safe-State Synthesis

Input: Qx and QS0

Output: QS

begin
1 i := 0;
2 Q0

x := Qx;
repeat

3 i := i+ 1;
4 Q′ := RestrictedBackward (Qm, Q

i−1
x);

5 Q′′ := UncontrollableBackward (QS0 −Q′);
6 Qi

x := Qi−1
x ∪Q′′;

until Qi
x = Qi−1

x ;
7 QS := QS0 −Qi

x;
end

Algorithm 2: Restricted Backward
Input: Qm and Qx

Output: Qco

begin
1 j := 0;
2 Q0 := Qm −Qx;

repeat
3 j := j + 1;
4 Qj := Qj−1 ∪ {q | ∃q́ ∈ QS0 , ∃σ ∈ ΣS0 ⇒ 〈q, σ, q́〉 ∈→S0} −Qx;

until Qj = Qj−1;
5 Qco := Qj;

end

16

2.2. SUPERVISORY SYNTHESIS

Algorithm 3: Uncontrollable Backward
Input: Qx

Output: Qex

begin
1 k := 0;
2 Q0 := Qx;

repeat
3 k := k + 1;
4 Qk := Qk−1 ∪ {q | ∃q́ ∈ QS0, ∃σu ∈ ΣS0

u ⇒ 〈q, σu, q́〉 ∈→S0};
until Qk = Qk−1;

5 Qex := Qk;
end

Algorithm 4: Restricted Forward
Input: q0 and Qx

Output: Qr

begin
1 l := 0;
2 Q0 := {q0};

repeat
3 l := l + 1;
4 Ql := Ql−1 ∪ {q́ | ∃q ∈ QS0 , ∃σ ∈ ΣS0 ⇒ 〈q, σ, q́〉 ∈→S0} −Qx;

until Ql = Ql−1;
5 Qr := Ql;

end

2.2.3 Representing Supervisors with Guards

When designing the supervisor of a system, a typical issue is how to realize
such a control function efficiently and represent it appropriately. The standard
approach [6], or the safe-state approach above, synthesize the supervisor by first
building the closed-loop system and then explicitly enumerate all states that can
be reached. The problem of computing and representing supervisors in such
monolithic and explicit way is that for large and complex systems, supervisors,
with potential huge numbers of states, become intractable and might cause the
state-space explosion problem.

An alternative approach to handle the computation of supervisors, is to use
binary decision diagrams (BDDs) [18, 35, 36] to encode the transition relation
of the closed-loop system and express the supervisor symbolically [37, 22, 38,
39, 40]. The discussion of BDDs and the applications in SCT will be detailed in
Chapter 3. Here we suppose that the supervisor of a system has been computed

17

CHAPTER 2. SUPERVISORY CONTROL THEORY

and represented by BDDs. Meanwhile, another problem is arising from the BDD
representation of the resultant supervisor. Since the original models have been
reformulated and encoded, it is cumbersome for the users to relate each state with
the corresponding BDD variables. Therefore, it is more convenient and natural
to represent the supervisor in a form similar to the models.

In [23], an approach, called the guard generation procedure, was presented.
Being dependent on three kinds of state sets, the guard generation procedure ex-
tracts a set of conditional propositional formulae, referred to as guards indicating
under which conditions the event can be executed without violating the specifi-
cations. These guards are then attached to the corresponding transitions of the
original models, which results in a modular representation of supervisors.

Concerning the states that are retained or removed after the synthesis process,
the states that enable an arbitrary event σ can be divided into three basic state
sets: forbidden state set, allowed state set and don’t care state set.

• The forbidden state set, denoted by Qσ
f , is the set of states in the supervisor

where the execution of σ is defined for S0, but not for the supervisor.

• The allowed state set, denoted by Qσ
a , is the set of states in the supervisor

where the execution of σ is defined for the supervisor. In other word, for
each event σ in S0’s alphabet, Qσ

a represents the set of states where event
σ must be allowed to be executed in order to end up in states belonging to
the supervisor.

• The don’t care state set, Qσ
dc can be defined as the complement of the union

of Qσ
a and Qσ

f .

Qσ
dc = C(Qσ

a ∪Qσ
f)

Based on the basic state sets, guards can be extracted, expressing under which
conditions the events can be executed without violating the specifications. In
addition, by applying minimization methods of Boolean functions (utilizing the
don’t care state set) and certain heuristics, the generated guards can be simplified.
The detailed exposition is however beyond the scope of the thesis and can be
found in [23].

18

Chapter 3

Symbolic Computation of
Supervisors

The state-space explosion problem is one of the typical problems which pre-
vent SCT from having a major industrial breakthrough. As mentioned earlier
in Chapter 2, the prerequisite for synthesizing the supervisor of a system is the
construction of the closed-loop system by performing the full synchronization
composition on a set of modular models interacting with each other by common
events. Due to the limitation of available memory, synchronizing multiple au-
tomata might fail if the consider system has a potential huge state space, e.g.,
millions of states.

Since the state-space explosion problem results from the failure of explicit
enumeration of a large number of reachable states during synchronization, an
alternative approach, inspired from model checking, is to represent states and
transitions symbolically, or implicitly by using binary decision diagrams (BDDs)
[18, 35, 36]. The main difference between explicit and implicit representation
is that in the former approach, states are manipulated individually while in the
latter one, set of states are manipulated at the same time. In addition, symbolic
operations are carried out more efficiently compared to the explicit operations.

In this chapter, first a general symbolic computation approach using BDDs
is described, including the representation of the transition relation of an EFA
and the translation of safe-state algorithm to the corresponding symbolic coun-
terpart. Following the symbolic discussion, two approaches to constructing the
transition relation of synchronized EFAs, namely the monolithic and partitioning
approaches, are described.

19

CHAPTER 3. SYMBOLIC COMPUTATION OF SUPERVISORS

3.1 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [18, 19] are powerful data structures for rep-
resenting Boolean functions. For large systems where the number of states grows
exponentially, BDDs can improve the efficiency of set and Boolean operations
performed on the state sets dramatically [22, 31, 41, 42].

Definition 3.1.1 (Binary Decision Diagrams). Given a set of Boolean variables
B, a BDD is a Boolean function h : 2B → {0, 1}, which can be expressed using
Shannon’s decomposition [43]:

h = (¬bj ∧ h|bj=0 ∨ (bj ∧ h|bj=1)) bj ∈ B

where h |bj=0 and h |bj=1 refer to assignment 0 and 1 to all occurrences of the
Boolean variable bj , respectively. A BDD is represented as a directed acyclic
graph (DAG), which consists of two types of nodes: decision nodes and termi-
nal nodes. A terminal node can either be 0-terminal or 1-terminal. Each decision
node is labeled by a Boolean variable and has two edges to its low-child and high-
child. The low- and high-child corresponds to the cases in the above equation
where bj is 0 (graphically represented by a dotted line) and 1 (graphically repre-
sented by a solid line), respectively. The size of a BDD refers to the number of
decision nodes.

A BDD is Ordered (OBDD) if on all paths through the graph the variables
respect a given linear order b1 ≺ b2 ≺ . . . ≺ bn. In addition, an OBDD is
Reduced (ROBDD) if [36]

1. (uniqueness) no two distinct nodes and have the same variable name and
low- and high-child;

2. (non-redundant tests) no variable node has identical low- and high-child.

In [19], Randal Bryant prove the canonicity of ROBDDs. That is to say, let
B and B′ be two ROBDDs representing a given function f . Then B and B ′ are
identical. This is the single most important property of ROBDDs, which allows
us to perform tests such as equality, satisfiability efficiently. Today, ROBDDs
are used in a number of model checking tools for verifying system models. Note
that on the following, all BDDs are assumed to be ordered and reduced BDDs
(ROBDDs).

The power of BDDs lies in their simplicity and efficiency to perform binary
operations. A binary operator op between two BDDs h and g can be computed
as

h op g = [¬bj ∧ (h|bj=0 op g|bj=0)] ∨ [bj ∧ (h|bj=1 op g|bj=1)].

20

3.1. BINARY DECISION DIAGRAMS

Most of the operations used when manipulating BDDs are linear in the prod-
uct of the sizes of the operand BDDs. The main exception is the relational prod-
uct operation, i.e., relprod. The relational product can be implemented with
one conjunction and a series of existential quantifications, however the time
complexity in the worst case is exponential. Moreover, it is well-known that
the variable ordering impacts the size of the BDD dramatically, however, find-
ing an optimal variable ordering of a BDD is an NP-complete problem [44]. In
this thesis, a static BDD variable ordering is computed based on the method pre-
sented in [45]. In this method, the variable ordering is influenced by the ordering
of interacting automata based on weighted search in the Process Communication
Graph (PCG) [45]. A PCG for a set of automata is a weighted undirected graph,
where the weight between two automata A1 and A2 is defined as |ΣA1 ∩ ΣA2 |.
With respect to the DESs modeled as finite automata with variables, such as
EFAs, the interaction of automata is affected not only by the alphabets but also
the global variables. To handle this issue, we add additional weights to the PCG
by inspecting the guard predicates and actions functions of each transition. This
is however beyond the scope.

For a more elaborate and verbose exposition of BDDs and the implementa-
tion of different operators, refer to [36, 35].

3.1.1 Representation of Models

By taking the advantage of characteristics functions 2.1.1, system models such
as automaton can be symbolically represented by BDDs. Without loss of the
generality, we focus on the symbolic representation of an EFA.

Given a EFA E, the characteristic function of the explicit state transition
relation �→

�
σ→g/a�́

can be constructed as:

χ�→
�
σ→g/a�́

(bV
1

, . . . , bV
n

, b́V
1

, . . . , b́V
n

, bL, b́L, bΣ) =
 ∨

(v,v́)∈SATA(a)|v∈SATG(g)
n∧

i=1

(
bV

i ↔ θ(vi) ∧ b́V
i ↔ θ(v́i)

)) ∧

bL ↔ θ(�) ∧ b́L ↔ θ(�́) ∧ bΣ ↔ θ(σ),

where bΣ denotes the Boolean variables representing the alphabet while bL and b́L

are two different sets of Boolean variables representing the current and updated
locations. For an EFA where n variables are defined, bV

i
and b́V

i
denote the

current and updated integer values of variables. In our framework, integers are

21

CHAPTER 3. SYMBOLIC COMPUTATION OF SUPERVISORS

Table 3.1: Event and current location encoding for the EFA in Fig. 3.1

Event bΣ1 b
Σ
0 Location bL0

player1remove1 0 0 player1 0

player1remove2 0 1 player2 1

player2remove1 1 0

player2remove2 1 1

represented in the two’s complement system as array of BDDs [46]. In practice,
it is very often that values of variables are defined as or updated to non-negative
integers. In that case, for computational purposes, the BDD variable representing
the sign-bit of a non-negative integer is omitted and thus only the magnitude is
encoded. Besides, we assume that overflows are not allowed and thus we omit
the cases where an overflow occurs. This is performed by removing all the
variable assignments that result in values outside the domain of the variables.
Consequently, the characteristic function of the transition relation of an EFA E

will be

χ�→E
=

∨
�
σ→g/a�́∈→E

χ�→
�
σ→g/a�́

∧
n∧

i=1

χV i(bV
i

) ∧
n∧

i=1

χV i(b́V
i

).

Example 2. Regarding the EFA model shown in Example 1 of Chapter 2, the
corresponding symbolic transition relation is shown in Fig. 3.1. Note that the
BDD does not contain the cases where sticks < 0 and sticks > 5. The BDD
variables in the figure are labeled by numbers as follows

bΣ = (bΣ1 , b
Σ
0) = (1, 0), bL = (bL0) = (2), b́L = (b́L0) = (3),

bsticks = (bsticks2 , bsticks1 , bsticks0) = (6, 5, 4),

b́sticks = (b́sticks2 , b́sticks1 , b́sticks0) = (9, 8, 7).

where b0 is the least significant bit. Table shows the encoding of events and
locations. At it can be observed, the BDD in this example is larger than the
EFA model. However, for large models the BDDs typically become much more
compact.

3.1.2 BDD-Based Safe-State Algorithm

In Chapter 2, the synthesis algorithm, i.e., the safe-state algorithm is discussed on
an explicit level. By making use of the characteristic functions, the correspond-
ing symbolic safe-state and restricted backward reachability algorithms can be

22

3.1. BINARY DECISION DIAGRAMS

01

0

1 1

22 2 2

33

4

55

6 666

7 7

8

9

8

77 7

8

9

4

5

6 6

3 3

Figure 3.1: The Corresponding BDD for the Transition Relation of the EFA in
Example 1.

obtained and are shown in Algorithm 5 and Algorithm 6 respectively. Note that
→S0 denotes the transition relation for DFAs or the explicit transition relation
(�→S0) for EFAs. The symbolic version of the restricted forward and uncon-
trollable reachability algorithms can be translated similarly. It can be observed
states and transition relation are represented by their corresponding characteris-
tic functions. Set operations, used to expand the state sets, are translated to logic
operations.

Algorithm 5: B-Safe-State Synthesis
Input: χQx and χQS0

Output: χQS

begin
1 i := 0;
2 χ0

Qx
:= χQx;

repeat
3 i := i+ 1;
4 χQ′ := B-RestrictedBackward (χQm , χ

i−1
Qx

);
5 χQ′′ := B-UncontrollableBackward (χQS0 ∧ ¬χQ′);
6 χi

Qx
:= χi−1

Qx
∨ ¬χQ′′ ;

until χi
Qx

↔ χi−1
Qx

;
7 χQS := χQS0 ∧ ¬χi

Qx
;

end

23

CHAPTER 3. SYMBOLIC COMPUTATION OF SUPERVISORS

Algorithm 6: B-Restricted Backward
Input: χQm and χQx

Output: χQco

begin
1 j := 0;
2 χ0

Q := χQm ∧ ¬χQx;
repeat

3 j := j + 1;

4 χQ′ := ∃{bΣ, b́L, b́V }.(χj−1
Q ∧ χ→S0

);

5 χj
Q := χj−1

Q ∨ χQ′ ∧ ¬χQx;

until χj
Q ↔ χj−1

Q ;

6 χQco := χj
Q;

end

At line 4 of Algorithm 6, relprod operation is used to calculate more co-
reachable states from the marked states. Precisely, by performing the conjunc-
tion operation (∧) on the existing co-reachable state set χj−1

Q and →S0 , only
the tuples where the target states belong to Qj−1 is retained. Then the new co-
reachable state set can be obtained after existential quantifying the BDD vari-
ables for these target states (b́L and b́V) and events (bΣ). It should be mentioned
that after the execution of line 4, χQ′ , the set of new states co-reached from
Qj−1, contains the source BDD variables, i.e., bL and bV . As an additional step,
which is not shown in Algorithm 6, we need to replace those source variables
with the corresponding target variables before merging them into the existing
co-reachable state set.

3.2 Symbolic Synthesis for EFAs

At this moment, readers might ask the question: since the (extended) full syn-
chronous composition is an explicit operation, how to acquire the symbolic rep-
resentation of the (explicit) transition relation? In the upcoming sections, the
question will be answered.

3.2.1 The Monolithic Approach

The characteristic function of the synchronized transition relation can be com-
puted monolithically. For the sake of understandability and reachability, first
the case that systems are modeled as DFAs is handled then we extend the ap-
proach to the extended case.

Definition 3.2.1 (Extended Transition Relation). For N ≥ 2 DFAs, A1, . . . , AN ,

24

3.2. SYMBOLIC SYNTHESIS FOR EFAS

the extended transition relation of Ak, 1 ≤ k ≤ N , denoted by �Ak
, represents

the transition relation of Ak together with self-loops on all states with events that
are not in the alphabet of Ak

�Ak
�→Ak

∪ {(q, σ, q́) | ∀q ∈ QA : σ ∈ (ΣA1‖...‖AN\ΣAk) ∧ q́ = q}.
By this extension, all automata in the DFA model have the same alphabet.

This simplifies the full synchronous composition, since we only have to con-
sider the first case. The extended explicit transition relation for an EFA can be
similarly defined.

With the extended transition relation for each DFA defined, the characteristic
function representing the transition relation of a set of DFAs can be computed as
follows

χ→A1‖...‖AN
=

N∧
k=1

χ�Ak
.

Regarding the computation for EFAs, it is not as straightforward as the DFA
case, since the above formula doe not hold any more, i.e.,

χ�→E1‖...‖EN
�=

N∧
k=1

χ�Ek
.

Because then it would not be possible to keep track of the variables that are not
updated. Furthermore, the action conflicts will disable the corresponding events.
However, based on Definition 2.1.6, result should be a transition relations where
values of variables are unchanged.

In [47], A monolithic approach to computing the characteristic function rep-
resenting �→S0 is presented. The approach, briefly described here, consists of
three step:

1. Compute a characteristic function representing �→S0 without including the
actions, denoted by χ′

�→S0
and

χ′
�→S0

=
N∧
k=1

χ′
�Ek

,

where χ′
�Ek

denotes χ�Ek
excluding the update of variables.

2. Compute a characteristic function representing the update of the EFA vari-
ables, denoted by χ �→v

S0
.

For two EFAs, E1, E2 and a variable vi, we define

χ�vi,E1‖E2
=

4∨
j=1

(χCj
�

vi,E1‖E2

),

25

CHAPTER 3. SYMBOLIC COMPUTATION OF SUPERVISORS

where χ�vi,E1‖E2
denotes the transition of E1 ‖ E2 where the variable vi is

updated. According to Definition 2.1.6, there are four alternative situations
which are corresponded by

4∨
j=1

(χCj
�vi,E1‖E2

),

can decide whether and how this variable vi is updated. For the sake of
simplicity and understandability,the formal definition is omitted and read-
ers can find them in [47].

Finally, for a set of variables v = (v1, . . . , vn), χ �→v
S0

can be computed as
follows

χ�→v
S0

=
n∧

i=1

χvi,S0
.

3. Based on χ′
�→S0

and χ �→v
S0

,

χ�→S0
= χ′

�→S0
∧ χ�→v

S0
.

The proof can be found in [47].

3.2.2 The Partitioning Approach

Another symbolic approach to the characteristic function representing �→S0 , is
to apply partitioning techniques. Instead of obtaining one characteristic func-
tion, χ �→S0

, the partitioning approach generates a series of characteristic func-
tions. These functions, with some logic connection in between, together repre-
sent χ �→S0

:
χ�→S0

= χ1
�→S0

⊗ . . .⊗ χm
�→S0

,

where ⊗ denotes either conjunction or disjunction operator.
The monolithic approach works fine for some cases when applied to indus-

trial applications. However, for other complex applications, the symbolic com-
putation still causes the state-space explosion problem, because of either of the
following two reasons:

• For some larger and more complex systems, the monolithic BDD repre-
senting �→S0 is too huge to be constructed, although it occurs rarely.

• In the safe-state algorithm, the final set of safe states is generated after a
series of (co-)reachability computations. These (co-)reachability computa-
tions, for instance restricted backward reachability computation,
are the bottleneck of the algorithm. Assuming that the monolithic BDD

26

3.2. SYMBOLIC SYNTHESIS FOR EFAS

representing �→S0 is managed to be constructed, however, the reachabil-
ity computations may still suffer from the state-space explosion due to the
large intermediate BDDs.

To reach significant intermediate BDD reduction, it is crucial to explore the
search space in an intelligent way. The key is to impose structure on the state-
space exploration. Moreover, to realize such an intelligent state-space explo-
ration, an important ingredient is the use of partitioning techniques, which was
rigorously defined in [20] and used in a number of contexts [48, 49]. There also
exists a number of papers dealing with the adaption of these techniques to the
verification or synthesis task of SCT. In [21, 22, 40], a straightforward but non-
trivial approach was proposed to represents the monolithic transition relation of
a fully synchronized DES modeled by DFAs by a collection of partial transition
relations. In this thesis, the disjunctive partitioning is the technique that is al-
ways used. In [50], an alternative symbolic way to partition DESs modeled as
EFAs by using the disjunctive partitioning technique. In the sequel, similar to
the discussion of the monolithic approach. The partitioning approach for DFAs
will be first described and extended to the EFA case.

First we need to introduce a couple of definitions which are used in the ap-
proach.

Definition 3.2.2. [Exclusive Dependency Set [22]] Given a set of DFAs, A1, . . . , AN ,
N ≥ 2, the dependency set of Ai ∈ {A1, . . . , AN}, denoted by D+(Ai), can be
defined as

D+(Ai) = {Aj | 1 ≤ j ≤ N ∧ j �= i ∧ ΣAi ∩ ΣAj �= ∅}.

Definition 3.2.3. [Retained Transition Relation] For N ≥ 2 DFAs, the retained
transition relation of Ai, 1 ≤ i ≤ N , denoted by �Ai

, is defined as

�Ai
= {(q, ·, q́) | ∀q, q́ ∈ QAi : q = q́},

where · denote any event σ ∈ ΣE1 ∪ . . . ∪ ΣEN .

Based on Definition 3.2.2 and 3.2.3, the characteristic function representing
the partial transition relation of Ai is computed as

χAi→S0
=

∧
Aj∈D+(Ai)

χ→Aj
∧

∧
Ak /∈D+(Ai)

χ�Ak
.

Furthermore,

χ→S0
=

N∨
i=1

χAi→S0
.

27

CHAPTER 3. SYMBOLIC COMPUTATION OF SUPERVISORS

With respect to the EFA case, a slightly different approach is taken. The
approach, called event-based partitioning approach, partitions the transition re-
lation under full synchronous composition according to the included events of
the model. In all of the following computations, let E = {E1, . . . , EN} where
N ≥ 2.

For each event σ ∈ ΣE where E = E1 ‖ . . . ‖ EN , the corresponding
disjunctive partial transition relation χ σ�→E

under full synchronous composition
can be constructed in the following three steps:

1. Compute a characteristic function of
σ�→E† , denoted by χ σ�→

E†
where E† =

E†
1 ‖ . . . ‖ E†

m and σ ∈ ΣE†
1 ∩ . . . ∩ ΣE†

m .

2. Compute a characteristic function of
σ�→E‡ , denoted by χ σ�→

E‡
where E‡ =

E‡
1 ‖ . . . ‖ E‡

m′ and {E‡
1, . . . , E

‡
m′} = E\{E†

1, . . . , E
†
m}.

3. Based on χ σ�→
E†

and χ σ�→
E‡

, compute χ σ�→E
.

Regarding step 1, computing χ σ�→
E†

, two further steps need to be performed
in advance:

• Compute χ′
σ�→

E†
, which denotes the characteristic function of

σ�→E† exclud-

ing the action functions of EFA variables.

χ′
σ�→

E†
=

m∧
k=1

(∃ b́V
i

.χ σ�→
E
†
k

),

and
χ σ�→

E
†
k

= χ�→
E
†
k

∧ χσ,

where χ�→
E
†
k

denotes the characteristic function representing the explicit

transition relation of Ek while χσ denotes the characteristic function rep-
resenting the event σ.

• Compute χ σ�→v

E† denoting the update of EFA variables.

Similar to the monolithic approach, for two EFAs. E1 and E2 and a variable
vi, we defined

χ σ�→
vi,E1‖E2

=
4∨

j=1

χ
Cj(

σ�→
vi,E1‖E2

)
,

where χ σ�→vi,E1‖E2

is the transition relation of E1 ‖ E2 where vi is updated on

the occurrence of σ. These four alternatives according to Definition 2.1.6, repre-
sented by

4∨
j=1

χCj(
σ�→

vi,E1‖E2
),

28

3.2. SYMBOLIC SYNTHESIS FOR EFAS

can decide whether and how this variable is updated once the event σ occurs. For
the formal definition, refer to [50]. Hence, for a set of variables v = (v1, . . . , vn),
χ�→v

E† can be computed as follows

χ�→v
E† =

n∧
i=1

χ σ�→
vi,E†

.

At this stage, we are done with step 1.

Remark. Recall from Definition 2.1.6, that if there exists an event σ, such that
σ ∈ ΣE1\ΣE2 , on the occurrence of σ, E2 would remain the previous location,
i.e. ∀�, �́ ∈ LE2 , � = �́. On the other hand, the values of variables are updated
according to the transitions labeled by σ in E1.

Regarding the scond step,

χ σ�→
E‡

=

m′∧
k=1

χ σ
�

E
‡
k

,

and
σ
�E‡

k
= {(�, σ, �́) | ∀�, �́ ∈ LE‡

k ∧ σ /∈ ΣE‡
k : � = �́}.

At this moment, we have done the first two steps. Sequentially, computing
the characteristic function of

σ�→E, can be computed:

χ σ�→E
= χ σ�→

E†
∧ χ σ�→

E‡

Finally, for the closed-loop system S0,we have

χ�→S0
=

∨
σ∈ΣS0

χ σ�→S0
.

The proof can be found in [50].

3.2.3 Structural State-Space Exploration

Following the previous sections, in order to design successful BDD-based reach-
ability algorithms for large-scaled systems, it is vital to traverse the state-space
in a structural way. For this purpose, an efficient symbolic algorithm for the
DFA model, i.e. the workset algorithm was proposed in [22] while the in-depth
analysis and proof can be found in [21].

As mentioned before, the interaction between two EFAs is not only affected
by the shared events, but also the update of EFA variables. For instance, after
an occurrence of an event, the values of variables are updated. These updated

29

CHAPTER 3. SYMBOLIC COMPUTATION OF SUPERVISORS

variables may lead to some guards of other transitions from other EFAs to be
evaluated to be true, even though they are labeled by different events. When
designing the algorithm, this issue should be taken into account. Otherwise, the
algorithm might either explore the state-space in an incorrect way or is not an
exhaustive exploration.

In this section, the symbolic algorithm proposed in [50] is mainly discussed.
The algorithm uses the event-partitioning approach and works for both EFA and
DFA models. For the sake of simplicity and consistency with the notations
in [50], the algorithms are described explicitly (without the characteristic func-
tions), but they are implemented symbolically.

Algorithm 7 shows the forward reachability computation without forbidden
states. Other versions of (co-)reachability computations can be similarly defined.
As Algorithm 7 shows, taking as input the initial state and the set of partial transi-
tion relations of which each corresponds to each event, the algorithm maintains
a set of active partial transition relations, Wk. For each iteration, one partial
transition relation is selected and a saturated reachability search (Algorithm 8)
is performed on it. If more reachable states are found, the event and variable
dependent transition relation sets of σ, defined as follows, are appended to the
workset. The algorithm terminates as long as there is no transition relation in
Wk.

Definition 3.2.4 (Event Dependent Transition Relation Set of σ). For N ≥ 2

EFAs, E = {E1, . . . , EN}, the event dependent transition relation sets of σ,
denoted by De(

σ�→E1‖...‖EN
) is defined as:

De(
σ�→E1‖...‖EN

) = { σ′�→E1‖...‖EN
| σ′ ∈ De(σ) ∧ σ′ �= σ},

where

De(σ) ={σ′ | ∃Ei ∈ E, �, �́, �̌ ∈ LEi , v, v́, v̌ ∈ V

⇒ (�, v, σ, �́, v́) ∈ �→Ei
∧ (�́, v́, σ′, �̌, v̌) ∈ �→Ei

}.

Definition 3.2.5 (Variable Dependent Transition Relation Set of σ). For N ≥ 2

EFAs E1, . . . , EN and a n-tuple of variables v1, . . . , vn, the variable dependent
transition relation sets of σ, denoted by Dv(

σ�→E1‖...‖EN
), is defined as:

Dv(
σ�→E1‖...‖EN

) = { σ′�→E1‖...‖EN
| σ′ ∈ Dv(σ) ∧ σ′ �= σ},

where

Dv(σ) ={σ′ | ∃(�, σ′, g, a, �́) ∈→E1‖...‖EN
, ∀χvi ∈ g

⇒ ∃(�, v, σ, �́, v́) ∈ σ�→E1‖...‖EN
∧ vi �= v́i)}

30

3.2. SYMBOLIC SYNTHESIS FOR EFAS

Algorithm 7: Event-based Forward Reachability

Input: the initial state q0: (�
E1
0 × . . .× �EN

0 × v0)
Input: the set of partial transition relations W0:

{ σ�→E1‖...‖EN
| ∀σ ∈ ΣE1 ∪ . . . ∪ ΣEN}

Output: the reachable state set: Qreach

begin
1 k := 0;
2 Q0 := {q0};

repeat
3 Pick and remove

σ�→E1‖...‖EN
∈ Wk;

4 k := k + 1;

5 Qk := Qk−1 ∪ Reachability(Qk−1,
σ�→E1‖...‖EN

);
6 if Qk �= Qk−1 then

Wk = Wk−1 ∪De(
σ�→E1‖...‖EN

) ∪Dv(
σ�→E1‖...‖EN

) ;
end

until Wk = ∅;
7 Qreach := Qk;

end

Algorithm 8: Reachability

Input: Q and
σ�→E1‖...‖EN

Output: the new reachable states found from
σ�→E1‖...‖EN

: Qσ
reach

begin
1 l := 0;
2 Q0 := Q;

repeat
l := l + 1;
Ql := Ql−1 ∪ {(q́, v́) | ∃(q, v) ∈ Ql−1

⇒ (q, v, σ, q́, v́) ∈ σ�→E1‖...‖EN
};

until Ql = Ql−1;
Qσ

reach := Ql;
end

31

CHAPTER 3. SYMBOLIC COMPUTATION OF SUPERVISORS

The correctness of the algorithm is proved in [50]. It should be mentioned
that a drawback of the aforementioned event-based algorithm is that, more it-
erations are needed to reach the fixed point in the reachability task, especially
for large-scaled systems involving a large number of events in the alphabet. To
make such reachability computations more efficient, thus reducing the number of
iterations, it is possible to combine multiple partial transition relations. This idea
is originally presented in the literature [33], referring to as clustering. Based on
this general principle, [50] discusses three invariants of this algorithms by using
different ways to cluster BDDs together.

32

Chapter 4

User Cases

All the algorithms discussed from previous chapters have been implemented and
integrated into Supremica [24, 25], which is a software tool for automatic veri-
fication, synthesis and simulation of DESs. Supremica is a project implemented
in the Java programming language that was initiated about 10 years ago in the
Automation research group at Chalmers University of Technology, and has been
continuously developed since then by different PhD students.

This chapter is consisted of two parts. Firstly, an approach to modeling se-
quential resource allocation systems (RAS) by using EFAs, is presented and
discussed. By modeling a set of simple RAS examples, we demonstrate how
to use EFAs to model RAS with multiple instance execution, routing flexibility
and failure handing. Moreover, two RAS benchmark examples are modeled and
represented as EFAs. Secondly, the symbolic synthesis algorithm is applied to
these two RAS examples, as well as other well-known DFA and EFA examples
to generate the optimal supervisors.

4.1 Modeling Sequential Resource Allocation Sys-
tems using EFAs

For sequential resource allocation systems, we mainly focus on Conjunctive /
Disjunctive sequential resource allocation systems (C/D RAS), one of the most
powerful RAS classes investigated in the literature. In [51], a modeling approach
was presented to model C/D RAS using EFAs. The section mainly demonstrates
this approach by a set of simple examples.

33

CHAPTER 4. USER CASES

C/D Resource Allocation Systems (RAS)

Definition 4.1.1. A Conjunctive / Disjunctive resource allocation system is for-
mally defined by a 4-tuple [52, 53]:

Φ = 〈R, C,P,A〉
where

• R = {R1, . . . , Rm} is the set of the system resource types;

• C : R → Z+− is the capacity function, characterizing the number of
identical units from each resource type available in the system. Resources
are assumed to be reusable, i.e., each allocation cycle does not affect their
functional status or subsequent availability, and therefore, C(Ri) ≡ Ci

constitutes a system invariant for each i;

• P = {Π1, . . . ,Πn} denotes the set of the system process types supported
by the considered system configuration. Each process type Πj is a compos-
ite element itself, in particular, Πj = 〈Sj ,Gj〉, where Sj = {Ξj1, . . . ,Ξjlj}
denotes a set of processing stages involved in the definition of process type
Πj ; Gj is an acyclic diagraph with the node set equal to Sj . Every path in
Gj connecting a ’’source’’ to a ’’sink’’ node corresponds to an execution
sequence of Πj ;

• A :
⋃n

j=1 Sj → ∏m
i=1{0, . . . , Ci} is the resource allocation function as-

sociating every processing stage Ξjk with the resource allocation vector
A(Ξjk) ≡ Ajk required for its execution.

Furthermore, it is assumed that after a process instance accomplishes a non-
terminal stage Ξjk, it must allocate the entire set of resources implied by the
resource allocation request, in order to advance to the next stage. As soon as the
requested resources are allocated, it releases all allocated resources that are not
needed any more. The considered resource allocation protocol further guarantees
that no resource type Ri ∈ R is over-allocated with respect to the capacity Ci at
any processing stage.

Taking as input a RAS configuration, the approach in [51] can generate a set
of extended finite automata, each of which models the resource allocation and
deallocation of a process type. For simplicity and understandability, we start
with a simple sequential RAS and first model it as a Petri net. For the readers
who might be unfamiliar with Petri net, [3] provides a good introduction. From
the Petri net model, the corresponding extended finite automata are then derived.
After grasping the basic idea, extended finite automata are directly used to model
the remaining C/D RAS.

34

4.1. MODELING SEQUENTIAL RESOURCE ALLOCATION SYSTEMS USING EFAS

Model Single-Unit (SU) RAS

Example 3. Consider a flexibly automated robotic cell example, borrowed from
[52]. As Fig. 4.1 shows, the RAS is constituted by two process types Π1 and Π2,
each of which consists of three processing stages performing the linear structure.
The system resource set is R = {R1, R2, R3}, with the capacity Ci = 1, i =

1, 2, 3. Each processing stage Ξij(i = 1, 2; j = 1, 2, 3) requests one single unit
of one resource type.

Π1 : Ξ11

R1(1)

Ξ12

R2(1)

Ξ13

R3(1)

Π2 : Ξ21

R3(1)

Ξ22

R2(1)

Ξ23

R1(1)

C1 = C2 = C3 = 1

Figure 4.1: The considered SU RAS in Section 4.1

As the intermediate stage, the considered RAS is first modeled as a Petri net,
shown in Fig. 4.2. For each resource type Ri, i = 1, 2, 3, the corresponding
resource place is introduced. Initially the number of tokens of each resource
place is set equal to its capacity. Similarly, three processing stage places for
each process type are introduced to denote the number of process instances exe-
cuting at the processing stages. For example, the stage places p11, p12, p13 map
the three processing stages Ξ11,Ξ12,Ξ13 of process type Π1. Moreover, the tran-
sitions t11, t12, . . . , t23 depict the resource allocation and deallocation process.
The weight of arcs from the resource places to transitions can be considered as
the number of requested resource units with respect to various processing stages.
From Fig. 4.2, it can be observed that multiple process instances can be allowed
to execute in the Petri net model as long as the resource constraint is satisfied.

p11

p12

p13

p23

p22

p21

R1

R2

R3

t11

t12

t13

t14 t21

t22

t23

t24

Figure 4.2: The Petri net model of the considered RAS in Section 4.1

With the considered RAS having been modeled as the Petri net, the extended
finite automata can be correspondingly derived in the following steps:

35

CHAPTER 4. USER CASES

P1

P1_book_R1
vR1 ≥ 1
vR1 = vR1 − 1;
v11 = v11 + 1

P1_book_R2_release_R1
vR2 ≥ 1&v11 ≥ 1

vR2 = vR2 − 1;
vR1 = vR1 + 1;
v11 = v11 − 1;
v12 = v12 + 1

P1_book_R3_release_R2
vR3 ≥ 1&v12 ≥ 1

vR2 = vR2 + 1
v12 = v12 − 1

(a) The EFA of Π1

P2

P2_book_R3
vR3 ≥ 1
vR3 = vR3 − 1;
v21 = v21 + 1

P2_book_R2_release_R3
vR2 ≥ 1&v21 ≥ 1

vR2 = vR2 − 1;
vR3 = vR3 + 1;
v21 = v21 − 1;
v22 = v22 + 1

P2_book_R1_release_R2
vR1 ≥ 1&v22 ≥ 1

vR2 = vR2 + 1
v22 = v22 − 1

(b) The EFA of Π2

Figure 4.3: EFAs modeling the two process types of Example 4.1.

• For each process type Πi, i = 1, 2, create an extended finite automaton.
To support the multiple instance execution as the Petri net does, each EFA
is defined to have only one location and all the transitions labeled with
events are added as self-loops. This location is both initial and marked.

• For each resource type (place in the Petri net) Ri, i = 1, 2, 3, declare one
resource variable vRi denoting the number of available units of Ri. The
domain of vRi is defined to be {0, . . . , Ci}, where both of the initial and
marked values of vRi are equal to Ci.

• For each processing stage except the last one of each process type Πi, i =

1, 2, declare one instance variable vjk, j = 1, 2 and k = 1, 2, denoting the
number of instances executing at the corresponding stage Ξjk. The domain
for each instance variable is defined to be from 0 to the maximal number of
executing instances. In this case, since each processing stage only acquires
one unit of one resource type, the maximal number of instances at each
processing stage is one. Therefore, the domain of all instance variables is
defined to be {0, 1} where 0 is the initial and marked value.

• Make use of the resource and instance variables defined above to con-
struct the guards and actions. Guards are local formulae which determine
whether a process instance can advance to the next processing stage while
actions are used to update the available resource units and instances for
various processing stages. Finally, the guards and actions are attached to
the corresponding transitions of the created EFAs.

Fig. 4.3 shows the EFAs, which model the process type Π1 and Π2 based on
the above steps. Here two points must be elaborated. From both the Petri net and
the EFA, it can be observed that every time a process instance advances to the
non-terminal processing stage, the requested resource allocation and the unused

36

4.1. MODELING SEQUENTIAL RESOURCE ALLOCATION SYSTEMS USING EFAS

resource deallocation occur simultaneously, which confirms to the assumption
made in [53]. The purpose of the supervisor is to prevent the system from run-
ning into blocking situations. Since there is no restriction on these deallocation
events as soon as the next requested resources are allocated, we know that all
states that have resources waiting to be deallocated cannot be blocking states.
Besides, it is noticed that there is no instance variable defined for the terminal
processing stage. For the process instance at the terminal processing stage where
the requested resources have been allocated, it is assumed that these allocated
resources are released immediately. Certainly, this does not model the true be-
havior of the physical system, but enough information is captured. Reasonably,
a model that can be used to find all blocking states need much less information
than a model that expresses all possible events and variables, a important reduc-
tion of the system size is made.

Model C/D RAS

Compared with the Single-Unit (SU) RAS, e.g., the example shown above, mod-
eling is more complicated in the context of the C/D RAS.

Example 4. Fig. 4.4 shows a C/D RAS which is extended from Example 4.1.
The considered C/D RAS contains two process types Π1 and Π2. Same as before,
the processing stages of Π1 perform the linear structure, but the processing stage
Ξ12 now allows for alternative resource type acquisition, i.e., either R2 or R4.
The process type Π2 is extended to have two alternatives to support the routing
flexibility. The processing stage Ξ23 requires two types of resources to perform
the task. Besides, the capacities of the resource types R1, R2, R3 are increased
to 4 and a new resource type R4 with the capacity 2 is added into the C/D RAS.

Π1 : Ξ11

R1(2)

Ξ12

R2(2) +R4(1)

Ξ13

R3(2)

Π2 : Ξ21

R3(2)

Ξ22

R2(2)

Ξ23

R2(1) ∗R4(1)

Ξ24

R1(2)

C1 = C2 = C3 = 4, C4 = 2

Figure 4.4: The considered C/D RAS of Example 4

In order to model the process type Π1 by following the previous instructions,
the first issue we need to resolve is how to handle the processing stage Ξ12. In
particular, how to define the instance variables for it. The processing stage Ξ12

37

CHAPTER 4. USER CASES

allows for the alternative resource type acquisition. The decision that which
resource type is allocated to an instance can only be determined dynamically.
Besides, when an instance advances to the next stage Ξ13, we cannot know which
resource type should be deallocated. Therefore, two instance variables v12R2

and v12R4 need to be declared, which denote the number of instances having
acquired R2 and R4 respectively. Based on the capacities of R2 and R4 and the
requested units of each type, the domains of these two variables can be obtained,
which are {0, . . . , 4} and {0, . . . , 2}. With the instance variables defined, the
corresponding EFA can be constructed, as Fig. 4.5 shown.

P1_book_R1
vR1 ≥ 2

vR1 = vR1 − 2;

v11 = v11 + 1
P1_book_R2_release_R1

vR2 ≥ 2&v11 ≥ 1

vR2 = vR2 − 2;

vR1 = vR1 + 2;

v11 = v11 − 1;

v12R2 = v12R2 + 1

P1_book_R3_release_R2

vR3 ≥ 2&v12R2 ≥ 1

vR2 = vR2 + 2;

v12R2 = v12R2 − 1

P1_book_R3_release_R4

vR3 ≥ 2&v12R4 ≥ 1

vR4 = vR4 + 1;

v12R4 = v12R4 − 1

P1_book_R4_release_R1
vR4 ≥ 1&v11 ≥ 1

vR4 = vR4 − 1;

vR1 = vR1 + 2;
v11 = v11 − 1;
v12R4 = v12R4 + 1 P1

Figure 4.5: The EFA model of Π1 of Example 4

With the experience of modeling the behavior of the alternative resource type
acquisition, modeling the flexible routings follows the same strategy. Actually,
the resultant EFA for Π2 is similar to the EFA for Π1, even though the process-
ing stages perform different structures. Note that for the processing stage Ξ23,
one variable is enough to model the resource allocation and deallocation for this
processing stage. The upper bound of the variable is defined to be the maximal
number of instances executing at Ξ23 with both resource type units.

Model the Abnormal Behavior

The aforementioned modeling methods presume that the considered RAS is to-
tally controllable. Specifically, (1) all the resource allocation events taking place
can be disabled by the supervisor if necessary; (2) In a process type present-
ing routing flexibility, process instances can be conducted by the supervisor to
choose different routing options to realize the system flexibility. However, in
many contemporary applications, it is necessary to have some form of error han-
dling. When an error occurs for an instance at some processing stage, repair or
rework must be performed.

The idea to model such error handling is to introduce alternative branches
after the necessary processing stage. Being different from modeling the routing

38

4.1. MODELING SEQUENTIAL RESOURCE ALLOCATION SYSTEMS USING EFAS

Π1 : Ξ11

R1(1)

Ξ12

R2(1)

Ξ13

R4(1)

Ξ14

R3(1)

C1 = C2 = C3 = C4 = 1

Figure 4.6: The process type Π1 with error handling

Π1 : Ξ11

R1(1)

Ξ’12 Ξ12

R2(1)

Ξ’13 Ξ13

R4(1)

Ξ14

R3(1)

Figure 4.7: The process type Π1 with imaginative stages

flexibility, the events corresponding to these uncontrollable branches are mod-
eled as uncontrollable events. The supervisor cannot influence which branch
to choose. Hereby, it must assure that there exists a non-blocking path for all
branches.

Example 5. Consider the process type Π1 of the example presented in Section
4.1. At this time, we suppose that an error may occur at the processing stage
Ξ11 and needs to be handled by one unit of R4. To distinguish from the flexible
routing options, these two uncontrollable branches are described by dashed lines,
as Fig. 4.6 shows.

As mentioned above, to model such alternatives, two uncontrollable events
are introduced. Note that these two uncontrollable events have nothing to do
with the resource allocation and deallocation. They are merely used to indicate
the success and failure of an instance executing at Ξ11. To assure that failed
instances enter Ξ13 while successfully executed ones enter Ξ12, two more EFA
variables need to be declared. These two variables can be thought of as the
variables of two imaginative stages, as Fig. 4.7 shows. An instance at either
of these two imaginative stages still possesses the resources allocated to Ξ11.
Once the resource constraint is satisfied, it enters the next stage while the unused
resources in Ξ11 are deallocated.

Fig. 4.8 shows the resultant EFA which models the process type Π1 with
error handling. Two uncontrollable events !normal and !abnormal indicate the
success and failure of the instances executing in Ξ11. Two variables iv12 and iv13
denote the number of instances which need enter Ξ12 and Ξ13 respectively. Note
that it is only when an instance enters the next stage Ξ12 or Ξ13, the resource (1
unit of R1) is deallocated.

39

CHAPTER 4. USER CASES

P1_book_R1
vR1 ≥ 1
vR1 = vR1 − 1;
v11 = v11 + 1 !normal

v11 ≥ 1
v11 = v11 − 1;
iv11 = iv11 + 1

P1_book_R2_release_R1
vR2 ≥ 1&iv12 ≥ 1
vR2 = vR2 − 1;
vR1 = vR1 + 1;
v12 = v12 + 1;
iv12 = iv12 − 1

P1_book_R3_release_R2
vR3 ≥ 1&v12 ≥ 1
vR2 = vR2 + 1;
v12 = v12 − 1

P1_book_R3_release_R4
vR3 ≥ 1&v13 ≥ 1
vR4 = vR4 + 1;
v13 = v13 − 1

P1_book_R4_release_R1
vR4 ≥ 1&iv13 ≥ 1
vR4 = vR4 − 1;
vR1 = vR1 + 1;
v13 = v13 + 1;
iv13 = iv13 − 1

!abnormal

v11 ≥ 1

v11 = v11 − 1;
iv13 = iv13 + 1

P1

Figure 4.8: The EFA modeling error handling for Π1

Two RAS Benchmark Examples

Following the above discussion, two RAS benchmark examples, as shown in
Fig. 4.9 and Fig. 4.10, are modeled by using the modeling approach. The detailed
exposition of these two benchmark examples can be found in [51]. Later the EFA
models are fed into the symbolic algorithm to generate correct supervisors, i.e.
deadlock-avoidance policies.

Π1 : Ξ11

R1(1)

Ξ12

R6(1)

Ξ13

R2(1)

Ξ14

R7(1)
Ξ15

R3(1)
Ξ16

R4(1)

Ξ17

R2(1)

Ξ18

R5(1)

Π2 : Ξ21

R2

Ξ22

R5

Ξ23

R2

Π3 : Ξ31

R3

Ξ32

R7

Ξ33

R2

Ξ34

R6

Ξ35

R1

C1 = C2 = C3 = 1 C4 = C5 = C6 = C7 = 2

Figure 4.9: The flexible manufacturing system configuration (FMS) in [54].

4.2 Experimental Results

In this section, the efficiency of the proposed symbolic algorithm in this thesis
is applied to a set of benchmark examples. Experiments are carried out on a
standard PC (Intel Core 2 Quad CPU @ 2.4 GHz and 3GB RAM) running Win-
dows 7 and the results and comparisons are shown in Table 4.1 and 4.2. The
benchmark used to carry out the experiments are:

40

4.2. EXPERIMENTAL RESULTS

Π1 : Ξ11

R1(1)

Ξ12

R4(2)

Ξ13

R7(1)

Ξ14

R2(1)

Ξ15

R7(1)

Ξ16

R3(1)

Π2 : Ξ21

R1(1)

Ξ22

R4(2)

Ξ23

R5(2)

Ξ24

R6(2)

Ξ25

R3(1)

Π3 : Ξ31

R1(1)

Ξ32

R5(1) +R7(2)

Ξ33

R2(1)

Π4 : Ξ41

R2(2)

Ξ42

R1(1)

Ξ43 R3(1) ∗R7(1)

Ξ44

R6(2)

Ξ45

R2(1)
Π5 : Ξ51

R8(1)

Ξ52

R9(1)

Ξ53

R2(1)

C1 = 1, C2 = 4, C3 = C5 = 2,

C4 = C6 = C7 = C8 = C9 = 2

Figure 4.10: The extended D/C-RAS of Fig. 4.9 with error handling (RAS-EH).

• DFA models: Automated Guided Vehicles (AGV) [55]; Parallel Manufac-
turing Example [56]; The Transfer Line [57], Cat and Mouse [41] with
different parameters.

• EFA models: Two RAS benchmark examples from the previous section,
FMS and RAS-EH; Ball Sorting Process (BSP) [58]; Extended Cat and
Mouse Tower (ECMT) and Extended Dinning Philosophers (EDP) [50] ,
with different parameters.

For DFA models, the comparison is made between two automat-based par-
titioning techniques: the conjunctive and disjunctive partitioning techniques of
which both were implemented in Supremica. Table 4.1 shows the result of ap-
plying two partitioning techniques to the DFA examples explained above. It is
observed that both of the partitioning based algorithms can handle the AGV and
the Parallel Manufacturing example, for which the number of reachable states
is up to 107. However, with DESs getting larger and more complicated, the
conjunctive partitioning technique is not capable of synthesizing nonblocking
and controllable supervisors and gets memory out (M.O.). The disjunctive par-
titioning, on the other hand, could successfully explore the state space within
acceptable time. In addition, the column ‘‘BDD Peak’’, the maximal number
of BDD nodes during the reachability computation, in the figure, shows that the
disjunctive partitioning together with heuristic decisions can effectively reduce
the number of intermediate BDD nodes.

For EFA models, the comparison is made between the symbolic monolithic
and event-based partitioning. As Table 4.2 shows, for all of the benchmark ex-
amples, the maximal number of BDD nodes during the reachability computation
of the partitioning synthesis approach is less than that in the monolithic synthesis

41

CHAPTER 4. USER CASES

approach. Regarding the example Ball Sorting Process, event though the final
number of supervisor states is only 706, the intermediate BDDs during the state-
space exploration, on the other hand, are large due to the high interactive com-
plexity of the system. The monolithic approach fails to explore the state-space
while the partitioning approach can survive and synthesize the supervisor within
11 seconds. As mentioned before, since the partitioning algorithm is based on
the alphabet which might contain a large number of events, more iterations than
the standard algorithm are needed to reach the final fixed point. However, the
intermediate BDDs produced during the computation are smaller, leading to im-
proved memory and runtime efficiency. With respect to the last two benchmark
examples, the Extended Cat and Mouse Tower and Extended Dining Philoso-
phers, the partitioning approach can also handle some relatively large problem
instances with the acceptable time while the monolithic algorithm is memory out
or time out (>10 mins) However, with the values of parameters growing, both
the computation time and memory used increase rapidly.

42

4.2. EXPERIMENTAL RESULTS

T
ab

le
4.

1:
C

om
pa

ri
so

n
B

et
w

ee
n

T
w

o
Sy

m
bo

lic
Pa

rt
iti

on
in

g
T

ec
hn

iq
ue

s
(D

FA
)

C
on

ju
nc

tiv
e

Sy
nt

he
si

s
D

is
ju

nc
tiv

e
Sy

nt
he

si
s

M
od

el
R

ea
ch

ab
le

St
at

es
Su

pe
rv

is
or

st
at

es
B

D
D

Pe
ak

(R
)

C
om

pu
ta

tio
n

T
im

e
(s

)
B

D
D

Pe
ak

(R
)

C
om

pu
ta

tio
n

T
im

e
(s

)

A
G

V
22
92
94
08

11
48
92
8

98
90

6.
50

28
50

0.
87

Pa
ra

lle
lM

an
57
02
55
0

57
02
55
0

12
36
3

2.
47

23
34

1.
57

T
ra

ns
fe

r
lin

e
(1

,3
)

64
28

17
0.
05

13
0.
10

T
ra

ns
fe

r
lin

e
(5

,3
)

1.
07

×
10

9
8.
49

×
10

4
23
52

1.
69

29
9

0.
59

T
ra

ns
fe

r
lin

e
(1

0,
3)

1.
15

×
10

1
8

6.
13

×
10

1
3

31
02
2

48
.3
6

12
57

3.
89

T
ra

ns
fe

r
lin

e
(1

5,
3)

1.
23

×
10

2
7

4.
42

×
10

2
0

M
.O

.
−

30
32

12
.8
0

C
M

T
(1

,1
)

20
6

43
0.
02

31
0.
05

C
M

T
(1

,5
)

60
5

57
9

23
43

0.
08

27
3

0.
09

C
M

T
(5

,1
)

10
56

76
84
8

0.
30

30
5

0.
30

C
M

T
(5

,5
)

6.
91

×
10

9
3.
15

×
10

9
M

.O
.

−
15
96
4

20
.8
6

43

CHAPTER 4. USER CASES

T
ab

le
4.

2:
C

om
pa

ri
so

n
B

et
w

ee
n

T
w

o
Sy

m
bo

lic
Sy

nt
he

si
s

A
pp

ro
ac

he
s

(E
FA

)

M
on

ol
ith

ic
Sy

nt
he

si
s

D
is

ju
nc

tiv
e

Sy
nt

he
si

s

M
od

el
R

ea
ch

ab
le

St
at

es
Su

pe
rv

is
or

st
at

es
B

D
D

Pe
ak

(R
)

C
om

pu
ta

tio
n

T
im

e
(s

)
B

D
D

Pe
ak

(R
)

C
om

pu
ta

tio
n

T
im

e
(s

)

R
A

S
1.
19

×
10

4
0.
88

×
10

4
28
26

0.
49

21
5

0.
13

R
A

S-
E

H
1.
84

×
10

6
0.
68

×
10

6
42
31
4

18
.6
7

22
75

0.
87

B
SP

70
6

70
6

M
.O

.
−

16
64
0

10
.4
8

E
C

M
T

(1
,5

)
60
5

57
9

44
7

0.
01

25
5

0.
02

E
C

M
T

(5
,1

)
10
56

76
63
5

0.
06

59
0

0.
04

E
C

M
T

(1
,7

)
11
98

11
56

80
1

0.
10

32
1

0.
39

E
C

M
T

(7
,1

)
27
10

15
5

10
74

0.
15

97
4

0.
06

E
C

M
T

(3
,3

)
2.
96

×
10

5
1.
64

×
10

5
16
77
0

24
50
70

4.
1

E
C

M
T

(5
,5

)
1.
07

×
10

1
0

3.
15

×
10

9
M

.O
.

−
65
10
2

79

E
D

P
(5

,1
0)

16
77
61

15
96

11
57

0.
5

13
4

0.
4

E
D

P
(5

,5
0)

3.
46

×
10

8
1.
38

×
10

5
77
43

1.
25

17
8

0.
55

E
D

P
(5

,1
00

)
1.
05

×
10

1
0

1.
05

×
10

6
−

T
.O

.
19
2

1.
3

E
D

P
(5

,2
00

)
3.
28

×
10

1
1

8.
20

×
10

6
−

T
.O

.
20
6

6.
5

44

Chapter 5

Summary of Included Papers

Part II of this thesis consists of five papers. In this chapter the papers are sum-
marized and important contributions are pointed out. It is also briefly discussed
how the papers relate to each other.

Paper 1

Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson.
Symbolic State-Space Exploration and Guard Generation in Super-
visory Control Theory. will appear as a book chapter in volume
0271 of the Communications in Computer and Information Science
(CCIS) series, 2012.

The paper adapts a symbolic supervisory synthesis approach from prior work
[22] to the guard generation procedure [23], making it applicable for industrially
interesting applications. In particular, by using one of partitioning techniques,
i.e., the disjunctive partitioning technique, the symbolic approach splits the state-
space of discrete event systems under full synchronous composition into a set of
simpler components and the reachability search is performed structurally. More-
over, the guard generation procedure is tailored to use the partitioned structure
to extract the simplified guards and attach them to the original models. Finally, a
comparison of algorithm efficiency between two partitioning techniques is made
by applying them to a set of benchmark examples.

Paper 2

Zhennan Fei, Knut Åkesson, Bengt Lennartson. Symbolic Reacha-
bility Computation using the Disjunctive Partitioning Technique in

45

CHAPTER 5. SUMMARY OF INCLUDED PAPERS

Supervisory Control Theory. Proceedings of the 2011 IEEE Con-
ference on Robotics and Automation (ICRA 2011), pp. 4364-4369,
2011.

With respect to the symbolic approach in Paper 1, the paper improves the
state-space traversal algorithm where a set of forbidden states are involved to
ensure the exhaustive exploration is always performed. The correctness of the
modified traversal algorithm is formally proved as well.

Paper 3

Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson.
Efficient Supervisory Synthesis to Large-Scale Discrete Event Sys-
tems Modeled as Extended Finite Automata. Submitted to possible
journal publication .

In Paper 1 and Paper 2, the modeling formalism adopted to model DESs is
deterministic finite automata (DFAs). This paper is intended to apply the disjunc-
tive partitioning technique to DESs modeled as extended finite automata (EFAs)
which are DFAs augmented with guards and actions. Due to the appearance
of global variables, the corresponding full synchronous composition of EFAs is
more complicated. This paper suggests an alternative way to construct partial
transition relations, called event-based partitioning approach. In addition, the
correctness is formally proved. Moreover, similar to the efficient state-space ex-
ploration algorithm from Paper 1 and 2, this paper proposes a straightforward
algorithm including the proof of correctness to realize the structural state-space
exploration.

Paper 4

Zhennan Fei, Sajed Miremadi, Knut Åkesson: Modeling Sequen-
tial Resource Allocation Systems using Extended Finite Automata,
Proceedings of the Seventh Annual IEEE Conference on Automation
Science and Engineering (CASE 2011), pp. 444-449, 2012.

This paper might be considered as an application of the symbolic method in
Paper 3. It presents an approach to modeling sequential conjunctive / disjunctive
resource allocation systems (C/D RAS) by using EFAs. The proposed approach
allows for multiple products execution and resource allocation, routing flexibility
and error handling. With the model of a considered C/D RAS obtained, the
symbolic method is then utilized to synthesize the supervisor symbolically and
generate the guards.

46

Chapter 6

Conclusions and Future Work

As one of main obstacles when it comes to analysis of large-scale discrete event
systems, the state-space explosion problem has been well-studied and alleviated
for decades in the model checking area. In short words, the problem results
from the failure of explicit enumeration of synchronized models with huge state-
space due to lack of time and memory. According to this, a well-known approach
to the state-space explosion problem is to symbolically represent discrete event
models and compute supervisor by using BDDs, compact and operation-efficient
data structures for representing Boolean functions.

The main objective of this thesis is to develop efficient symbolic algorithms
using BDDs in Supervisory Control Theory to allow verification and synthesis
of modern industrial applications. Specifically, the disjunctive partitioning tech-
nique is applied to different modeling formalisms to partition the closed-loop
system under full synchronous composition. Subsequently, efficient algorithms
are suggested to explore the state-space in a structural way. Moreover, the the-
sis presents a modeling formalism together with a symbolic algorithm for mod-
eling timed discrete event systems and synthesizing non-blocking supervisors.
The proposed approaches have been implemented in the supervisory control tool
Supremica and applied to a set of academic and industrial examples. Experimen-
tal results show that the method successfully compute supervisors and generate
guards for a set of relatively large and complex industrial models.

As a supplement, the symbolic algorithms discussed in this thesis have been
integrated to the modeling and synthesis framework from prior work. Overall,
the whole framework provides the convenience for users to model systems and
obtain control functions in the same model domain. All symbolic computations
are performed efficiently by BDDs using the symbolic algorithms presented in
this thesis, which are transparent and the only interface users deal with is the
EFA framework.

There are three directions towards which we could extend and improve the
work in future. It is believed that a sub-optimal but well-functioning BDD vari-

47

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

able ordering can still dramatically enhance the performance of the symbolic
algorithm proposed in this paper and thus larger and more complicated systems
can be handled. Moreover, it is possible to combine our symbolic approach with
some sophisticated synthesis techniques, such as compositional techniques, to
improve the efficiency of the synthesis task further. As mentioned before, there
are some similarities between SCT and AI planning. We believe that it is possi-
ble to exploit promising techniques and approaches in planning and apply them
to SCT.

48

References

[1] B. Cipra, ‘‘How number theory got the best of the pentium chip.’’ Science,
vol. 267, no. 5195, p. 175, 1995.

[2] M. Dowson, ‘‘The Ariane 5 software failure,’’ ACM SIGSOFT Software
Engineering Notes, vol. 22, no. 2, p. 84, 1997. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=251880.251992

[3] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. Springer, 2008.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press,
2000.

[5] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press,
2008.

[6] P. Ramadge and W. Wonham, ‘‘Supervisory control of a class of discrete
event processes,’’ SIAM Journal of Control and Optimization, vol. 25,
no. 1, pp. 635--650, 1987.

[7] ------, ‘‘The control of discrete event systems,’’ Proceedings of the IEEE,
Special Issue on Discrete Event Dynamic Systems, vol. 77, no. 1, pp. 81--
98, 1989.

[8] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, 1st ed., ser. Series in Computer Science.
Addison-Wesley, 1979.

[9] M. Sköldstam, K. Åkesson, and M. Fabian, ‘‘Modeling of discrete event
systems using finite automata with variables,’’ Decision and Control, 2007
46th IEEE Conference on, pp. 3387--3392, 2007.

[10] F. Sharique, G. Gore, J. Richardsson, and M. Fabian, ‘‘Verification of a
Novel Approach in Control of Flexible Manufacturing Cells,’’ in FAIM
2004 Intl. Conference on Flexible Automation and Intelligent Manufactur-
ing, Toronto, Canada, Jul. 2004.

49

REFERENCES

[11] M. R. Shoaei, B. Lennartson, and S. Miremadi, ‘‘Automatic generation of
controllers for collision-free flexible manufacturing systems,’’ in 6th IEEE
International Conference on Automation Science and Engineering. IEEE,
Aug. 2010, pp. 368--373.

[12] K. Åkesson and M. Fabian, ‘‘Implementing Supervisory Control for Chem-
ical Batch Processes,’’ in 1999 Control Applications, Hawai’i, USA, 1999,
pp. 1272--1277.

[13] K. Åkesson, M. Fabian, and A. Vahidi, ‘‘Coordination of batches in flex-
ible production,’’ in 2003 American Control Conference, Chicago, USA,
2000, pp. 2735--2739.

[14] M. Fabian and R. Kumar, ‘‘Mutually nonblocking supervisory control of
discrete event systems,’’ Automatica, vol. 36, no. 12, pp. 1863--1869,
2000.

[15] E. M. Clarke, D. E. Long, and K. L. McMillan, ‘‘Compositional model
checking,’’ in Proceedings of the Fourth Annual Symposium on Logic in
Computer Science. Piscataway, NJ, USA: IEEE, 1989, pp. 353--362.

[16] H. Flordal, ‘‘Compositional Approaches in Supervisory Control---with Ap-
plication to Automatic Generation of Robot Interlocking Policies,’’ Ph.D.
dissertation, Signals and Systems,Chalmers University of Technology,
Göteborg, Sweden, Oct. 2006.

[17] S. Mohajerani, R. Malik, and M. Fabian, ‘‘Nondeterminism avoidance
in compositional synthesis of discrete event systems,’’ in 2011 IEEE
International Conference on Automation Science and Engineering. IEEE,
2011, pp. 19--24. [Online]. Available: http://dblp.uni-trier.de/db/conf/
case/case2011.html#MohajeraniMF11

[18] S. B. Akers, ‘‘Binary Decision Diagrams,’’ IEEE Transactions on Comput-
ers, vol. 27, pp. 509--516, Jun. 1978.

[19] R. Bryant, ‘‘Graph-based algorithms for boolean function manipulation,’’
IEEE Transactions on Computers, vol. 35, no. 8, pp. 677--691, 1986.

[20] J. R. Burch, E. M. Clarke, and D. E. Long, ‘‘Symbolic Model Checking
with Partitioned Transition Relations,’’ in Proceedings of the International
Conference on Very Large Scale Integration, ser. IFIP Transactions, vol.
A-1. North-Holland, 1991, pp. 49--58.

[21] M. Byröd, B. Lennartson, A. Vahidi, and K. Åkesson, ‘‘Efficient Reacha-
bility analysis on Modular Discrete-Event Systems using Binary Decision

50

REFERENCES

Diagrams,’’ in Proceedings of the 8th international Workshop on Discrete
Event Systems, WODES’06, Ann Arbor, MI, USA, Jul. 2006, pp. 288--293.

[22] A. Vahidi, M. Fabian, and B. Lennartson, ‘‘Efficient supervisory synthesis
of large systems,’’ Control Engineering Practice, vol. 14, no. 10, pp. 1157-
-1167, Oct. 2006.

[23] S. Miremadi, K. Å kesson, and B. Lennartson, ‘‘Symbolic Computation of
Reduced Guards in Supervisory Control,’’ IEEE Transactions on Automa-
tion Science and Engineering, vol. 8, no. 4, pp. 754--765, 2011.

[24] K. Åkesson, M. Fabian, H. Flordal, and A. Vahidi, ‘‘Supremica---a Tool for
Verification and Synthesis of Discrete Event Supervisors,’’ in 11th Mediter-
ranean Conference on Control and Automation, Rhodos, Greece, 2003.

[25] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, ‘‘Supremica---an inte-
grated environment for verification, synthesis and simulation of discrete
event systems,’’ in Proceedings of the 8th international Workshop on Dis-
crete Event Systems, WODES’08, Ann Arbor, MI, USA, 2006, pp. 384--
385.

[26] W. Wonham, Supervisory Control of Discrete Event Systems, Toronto,
Canada, 2011.

[27] S. J. Russell and Norvig, Artificial Intelligence: A Modern Approach (Sec-
ond Edition). Prentice Hall, 2003.

[28] E. D. Sacerdoti, ‘‘The nonlinear nature of plans,’’ in Proceedings of the 4th
international joint conference on Artificial intelligence, IJCAI’75. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1975, pp. 206--
214.

[29] S. Edelkamp and F. Reffel, ‘‘Deterministic State Space Planning with
BDDs,’’ University of Freiburg, Tech. Rep., 1999.

[30] R. M. Jensen and M. M. Veloso, ‘‘OBDD-based Universal Planning: Spec-
ifying and Solving Planning Problems for Synchronized Agents in Non-
Deterministic Domains,’’ in in Non-Deterministic Domains, Lecture Notes
in Computer Science, 1999, pp. 213--248.

[31] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
‘‘Symbolic Model Checking: 1020 States and Beyond,’’ in Proceedings of
the Fifth Annual IEEE Symposium on e Logic in Computer Science, 1990.
LICS ’90,, Jun. 1990, pp. 428--439.

51

REFERENCES

[32] K. L. McMillan, ‘‘Symbolic Model Checking: An approach to the state
explosion problem,’’ Ph.D. dissertation, Carnegie Mellon University, Pitts-
burgh, PA, USA, 1992.

[33] J. R. Burch, E. M. Clarke, D. E. Long, K. L. Mcmillan, and D. L.
Dill, ‘‘Symbolic Model Checking for Sequential Circuit Verification,’’
IEEE Transactions on ComputerAided Design of Integrated Circuits
and Systems, vol. 13, no. 4, pp. 401--424, 1994. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=275352

[34] C. A. R. Hoare, Communicating sequential processes, ser. Series in Com-
puter Science. ACM, Aug. 1978, vol. 21, no. 8.

[35] R. E. Bryant, ‘‘Symbolic Boolean manipulation with ordered binary-
decision diagrams,’’ ACM Comput. Surv., vol. 24, no. 3, pp. 293--318,
1992.

[36] H. Andersen, ‘‘An introduction to binary decision diagrams,’’ Department
of Information Technology, Technical University of Denmark, Tech. Rep.,
1999.

[37] R. Song and R. J. Leduc, ‘‘Symbolic Synthesis and Verification of Hier-
archical Interface-based Supervisory Control,’’ in 8th Discrete Event Sys-
tems, WODES ’06, Ann Arbor, MI, USA, Jul. 2006, pp. 419--426.

[38] C. Ma and W. Wonham, ‘‘Nonblocking supervisory control of state tree
structures,’’ IEEE Transactions on Automatic Control, vol. 51, no. 5, pp.
782--793, May 2006.

[39] Z. Fei, S. Miremadi, and K. Åkesson, ‘‘Efficient Symbolic Supervisory
Synthesis and Guard Generation,’’ in 3rd International Conference on
Agents and Artificial Intelligence, Rome, Italy, 2011, pp. 106--115.

[40] Z. Fei, K. Åkesson, and B. Lennartson, ‘‘Symbolic Reachability Computa-
tion Using the Disjunctive Partitioning Technique in Supervisory Control
Theory,’’ in Control, 2011, pp. 4364--4369.

[41] S. Miremadi, K. Åkesson, M. Fabian, A. Vahidi, and B. Lennartson, ‘‘Solv-
ing two supervisory control benchmark problems using Supremica,’’ in
9th International Workshop on Discrete Event Systems, 2008, WODES 08.,
May 2008, pp. 131--136.

[42] C. Ma and W. Wonham, ‘‘STSLib and its application to two bench-
marks,’’ in 9th International Workshop on Discrete Event Systems, 2008,
WODES’08., May 2008, pp. 119--124.

52

REFERENCES

[43] C. E. Shannon, ‘‘A Mathematical Theory of Communication,’’ The Bell
System Technical Journal, vol. 27, pp. 379--423,625--656, 1948.

[44] B. Bollig and I. Wegener, ‘‘Improving the Variable Ordering of OBDDs Is
NP-Complete,’’ IEEE Trans. Comput., vol. 45, no. 9, pp. 993--1002, 1996.

[45] A. Aziz, S. Tasiran, and R. K. Brayton, ‘‘BDD variable ordering for in-
teracting finite state machines,’’ in Proceedings of the 31st annual Design
Automation Conference, DAC ’94. New York, NY, USA: ACM, 1994, pp.
283--288.

[46] E. M. Clarke, K. L. Mcmillan, X. Zhao, M. Fujita, and J. Yang, ‘‘Spectral
Transforms for Large Boolean Functions withApplications to Technology
Mapping,’’ Form. Methods Syst. Des., vol. 10, no. 2-3, pp. 137--148, 1997.

[47] S. Miremadi, B. Lennartson, and K. Å kesson, ‘‘A BDD-Based Approach
for Modeling Plant and Supervisor by Extended Finite Automata,’’ IEEE
Transactions on Control Systems Technology, vol. PP, no. 99, pp. 1--15,
2011.

[48] A. Geldenhuys, Jaco and Valmari, ‘‘Techniques for Smaller Intermediary
BDDs,’’ in 12th International Conference on Concurrency Theory, ser.
Lecture Notes in Computer Science, M. Larsen, Kim and Nielsen, Ed., vol.
2154. Springer Berlin / Heidelberg, 2001, pp. 233--247.

[49] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer, ‘‘Disjunctive Partition-
ing and Partial Iterative Squaring: An Effective Approach for Symbolic
Traversal of Large Circuits,’’ in Proceedings of the 34th Design Automa-
tion Conference. ACM Press, 1997, pp. 728--733.

[50] Z. Fei, S. Miremadi, K. Å kesson, and B. Lennartson, ‘‘Efficient Super-
visory Synthesis to Large-Scale Discrete Event Systems Modeled as Ex-
tended Finite Automata,’’ Chalmers University of Technology, Göteborg,
Sweden, Tech. Rep., 2012.

[51] Z. Fei, S. Miremadi, and K. Åkesson, ‘‘Modeling Sequential Resource Al-
location Systems using Extended Finite Automata,’’ in 7th Annual IEEE
Conference on Automation Science and Engineering, CASE’11, Trieste,
2011, pp. 444--449.

[52] S. Reveliotis, Real-time management of resource allocation systems: A
discrete event systems approach. Springer, 2004.

[53] A. Nazeem and S. Reveliotis, ‘‘A practical approach to the design
of maximally permissive liveness-enforcing supervisors for complex

53

REFERENCES

resource allocation systems,’’ in 6th IEEE Conference on Automation
Science and Engineering (CASE), Toronto, Ontario, Canada, 2010, pp.
451--458. [Online]. Available: http://www.isye.gatech.edu/\simspyros/
publications/CASE-2010.pdf

[54] J. Ezpeleta, J. M. Colom, and J. Martinez, ‘‘A Petri net based
deadlock prevention policy for flexible manufacturing systems,’’ IEEE
Transactions on Robotics and Automation, vol. 11, no. 2, pp. 173--
184, 1995. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=370500

[55] L. E. Holloway and B. H. Krogh, ‘‘Synthesis of Feedback Control Logic
for a Class of Controlled Petri Nets,’’ IEEE Transactions on Automatic
Control, vol. 35, no. 5, pp. 514--523, 1990.

[56] R. J. Leduc, ‘‘Hierarchical interface-based supervisory control,’’ Ph.D. dis-
sertation, Electrical and Computer Engineering,Toronto, Toronto, Canada,
2002.

[57] W. Wonham, ‘‘Notes on Control of Discrete Event Systems,’’ Electrical
and Computer Engineering,Toronto, Toronto, Canada, Tech. Rep., 1999.

[58] G. Cengic, ‘‘A Control Software Development Method Using IEC 61499
Function Blocks , Simulation and Formal Verification,’’ Development, pp.
22--27, 2008.

54

