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FUSION PLASMAS

There are essentially two types of plasmas considered relevant for nuclear fusion. 
These are magnetized low density plasmas and unmagnetized high density plasmas. In 
the first case confinement is due to the magnetic field while, in the second case, 
confinement is due to inertia. We will here focus on magnetized plasmas1-24. In order 
to reach conditions for thermonuclear fusion a plasma must have a temperature of at 
least 100 million degrees Celsius. At the same time the maximum average beta (ratio 
of plasma to magnetic field pressure)

                                                                                              (1.1)

which can be sustained is only a few %.  Thus we realize already on this ground that 
the density has to be quite low. Then there is also a direct limitation on density  
(Greenwald limit) that limits density further in the edge region. As it turns out, the 
pressure in a fusion plasma will be very similar to the atmospheric pressure. Thus with 
a temperature of 108 centigrades we realize that the density will be quite low. A 
typical property of low density, high temperature plasmas is that close collisions 
between particles will be very rare. Instead the dynamics will be dominated by 
collective effects. As we expect, collective effects, as well as close collisions, will try 
to destroy the magnetic confinement. This is in agreement with the general laws of 
thermodynamics. A simple way of looking at global, electromagnetic, instabilities1,-5 
is that the plasma sets up currents that generate magnetic fields that, in turn, create a 
less efficient magnetic bottle. Such instabilities are driven by current gradients. There 
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will also be instabilities driven by density and temperature gradients. All these 
gradients are examples of gradients that we need to maintain in order to confine the 
plasma for such a long time that we get more energy out than we put in.  

                          STABILITY  AND  TRANSPORT

Global stability, as indicated in the previous section, is of outmost importance to a 
magnetic confinement system. The main stabilizing effect of such instabilities is the 
bending of magnetic field lines associated with Alfvén waves1. A quite general energy 
principle for global stability, containing the stabilization by line bending,  was then 
derived2.  Confinement is usually divided into stability and transport where stability 
then means stability to the very fast global instabilities of a Magnetohydrodynamic 
(MHD) type (mainly associated to current or pressure gradients) while transport refers 
to the transport due to more localized (micro) instabilities that drive fluxes of a 
magnitude that does not prevent a steady state where the confinement time is 
sufficiently long for a positive energy balance. Of course there can also be 
intermediate cases4,5. However, independently of if we are considering global or micro 
instabilities, the most dangerous modes are those where the real eigenfrequency is 
much smaller than the growthrate. We are mainly interested in low frequency 
���������	

���ci  (this applies to MHD and transport, not to heating).
Lower frequency perturbations give more transport!

                                                                                                                         (1.2)

The non-Markovian type of diffusivity shown by (1.2) was first derived by fluid 
theory6  but more recently7 also by using a kinetic orbit integration technique. The real 
frequency here represents a coherent periodic motion which reduces transport. Clearly 
transport is a nonperiodic secular phenomenon which is due to the decorrelation by the 
growthrate. It is actually the linear growthrate that enters here in a nonlinear steady 
state since it represents the source of the turbulence9. We would, however, argue that 
we should use only the part of the linear growth rate that is due to the inhomogeneities 
of the quantities we study the transport of, i.e. we should have a self consistent 
relaxation!

                                THERMODYNAMICS

Since our aim is to confine a plasma we cannot avoid to have gradients.   However,      
gradients mean that the system is not in thermodynamic equilibrium.  Thus there will 
always be free energy available that potentially can drive instabilities. Since we 
primarily want to confine density and temperature, instabilities driven by gradients 
in these are what we should look for.  As it turns out, the relaxations of density and 
temperature are coupled. Thus we have to use a full transport matrix. The main trend 
is that the relaxations of density and temperature are competing in such a way that the 
equilibrium will have comparable length scales5,18 of density and temperature when 
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the sources are comparable. Of course we can create a situation where the temperature 
is more peaked than the density by having a much stronger central heating than 
fuelling. This would, however create a particle pinch18 that would reduce the 
difference in length scales considerably.

                   DIFFERENT TYPES OF  PHYSICS  DESCRIPTIONS

With physics description we generally mean one fluid, multi fluid or kinetic 
descriptions
The one fluid description is usually used for describing MHD instabilities
MHD instabilities generally require detailed geometry. However, their growthrate is 
so large that it is typically larger than the drift frequencies (which are different for 
different species) and, accordingly, we can use a single fluid description.
Microinstabilities are more localized.  They can often be described by a WKB
approximation and are thus not quite so sensitive to geometry. On the other hand 
growthrates are of the order of drift frequencies which are different for different 
species. Thus  multifluid or kinetic descriptions are needed.  
Toroidal effects represent the third dimension in which particles are not confined by 
the magnetic field. Although microinstabilities are less sensitive to geometry, toroidal 
effects are very important, in particular in the core. 

                               THE USE OF DIFFERENT DESCRIPTIONS

A very strong fusion community dealing primarily with large scale instabilities (which 
are indeed the most dangerous) has made single fluid MHD equations one of the most 
used descriptions. Unfortunately the difficulties with dealing with more detailed two 
fluid effects and the success of one fluid equations outside of their formal regime of 
applicability has led to a too strong focus on one fluid equations, some researcher 
using only one fluid or kinetic descriptions.  As it turns out, a multi fluid description is 
usually the best for all types of low frequency modes once you know how to deal with 
convective diamagnetic and stress tensor effects. This is so since the two fluid 
derivation of MHD type modes is not much more complicated than the one fluid 
derivation and advanced fluid closures make a kinetic treatment unnecessary for 
instabilities driven by gradients in configuration space (this excludes modes driven 
resonantly by fast particles).  Unfortunately there are also risks of making mistakes 
with e.g. convective diamagnetic effects and this has sometimes lead researchers to 
avoid multi fluid descriptions. In many cases also small ion temperature has been 
assumed. In this way it is possible to avoid most of the difficulties with the two fluid 
approach. However, one of the main goals with fusion plasmas is to get sufficiently 
high ion temperature for thermonuclear reactions!  More recently the use of 
gyrokinetic descriptions has taken over in cases with reasonable simple calculations. 
In this case kinetic descriptions are often considered to be more “first principles”. 
Thus it is important to define what we mean by “first principles”. The original 
meaning is that we should start with some basic description of the physics and make 
derivations until we obtain a model which is suitable for our intended study. The 
original meaning of “first principles” is as opposed to empirical. Thus a “first 
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principles” transport model must not use inputs from experiment. Concerning kinetic 
models, it is important to note that not even these have a general, unquestionable, 
validity10. Thus we would prefer to reserve the term “first principles”  for proceedures 
that start from a basic theoretical description and derives a model without making use 
of empirical facts. 
Some outstanding research was made in the 1970’s with the Hasegawa – Mima 
equation by using small ion temperature11. This research reviled the cascades both to 
lower and higher modenumbers and the generation of zonal flows. However, including 
ion temperature effects requires a description with several similar equations and today 
further work with small ion temperature equations are mainly mathematical exercises.

                                        FLUID DESCRIPTION

When fluid equations are derived from kinetic equations we end up with multi fluid 
equations. The simplest case of these are the two fluid equations including only 
electrons and one ion species. The generalization to multiple ion species is straight 
forward so it is convenient to make most of the multi fluid derivations for the simple 
two fluid case. This is, however only from the conceptual point of view. Effects of 
impurities are usually important in fusion plasmas. We will here start from the two 
fluid model.

                                                                                                                           (1.3a)
                                                                                                         

                                                                                                                               (1.3b)                                 
                                                (ExB drift)                                                             (1.3c)

                                                (diamagnetic drift)                                                 (1.3d)

                                                                       (polarization drift only kept for ions) (1.3e)
                                                                                                                                                                                            
Here the diamagnetic drift is a pure fluid drift, i.e. it does not move particles.

                                           

FIGURE 1.  Diamagnetic drift
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Since the diamagnetic drift does not move particles it does not cause a perturbation in 
density, i.e.

                                                                                                                                  (1.4)

However, (1.4) is only valid for homogeneous magnetic field.  We notice that there is 
no magnetic drift included in (1.3). This is because it is a pure particle drift  (not a 
fluid drift).  We will soon return to this case. 

FIGURE 2.  Magnetic drift.  The particle drift is compensated by the fact that more particles contribute 
from the side with weaker magnetic field in such a way that there is no fluid drift.

Eq (1.4) is the lowest order consequence of the fact that the diamagnetic drift does not 
move particles. In the momentum equation the stress tensor cancel convective 
diamagnetic effects. Such effects are cancelled also in the energy equation as we will 
soon see.

                                                 ALFVÉN WAVES

As an example of a simple two fluid derivation of an MHD mode  we will now show 
the derivation of Alfvén waves. 
                                                     

                                                                       (quasineutrality)                                    (1.5a)                        
                       
Since 0)n( �	
 �v and the ExB drifts are equal we get:

                                                                                                                                          (1.5b)                                        

                                                                                                                                      
                   where  we used              

Now  the MHD constraint                          or                  
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can be used to express (1.5) in only the potential. We then get the dispersion relation 
for Alfvén waves1:

                                                                                                                     (1.6)

where                 
i0

0
A nm

B
v

�
� is the Alfvén velocity.

This derivation is probably simpler than with the one with fluid equations.

                                             INTERCHANGE MODES

If we now add magnetic curvature we have:

                                                                                                               (1.7)                                 

This means that in a curved magnetic field, the diamagnetic drift also “contains” the 
magnetic drift  in some sense.
             Where j indicates particle species and vD    is the magnetic drift       Now, 
since
                                     

          We get

                                                                                                                               (1.8)     

The critical point of the physics description is here how we treat the pressure 
perturbations. 
In single fluid MHD it is here conventional to use an adiabatic incompressional 
approximation. Thus we use only the convective perturbation:

                                                                                                                                 (1.9)
                                                                                                                            
Where   ���is the ExB displacement:

Since vDi    is proportional to Ti    we notice that (1.8) only depends on temperatures 
through the pressures.    This is a particular property of the ideal MHD limit. We can 
now write the total dispersion relation as5

   
                                                                                                                               (1.10)          
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Where  P = Pe+Pi. Of course also (8) depends on temperature only through the sum of 
ion and electron temperatures. Since we use quasineutrality for these low frequency 
perturbations, the density n is just a multiplicative factor.  We can say that the ideal 
MHD limit is degenerate with respect to particle species regarding temperatures and 
pressures. Eq (6) is the dispersion relation for electromagnetic interchange modes 
where the last term is destabilizing (pressure typically decreases with r). In tokamak 
geometry we have to use an eigenvalue equation since both     parallel modenumber   
and the curvature  are space dependent. The curvature is destabilizing only on the 
outside of a tokamak so unstable modes tend to localise there and lead to ballooning 
like perturbations. Thus Eq (1.10) turns into the eigenvalue equation of the MHD 
ballooning mode in proper geometry.

NONADIABATIC NONISOTHERMAL COMPRESSIONAL TWO FLUID 
EQUATIONS.

As mentioned above the critical approximation, leading to the conventional treatment 
of ballooning modes in the MHD limit is (1.9).  We will now extend this to a 
nonadiabatic compressional treatment. We use the energy equation:

                                                                                                                               (1.11)

where                                                                 is the diamagnetic heat flow.

It fulfills

                                                                                                                             (1.12)

Here q• is the diamagnetic heatflow according to Braghinskii. Braghinskii obtained 
this in a collision dominated situation. It is, however possible to obtain  q•  also by 
taking the limit of isotropic temperatures from a collisionless derivation where the 
irreducible part of the fourth moment is ignored.                                                                                               
      In (1.12) the first term on the right hand side is a convective diamagnetic term. 
Since diamagnetic drifts do not convect plasma such terms have to be cancelled in 
some way.
Using the continuity equation in the form:              

In (1.11) we find that the convective diamagnetic terms indeed cancel. We then get:

iiit ��
�	
�
	�

 qvv ii PT)(

2
3

)T(
m

P
2
5

i
ci

i

i



�

�� xi eq

ii Tn
2
5Tn

2
5


	�
	��	
 �� Dii vvq i

��)(
n
1


	�



��	
 vv i t

40



ee

eTe

eef

ef

Dk
i

T
TA

kT
e

n
n ev

���
�

�

�

�
�

�

� �
�� � ���

�
�

                 �
�

�
 
!

"
��

�
�

e
i

e

i

i

D
i

i

T
e

n
n

T
T

i

�#
�
��

��

��
)

3
2(

3
2

3
5

*
(1.13)

Where  

In a proper two fluid model, we also include the lowest order Finite Larmor Radius 
(FLR) effect. It enters through the polarization and stress tensor drifts.

                                                                                                

Where now :  

The stress tensor drift is:  
            
After rather lengthy calculations, using a convective density perturbation one arrives 
at:

                                                                                                                              (1.14)
                                                              
Where the diamagnetic drift with subindex T includes the full pressure gradient. It 
appears as a convective diamagnetic effect but comes from ExB convective density 
and temperature perturbations. Such perturbations are here substituted because the 
FLR term is assumed to be small but have, in practice, turned out to work better than 
expected.  This is seen from a comparison with gyrokinetics.

                                     THE PARALLEL ELECTRIC FIELD

We have already used the MHD limit  E•B =0 in our derivation of Alfvén waves.  We 
will now see under which circumstances this is a good approximation. For this 
purpose it is useful to combine the parallel equation of motion of electrons (Ohms 
law) with the electron continuity equation. Ignoring electron inertia we get:

                                                                                                                               (1.15)

where

                                                                                                                              (1.16)                                 

We now need an equation of state for electrons. At these low frequencies electrons are 
isothermal. However they thermalize along magnetic field lines that are bent. Thus we 
get:
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                                                                                                                             (1.17)

This is just radial convection in the background temperature gradient due to the 
bending of the fieldline.  
We then get:

                                                                                                                               (1.18)

Thus the electron temperature gradient parts cancel exactly.
The electron continuity equation is:

                                                                                                                                (1.19)

Here we included a background parallel electron motion, giving a radial motion due to 
the bending of the fieldlines. This will include the Kink term.
Now using also

                              

We arrive at the relation between electrostatic and electromagnetic potentials

                                                                                                                                 (1.20)

where                                                                                                                                          

Then

                                                                                                                                 (1.21)

We note that FLR, curvature and current gradient contribute to a parallel electric field. 
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than all drifts in ideal MHD we can see that the parallel electric field gets small in this 
limit. When the frequency is much smaller than the Alfvén frequency and FLR is not 
too small, the Alfvén terms dominate in both numerator and denominator and the 
broken rational factor approaches 1.  This is the electrostatic limit.  The current 
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gradient term also enters in  (1.10) and gives the usual MHD kink mode by assuming 
vanishing parallel electric field.  It enters mainly for low modenumbers and will 
usually be neglected in the following.

         DEGENERACY OF DENSITY AND TEMPERATURE GRADIENTS

The linear gyrokinetic equation is:
           

(1.22)

Leading to the density perturbation in 2d  (no parallel ion motion):

                                                                                                                                 (1.23)

An exp������
��
���

���
�D��*  up to quadratic terms (which is only allowed at the 
edge) gives:

                                                                                                                                 (1.24)
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kinetic temperature perturbations not are isotropic.  We here notice the presence of �i
in the last term. This is clearly a term that can not be recovered from ideal MHD. It 
actually is the only nonadiabatic term here and is due to the diamagnetic heatflow in 
our two fluid model. For electromagnetic ballooning modes, this term gives us the 
kinetic ballooning mode.  This mode is causing the difference to the MHD stability 
limits in Fig 3.

FIGURE 3 Growthrates of electromagnetic ballooning modes as a function of normalized \.
The inner curve corresponds to ideal MHD while the outer includes Kinetic ballooning
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The upper stability regime is due to the magnetic field geometry

Although the effect of the genuine 2 fluid terms is rather modest here, it will be lager 
for larger �i ���
^n and it was one of the main effects (together with peeling modes) 
that limited the slope of the H-mode barrier in recent simulations I have made.  
However, as we will see, using a single pressure gradient gives a dramatically worse 
approximation for Ion Temperature Gradient (ITG) modes.

One fluid limit for ITG modes
We write the continuity equation for ions:

                                                                                                                                (1.25)

Using (1.7) we get:

Now using (1.9) in the form

and Boltzmann electrons with quasineutrality we get the dispersion relation:

                                                                                                                              (1.26)

With solution

Here the stabilizing fist term under the root is often small due to the factor ¼ and, as it 
turns out, resistive instability would persist also if that term has stabilized the system. 
Thus the sign of the last term was sometimes given as the stability condition i.e. we 
get the stability limit:

                                                                                                                           (1.27)

This result is, of course, completely wrong. It can be seen as a spurious result of an 
expansion in 

Actually, if we use the convective perturbation only for temperature we get
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                                                                                                                           (1.28)

                                                                                                                            (1.29)
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FIGURE 4.  ITG threshold (-1) with convective pressure perturbation
The correct threshold is shown by the right curve.

We note the very much larger error by using a convective pressure perturbation for the 
driftwave as compared to the electromagnetic ballooning mode (MHD type).  Thus the 
drift wave is more sensitive to the physics description. We notice the upper stability 
regime in Fig 3. This is due to the magnetic field geometry. However, the effect of 
broken degeneracy with respect to temperature gradient is moderate. For the drift 
wave, however, there is no upper stability regime but the effect of broken degeneracy 
in temperature gradient is large. These two cases are examples of a general principle.
For MHD-type modes: Geometry is more important than the physics description
For drift waves :  The physics description is more important than geometry.
Nevertheless there are cases, in particular in enhanced confinement regimes where 
geometry can be quite important for drift waves. However, the very fact that we have 
reduced transport means that the largest stabilizing and destabilizing terms are almost 
balancing so that small effects become important. The corresponding thing happens 
with MHD type modes, i.e. the physics description becomes important close to 
marginal stability.
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Another example of effect of the physics description on drift waves is the growth of 
transport coefficients with radius.

FIGURE 5. Radial  profiles of  �  for a fluid or kinetc model that is expanded in  �D/�  (dashed) and
an unexpanded model (full line). The experimental curve is also close to the full line.

It is instructive to look at the linear gyrokinetic density perturbation for ions.

                                                                                                                                (1.30)

     We have already shown an expansion of this expression (1.24) but that was just in 
order to explore the similarity to the fluid response. The question is now under what 
circumstances we may be allowed to expand (1.30) in �D��'
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�* , the critical parameter to expand in is

                                                                                                                                (1.31)   

          
where  LB��'
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^n    is typically of order 1 in the core and at least out to r/a 
= 0.8. Close to the axis ^n  goes to infinity. Using (1.13) and Bolzmann electrons we 
arrive at:

(1.32)         
         

It is obvious that (1.32) leads to the type of thermal conductivity shown in Fig 6 for 
the unexpanded model at least close to the axis since both Ln and LT become large 
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trapping to recover the full curve in Fig Q'
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^n ���
�D in (1.24) are due to the 
curvature effect of the diamagnetic heatflow  as given by (1.12).    Thus the growth of   
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�  with radius in Fig (6) is due to both magnetic curvature and nonadiabaticity.  Now, 
Eq (1.13) is directly connected to the fluid closure since at marginal stability:

                                                                                                                                (1.33)

so we are at the fluid resonance at marginal stability.  However, this works well, both 
in comparison with kinetic theory and experiment.  Fig 6 compares qualitatively and 
semi- quantitatively the linear growth, nonlinear saturation and continued oscillations 
for a fluid model with nonlinear closure and a reactive fluid model according to Ref 13  
and the Hammett Perkins Gyro – Landau fluid model according to Ref 12 ( Mattor and 
Parker). The interaction is between two slab ITG modes and a zonal flow.

FIGURE 6. Development in time of three-wave interaction between two slab ITG modes and a zonal 
flow with different fluid descriptions including reactive fluid, fluid with nonlinear closure and the 

Hammett Perkins gyro-Landau fluid model.

The paper by Mattor and Parker showed that the fluid model with a nonlinear closure 
is quite close to the full kinetic model. The only difference between the reactive model 
and the model with nonlinear closure is the kinetic resonance. The velocity 
distribution is here Maxwellian and the highest moment (fifth) is expressed through 
the kinetic integral where a nonlinear frequency shift is included, i.e.

                                                                                                                                 (1.34)
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The result of the nonlinear frequency shift in the kinetic integral may be difficult to 
see by inspection. However, in the expanded form, corresponding to the Universal 
instability (driven by inverse Landaudamping) it can be visualized.                

                                                                                                                                                  (1.35)     

As seen from (1.35), the dissipation (energy) changes sign when the frequency equals 
the diamagnetic drift frequency. Thus the nonlinear frequency shift could easily 
change the   sign of the imaginary part  �' This is what happens in Fig 7. As can be 
seen the wave particle resonance is stabilizing near maxima and destabilizing near 
minima. It is the absence of this effect that causes the Hammett Perkins model to 
phase lock at an amplitude above the other models. Thus kinetic resonances effectively 
vanish although we keep the Maxwellian distribution function. This particular case is 
coherent but turbulence can be seen as due to coupling of very many such systems.  
Already two waves lead to stochasticity of marginally trapped – detrapped particles15. 
(Chirikov) Stochastic particles diffuse quasilinearly. However, in practice nonlinear 
effects reintroduce correlations.  The first example of this is the kinetic equation for 
waves, the Random phase approximation Ref 16.
The next example is the nonlinear Fokker Planck equation:

                                                                                                                             (1.36)

When we consider turbulent collisions we are in a random phase situation where the 
?�������
���??������
\
���
��??������X
��
�������X
�����
Dv  are proportional to sums of 
intensities of wave amplitudes (phase dependent terms have been averaged out). 
Clearly friction in this case gives a nonlinear frequency shift which is a strongly 
nonlinear feature, i.e. nonlinearities have reintroduced correlations.  When the 
coefficient are constants, (1.36) has an analytical solution14 (S. Chandrasekhar).  The 
solution has the shape shown in Fig 8.
. 

         

  

FIGURE 7. Mean square velocitX���������
�����2> as a function of time showing intitial quasilinear 
linear growth and later saturation due to strongly nonlinear effects.
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Here the first linearly growing part corresponds to quasilinear diffusion while the 
asymptotic flat part is strongly nonlinear. Thus the quasilinear part represents 
completely random behavior while the flattening is due to correlations introduced my 
nonlinear effects. This type of behavior can be obtained by renormalization17,18. An 
important aspect of the flat part is that there is no energy transfer between resonant 
particles and waves on the average. Thus linear wave-particle resonances have been 
averaged out! This is analogous to the coherent case we just discussed. In both cases 
the phase mixing of linear resonances is due to strongly nonlinear effects.
A sensitive test on the presence of linear kinetic resonances is the strength of particle 
pinches22. In Fig 8 we show Chi and D as a function of temperature gradient for a 
reactive fluid model, and a fluid model with Landau damping. 

                                                              Fig 8a                                                                                                       Fig 8c

                                                                            
          
                                                              Fig8b                                                                                                      Fig 8d

FIGURE 8.  Particle transport as a function of temperature gradient for a reactive fluid model a) and b)
���
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�i for 

comparison while the dotted lines show particle diffusivities. Here a) and c) show that of the main ions 
(Hydrogen) while b) and d) show the diffusivities of Coal.  From Ref 22 with the permission of the 

American Institute of  Physics.
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Fig 9 shows the quasilinear particle diffusion for the same parameters.

FIGURE 9.  Particle diffusivity in Quasilinear kinetic theory for the same parameters as in Fig 4.  k� �s
= 0.3 From Ref 22 with the permission of the American Institute of Physics.

We note that  Landau damping reduces the particle pinch. In the case shown in Fig 8
Landau damping is introduced in the energy equation while it is present for all 
moments in the quasilinear case.  Thus the effect is stronger in the quaslininear case.
In these examples we used the typical mode number

                                                                                                                               (1.37)

As it turns out, the existence of the quasilinear particle pinch  depends on 
modenumber. However, in order to obtain the total transport, we need to consider a 
modenumber corresponding to the inverse correlation length of the system. This is 
typically given by (1.37) but can vary due to different parameters, typically due to 
magnetic shear, flowshear and magnetic q. This variation would usually be between 
0.2 and 0.4.

                

                           FIGURE 10.  Separation in phase velocity between drift waves and heating.
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                                                       TIME SCALES

Since the confinement time is limited in a reactor, we need to reach sufficiently high 
reaction rate to get out more energy than we put in during a confinement time. Since 
we, in a tokamak, have a pulsed operation, the pulse time is the time we need to 
control the plasma.  It is instructive to compare the different timescales in a reactor as 
shown in Fig 11.

FIGURE 11.  Timescales in a fusion reactor

While the growth time is a few times 10^-5, the confinement time is typically 2 – 3 s.  
A quasistationary turbulent spectrum appears to exist after about 10^-3 s.  A lot of 
discussions have concerned the relevance of the parallel nonlinearity. Several aspects 
were given in Ref 23, primarily dealing with the relevance of the parallel nonlinearity. 
There it was pointed out that the parallel nonlinearity enters on the transport timescale. 
Since the main parallel nonlinearity is due to Nonlinear Landaudamping24, which 
considers beating of waves with almost equal modenumbers, we conclude that this 
nonlinearity can be seen as nonlinear Landaudamping. The fact that the parallel 
nonlinearity enters on the confinement timescale was also noted in Ref 25. This is, 
actually, also true for the nonlinear frequency shift in the Fokker-Planck equation. As 
a result of this ordering, also the friction and diffusivity in the Fokker-Planck equation 
enter on the confinement timescale.

Thus in order to reach steady state in kinetic simulations we, in principle, have to rum 
our codes on the confinement timescale. 

As it turns out, most gyrokinetic simulations appear to reach steady state on a much 
shorter timescale. We can actually see a possibility for that from Fig 6. There the 
kinetic resonance is averaged out on a few growth times.  However, that system is 
coherent while tokamak turbulence is almost completely incoherent. Thus the 
possibility we can see is if the kinetic resonances are averaged out due to the much 
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stronger ExB nonlinearity while the dynamics is still coherent.  Since there is only one 
resonance (1.38), particles can be taken out of resonance by either parallel or 
perpendicular acceleration.

                                                                                                                               (1.38)

Thus if the stronger perpendicular resonance takes particles out of resonance in the 
coherent phase of the development, there will be no kinetic effect of the parallel 
nonlinearity. Nonlinear parallel fluid effects are usually ignorable.

                                               SUMMARY

We have here discussed one fluid, multi fluid and kinetic descriptions of fusion 
plasmas. While the one fluid description is of a theoretical interest for comparison 
with ordinary fluids (Navier Stokes equation) and gives a simple and elegant 
description of the fast, global ideal MHD instabilities, it can usually be replaced by a 
multi fluid description with minimal extra effort in the area of its application. When a 
multi fluid description is required, the physics is more complicated and this, of course,
has to show in the complexity of the description. The kinetic description can often be 
made elegant but, of course, the necessity to follow many particle orbits make 
calculations heavy. A fluid description also uses intuitively clear pictures in terms of 
density, temperature etc. As we have seen here a fluid description including all 
moments with sources in the experiment has to emerge as the full description on the 
confinement timescale.
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