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Abstract

This thesis concerns aspects of driver modeling, with an emphasis on critical
near-crash scenarios, involving time spans of around 10 s of driving. Here,
driver modeling has been studied using both computer simulations and ex-
periments carried out in a high-fidelity driving simulator.

A computer simulation environment has been developed especially for
driver modeling. This simulation environment includes a stochastic opti-
mization method for model parameter tuning. Moreover, a review of exist-
ing driver models has been carried out. In many cases in the literature, new
driver models have been proposed without comparison with existing models.
Many models also lack proper validation against driving data. A possible
explanation may be that such data are expensive and difficult to collect,
especially in critical scenarios.

However, in this thesis, the results obtained in a driving simulator study
involving a collision avoidance scenario indicate that, at least to some ex-
tent, data collected in repeated exposures to a critical event resemble, in
many important aspects, data obtained in an unexpected exposure to the
same event. Thus, using repeated exposures in a careful manner, one can
obtain much larger amounts of available data. In the particular case con-
sidered here, the steering behavior was largely conserved between exposures.
With increased amounts of data, it becomes possible to carry out formal op-
timization of driver models (using, for example, the simulation environment
presented here) without overfitting model parameters to noise in the data.

Keywords: driver modeling, driving simulator, simulation software, genetic
algorithm, stochastic optimization






Acknowledgements

I would like to thank the QUADRA project for funding the research presented
in this thesis. I am grateful for the valuable help and expertise from all
project participants. In particular, I would like to thank my fellow PhD
student and friend Gustav Markkula for many stimulating discussions, and
the essential introduction to the field of traffic safety.

My progress as a young researcher would not have been possible without
help from my great supervisors, Dr. Mattias Wahde and Dr. Krister Wolff.
Their tremendous support, valuable insights, and inspiring words have led
me to where I am today. For that, I am most grateful.

I would also like to acknowledge Eva Astrom, Jesper Sandin, Martin
Fischer, and the other staff at VTI for being so friendly and such a great
help during the eLKA experiment. A very special thanks goes to Bruno
Augusto for giving even more, and for covering me on the battlefield.

Finally, I would like to thank my coworkers at the VEAS division for a su-
perb working environment, my family and friends for their personal support,
and especially my dear wife Lisa for her unconditional love.

il






List of included papers

This thesis consists of the following papers. References to the papers will be
made using Roman numerals.

L.

IT.

III.

IV.

Markkula, G., Benderius, O., Wolff, K., and Wahde, M., A review of
near-collision driver behavior models. Human Factors: The Journal of
the Human Factors and Ergonomics Society, 2012, in press.

Benderius, O., Markkula, G., Wolff, K., and Wahde, M., A simula-
tion environment for analysis and optimization of driver models. In:
V. Duffy (Ed.): Digital Human Modeling, Proceedings of HCII 2011,
LNCS 6777, pp. 453-462, 2011.

Markkula, G., Benderius, O., Wolff, K., and Wahde, M., Effects of ex-
perience and electronic stability control on low friction collision avoid-
ance in a truck driving simulator. Submitted to Accident Analysis and
Prevention.

Benderius, O., Markkula, G., Wolff, K., and Wahde, M., Driver be-
haviour in unexpected critical events and in repeated exposures — a com-
parison. Submitted to European Transport Research Review.



Technical terms used in the thesis

active safety, 1
adaptation, 36

behavior perspective, 5
bicycle vehicle model, 19

cognitive perspective, 5
computer simulation, 2
control modes, 36
control perspective, 5
crossover model, 7

data mining, 11

data points, 13

double lane change, 25
driver model, 2

driver model parameters, 2
driver type, 36

driving simulator, 1

electronic stability control, 12
emergency lane keeping assist, 14
expectancy, 11

field-operational tests, 11

genetic algorithm
crossover, 22
fitness, 21
initialization, 22
mutation, 22
selection, 22

genetic programming, 22

vi

intelligent vehicle systems, 3
intervening systems, 3

looming cues, 9

operator, 5
optimal control, 7

passive safety, 1
plant, 5
preview, 6

retinal flow, 9

safety benefit, 1

satisficing, 8

schemata, 10

signal, 23

stochastic optimization, 17
ant-colony optimization, 21
generation, 22
genetic algorithm, 21
hold-out validation, 22
individual, 21
overfitting, 22
particle swarm optimization, 21
population, 21

test track experiments, 11
time series, 23
time step, 5

visual direction, 9



Table of Contents

Introduction and motivation
1.1 Active safety systems . . . . . . ... ... L.
1.2 Scope and contributions . . . . ... ..o

Designing driver models

2.1 Control perspective . . . . . . . ...
2.2 Behavior perspective . . . . . ... .0 L
2.3 Cognitive perspective . . . . . . . ...

Collecting data for driver models
3.1 Case 1: A lead vehicle braking scenario . . . . . .. ... ...
3.2 Case 2: A head-on collision scenario . . . . . .. ... ... ..

Simulation environment

4.1 Simulation . . . . . . ...
4.1.1 Scenario and simulation handler . . . . . . . . .. ...
4.1.2 Vehiclemodels . . ... ... ... ... ... .....

4.2 Optimization . . . . . .. ... L o
421 Method . . ... ... .. ...
4.2.2  Optimization handler . . . . . . .. ... .. ... ...

Tuning driver models

5.1 Scenario setup and data collection . . . . . . .. ... .. ...

5.2 Driver model selection . . . . ... ... ... ... ... ...

5.3 Driver model tuning . . . . . ... ..o
5.3.1 Model evaluation . . .. ... ... ... ... . ...,
5.3.2 Parameter optimization . . . . .. .. ... ... ...

vil

11
12
14

17
17
17
19
20
21
23



viii TABLE OF CONTENTS

6 Discussion 33
6.1 Selecting a suitable model design . . . . . .. ... ... ... 33
6.2 Collecting data in repeated exposures . . . . . . . ... .. .. 34
6.3 Validating driver models . . . . . . .. ... ... 35

7 Conclusions and further work 37
7.1 Conclusions . . . . . . . . . ... ... 37
7.2 Further work . . . . . .. ... ... 38

Bibliography 41

INCLUDED PAPERS



Chapter

Introduction and motivation

In a recent survey [45], the number of worldwide road traffic fatalities was
estimated at over one million. Naturally, road traffic accidents constitute a
global problem that causes large social and economical costs. Even though
traffic safety involves, for instance, cultural, legal, and infrastructural as-
pects, it is also closely related to vehicle safety. When working with vehicle
safety, a common distinction is between passive safety, such as vehicle de-
sign, seat belts, or air bags, and active safety, such as the use of radar and
cameras for predicting dangerous situations, or autonomous control.

By analyzing accident statistics researchers have shown that some safety
systems have brought significant reduction in traffic injuries and fatalities
[33]. However, in many cases, especially regarding active safety, an estimate
of the safety benefit of the system is desired before it is put into produc-
tion [27, 44]. Generally, it is problematic to evaluate vehicle safety systems
in order to get a good enough approximation of the safety benefit, mainly
due to the complex traffic environments where the systems are applied. In
order to carry out sufficient evaluation covering all relevant traffic scenarios,
many tests are typically required. This is a problem since traditional vehi-
cle experiments, such as crash tests or test track driving, often involve high
economical costs. In addition, there might be various safety risks involved in
cases where the driver must be included in the evaluation process.

As a replacement or a complement to traditional vehicle tests, driving
simulators can be used in order to avoid exposing drivers and vehicles to
danger. Driving simulators typically consist of a vehicle cabin mounted on a
moving platform. By using the platform together with visual and auditory
representations, test subjects can be studied in rather complex traffic envi-
ronments, with high repeatability and with good data logging opportunities.
Recently, several active safety systems, both prototypes as well production
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models, have been evaluated in various simulator studies [37, 43]. Two such
studies are also described in this thesis. One of these studies is further an-
alyzed in Papers III and IV. However, conducting experiments in driving
simulators is, like the traditional tests, very costly.

Computer simulations can be used as a way to avoid problems related
both to risk and economical costs. Such simulations are typically used as a
complement to other vehicle tests (in real vehicles, or driving simulators).
In computer simulation, the vehicle and the driver can be evaluated in var-
ious critical situations. However, simulating the driver requires a driver
model. A review of driver models can be found in Paper 1. The purpose
of contemporary driver models is typically to predict driver control inputs,
such as steering or braking, in specific scenarios. Typical examples of sce-
narios where driver models are currently used include (i) lane keeping in
normal driving conditions [8], (ii) vehicle evaluation maneuvers [4], (iii) col-
lision avoidance [13], and (iv) optimal driving at race tracks [36]. Depending
on the scenario under study, the driver model might be designed to capture
driver aspects, such as experience or attention, as model parameters [41].
Different drivers can then be simulated using different parameter values. By
also varying vehicle and scenario parameters, a large number of different test
settings can be studied without the problems associated with other vehicle
tests. However, computer simulations may not accurately capture all aspects
of vehicle dynamics and driver behavior. Thus, as mentioned above, com-
puter simulations should be used to complement, rather than to replace, tests
with real vehicles and driving simulators.

Computer simulations of drivers and vehicles can be approached in dif-
ferent ways. In this thesis the approach has been to collect data from ex-
periments involving real drivers, and then to use the collected data when
developing driver models.

This thesis addresses the topic of driver modeling, by considering the
three phases of: (i) model design, (ii) data collection, and (iii) parameter
tuning. The main focus is on driver models of collision avoidance in near-
crash situations, typically defined as events requiring rapid evasive maneuvers
from the driver. By modeling driver control inputs in these situations, one
may gain a deeper understanding of the processes involved, knowledge that
can later be used for developing and evaluating a variety of safety systems
aimed at avoiding traffic accidents or, at least, reducing their severity.

All papers included in this thesis consider different aspects of driver mod-
eling. Paper I presents a review of driver models applicable in collision avoid-
ance scenarios. Papers III and IV deal with the collection and analysis of
data applicable to driver model development. Both papers are based on data
collected in a driving simulator study, involving truck driving on slippery
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roads. Paper III is focused on driver properties, such as experience, and
their effect on driver behavior, while Paper IV deals with the validity of
within-subject repeated exposures to a critical scenario. Paper II describes a
computer simulation software environment developed (mainly by the author)
especially for driver modeling. The simulation environment can be used for
simulating driver models as well as tuning their parameters using stochastic
optimization methods (further described in Sect. 4.2). The environment was
also used in the model comparison presented in Paper I.

1.1 Active safety systems

The recent development of in-vehicle computers and sensors, such as radar
and cameras, has made possible the introduction and development of intel-
ligent vehicle systems (IVS). In the last two decades, efforts to develop
and evaluate such systems have been extensive and widespread [3]. Active
safety systems, a category of systems within IVS, take action in crash and
near-crash situations by helping the driver to avoid an accident or, at least,
reduce its effects. Examples of situations where active safety systems are
used include lead vehicle braking, lane departure, and loss of control sce-
narios. In such situations, common interventions from active safety systems
include auditory, visual, or tactile warnings as well as autonomous braking
or steering. Systems that temporarily take control of the vehicle are referred
to as intervening systems.

Driver behavior is a very relevant factor when it comes to the effective-
ness and benefit of an active safety system. Situations where drivers come
in conflict with the systems (e.g. do not comply with the intervention) are of
particular interest. Generally, conflicts between the driver and the safety sys-
tem may arise when a system (i) gives a warning or (ii) temporarily engages
in autonomous control of the vehicle. A possible conflict regarding warnings
is when the driver does not understand the warning, and could therefore be
startled or confused. Furthermore, an active safety system could be cali-
brated in such a way that, in some cases, it would give warnings even in
non-critical situations (i.e. false warnings), which might decrease the driver’s
confidence in the system. The same argument also holds for intervening
systems, but with the addition that the driver and the system could be in
conflict during the intervention itself, thus creating new safety concerns. For
example, if the driver does not have the same understanding of the situation
as the safety system, he or she might want to counteract the intervention
[37].

After gaining a better understanding of driver behavior, and creating
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models thereof, one can then use computer simulation in order to study
the system—driver dynamics and the potential safety benefit of active safety
systems, thus making possible further development of technology used in
improvements of traffic safety.

1.2 Scope and contributions

As mentioned above, driver models have a large potential in aiding the de-
velopment and evaluation of active safety systems. This thesis is focused on
the practical aspects of data collection as well as design and optimization of
driver models, rather than the application of such models, a topic that will
be considered only briefly. The text has been structured in a step-by-step
manner based on three phases: (i) model design, (ii) data collection, and (iii)
model tuning.

The author was the main contributor to Papers II and IV, and one of two
main contributors to Paper I. The author’s contributions to Paper III have
been more limited.
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Designing driver models

For the design of a driver model, a specific scenario is typically considered.
Examples of such scenarios are lane keeping, double lane changes, or evasive
maneuvers. Depending in the scenario at hand, the driver model is required
to generate different types of control inputs to the vehicle. Two categories of
such control inputs are steering and braking behavior. Steering behavior is
typically given as a steering angle for each time step®, and braking behavior
is typically represented, for each time step, as a deceleration value.

Looking at the variety of driver models discussed in Paper I, it is clear
that such models cover a large range of different purposes, and are based on
different underlying theories of human behavior. When discussing different
driver models from a design point-of-view it is useful to categorize models
according to their structure. From Paper I, at least three different design
perspectives can be identified: (i) a control perspective, (ii) a behavior
perspective, and (iii) a cognitive perspective.

2.1 Control perspective

Historically, the first driver models of steering were based on control the-
ory [14]. Similar models had, however, been used earlier in aviation and in
military applications [23, 39]. Still today, many of the new driver steering
models are based on control theory. From this perspective the human driver
is considered as a controller (or an operator) and the vehicle is considered
as a plant. If the system is defined as a closed control loop as illustrated in

LComputer simulations of vehicles and drivers typically involve a large number of cou-
pled differential equations, which are discretized and integrated using a time step which
typically is of order 0.01 s.
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driver vehicle
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Figure 2.1: A closed-loop driver-vehicle system, where H(s) is the controller,
G(s) the plant, L(s) the controller-plant combination, T, the preview time, dq the
driver steering action, and y and yq are the actual and desired lateral positions,
respectively.
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Figure 2.2: The preview points p is projected onto the desired path yq, by using
the preview distance S,. The preview distance is calulated from a preview time
according to Eq. (2.1). The errors e, and ey are typically used as inputs to the
driver model.

Fig. 2.1, methods from control theory may be applied.

An important concept in most steering models is that of preview (see
Figs. 2.1 and 2.2), the purpose of which is to obtain future values of the
desired path, so that upcoming curves can be detected and negotiated. Driver
models might have one or several preview points, each defined by a preview
time 7T, according to

S,(t) = #(1)T, (2.1)

where @ is the longitudinal speed and S,(t) a varying distance to a point
in front of the vehicle. The driver model often uses deviations in lateral
position or yaw angle, as seen in Fig. 2.2, in order to calculate a corrective
steering action. A simple example of a control theory model that only uses
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the heading error [32, 20] is given by
0(t) = Ke(t — Tg) (2.2)

where €(t) is the angle between the vehicle heading and the preview point,
Tk the driver reaction time, and K a gain constant.

A benefit of looking at drivers as controllers is that methods from control
theory can be applied directly in the model. Examples are driver models
that optimize their behavior according to predefined cost functions by using
optimal control [21]. In each iteration of the simulation, a cost function is
optimized over a preview interval. A typical cost function, when generating
steering control for a vehicle dynamics model, would involve minimization
of deviations from the desired path. Race track driver models use this ap-
proach in order to find the most efficient way of driving around a race track
[36]. However, there are models that, apart from minimizing deviations from
the desired path, also include driver comfort aspects such as limits to lat-
eral acceleration and engine speed in the cost function [29]. In Paper I, a
comparison between some of the mentioned models can be found.

Even though control theory driver models typically are focused on follow-
ing a desired path as closely as possible, there are models describing more
general aspects of the human driver. One such model is the often cited
crossover model [24], defined as

L(s) = %e_” (2.3)
where L(s) is the combined driver and vehicle system as seen in Fig. 2.1, w, is
the crossover frequency?, and 7 a time delay. The model, also referred to as
the man—machine model, approximates a closed-loop behavior for the linear
open-loop transfer function L(s). Even though the model only contains two
parameters, it has been successfully used to approximate control behavior in
a large number of system environments [25].

2.2 Behavior perspective

As stated above, driver models designed from a control perspective have
some benefits associated with them. However, when creating a model based
on observed or hypothesized driver behavior other design modes might be
more suitable.

2The frequency where no amplification of the input occurs (L(jw) = 0dB).
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Many models of longitudinal control are designed from a behavior per-
spective. Such models typically try to capture observed behavior by comply-
ing to a few simple rules. For example, the GHR? model [7] (described further
in Paper I) aims to capture observed behavior when a vehicle is following a
lead vehicle. The model is defined as

#(t) = MA@ (t — Tr) (2.4)

where z(t) is the longitudinal position of the following vehicle, Ax(t) the
distance between the two vehicles, Tk a time lag, and A a sensitivity term

defined as
™ (t)

- anl(t — TR)

where a, m, and [ are constants. Dots denote differentiation with respect to
time. Eq. (2.4) results in the behavior of keeping the same speed as the lead
vehicle, and Eq. (2.5) results in swifter speed corrections at higher speeds or
when the lead vehicle is closer. Even though the GHR model is relatively
simple, it can represent complex behavior, especially when simulating a sys-
tem with several vehicles each controlled by the model. As described further
in Paper I, the model has been used in many different applications and has
in some cases been modified in order to capture scenario-specific behavior,
such as collisions [47].

There are some driver models of lateral control designed from a behavior

perspective as well. One such model, intended for evasive steering [13], is
defined as

(2.5)

5(t) + K10(t) = Ky Ay(t — Tg) (2.6)
where 0(t) is the vehicle steering angle, Ay the lateral displacement of an
obstacle, T the reaction time, and K; and K, are constants.

A concept related to the behavioral perspective is the one of satisficing
models, as discussed in Paper I. Rather than following a desired path, as
typical from a control perspective, a satisficing model instead generates be-
havior which is good enough for the current situation [8, 48]. For example, a
satisficing driver model would only correct the current speed or path if they
venture outside predefined safety regions.

2.3 Cognitive perspective

Driver modeling can also be approached from a cognitive perspective, using
models of the human mind as a framework. In many ways, this approach

3Named after its authors: Gazis, Herman, and Rothery.
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is more difficult to apply than the other two perspectives mentioned above,
the reason simply being that little is known about how the mind actually
works. Therefore, models from this perspective are often only applicable
to very specific driver phenomena observed in traffic. Still, as exemplified
below, such models generally ezxplain driver behavior in a way that makes
them applicable in a large number of scenarios.

For instance, it would be relevant to know why drivers brake harder at
higher speeds and shorter headway as predicted by the GHR model (de-
scribed above). As stated in Paper I, even though much effort has been put
into finding realistic parameter values for the GHR model, good values have
not yet been found. This is an indication that, even if a model shows a
qualitative good behavior, it might not be possible to tune it correctly us-
ing real world data. If useful parameter values cannot be found, one may
conclude that the model is simply not good enough for the general case.
However, by incorporating knowledge regarding the motivation for specific
driver behaviors, one may be able to improve the model.

A cognitive phenomenon, namely sensitivity to looming (or looming
cues), could potentially be used when tuning or redefining the GHR model.
In this context, looming refers to the optical expansion of an object in the
driver’s field of view, when the object is moving towards the driver. It has
been shown that looming cues can trigger attention and reflex responses from
a driver [19]. As mentioned above, models defined from a cognitive perspec-
tive cannot, perhaps, be used in a standalone fashion, but could be used as
a part of a model or in order to validate the behavior of a model.

Another cognitive (or rather perceptual) model uses the perceptual prop-
erties of visual direction, and retinal flow in navigation (e.g. negotiating
a curve) [42]. The visual direction can be explained as a target point in the
visual field. In a driver model context, the visual field can be considered as
the windshield of a vehicle. For instance, when moving straight towards a
visual direction positioned in the center of the visual field, the visual direc-
tion will remain stationary. However, when moving towards a visual direc-
tion positioned to the left in the visual field, the visual direction will rotate
counterclockwise. The retinal flow can be explained as the motion of the
perceived features, such as colors and objects, projected on the retina. In
order to capture human navigation, the model tries to accomplish two things:
(i) minimizing the movement of the visual direction, and (ii) minimizing the
rotation in the retinal flow. The model is defined as

= k(B1v + Bay) — bo (2.7)

where 6 is the angular acceleration, ¢ the retinal flow, v the visual direction,
and where k, (1, f2, and b are constants. In a driver model context, the
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visual direction is defined as the angle between the vehicle’s yaw angle and
the driver’s gaze.

Cognitive properties such as looming cues and navigation by visual cues
have, at least to some degree, general validity, and can therefore be studied
and parameterized in experiments not necessarily related to driving. For
instance, when walking or riding a bike, the same kind of visual cues as when
driving a car might be used [42]. Thus, knowledge gained in other fields,
such as psychology, can to some extent be incorporated into driver models
as well.

There are also models that try to explain certain specific driver properties.
One such property, relating to driver comfort, is a relationship between the
lateral and longitudinal accelerations chosen by a driver [46]. This property
is rather general, and can therefore be used in many different driver modeling
situations, for instance when validating a driver model.

The cognitive models discussed so far model limited observed cognitive
phenomena. There are, however, models that try to capture cognitive as-
pects in a more general way. Some of these models use the ACT-R (atomic
component of thought-rational) framework for cognitive modeling [2]. In this
framework, factual knowledge as well as procedural knowledge can be rep-
resented. This kind of model has, for example, been used when modeling
driver distraction [35].

Another, more general, model explains, from a cognitive point of view,
why accidents occur, using the concept of schemata [6]. In cognition,
schemata try to capture, for instance, that certain traffic situations (e.g. an
overtaking) correspond to certain actions from the driver. The model states
that accidents occur when, for the current situation, an improper schema is
selected by the driver.
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Collecting data for driver models

There are different types of data sources relevant to driver modeling. The
most common ones include (i) test track experiments, (ii) driving simu-
lator experiments, and (iii) field-operational tests (FOTs). They all have
their strengths and weaknesses and are therefore suitable for different mod-
eling purposes. As mentioned in Chapter 2, driver models are often designed
for a specific scenario. Therefore, data collected for driver modeling typically
also target a specific scenario.

Since driving simulators rely on simulated vehicles, the fidelity of the
vehicle dynamics might be lower compared to real vehicles used in test track
experiments or FOTs. However, as discussed in Chapter 1, an important
benefit of driving simulators is that they do not expose vehicles or drivers
to any risk during experiments. Another benefit is that driving simulators
allow for controlled experiments to a very high degree, which is especially
important when it comes to critical scenarios with small margins (e.g. precise
timing of events).

In FOTs, the subjects use vehicles, equipped with data logging devices
and cameras, on normal roads. The vehicles are not used for a specific test,
but instead for every day driving for an extended period of time. There-
fore, FOTs differ from both test track experiments and driving simulator
experiments in the sense that they do not allow for controlled experiments at
all. Instead, they rely on subsequent data mining where sufficiently similar
scenarios can be used for analysis of a given safety problem. A drawback
with such an approach, however, is that naturally rare scenarios generally
are hard to study.

The concept of expectancy is central in the study of human behavior in
specific situations. In this context, expectancy refers to the subject’s belief
that something unusual will happen. For drivers participating in a driving

11
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simulator experiment, expectancy is likely to be high since the subjects are
placed in a highly unusual environment, and are asked to act within a virtual
reality. For normal drivers, expectancy will most likely be high in test track
experiments as well, due to the unfamiliar environment and the fact that
they are studied while driving an instrumented car. By contrast, a unique
feature of FOTs is that they induce very low expectancy since the drivers use
the same vehicle for a long period of time in unspecific situations. As a way
to validate behavior from experiments involving high levels of expectancy,
one could use data from FOTSs, if available [31].

It might be argued that realism is an important factor when collecting
data for use in driver modeling, implying that data collected at test tracks
or in FOTs are better suited than data collected in driving simulators. How-
ever, in many cases, especially when studying critical situations, the driving
simulator is preferred simply because it makes it possible to use unrealistic
(but necessary) scenario elements. For example, when studying rare critical
situations it might be very difficult to get subjects into the situation in a
fully realistic setup. A typical simple solution in a driving simulator would
be to change something in the environment when the subjects are looking
away.

Two different driving simulator experiments are described below, the first
involving trucks, and the second passenger cars. Both experiments consider
driver behavior in an active safety context.

3.1 Case 1: A lead vehicle braking scenario

In order to evaluate an active safety system for trucks, an experiment in-
volving a lead vehicle braking scenario was carried out. The system, most
commonly known as electronic stability control (ESC), is designed to re-
duce yaw instability during skidding. When the system detects instability,
by comparing the steering wheel angle with the vehicle’s direction of veloc-
ity, it brakes wheels individually in order to increase stability. Typically,
the system brakes the outer front wheel to reduce oversteer, and the inner
rear wheel to reduce understeer [30]. Situations where the risk of instability
is high occur when drivers carry out rapid maneuvers while driving at high
speeds on slippery roads. An example of such a situation is a lead vehicle
braking scenario, as illustrated in Fig. 3.1. Such scenarios could, if unex-
pected, trigger high speed lateral maneuvers and potential yaw instability.
It has been found that about 19% of all truck crashes in the U.S. involve loss
of yaw or roll stability, and could therefore be targeted by ESC [16].

For the experiment, a lead vehicle braking scenario on a slippery road was
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— = ‘ V2 = RXV1

Figure 3.1: The critical scenario under study in the ESC experiment. The truck,
driving at speed vy on a slippery two-lane highway, is overtaken by a passenger
car (the principal other vehicle, POV). Unexpectedly, the POV brakes hard with
deceleration dy, forcing the truck driver to initiate an evasive steering maneuver
on the slippery road surface. A detailed description of the parameters can be found
in Papers IIT and IV.

implemented in a driving simulator!. The main purpose of the experiment
was to study the effects of driver experience on the ESC system performance.
Two groups of drivers with different levels of experience (high and low, re-
spectively), each containing 12 test subjects, were included in the study.
Without any prior knowledge about the experimental setup, each subject
started by carrying out simulator training involving both steering and brak-
ing. After the training, the subject was told that the actual experiment was
about to start. After driving for a few minutes, the subject was exposed
to an unexpected lead vehicle braking scenario, as seen in Fig. 3.3. From
each experience group, six subjects had the ESC system activated during the
critical scenario. Detailed information about the experiment can be found in
Papers III and IV.

Creating a driver model, capturing both realistic steering and braking
behavior, only based on the 24 data points? acquired from the unexpected
scenario would probably be impossible. In fact, the effective number of data
points would be even smaller, since many of the subjects did not even attempt
to avoid the accident by using the steering wheel (see Paper I1I). Since it was
hypothesized from the beginning that some subjects would not end up in ESC
relevant maneuvering as a result of the unexpected event, the same critical

!The Sim II truck simulator at The Swedish National Road and Transport Research
Institute (VTI).

2In this context, the term data point is used as a shorthand for all the data collected
during one repetition of a driving scenario.
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Figure 3.2: The critical scenario under study in the eLKA experiment. The
driver under study (test subject, T'S) drives at speed v1, unaware of the oncoming
vehicle (POV) driving at the same speed. During distraction, the TS, still unaware
of the oncoming car, drifts towards the opposite lane. The eLKA system gives an
intervention in order to steer the TS back to the original lane.

scenario was repeated 12 more times (6 times with the system, and 6 times
without) as a second part of the experiment. However, in the second part,
each subject was instructed precisely on what would happen, and on which
actions they were supposed to take. The concept of repeating critical driving
scenarios is discussed in detail in Paper IV. In a third and final part of the
experiment, the subjects were instructed to carry out double lane changes on
a simulated test track. The double lane change was designed to mimic the
severeness of the lead vehicle braking scenario.

3.2 Case 2: A head-on collision scenario

In an experiment involving a head-on collision scenario, a prototype of an
active safety system was evaluated. The system is called emergency lane
keeping assist (eLKA) and is designed to help the driver to avoid collision
with cars in other lanes. When the system detects a critical situation, by
measuring the distance to surrounding vehicles and lane boundaries, an active
steering wheel intervention is given in order to avoid the threat. Typically, the
critical scenario could involve a potential head-on collision with an oncoming
car, as illustrated in Fig. 3.2. Such scenarios could be the result of distraction,
causing inattention as well as drifting. According to accident statistics, while
only around 2% of all accidents (in the US) are classified as head-on collisions,
this type of accident still accounts for over 10% of all fatalities [26].

For the experiment, a head-on collision scenario was implemented in a
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Figure 3.3: Left panel: A snapshot from the unexpected scenario in the ESC
experiment, where a truck driver is forced to carry out rapid maneuvers on a
slippery road. Right panel: A snapshot from the unexpected scenario in the eLKA
experiment, where a car driver looks away from the road at the same time as a
collision course with an oncoming car is established.

driving simulator®. The main purpose of the experiment was to measure the
driver’s initial reaction to an unexpected steering intervention given by the
eLKA system. Two groups containing 20 test subjects each were recruited
for the experiment. One group had their system activated during the critical
scenario, and the other group did not have the system activated.

In order to get a subject into an unexpected head-on situation, as seen in
Fig. 3.3, some special measures had to be taken. First, the subject was told
that the purpose of the study was to evaluate a newly developed distraction
task, in which numbers should be read from a display positioned between the
front seats. Second, the oncoming car was visible only after the subject looked
down towards the distraction task. Third, when the subject was looking
down, an (unphysical) artificial yaw rotation was applied to the environment,
without using the motion platform, in order to place the vehicles on a collision
course. Fourth, cues usable in navigation during distraction, such as road
markings and trees, were reduced or removed. Each subject started with a
training session including non-critical overtaking maneuvers and practicing
the distraction task. After the training, the subjects were instructed to drive
at 90 km/h on a rural road where they would be exposed to the distraction
task several times. Unbeknownst to the subjects, the unexpected head-on
collision would be initiated during three of these distraction tasks towards
the end of the drive.

Just as in the ESC experiment described above, scenario repetitions (with

3The Sim IV simulator (with the passenger car cabin) at The Swedish National Road
and Transportation Research Institute (VTI).
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prior instructions) were used. In this case, the distraction task was not
used. Instead, the subjects were instructed to hold the steering wheel in zero
position during the artificial yaw motion, and attempt to avoid the head-
on collision only when the oncoming car blinked its headlights. For each
subject, the scenario was repeated 12 times, each time using one of four
different variations. Two of the variations corresponded to the eLKA system
being either active or inactive during the critical event, and the last two
variations corresponded to the system being either active or inactive, but
with a delay of 0.2 s until the oncoming car blinked its headlights.

As a third and last part of the experiment, the driver’s response to sudden
steering wheel torques was tested further. While driving in the middle of
a perfectly straight three-lane road, the subject was asked to carry out the
distraction task several times. Occasionally, when the subject was distracted,
a steering wheel torque was applied (as a step function) to the steering wheel
for 0.7 s. The torque could be either 3, 4, or 5 Nm and directed either
to the left or to the right. The instructions given to the subject were to
directly abort the distraction task and change to the left or to the right lane
(corresponding to the direction of the torque). In total, each subject was
given 12 steering wheel torques.
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Simulation environment

The simulation environment, first described in Paper 11, was developed by the
author specifically for simulating and tuning driver models. The software has
been written in the C# programming language, and uses the Ogre graphics
library for visualization. In Fig. 4.1, two different views from the simulation
environment are presented.

One of the most important features of the simulation environment is its
capability to tune driver models using stochastic optimization (described
below). Since such optimization algorithms require fast evaluations, the sim-
ulation environment has been developed with simulation speed as one of the
main criteria. When run on a desktop computer, the software is capable
of evaluating the outcome of a typical critical scenario over 100 times per
minute. In this chapter, the various parts of the simulation environment will

be described briefly.

4.1 Simulation

When setting up a simulation, one must first implement the scenario under
study. The simulation environment was developed especially for simulating
critical scenarios, and is thus intended for scenarios with a short time span
(up to a minute), involving a few vehicles (up to ten). The simulation process
and scenario definition will now be discussed.

4.1.1 Scenario and simulation handler

The scenario contains all road and environment definitions, as well as all
simulated vehicles and their corresponding driver models. An example of
a vehicle model is presented below, and an example of a driver model is

17
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Figure 4.1: Two views from the simulation environment. Top panel: The vi-
sualization view. In this case, a passenger car is being driven towards road cones
placed on a rural road. Bottom panel: The optimization view. The training fitness
is shown in red, and the validation fitness (described in Subsect. 4.2.2) is shown
in green.
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Figure 4.2: A schematic overview of the simulation process.

presented in Chapter 5. As illustrated in Fig. 4.2, the simulated vehicles
may also contain various safety systems. In the context of driver simulation,
the purpose of the safety system is normally to influence the behavior of the
vehicle, the driver, or both, during a simulation, so that one can study the
resulting actions taken by the driver model.

Three basic actions can be supplied to the scenario from the simulation,
namely: Reset, update, and stop. When an action is applied to the scenario,
it automatically propagates to any vehicle, driver, and active safety system
within the scenario. The reset action sets all internal states to their initial
values, typically before a simulation starts. Examples of such initial values
include vehicle start positions, and driver initial brake pedal position. The
update action increases the simulation time by one time step, resulting in
evaluation of vehicle dynamics and driver behavior for that time step. Fi-
nally, the stop action terminates the simulation. The simulation handler is
responsible for managing the time during the evaluation of a scenario, as
illustrated in Fig. 4.2. However, note that the scenario can itself execute the
stop action if any stop criterion (e.g. a time limit) is fulfilled in the current
time step. Stop criteria can be defined specifically for each scenario, and
might involve (apart form the time elapsed) any vehicle or driver property.

4.1.2 Vehicle models

As the main purpose of the simulation environment is to study (and opti-
mize) driver models rather than detailed vehicle dynamics, one can, in many
cases, use a simplified vehicle model, such as a bicycle model during a sim-
ulation. Such vehicle models ignore the width of the vehicle, treating each
axle as one wheel. The main vehicle model used, so far, within the simulation
environment was originally presented in [38]. The kinematics of that model
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is given by
T =ucosy —vsiny
Yy =wvcosy + usiny (4.1)
b=r

where x and y represent the global position of the vehicle’s center of mass
(CM), u and v the local coordinate system fixed to the CM, ¢ the yaw angle,
and r the yaw rate. The dynamics of the vehicle model is given by

Mt —vr)=F, — F,rsind
M0 +ur) = F,, + Fypcosd (4.2)
I.7 = aF,;cosd — bF,,
where M is the vehicle mass, a and b the distance between the CM and the
front and rear axle, respectively, and ¢ the vehicle steering angle. A steering
wheel angle can be translated into a vehicle steering angle by 6 = dgw /G
where G is the steering gear ratio. The lateral force F, combines the brake

and engine forces, and the forces F,, and Fj,; are the lateral rear and front
forces, respectively, given by the often cited magic formula [28]

F, = 2D,, sin|C,, arctan(B,,& — E,,,(B,,a — arctan(B,,,«)))] (4.3)

where B,,, C,,, D,, and E,, are tire parameters, and the slip ratio is given
by
usind — (v + ar) cos o

ucosd + (v 4+ ar)sind

Qf = (4.4)

for the front axle, and

(4.5)

for the rear axle. The vehicle model just described was used in Paper I when
comparing the steering behavior of different driver models, in that case using
the parameters listed in Table 4.1.

4.2 Optimization

The simulation environment can run a single scenario manually using a driver
model with given parameters, something that is typically done for visualiza-
tion purposes. However, normally, the simulation environment is used for
optimizing driver models, in which case many sets of parameters are evalu-
ated and visualization (i.e. real-time 3D rendering of the vehicles and their
environment) is normally turned off for performance reasons. The optimiza-
tion method will now be described briefly.
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Parameter Symbol Value Unit
Mass M 1400 kg
Yaw inertia I, 2500 kg m?
Front axle distance a 1.16 m
Rear axle distance b 1.54 m
Steering gear ratio G 17 -
Stiffness factor B,, 11.5 -
Shape factor Cn 1.3 -
Peak factor D,, 2500 N
Curvature factor E,, 0.3 -

Table 4.1: Vehicle model parameters used in Paper I.

4.2.1 Method

In the literature, driver model parameters have most often been tuned by
hand (see, for instance, [22, 8, 35, 36]). However, there are a few examples
when optimization methods have been used instead. For example, in [49]
a genetic algorithm (GA) was used for tuning the parameters of a PID
regulator.

GAs [10] are a special case of a more general class of optimization algo-
rithms referred to as evolutionary optimization methods. Such algorithms,
in turn, belong to the class of stochastic optimization methods, a class that
also includes for instance, particle swarm optimization (PSO) [15], and
ant-colony optimization (ACO) [5]. The methods share the property that
they all search for optima (maxima or minima) by using different stochastic
operations. Furthermore, many stochastic optimization methods are inspired
by biological phenomena. Generally, the operations are applied to a pop-
ulation, in which each member (referred to as an individual) constitutes
a solution candidate for the problem at hand. The optimization methods
are general and can be applied to any problem where an individual can be
evaluated and compared to the performance of any other individual. The per-
formance measure is commonly referred to as a fitness measure (a quantity
to be maximized), in the case of evolutionary optimization methods.

Stochastic optimization algorithms have several advantages over classical
optimization methods. For example, they are very general and can thus be
applied without any need to simplify the system (e.g. a driver model or a
vehicle model) being optimized. Furthermore, due to their stochastic nature,
they are capable of avoiding to get stuck in local optima, a problem that
affects some classical optimization methods.

A drawback associated with stochastic optimization is that, normally, one
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cannot prove that an optimum found is a global optimum. However, when
studying model behavior, one can most often define a good enough behavior
for the application at hand.

In principle, one can also use a class of evolutionary methods called ge-
netic programming (GP) to tune the structure (or design) of a model,
not only its parameters. While this method has not yet been implemented
in the simulation environment, it might be suitable for generating complex
driver models, in situations where a closed-form mathematical formulation
of a driver model cannot be found.

In the current version of the simulation environment, a GA has been cho-
sen as the optimization method. Four basic operations are used by the GA:
Initialization, selection, crossover, and mutation. In the initialization
phase, a new random population containing N individuals is generated. In
a driver modeling context, each individual might, for instance, represent a
bounded parameterization of the model. After initialization, each individual
is evaluated and assigned a fitness value based on its performance. Again,
in a driver modeling context, this step could correspond to simulating the
driver model in order to determine, for instance, how closely it will follow a
predefined desired path using, say, the inverse of the mean absolute position
error (relative to the desired path) as the fitness value.

Based on the fitness values, individuals are then selected for reproduction.
In this phase, a new population (the next generation), still containing N
individuals, is generated by repeated use of selection, crossover and muta-
tion. Selection can be carried out using one of several different methods [40],
all favoring individuals with high (relative) fitness values. In crossover, two
selected individuals are merged, sharing their encoded parameter informa-
tion among each other. When tuning a driver model, such exchange could
mean that one or several model parameters are swapped between the two
individuals. Finally, mutation is applied to the individuals by making small
random changes before inserting them into the new generation. By repeating
the entire process for many generations, the fitness of the best individual in
the population will typically increase rapidly in the beginning, and then more
slowly, often in a stepwise manner (i.e. such that a long period of constant
maximum fitness is interrupted by a sequence of increases).

Since it is not possible to determine whether or not a given solution can-
didate represents a (local or global) optimum, a way to measure progress
must also be considered. If the optimization is allowed to run for too long,
one might eventually end up with the problem of overfitting. When tuning
a model for too long, it will eventually capture irrelevant aspects of the data,
such as noise or other artifacts. In order to avoid overfitting, hold-out val-
idation (described in Paper II) can be used by splitting the available data
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Figure 4.3: Left panel: A schematic illustration of a data set used for optimiza-
tion. Right panel: An overview of the optimization process.

points into three parts, one larger part containing training data, and two
smaller parts containing validation and test data. During optimization, the
validation data is used only to control for overfitting. That is, the perfor-
mance over the validation data is not provided to the optimization algorithm,
but is used for determining when to stop the optimization process, namely
at the point where the validation fitness reaches its maximum. After the
optimization has been completed, the test data is used in order to test the
solution on new (unseen) data.

4.2.2 Optimization handler

As mentioned above, the simulation environment includes a GA for the op-
timization of driver model parameters. The optimization process, illustrated
in the right panel of Fig. 4.3, evaluates different driver model parameteriza-
tions by running successive simulations. When evaluating the model, one or
several data sets are used. As illustrated in the left panel of Fig. 4.3, each
data set contains initial conditions, input signals!, and target signals. For
each evaluated individual, each data set is used as follows: (i) the initial
conditions are provided to the simulation (reset), (ii) in each time step, val-
ues from the input signal (e.g. vehicle speed) are assigned to the simulation
(update), and (iii) the individual is evaluated by comparing the target signals
(from the data set) to signals generated by the model (evaluate).

The overall fitness for the individual is calculated in three steps; (i) the
fitness for each target signal within a data set, (ii) the combined fitness for
all target signals within a data set, and (iii) the combined fitness for all data
sets. When combining fitness values for several targets or data sets, one can
choose whether to use the maximum measured error, the average error, or
any other type of combined measure.

In order to determine when to stop the optimization, hold-out validation
has been implemented and allows real-time monitoring of training and vali-

'In this context, a signal corresponds to a time series.
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dation fitness, as illustrated in Fig. 4.1. The validation fitness is calculated,
for each generation, by evaluating the individual with the highest training
fitness over the validation set. After the optimization has been completed,
one can also evaluate the best individual using the test data.
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Tuning driver models

As is evident, the behavior of a driver model depends on the values selected
for its parameters. Typically, when a driver model is tuned (i.e. optimized)
so that it can represent real driver behavior, its parameters are set using
information obtained from driving data (see Chapter 3). The process of
tuning a driver model will now be illustrated, using data from the experiment
described in Sect. 3.2.

5.1 Scenario setup and data collection

The scenario considered here is a double lane change (DLC) maneuver.
The same kind of maneuver was also considered in Paper II as part of a
demonstration of the simulation environment and its optimization algorithm.
In the demonstration, a simple open-loop steering model based on a sine func-
tion was tuned to carry out a DLC using a very small set of data, containing
only three repetitions.

The DLC illustrated in this chapter differs slightly from the often cited
ISO double lane change [12] and also from the DLC described in Paper II,
in the sense that it is defined using only two barriers on a two-lane road, as
illustrated in Fig. 5.1. Typically, DLCs are defined by three or more gates
in order to get a high level of experimental control. In contrast, by instead
using barriers, the drivers carrying out the maneuver are allowed to initiate
the first lane change more freely, thus allowing for a higher degree of natural
behavior throughout the scenario.

Driving data were collected as (a minor) part in the head-on collision
simulator experiment described in Sect. 3.2. During the initial training ses-
sion, the subjects were asked to carry out three successive DLCs (1.5 km

25
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Figure 5.1: The DLC scenario. The road cone barrier in each lane forces the
driver to carry out the DLC, even though the initiation of the maneuver is chosen
by the driver. The lanes are both 3.5 m wide. Points A through F illustrate the
DLC as a path. The longitudinal distance from point A to the first barrier is 200 m,
while the distance to the second barrier is 280 m.
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Figure 5.2: The various vehicle trajectories extracted from the driving data.

apart) at 90 km/h. The DLCs were each defined by two road cone barriers
as described above. The test subjects were told to execute the maneuver as
if overtaking another vehicle, without using the brakes. As explained to the
test subjects, the purpose of the exercise was for them to experience the lat-
eral dynamics of the simulated vehicle. However, in this simple illustration,
only data from the second DLC maneuver will be used for tuning the driver
model. Therefore, the number of data points will be equal to the number
of participants, namely 40. However, due to technical difficulties, two of the
data points were removed (leaving 38). The trajectories extracted from the
driving data are shown in Fig. 5.2.
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5.2 Driver model selection

Here, the multi-point preview model proposed by Sharp et al. [36] will be
used for the DLC maneuver. The model was chosen since it is often cited
and, moreover, was already implemented for Paper I. In the model, eight
preview points are positioned at fixed preview times (see Eq. (2.1)), each
defined as a fraction (0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1) of the preview time
T,. The model uses a desired path in order to calculate a steering angle o(¢)
according to

0(t) = Kythe(t) + Kiye, (1) + Z Kiye,(t) (5.1)

where 9 (t) is the heading error compared to the tangent of the desired path,
Ye, () the vehicle’s lateral deviation, y., (t) the lateral deviation of the preview
points, and Ky, K, and K; are gain constants. In Paper I, the performance
of the model was compared to that of several different steering models in
a single lane change maneuver. In that particular comparison, the model
carried out the maneuver with a distinct overshoot, arguably because the
model was originally designed for race car dynamics.

When tuning the model, the preview time 7}, all the gains K, and the
desired path are considered as free parameters. As for the tuning of the
desired path, point A (see Fig. 5.1) is chosen as a fixed origin while the other
five points (B to F) are tunable. In the original model, the gain terms as well
as their total sum were assigned a specific saturation level in order to prevent
the function from returning values that are too large. In the case considered
here, however, since the model is tuned to a steering angle reference (i.e. the
model is optimized towards realistic behavior) the saturation levels are not
needed and were therefore omitted.

5.3 Driver model tuning

In the example considered here, the driver model tuning has been subdivided
into two steps. First, the model was tuned to a few individual drivers to
ascertain that it is, in fact, capable of representing the desired maneuver.
Second, the model was tuned to represent an average driver by optimizing
it using the whole set of data. In this case, an average driver represents an
average behavior rather than any specific (median) driver, since the model
was tuned so as to minimize the steering angle error over the entire data set
(all drivers).
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1 2 3 A 1 2 3 A
T, | 2.195 0469 0.643 1420 || zp 88.212 199.947  98.134 117.962
Ky | 0.026 0.002 1.030 0.036 || z¢c | 202.598 356.021 195.677 158.987
K; | 0.007 0.011 0.009 0.020 | zp | 278.845 448.994 209.489 214.916
K, | 0.004 0.004 0.001 0.004 | zg | 450.079 608.188 383.428 379.348
K3 | 0.002 0.023 0.024 0.004 || zp | 584.111 786.701 581.500 452.828
K, | 0.002 0.001 0.004 0.013 | yB -0.044 1.484 -0.287 0.987
K5 | 0.014 0.016 0.011 0.005 || yc 4.445 0.164 2.027 2.586
Kg | 0.091 0.004 0.008 0.012 || yp 1.131 0.664 0.534 1.392
K7 | 0.003 0.005 0.000 0.002 | yg 2.841 0.822 -0.312 -0.069
Kg | 0.006 0.004 0.020 0.004 | yr 4.525 4.533 0.253 1.482
€ 1.046 0992 0.638 1.679

Table 5.1: Parameter values for the driver model after optimization. The
columns denoted 1, 2, and 3 refer to the test subjects considered during model eval-
uation (see Subsect. 5.3.1), and the column denoted A refers to the average driver
(see Subsect. 5.3.2). For the three individual subjects, optimization was carried
out in order to evaluate the driver model design for the scenario under study. The
average driver was generated by tuning the model to data from all 38 repetitions
(26 for training, 6 for validation, and 6 for test). The x and y parameters corre-
spond to the longitudinal and lateral positions (respectively) of points B through F
(as presented in Fig. 5.1), measured (in meters) from from point A. The preview
time T), is given in seconds, and the gains K as well as the average (over time
steps) steering angle error € is given in degrees.

5.3.1 Model evaluation

In order for the model to be able to represent an average driver in the DLC
scenario, it must at least be able to capture the steering behavior of a single
test subject carrying out the DLC maneuver. As a test, data from three
subjects were selected randomly and were then used in three separate opti-
mizations of the driver model (resulting in three different sets of parameter
values, one for each driver).

The model was optimized using the simulation environment described in
Chapter 4 and in Paper II. During optimization, the model behavior was
compared to the behavior of the test subject under consideration. First, the
initial vehicle state (position, velocity, acceleration, and heading) was read
from data and assigned to the simulated vehicle. Then, in each time step of
the simulation, the exact position and heading of the actual vehicle (read from
data) was assigned to the simulated vehicle. A steering wheel angle could
then be calculated in each time step using the driver model (comparing the
actual path to the desired path). In order to evaluate the behavior of the
model for a given set of parameter values, a fitness value was calculated as
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Figure 5.3: An example of driver model tuning. The panels show the steering
wheel angle variation for the best individual in generations 50, 800, 2000, and
5000.

the inverse of the average steering error € given by
1~ . .
e= =3 lo) — () (5.2
j=1

where v(j) is a sample in the steering angle signal obtained from the data,
u(j) the corresponding steering angle acquired from the simulation, and n the
number of samples in the steering signal. In other words, given a recorded
trajectory, the driver model should ideally produce a steering signal equal
to the recorded steering signal associated with that trajectory. If the model
can accurately capture the steering behavior of the three drivers, it may be
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Training Validation Test

1 1261 8 1751 |15 1933 |22 1401 |1 1.230 || 1 1.540
2 1953 | 9 1.692 |16 1.809 | 23 1.649 || 2 1.757 || 2 1.578
3 2351 |10 1.607 | 17 1.252 |24 1.460 | 3 1.430 || 3 2.810
4 1.980 | 11 1.672 | 18 1.211 | 25 1.074 | 4 2.320 || 4 1.221
5 1424 |12 1.244 | 19 1.979 | 26 1.448 || 5 1.798 || 5 2.781
6 1.744 |13 2.674 | 20 1.748 6 1.506 || 6 1.597
7 1749 |14 1.834 |21 1.750

1.679 (0.358) 1.673 (0.381) || 1.921 (0.691)

1.716 (0.423)

Table 5.2: The performance of the average driver measured using the average
error in steering wheel angle (in degrees) for each test subject. The mean and stan-
dard deviation for the training, validation, and test sets are presented in the second
row from the bottom. The bottom row shows the mean and standard deviation over
all 38 data points.

useful for representing an average driver. Here, the criterion for an accurate
behavior is a maximum error of three degrees!.

Fig. 5.3 shows four examples of steering wheel angles obtained during a
single optimization run (corresponding to the best individual in generations
50, 800, 2000, and 5000). As can be seen in the bottom right panel of that
figure, it turned out that the model could in fact rather well reproduce real
driver behavior from the scenario under study, obtaining an average error of
around 0.7°.

Therefore, one can expect that the model can be used when finding pa-
rameters for the average driver (using all data). For the three tuned driver
models, parameter values, as well as average steering error measurements,
can be found in Table 5.1.

5.3.2 Parameter optimization

In order to find model parameters for the average driver, all 38 data points
were used. Of those, 26 points were used for training, 6 points for validation,
and 6 points for testing.

In order to calculate the combined error based on several steering angle
references, Eq. (5.2) was generalized so that € instead is given by

ng

=3 (5 S lut) — ) 5:3)

J=1

'With a steering gear ratio of 16, a 3° change in steering wheel angle corresponds to a
change in vehicle steering angle of approximately 0.2°.
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where 7 denotes the test subject, m the number of test subjects, and n; the
number of time steps for test subject i. The resulting driver model parame-

ters are presented in Table 5.1 and the model’s performance is presented in
Table 5.2.






Chapter

Discussion

In this thesis, the three driver modeling aspects of design, data collection,
and parameter tuning have been described and exemplified. In this chap-
ter, these aspects will be discussed further, with emphasis on driver model
development.

6.1 Selecting a suitable model design

The selection of a suitable model depends very much on the application in
which it will be used. In Paper I, four different groups of applications were
identified as (i) vehicle and infrastructure design, (ii) analysis of naturalistic
driving data, (iii) complement to a limited set of driving data, and (iv)
reconstruction of accidents. In a scenario involving vehicle testing, the driver
model is typically not very important, implying that a simple control theory
model normally would be best suited. In applications where the driver plays
a central role and where the actions of the driver will be under study, a
behavioral or cognitive model (as presented in Chapter 2) would generally
be better suited.

In Paper I, it was concluded that there are no straightforward general
recommendations for selecting a driver model, even though simple models
such as the GHR model (described in Sect. 2.2) have been used successfully
in a wide range of applications. It was also concluded that many of the
previous driver modeling efforts have resulted in new driver models designed
specifically for the application at hand. However, by comparing driver mod-
els using computer simulations in the simulation environment described in
Chapter 4, it was found that different models are, in fact, often very similar
in their control behavior. Furthermore, it was noted that efforts in com-
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paring models have been rather limited, leading to the suggestion (Paper I)
that, before starting a new driver modeling effort, one should make sure to
evaluate existing driver models first.

Another aspect of choosing a model concerns the number of parameters
within the model. Parameters can be set manually, but this process can
be impractical even in models with rather few parameters, particularly in
cases where the combined action of the parameters is difficult to overview
manually. Therefore, it is often better to tune parameters automatically
from driving data, as exemplified by the optimization approach presented in
Chapter 5 and in Paper II. Either way, the amount of available data will put
restrictions on the number of parameters in the selected model.

6.2 Collecting data in repeated exposures

As just mentioned, in order to tune a driver model, one typically needs a
large set of data regarding driver behavior. However, when studying critical
situations, such as a head-on collision scenario, it is hard to collect large
amounts of data, due to safety and expectancy reasons. Additionally, it is
not always so that, for a critical situation, the desired behavioral response is
always present. For example, in the lead vehicle braking scenario described
in Paper III and in Sect. 3.1, it was found that 52% of all the truck drivers
failed to apply sufficient evasive steering. It was also found that 23% of the
drivers did not attempt any steering at all. In previous studies, it was also
found, by similar quantities, that drivers did not attempt evasive actions
[1, 17]. Therefore, when studying the dynamics of such actions, this kind of
passive behavior results in loss of data!l.

In the two experiments described in Chapter 3, repeated exposures of an
(initially) unexpected scenario were used in order to collect larger amounts
of data. In Papers III and IV it was concluded that repeated exposures to a
critical event can indeed be used when collecting behavioral data for driver
modeling, especially when collecting steering behavior, at least in collision
avoidance. In Paper III, it was shown that brake reaction times are signifi-
cantly lower and braking is significantly stronger in an expected (repeated)
scenario. Similar results have been found by other authors [9, 18]. How-
ever, in Paper IV, steering behavior in the repeated scenario was found to be
similar to that observed in the unexpected scenario. Moreover, for a given
individual, the steering behavior obtained in the unexpected scenario was
(partly) transferred to the repeated scenarios.

'However, the frequency of passive behavior is a very important aspect when developing
a driver model.
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In order to further increase the amounts of data collected, the unexpected
scenario described in Sect. 3.1 was appended to an unrelated driving simula-
tor experiment. As described in Paper I1I, it was concluded that this method
might be beneficial, but also that it puts increased demand on efforts to con-
trol for any undesired effects on behavior due to differences in experimental
setup. In that particular case, the test subjects were moved from a sum-
mer environment where the main experiment was conducted, to the winter
environment where the appended unexpected scenario would occur. By com-
paring driver behavior with behavior from the original experiment in which a
winter setting was used throughout, one could suspect that drivers assumed
the road to be more slippery than in the original experiment.

6.3 Validating driver models

As concluded in Paper I, many driver models have not been subjected to vali-
dation using real driving data (in particular, FOT data or accident statistics).
In many cases, the lack of validation is due to insufficient amounts of data.
As stated in Paper I, the process of validation is far from trivial. For in-
stance, even if large amounts of data are collected in a driving simulator, one
cannot use the data both for generating and fully validating a driver model,
due to potential effects on driver behavior from the experiment setting (as
exemplified near the end of the previous section). For proper validation,
the behavior of the driver model must be compared to driver behavior data
collected, for instance, from FOT studies or accident statistics.

As an illustrative example, here, a driver model [36] has been tuned to
data collected in a driving simulator experiment (see Chapters 3-5). A po-
tential problem, however, is suggested by Table 5.1. As can be seen in the
table, using very different parameter values the model is capable of repre-
senting three different driver steering behaviors. It can thus be suspected
that the model is generally very flexible in representing steering behavior,
perhaps due to its complexity (number of parameters). A problem with such
a flexible model [34], is that its parameters probably do not relate to real
driver properties (see also the discussion about cognitive models in Chapter 2
on p. 8). For instance, the preview time parameter could easily be recognized
as a driver property, but when looking at the values presented in Table 5.1,
one can see that it takes very different values for each subject (yet for the
exact same scenario). Therefore, one can suspect that preview time does not,
in this case, relate very well to the real driver behavior, nor, unfortunately,
does it indicate the preview time used by the real driver. Possible solutions
to this problem would be to (i) use general (proven) models of human be-
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havior, (ii) use simpler models with minimal parameter redundancy, or (iii)
analyze driving data to determine, or at least to narrow, the range of the
model parameters.

Another important factor when discussing the validity of a model is the
one of driver types. In Paper III, it was shown that experienced drivers
behaved significantly different compared to inexperienced drivers. In the
example of driver model parameter tuning presented here, an average driver
model was created based on driving data collected from 38 test subjects.
Still, after optimization, the driver model does not fully represent any of
these drivers. Therefore, it can be argued that one should avoid reducing
the behavior of a large population by, for instance, representing the behavior
with only a single set of parameters. There are at least two ways to avoid
this problem. First, one could use parameter distributions instead of single
values. For instance, one could tune a mean and standard deviation for
each parameter in the model, and then draw values randomly from that
distribution. A second solution would be to divide the subjects into groups
and then tune the model separately for each group. Preferably, the groups
should be based on behavior, so that each group corresponds to a driver type.

The driver model used in Chapter 5 was tuned to one very specific scenario
(i.e. a DLC). In that scenario the optimized model behaves roughly as a
human driver. However, if the same driver model parameter values would
be applied in a different scenario, the driver model would most probably
produce a far from realistic steering behavior. In Paper I, the possibility of
having different control modes [11] was discussed. For instance, the model
could switch between different model parameters, or even different models
altogether, when exposed to fundamentally different situations. Another
possible solution, commonly referred to as adaptation [38], would be to
continuously tune the driver model in real-time by following pre-defined gain-
scheduling rules.



Chapter

Conclusions and further work

7.1 Conclusions

The main conclusion that can be drawn from the results obtained in this
thesis is that repeated events can, at least to a certain extent, be used when
collecting data for driver modeling. This is important since, for proper pa-
rameter tuning and validation of driver models, large amounts of data are
required in order to avoid overfitting.

In Paper I it was concluded that driver models have often been devel-
oped without any regard to existing models that, in many cases, may have
similar performance. Thus, a general recommendation (given in Paper I) is
to consider the capabilities of existing models before embarking on a new
modeling effort. Furthermore, in Paper I it was also concluded that most
driver models lack proper validation against driving data, partly because of
the large amounts of data required for such validation, as described above.
For full validation, the behavior of a driver model should be tested against
sufficiently large sets of data and also, preferably, using FOT data or accident
statistics, if available.

As for data collection, by analyzing the results from a truck simulator
study, it was concluded in Paper III that a large portion of the drivers (52%)
failed to apply sufficient evasive steering in an unexpected lead vehicle brak-
ing scenario, leading to a significant loss of steering data something that, in
turn, makes it difficult or impossible to tune driver model parameters based
on the collected data.

A solution to this problem is to use multiple repetitions of the critical
scenario. While not all aspects of driver behavior are likely to be conserved
between an unexpected scenario and a repeated exposure, it was found (in
Paper IV) that driver steering behavior in a collision avoidance scenario is
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largely preserved between unexpected and repeated tests, thus making it
possible to collect sufficient amounts of data for driver modeling.

However, for any given experiment, one must, of course, determine whether
the studied aspects are indeed conserved between unexpected and repeated
events, for example by means of statistical tests as used in Papers III and
IV.

An example of driver model parameter tuning has been presented in
Chapter 5, using the driving simulation environment first presented in Pa-
per II. It was concluded that the model was capable of representing a large
variety of driver behaviors. On the other hand, rather than capturing actual
driver behavior properties, such as the concept of a preview time, the model
simply provided the best possible control behavior in a phenomenological
way. It was thus hypothesized (see Sect. 6.3) that a simpler, less flexible,
model with fewer parameters probably would be better at capturing true
driver behavior properties.

7.2 Further work

Before carrying out additional driver modeling efforts, it would be valuable to
extend the model comparisons from Paper I, in order to gain deeper knowl-
edge on the behavior of existing driver models. By also comparing how well
the models can capture actual driver behavior parameters, one could deter-
mine which models would be most suited.

Another future topic would be to improve the driver model tuning pro-
cess by incorporating general driver properties into the fitness measures used
during optimization. Some such driver properties are mentioned in Chap-
ter 2, for example the crossover model, sensitivity to looming effects, and
relationships between lateral and longitudinal accelerations. By finding as
many such properties as possible and including them as constraints during
optimization, one could ensure more realistic driver models.

In addition, it would be interesting to study the concept of control modes,
and also to investigate how stochastic optimization can be used to capture
the transitions between such modes. Such an endeavor should start with
further analysis of control modes in real driver behavior and how real drivers
switch between such modes.

Finally, an important topic for further work will be to improve the method
of repeating critical events in driving simulator experiments. By doing so, one
could define general guidelines for how to reduce the effects of expectancy,
and also further study which variables are affected by repetitions and which
are not. Furthermore, it would be valuable to determine limits on how many
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times a given scenario can be repeated for a single test subject without seeing
learning effects and loss of concentration.
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