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A Surface Engineering Approach to Reduction of Frictional Losses of Heavy Duty Diesel 

Engines 

STAFFAN JOHANSSON 

Department of Materials and Manufacturing Technology 

Chalmers University of Technology 

 

Abstract 

Reducing emissions is a top priority within heavy duty diesel engine development and 

research.  The aim of the work is to decrease the fuel consumption by decreasing frictional 

losses of the Power Cylinder Unit. 

Full scale testing of engine components improvements is time-consuming and costly. It is 

however possible to simplify the testing of engine components by pilot tribometer testing, 

enabling cost-effective screening of candidate material concepts. This thesis work answers the 

following research questions: 

1. How should a pilot tribometer test be constructed in order to replicate the frictional 

and wear behaviour of the engine in the boundary, mixed and hydrodynamic 

lubrication regimes?  

2. What part of the surface morphology of the cylinder liner surface affects the frictional 

behaviour of the different lubrication regimes?  

In this thesis work the tribometer test approach was further developed to study a wider range 

of the Stribeck curve. Several different surfaces were analysed using the developed tribometer 

test approach, the results showed that the plateau part of the cylinder liner surface was 

responsible for controlling the frictional response in the boundary and mixed lubrication 

regimes. The results of these experiments were compared with single cylinder engine tests 

which were also conducted in this thesis work. The result of the engine tests and the 

tribometer test were in contradiction, the surface exhibiting low frictional losses in the 

tribometer exhibited high fuel consumption in the engine test. In evaluating this difference it 

was determined that the majority of the frictional losses were governed by the contribution of 

hydrodynamic friction and that a smoother plateau surface increased the hydrodynamic 

friction. The results of the engine testing were reproduced using a tribological simulation tool.   

It is possible to decrease the hydrodynamic friction losses by decreasing the viscosity of the 

engine oil; however, this measure could increase the boundary frictional losses. To decrease 

the hydrodynamic friction losses in this thesis work a novel type of texturing was investigated 

in tribometer experiments. A DoE setup was developed with focus on analysis of the 

hydrodynamic lubrication regime. The results from the tribometer test show that a significant 

reduction in the hydrodynamic friction can be accomplished by applying textures on the 

cylinder liner surface. Based on the results from the experiments with textures a design 

proposal is put forward, in this a specification texture design in full scale is given. 

Suggestions for future work include development of manufacturing techniques for machining 

textures on the cylinder liner, optimization of texture geometry by e.g. using a mesh-free 

calculation method, and design of a tribometer test with the aim of only distinguishing the 

hydrodynamic friction response of different surface morphologies. 

Keywords: Friction, Wear, Lubrication, Oil consumption, Piston Ring, Cylinder Liner, Diesel 

Engine, Design of Experiments, Rig testing, Tribometer 
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1
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1
 µ is commonly used in describing the dynamic viscosity in lubrication equations, η is commonly used in 
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1. General 

1.1. Background 

 

Reducing emissions is a top priority within heavy duty diesel engine development and 

research. The power cylinder unit (PCU) is a main contributor to emissions. The PCU unit 

consists of piston rings, piston, piston pin, connecting rod and cylinder liner and these 

components account for about 50% of the total frictional losses [I, II, III, IV] found in the 

engine. Reducing frictional losses means reduced fuel consumption and this means reduced 

CO2 emission. Reduction of frictional losses is addressed in research question 2 in this thesis 

work (see section 1.3)  

 

Full scale testing of engine components improvements is time-consuming and costly. It is 

however possible to simplify the testing of engine components by pilot tribometer testing, 

enabling cost-effective screening of candidate material concepts. In component specific pilot 

tribometer tests, components are studied individually; this results in a decreased number of 

noise factors compared to full scale testing. However, it is uncertain how to transfer the 

results from tribometer testing into full scale, one of the aims of this thesis work is to narrow 

the gap between lab tribometer testing and full scale engine testing. 

 

One aspect of the emission legislation (previous [V], current [VI] and future [VII]) for the 

heavy duty diesel engine regulates the allowed amount of particulate matter (PM), the amount 

of particulate matter is to an extent affected by the consumption of engine oil [VIII]. The 

emission level according each emission legislation, with implementation year, can be seen in 

Figure 1. There are several components that contribute to the consumption of oil, e.g. the 

piston rings design is of importance [IX]. However, one of the single most influential factors 

in controlling oil consumption is the surface roughness of the cylinder liner [X, XI]. 

Uncontrolled wear of the cylinder liner surface causes seizure of the engine. Thus, 

minimization of wear is of vital importance for retained durability [XII].  

 

Figure 1. Emission legislations for heavy duty diesel vehicles with respective implementation year. 
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1.2. Aims 

 

The primary aim of this thesis is to reduce the frictional losses and emissions of the power 

cylinder unit of heavy duty diesel engines by optimising the interior cylinder liner surface 

roughness morphology. The secondary aim is to narrow the methodological gap between pilot 

tribometer testing and full scale engine testing. 

1.3. Research questions 

 

The vision for general tribological testing is to create a test environment capable of 

reproducing full scale engine conditions. The research questions in this thesis are as follows: 

1. How should a pilot tribometer test be constructed in order to replicate the frictional 

and wear behaviour of the engine in boundary, mixed and hydrodynamic lubrication 

regimes?  

2. What part of the surface morphology of the cylinder liner surface affects the frictional 

behaviour of the different lubrication regimes?  

This work focuses on the development of test rig methodology and the investigation of 

present and future cylinder liner candidate materials.    

 

1.4. Research approach 

 

The current state-of-the-art test methodology was examined in an early study (Paper I), this 

methodology was considered to be insufficient for frictional studies of the power cylinder unit 

since only a small part of the Stribeck curve could be analysed. A new methodology was 

created using a design of experiments to study a wider range of experimental input parameter 

configurations (Paper II). The basis for the developed methodology uses the connection 

between simulation results and input experimental data to accurately mimic the different 

lubrication regimes for the top piston ring during a normal operating cycle. In comparing the 

developed tribometer test approach with results from full scale engine testing the overall 

research approach shifted from focusing on boundary and mixed lubrication regime (Paper I, 

II, III) to focusing on the hydrodynamic lubrication regime (Paper IV, V). The progress of the 

research approach in this thesis work is schematically shown in Figure 2. 
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Figure 2. Schematic overview of the lubrication regimes analysed in each individual paper. 

 

The surface engineering loop, as proposed by Stout [XIII], symbolizes the close connection 

between function, characterization and the manufacturing process where characterization can 

be used to understand and control function (see Figure 3). In this thesis special attention has 

been paid to the link between function (frictional response) and surface characterization 

(roughness parameters). Statistical analysis was applied in this thesis work to study the 

correlation between a multitude of surface roughness parameters and frictional response of 

different surfaces.  

 

 

Figure 3. Surface engineering loop as proposed by Stout. Adapted from [XIII]. 
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1.5. Delimitations 

 

The thesis will be limited to mechanical contact losses and hydrodynamic losses for the top 

piston ring and the oil control ring. For the top ring this thesis focuses on mechanical contact 

losses at and near the upper reversal zone of the top piston ring and the cylinder liner, where 

the viscous losses are small. The methodology is exemplified on the selected material in paper 

I-III. In this thesis the frictional effects resulting from form deviations, such as cylinder bore 

out of roundness, were not analysed.  

This thesis aims to analyse the correlation between surface morphology and friction. Material 

properties of different cylinder liner materials were left out of the scope of this thesis.  

Wear is of course an important feature in examining the PCU, however, wear has been 

monitored and evaluated but was not been focused on in this study. 

 

1.6. Outline of Thesis 

 

Chapter 1 gives a general description of the background of this thesis and gives a description 

of the aim, the research questions, research approach, and the delimitations relating to this 

thesis. 

Chapter 2 gives an introduction to the research field and to the experimental and numerical 

methods that were used and developed within the scope of this work. 

Chapter 3 gives an introduction to surface roughness instrumentation and the analysis of 

surface roughness, this section also describes surface roughness filtering techniques and 

describes the functional surface roughness parameters used to characterise surface roughness 

morphology. 

Chapter 4 describes the current process of finishing machining of the interior surface of 

cylinder liners and exemplifies additional manufacturing techniques with which special 

surface features could be obtained on the interior surface of the cylinder liner. 

Chapter 5 gives an introduction to the functionality of the diesel engine and highlights 

frictional losses, blow by and engine oil consumption.  

Chapter 6 describes the existing test methods for frictional characterization of the PCU; The 

tribometer test approach, the simulation approach and the full scale engine test approach. 

Chapter 7 describes the two statistical analysis methods that have been used in this work. 

Design of Experiments was here used to generate a relevant experimental input matrix, the  

analysis of output data was performed by using Multi Variate Analysis with which one can 

simultaneously analyse the connection between several input and output parameters. 

Chapter 8 describes the main results of the appended papers.  

Chapter 9 provides a discussion of the results.  

Chapter 10 provides suggestions for future work. 

Chapter 11 shows the conclusions of this thesis. 

Chapter 12 lists the references used in this thesis. 
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1.7. Author’s Contribution to Appended Papers 

 

Paper I: Johansson created the simulation model, performed the calculations, the 

experimental work and wrote the paper. 

 

Paper II: Johansson updated the experimental equipment and created the test methodology 

described in this paper, apart from the calculation of the elastic matrix. Johansson took part in 

creating the simulation model, Johansson also wrote the paper.    

 

Paper III: Johansson performed all the experimental work and measurements as well as 

wrote the paper.   

 

Paper IV: Johansson created the simulation model, performed the calculations and the 

statistical analysis, the experimental work and wrote the paper. 

 

Paper V: Johansson performed the experimental work, carried out detailed analysis of the 

experimental results leading to the formulation of viscous friction in textures, Johansson also 

wrote the paper. 
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2. Tribology 

2.1. History of Tribology 

 

The word Tribology originates from the Greek language where “tribo” translates into “I rub”. 

Knowledge of the practical aspects of tribology has a long history, the principle of reducing 

sliding friction by using lubricants dates back to 2400 B.C. where lubricant was used for 

wooden logs carrying a sledge used for transporting building material [XIV]. Amontons 

formulated the first law of friction in 1699, which states that force of friction is directly 

proportional to the applied load (Eqn. (1)). Coulomb (1781) verified Amontons conclusions 

and made the distinction between static and kinetic friction. The static friction was here 

described with the static friction coefficient, µs which describes the boundary value of friction 

coefficient required to initiate sliding and the kinetic friction coefficient µk which describes 

the friction coefficient during sliding.   

 

 

 μ �
��
��

 (1) 

 

 

Amontons first law of friction describes the frictional interaction of a dry sliding contact, for 

lubricated sliding contacts the frictional behaviour is more complicated. For a lubricated 

sliding contact the friction is dependent on both the mechanical contact friction and the 

hydrodynamic friction from the fluid separating the surfaces. Richard Stribeck and Mayo D 

Hersey described the frictional behaviour in what has been termed the “Stribeck curve” (see 

Figure 4) [XV], this curve describes the combined friction of both mechanical contact and 

hydrodynamic friction. Commonly the Hersey parameter is used in the Stribeck curve for 

describing alterations of sliding velocity (v), dynamic viscosity of oil (η) and contact pressure 

(P) for lubricated sliding contact. The Stribeck curve is divided into lubrication regimes; 

Boundary lubrication (BL) describes the relatively high friction coefficient when mating 

surfaces are only partially separated by a small amount of boundary lubricant. In the mixed 

lubrication regime (ML) a larger amount of oil is carrying the contact load, thus friction 

decreases. The minimum value of friction is obtained when the majority of contact pressure is 

carried by the lubricant with still a small influence from the shear resistance of the lubricant. 

In the hydrodynamic lubrication regime the friction increases as a function of sliding velocity 

or more precisely as a function of increased viscous shear, the friction from mechanical 

contact in the hydrodynamic lubrication regime is very small or zero. The appearance of the 

Stribeck curve is dependent on application; since the frictional increase in the hydrodynamic 

lubrication regime is dependent lubricant film thickness the Stribeck curve will be different 

for conformal and non-conformal contacts. The amplitude of surface roughness will also alter 

the Stribeck curve. Since a rough surface could increase the film break through thus 

increasing the amount of contact between surfaces, a higher value of friction coefficient is 

expected in the mixed lubrication regime in comparison to a smooth surface [XVI].      
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Figure 4. Illustration of the Stribeck curve showing the lubrication regimes and the interaction between 

contact and hydrodynamic friction. 

It was not until March 9, 1966 that the term Tribology sprang into existence. Tribology was 

first used in the “Jost Report” [XVII], in this report it was determined that losses due to 

friction, wear and break-down had a great economic impact (several per cent of Britain’s GDP 

at the time). In the Jost report Tribology was originally defined as “The science and 

technology of interacting surfaces in relative motion - and of associated subjects and 

practices”. One alternative and perhaps more current definition of Tribology is “the science of 

friction, lubrication and wear”. Tribology provides a natural link between different research 

disciplines that could be considered fundamental when the engagement between two surfaces 

is to be analysed. Under the Tribology “umbrella” research disciplines such as solid and fluid 

dynamics, chemistry, material science find collaborative and synergetic effects.  

In more recent historical terms one of the most important developments in tribology include 

the understanding of the fundamental mechanisms of oil film generation between the heavily 

loaded tribological contacts under elastohydrodynamic lubrication conditions, existing in 

roller bearings and gears [XVIII]. Although the steady state situation of rolling element 

bearings has been initially more thoroughly quantified than transient conditions of a gear 

contact [XIX]. In the elastohydrodynamic lubrication regime the combination of surface 

flattening and immense increase in viscosity permits a heavily loaded tribological element to 

sustain its functionality.  

In present terms one great achievement within tribology is the development of thin Diamond 

Like Carbon (DLC) coatings used in combination with special oil additives. The combination 

of thin coatings and oil additives has shown great potential for tribomechanical systems 

operating in boundary and mixed lubrication regimes, such as the contact between roller and 

tappet in the valve mechanism of a passenger car [XX]. Due to the availability of tailor made 

coatings with properties that are unique to different tribological contact situations [XXI] it is 

highly likely that the amount and usage of thin coating DLC coatings will increase in future 

design of machine elements.  
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2.2. Lubricants and lubrication 

 

Lubricants are used to reduce the friction forces between mating surfaces. The amount of 

lubricant between surfaces is often very small; surfaces are typically only separated by a 

lubricant layer with a thickness of a few µm or parts of a µm. A lubricant can be of gaseous, 

liquid or solid form. Besides reducing friction between components a lubricant also; performs 

cooling of components by transport of thermal energy, removes wear particles and prohibits 

corrosion. 

The main component of an automotive lubricant is base oil. However, base oil only is not 

sufficient to account for the high demands that are put on the automotive lubricants and 

therefore additives are added to the base oil to increase the lubricants performance. Additives 

are commonly divided into three groups [XXII] with the following functions: 

• Maintenance of cleanliness 

• Wear reduction  

• Alteration of the physical properties of the oil (e.g. reduction of the viscosity decrease 

at high temperatures) 

The following types of additives are used in automotive lubricants: 

• Detergents, dispersants, added to decrease the formation of deposits and to maintain 

cleanliness 

• Anti oxidants; added to reduce oxidative oil degradation 

• Anti wear additives (such as ZDDP) and extreme pressure (EP) additives; added to 

reduce mechanical wear 

• Friction modifiers (FM); added to decrease friction in metal-to-metal contact 

(boundary and mixed lubrication regime) 

• Viscosity Index (VI) improvers (viscosity modifiers); counteract a decrease in 

viscosity at high temperatures  

• Pour depressants, anti foam additives, rust inhibitors; added to increase or modify 

inherent properties of the base oil  

The most important parameter to characterise a lubricant is the viscosity [XXIII]. Viscosity is 

defined as the shear force needed to overcome the internal cohesiveness of the material. For 

liquid lubricants viscosity is commonly referred to as the internal friction of a fluid or fluid 

thickness. Two different measures are used to quantify viscous properties; dynamic viscosity 

and kinematic viscosity. Dynamic viscosity is measured using a capillary viscometer in which 

the flow rate is quantified for a controlled amount of flow from a container through a small 

hole under the force of gravity. In a capillary viscometer all fluids experience approximately 

the same shear stress, however, the gravitational influence will cause a liquid with higher 

density to flow faster, since liquids with higher density are affected by a larger gravitational 

force. The kinematic viscosity is calculated by dividing the dynamic viscosity by the density 

(Eqn. (2)), thus a value of viscosity independent of gravitational influence is obtained. 

 

 � � μ
��  (2) 
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A common definition of the automotive lubricant viscosity uses the SAE viscosity grades 

(10W30, 15W40, 20W50 etc.). Two classes are used to define the viscosity grade; the first 

figure in the term in this classification represents the oil’s ability to flow to the oil pump and 

the cranking resistance at low temperatures. The second term in the classification represents 

the viscosity at high temperature, typically 100 °C [XXIV].  

Thermal variations have a large effect on the value of viscosity. By measuring the kinematic 

viscosity at two (or more) temperatures (commonly 40 °C and 100 °C) [XXV] an accurate 

quantification of the temperature dependency of kinematic viscosity can be obtained using the 

Vogel equation [XXVI] (Eqn. (3)) as illustrated in Figure 5. 

 

 

Figure 5. Thermal dependency of kinematic viscosity for a typical 15W40 automotive lubricant.  
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2.2.1. Shear rate dependency of dynamic viscosity 

 

The viscosity of Newtonian liquids is independent of the shear rate. For laminar flow shear 

rate in its simplest form is defined as the ratio between the sliding velocity of two parallel 

surfaces and the height or thickness of the medium separating the two parallel surfaces. A 

pure mineral oil is a Newtonian fluid, however, due to the additive content of a typical 

automotive lubricant it has a shear thinning non-Newtonian behaviour. This means that the 

value of dynamic viscosity will decrease with increasing shear ratio. The value of the shear 

stress increases with the sliding speed and decreases with the oil film thickness. For low 

values of shear rate the value of dynamic viscosity is equal to the µo, the zero shear plateau. 
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As shear rate increases, either by an increase in sliding speed or a decrease in film thickness 

(Eqn. (4)) the dynamic viscosity decreases. For high levels of shear the dynamic viscosity 

assumes the value of µ∞, the infinite shear plateau. Figure 6 shows the shear rate dependency 

of typical 15W40 automotive lubricant. 

 

 	 �
�

�

 (4) 

 

 

Figure 6. Shear rate dependency of dynamic viscosity at 100 °C of a typical 15W40 automotive lubricant. 

 

It is possible to characterise the dynamic viscosity for an automotive lubricant, accounting for 

both temperature and shear rate. This type of characterisation is useful in e.g. tribological 

simulations of the PCU in which different sliding speeds and temperatures are present at 

different parts of the stroke. The characterisation is done by using the Cross equation [XXVII] 

(Eqn. (5)). A comparative quantification of the shear rate behaviour of different automotive 

lubricants is the HTHS (High Temperature High Shear) value, the HTHS value is the dynamic 

viscosity of the oil at a temperature of 150 
o
C and at a shear rate of 10

6
 s

-1 
[XXVIII].  The 

HTHS is an important viscosity parameter for determining the frictional loss characteristics of 

an operating engine since the majority of the engine components, including the piston rings, 

operate in the hydrodynamic lubrication regime at high shear rates [XXIX].  
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2.3. Wear 

 

Lubrication of a tribosystem decreases friction, however, for surfaces in partial contact as 

occurring in the boundary and mixed lubrication regime wear of surfaces is inevitable. Wear 

is defined as “the progressive loss of substance from the operating surface of a body occurring 

as a result of relative motion of the surfaces” [XXXII]. The process of wear is commonly 

described with a classification that relates to the wear mechanism, however, wear is an 

intricate process involving many processes and physical parameters thus it is not always easy 

to establish the originating mechanism and the cause of wear. This section aims to describe 

the most common wear classifications relevant to the piston ring/cylinder liner interface, 

namely abrasive, adhesive and corrosive wear [XXX]. Other types of wear classifications 

include erosive wear, fretting and surface fatigue and are not subjected to further 

characterisation in this thesis. Gates [XXXI] has argued that the common wear classification 

of two and three body abrasive wear is inconsistent, he proposes that the classification of 

abrasive mechanisms should depend on the severity of the specific wear process. However, 

the wear classification in this thesis builds on the classical definition of wear classification 

[XXXII].  

2.3.1. Abrasive Wear 

 

Abrasive wear is the process in which one surface of commonly a hard material ploughs the 

top asperities into a softer mating surface, leaving a scratch and/or a wear particle. The 

abrasive wear mechanism is not always considered a negative characteristic, actually this type 

of wear process has positive effects for functionality of engines; the running in of engine 

components is an abrasive wear process which produces a smooth surface thus reducing 

frictional losses in boundary and mixed lubrication regimes. The abrasive running in process 

has been investigated up to a point such that it is today possible to, with prior knowledge of 

the surface morphology, predict the surface morphology alteration during the running in 

process [XXXIII]. 

There are two types of abrasive wear processes; In a tribosystem where the asperities or hard 

protuberances on one of the surfaces plough through the mating surface this is commonly 

defined as two-body abrasive wear,  if wear particles are moving freely between the 

contacting surfaces this process is termed three body abrasion.  

 

 

Figure 7. Illustration of two body abrasive wear in sliding interface. 
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Figure 8. Illustration of three body abrasive wear in sliding interface. 

 

 

 

2.3.2. Adhesive Wear 

 

For adhesive wear the material properties of the mating surfaces are of importance, the crystal 

structure, the crystal orientation and the amount of alloying elements of metals influence the 

adhesive wear behaviour. The adhesive wear process is a combination of adhesion (sticking) 

and fracture of the subsurface of the material. In the adhesive wear process material is 

transferred from one surface to the other (as shown in Figure 9). Compared to abrasion which 

generally takes some time to develop adhesive wear can reach critical levels in a short period 

of time, resulting in scuffing or seizure.  The abrasive wear process is a normal part of engine 

component wear. For adhesive wear to occur in engine components an extreme contact 

situation is required with one or several of the following prerequisites; high contact pressure, 

high overall temperature/frictional heating and starved (lack of) lubrication.   

 

   

Figure 9. Illustration of adhesive wear in sliding interface. 

2.3.3. Oxidative wear 

 

Oxidative wear is also commonly known as corrosive wear or tribochemical wear, it is a 

process in which one or both of the surfaces reacts with the environment forming reaction 

products, oxides, at the surface (see Figure 10). The oxidation of the surface asperities could 

increase the possibility of brittle fracture which causes an accelerated wear process. It is not 
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certain that just because an oxide layer forms on the surface the severity of wear increases, an 

oxide layer is generally quite hard and can have a wear protective effect. If an oxide layer is 

worn down new oxides are free form on the worn surface. Oxidative wear can have a large 

effect on the wear of the cylinder liner; exhaust gas recycling (EGR) which creates an acidic 

environment could partially dissolve the material of the cylinder liner causing large wear 

levels of the piston ring/cylinder liner interface [XXXIV].  

 

 

Figure 10. Illustration of oxidative wear in sliding interface. 
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3. Characterisation of surface roughness 

In this thesis the correlation between surface morphology and engine component functionality 

is analysed, however, the characterisation of surfaces has found its way into many different 

applications and fields of science. Surface characterization is today used in: zoology (animal 

digestive systems), food processing (determination of the correlation between surface 

morphology and visual appearance and perception), medicine (durability and functionality of 

implants such as the knee prosthesis), infrastructure (surface roughness effects of asphalt 

pavement and train rails), sports (roughness of skis, flow characteristics of competition 

swimsuits), finance (security marking of bank notes), criminology (analysis of which handgun 

has fired a specific bullet) etc. [XXXVI].     

A surface consists of numerous wavelengths, to analyse different aspects of surface roughness 

a division of the surface wavelengths into groups that depend on the wavelength is necessary. 

The traditional division of surface features is based on the lateral scale of the surface features; 

roughness is the product of the machining operation, waviness is the product of imperfect 

operation of a machine tool and form deviations are generated by larger scale distortions 

[XXXVIII] (see Figure 11). In a measurement of a piston ring or a cylinder liner the 

cylindrical form of the component represents the largest wavelength, since surface roughness 

typically focuses on the smaller wavelengths form is commonly removed by subtracting a 

polynomial shape from the original measurement. The sampling distance between 

measurement points is dependent on the wavelength to be quantified, with smaller spacing 

shorter wavelengths can be quantified but using close spacing which increases the number of 

data points for a specific area. The wavelength to be quantified is thus dependent on sampling 

distance but also on the choice of surface roughness measurement device and filtering 

technique as illustrated in this section.  

 

 

Figure 11. Wavelength components of surface measurement. 

 

Each surface has a unique topography, by using surface metrology it is possible to 

characterise this unique topography by monitoring the change e.g. during operation or 

manufacturing. This offers understanding of how the surface topography controls the 

functional performance of components in a system [XXXV].The amount of data generated in 
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a surface roughness measurement is often quite large, filtration enables an extraction of the 

wavelengths of interest from the large amount of data. A calculation of roughness parameters 

gives quantification of the wavelengths of interest with only a few significant scalar values. 

Using roughness parameters thus simplifies the analysis of the link between characterization 

and function. Numerous surface roughness measurements were conducted in this thesis, 

including before and after tribometer experiments and engine tests. This enables a statistical 

correlation analysis between surface roughness morphology, friction and wear (the specifics 

of the statistical correlation analysis are described in section 7).  

3.1.1. Measurement equipment 

 

There exist numerous devices for surface roughness measurement. The most commonly used 

measurement instrument in mechanical industry, both in past and present terms [XXXVI], the 

tactile stylus was beginning to be used around 1933 [XXXV]. The stylus operates similarly to 

a gramophone where a sharp tip (with a specific radius) traverses the surface picking up the 

surface irregularities as it moves along the surface. Using a linear variable differential 

transformer (LVDT) gauge the amplitude for each specific measurement point is quantified. 

This amplitude information is sent to a recording device (computer) for storage and further 

processing. A tactile stylus profilometer is capable of high resolution, a measurement 

uncertainty of as low as ± 1 nm in both the vertical and lateral axis has been reported 

[XXXVII]. Since the stylus profilometer does not have a theoretical limitation in the area size 

of the measurement, however, measurements using a stylus profilometer are time consuming. 

The first areal surface topography system capable of measuring micrometre surface 

topography was built by Williamson in 1968, this system was based on the conventional 2D 

stylus system but with the addition of making parallel traces for 3D representation. Since areal 

measurements often contain large amounts of data it was not until the introduction of the 

personal computers in the 1980s that areal measurements were beginning to become more 

common [XXXVIII]. 

Measurement techniques based on optical phenomena, such as white light interferometers, 

scanning confocal microscopes and chromatic confocal profilometers have had a rapid 

development and are increasing in popularity. The chromatic confocal probe is similar to the 

stylus profilometer in the respect that this device also traverses the surface but not with a 

stylus tip but a focused colour spectrum of light. Depending on the lateral height a distribution 

of wavelengths (of light) are reflected from the surface, the reflected wavelengths are 

collected on a CCD chip. A computer analyses the distribution of wavelengths and returns a 

single height value for each specific lateral position of the surface [XXXIX] (see Figure 12). 

As the confocal probe traverses the surface each amplitude value for each specific lateral 

position is recorded, by summarizing this data a surface amplitude matrix is obtained. 
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Figure 12. Overview of the operating principle of a chromatic confocal profilometer [XXXVI]. 

 

There are two types of surface measurement equipment capable of analysing the surface with 

very high vertical (nanometre and below) and lateral resolution; atomic force microscope 

(AFM) and scanning tunnelling microscope (SPM). An AFM consists of an elastic cantilever 

with a tip with a very small tip radius, several orders of magnitude smaller than the radius of 

the stylus tip of a stylus profilometer, typically 2 to 60 nm [XXXVI]. As the AFM tip 

traverses the surface it picks up the irregularities of the surface. The altitude values in an 

AFM are obtained by measuring the vertical position of the cantilever beam with a laser beam 

which is focused on to a photodiode detector. An STM uses the concept of quantum 

tunnelling, as the tip of a STM moves close to the surface (without contact between the two 

bodies) electrons are capable of tunnelling between the tip and the sample thus generating a 

tunnelling current.  The tunnelling current is dependent on the distance between the surface 

and the tip, the tunnelling current is kept constant by displacement of the tip, and from the 

values of this displacement the altitude values of a surface can be obtained.      

In this thesis two types of 3D profilometers have been used, the stylus profilometer which was 

mainly used for characterization of surface roughness and the chromatic confocal profilometer 

which was mainly used for larger areal surfaces measurements used for characterization of 

wear depth. Since the characterisation of wear depth requires measurement of the complete 

wear scar, which was quite large considering the stroke length of the eccentric tribometer, it 

was considered too time consuming to use the stylus profilometer for this task.   

 

 

 

3.1.2. Preprocessing 

 

Preprocessing of surface roughness measurement, enabling surface parameterisation, is 

commonly done in two steps; levelling/form removal and filtration. Levelling and form 

removal are the initial steps carried out so that the waviness and roughness can be studied 
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individually. Preprocessing of surfaces can also include steps such as; truncation, rotation, 

inversion etc. Levelling of a surface that does not contain curvature is often performed by 

using a least square plane [XL]. Form removal is required when the surface includes a 

curvature (which is not part of the roughness morphology), for a wide range of uni-curved 

surfaces, such as the cylinder liner, a second order polynomial form removal has proved to be 

suitable [XL].  

Filtration is the process in which features of interest are extracted from measured data for 

further analysis [XXXV]. In 1986 an agreement was made to use Gaussian filter for 

wavelength separation, this resulted in ISO 11562:1996 [XLI]. Before this time much effort 

was put on developing analogue CR (capacitor resistor) filters, the first versions of these 

filters were not phase correct, although CR filters with smaller phase error has been developed 

these types of filters are seldom used today.   

Gaussian filtering is a viable method for working with large range of different surface types. 

The surface of a plateau honed cylinder liner has a negatively skewed distribution of 

amplitude values, meaning that a larger number of measurement points is located above the 

mean line of the surface (for a standardly distributed surface the amount of data points above 

and below the mean surface line would be the same, see Figure 13).  

 

Figure 13. Histogram example of the negatively skewed distribution of a plateau honed cylinder liner 

surface and normal distribution. 

The Gaussian filter is not ideal for filtering of skewed surfaces, such as the surface of the 

plateau honed cylinder liner since artificial waves are introduced in the filtered signal. This 

results in an uneven topography after filtration. The Robust Gaussian filter corrects this by 

performing a modified filtering sequence [XLII]; in this the plateau part of the surface is 

partially segmented from the surface by using a weight function. This function assigns the 

extreme values of the surface (in the case of a plateau honed surface extreme values are the 

deep valleys) a lower weighting, Gaussian filtering is thus more or less only applied on the 

plateau part of the surface. Using Robust Gaussian it is possible to obtain a filtered surface 

with much smaller form deviations (as shown in Figure 15) in comparison to Gaussian 

filtering (as shown in Figure 14). For illustrative purposes to better visualise the effects of 

filtering profiles (not surfaces) are portrayed as examples in this section.     
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Figure 14. Cylinder liner profile measurement filtered with standard Gaussian filter. Top: Original 

measurement and waviness profile. Bottom: Filtered surface. 

 

 

 

 

Figure 15. Cylinder liner profile measurement filtered with Robust Gaussian filter. Top: Original 

measurement and waviness profile. Bottom: Filtered surface. 

 

It is likely that future filtration techniques, including wavelets filtration [XLIII] will enable 

further improvement of the segmentation of different surface features.  
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3.1.3. Roughness parameters 

 

Roughness parameters for surface roughness measurements in two dimensions, surface 

profiles, are characterized by the letter R. This indicates that the profiles are filtered according 

to the specific standard of the measurement. The letter W signifies the roughness parameters 

of the waviness profile (filter residue) and the letter P signifies roughness parameters of the 

primary profile (unfiltered) (see Figure 11).  

The most common surface roughness parameter both in historic and present terms is Ra (see 

Figure 16), the arithmetic mean deviation of the profile heights [XLIV]. A surface is a 

complicated component, and using only this parameter to describe the surface is in most cases 

not sufficient. The Ra parameter does not take skewness or spatial properties into account. In 

Figure 17 this issue is exemplified, showing two versions of the same profile. The differences 

between the profiles are that the one on the left is inverted around the y-axis. If a rigid body, 

like a piston ring, would slide over these two surfaces the frictional outcome would be quite 

different with smooth plateaus in contact on the left figure and sharp peaks on the right figure.  

 

 

Figure 16. Illustration of the calculation of surface roughness parameter Ra, arithmetic mean deviation of 

surface heights. 

 

    

Figure 17. Two profiles showing the same two profiles with the profile on the left is inverted. These two 

profiles have the same Ra value (Ra=0,3 µm) but will have different frictional behaviour. 

 

There is however not only one or a few 2D surface roughness parameters, in fact there are 

currently several hundreds of 2D surface roughness parameters [XXXVI].  



 

21 

 

One practical characterisation method for analysing surface morphology is done by 

quantifying the specific amplitude at different lateral levels of the surface.  The Abbott-

Firestone curve (1933), is a plot of the material/void ratio as a function of height value. The 

Abbott-Firestone curve offers a way to make a more specific quantification of the surface by 

describing the material distribution as a function of surface height. From the Abbott-Firestone 

curve it is possible to calculate the Rk/Sk family of parameters [XLV] which describes 

roughness amplitude for different height regions of the surface; peaks (Rpk, Spk), 

core/plateau part of the surface (Rk/Sk) and the valley part of the surface (Rvk/Svk) (see 

Figure 18). The Abbott-Firestone curve offers the possibility to analyse the roughness 

amplitude at different levels of the surface, however, this quantification does not take spatial 

properties into account. The Rk/Sk family of parameters is currently widely used in industry, 

but according to Malburg et al., a correlation between engine performance and the Rk/Sk 

family of parameters has not been shown [XLVI]. Whether or not this is an overstatement is 

not be elaborated further in this thesis, however, it could not be considered optimal to 

characterise the product of a material distribution created by a two-step finishing honing 

process (plateau honed surface) with three amplitude parameters. Previous research has 

shown that the Rk/Sk parameter set suffers from internal correlation [XLVII].  

 

 

Figure 18. Abbott-Firestone curve with calculation of Rk surface roughness parameters. 

 

The Rq/Sq family of parameters [XLVIII] also uses the Abbott-Firestone curve for parameter 

calculation, however, with modifications. A linearization of the probability plot of the Abbott-

Firestone curve is used to calculate the Rq/Sq family of parameters (see Figure 19). In the 

Rq/Sq family of parameters two amplitude levels are used to characterise a surface. The 

Rq/Sq family of parameters consists of three parameters; Rpq/Spq (plateau Root-Mean-

Square (RMS) roughness), Rvq/Svq (valley Root-Mean-Square (RMS) roughness) and 

Rmq/Smq (material ratio at plateau-to-valley transition). 
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Figure 19. Material probability curve used for calculation of the Rq/Sq family of parameters. The unit of 

the abscissa is the material ratio on the standard probability scale [XLIX]. 

 

 

A surface is truly a 3D-feature and naturally a 2D representation of a surface, such as a 

profile, has clearly limited use. Researchers started to experiment with characterization 

techniques for surfaces in three dimensions in the 1980s [L] (it should however be noted that 

2D surface roughness parameters could correlate with the corresponding 3D surface 

roughness parameter). The work later resulted in two parameters sets able to describe 

numerous properties of a measured surface such as spatial features, texture direction, 

roughness at different height sections of the surface etc. commonly known as the 

“Birmingham 14 parameters”, this set of parameters was updated to contain the 25 roughness 

parameters which forms the core part of the ISO technical standard for areal surface texture 

(ISO/TS CD 25178-2: 2006) [XXXVIII]. The parameter sets in the ISO standard are divided 

into the S-Parameters (surface) and the V – Parameters (volume) (see Figure 20). The S-

parameter set describes amplitude and spatial information, the V-parameter set describes 

volumetric information based on the Abbott-Firestone curve. The proposed 3D roughness 

standard consists of a limited number of parameter of which all were used in evaluating the 

surfaces analysed in the tribometer tests (in the appendix of paper III a list is provided 

covering all the surface roughness parameters used in this thesis). 
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Figure 20. V- and S- surface roughness parameter sets. Adapted from [XXXVIII] 
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4. Finishing machining of cylinder liners 

The production of cylinder liners is a process of several stages. Commonly, cylinder liners are 

centrifugally casted. In this initial production step mould is injected to a water cooled drum 

which is rotated at high speed. The rotational movement causes the mould to be pressed 

against the wall of the rotating drum, the water cooling allows the mould to solidify quite 

quickly. The outer diameter of the cylindrical cast geometry is determined by the diameter of 

the rotating drum, the inner diameter is determined by the amount of mould injected into the 

drum. Centrifugal casting creates a material with more homogeneous microstructure and more 

isotropic mechanical properties compared to other production processes such as rolled, 

welded or forged components [LI].   

As the cylindrical pipe has cooled several machining steps are employed to machine the outer 

diameter and the axial ends to achieve the correct shape and roughness for fitting in the 

engine block. Since the engine type analysed in this thesis uses sleeve fitted liners the 

description of machining processes will be confined to this specific part, if machining is 

performed directly in the engine block the steps in the machining processes can differ.   

The inner diameter of the cylinder liner is machined in different steps, each consecutive 

machining step removes material thus increasing the inner diameter of the cylinder liner. The 

machining steps earlier in the process chain remove more material than the machining steps 

later in the process chain. Each consecutive machining step also alters the form deviation; 

improving on cylindricity and straightness (although plateau honing has a smaller effect on 

these parameters due to the small amount of stock removal). Boring or drilling is the first step 

in producing the inner surface of the cylinder liner, this section will however focus on the two 

last steps in machining of the inner diameter of the cylinder liner; base honing and plateau 

honing. 

4.1. Honing 

 

Honing is a finishing machining process for the interior surface of cylinder liners, honing 

improves the form and the surface quality of the product. In honing the tool is constantly in 

contact with the surface and is simultaneously moved in the tangential (rotation) and axial 

direction. The main parameters that affect the production outcome, the material removal rate 

and the wear of the honing tool are: the contact pressure between the tool and the surface, the 

cutting speed, the axial stroke length of the tool and the machining time [LII].  
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Figure 21. Overview of honing machine and the surface lay pattern resulting from honing of cylinder 

liners [LIII] 

A honing tool consists of abrasives that are fixed in a tool using a bonding agent, it is the 

abrasive grains that are responsible for the chip formation and the cutting process. The 

abrasives in the tool can consist of different materials; corundum, silicon carbide, boron 

nitride and diamond [LII], honing ledges with diamonds as abrasives are expensive but have 

several benefits; more liners can be honed with one set of diamond honing ledges which 

means less frequent changes are needed, diamond tools also have a more consistent 

production outcome with smaller variations in the surface roughness in between liners [LIV]. 

In the machining process the bonding material is worn more rapidly than the abrasive grains 

causing the grains to be exposed on the cutting surface of the tool. The abrasive grains 

produce a cross hatched surface pattern on the interior surface of the cylinder liner. The angle 

of this pattern or the surface lay will be a product of the axial speed (oscillation) and the 

tangential speed (rotation). An illustration of honing angle can be seen in Figure 22.   

 

 

Figure 22. Schematic illustration of the honing angle on the cross hatched pattern of a cylinder liner 

surface. 

 

Base honing is the second to last production step of the interior surface of the cylinder liner. 

In base honing a set of honing tools with coarse abrasive grains (coarse in comparison to the 

last production step, plateau honing) is used producing a rough surface. In base honing the 

final form dimensions are achieved.   
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Plateau honing is the last production step of the interior surface of the cylinder liner. The large 

difference between plateau honing and the previous production steps is that in plateau honing 

the material removal depth is smaller than the initial surface amplitude prior to machining. In 

plateau honing only a part of the surface amplitude from base honing is removed. In plateau 

honing a honing tool with much smaller grains is used which gives smooth plateaus with 

intersecting deep grooves remaining from base honing, these deep grooves or voids act as a 

reservoir for lubricant [LV]. Plateau honing decreases the oil consumption, the risk of 

scuffing, the cylinder liner wear and piston ring wear [LVI ,LVII]. An illustration
†
 of the 

roughness of base honing and plateau honing can be seen in Figure 23.  

 

 

 

 

 

Figure 23. Illustration of different honing steps. Upper figure: After base honing. Lower figure: After 

plateau honing of the base honed cylinder liner. 

 

In recent development and optimization of the honing process it has been possible to create 

what is considered to be an “ideal plateau” by using slide honing [LVIII]. In slide honing the 

amplitude of the plateau surface is greatly reduced compared to a conventional plateau honed 

cylinder liner, although the valley part of the surface is maintained. The advances of slide 

honing mainly lie in the development of the honing abrasives (mainly of diamond 

composition) [LVIII]. Besides reducing the plateau amplitude it is also today possible to 

produce a cylinder liner with increased honing angle using helical slide honing. Engine test 

results have shown that a helical slide honed cylinder liner has significantly less wear and oil 

consumption compared to a conventional plateau honed liner [LVIII].    

 

                                                 
†
 The plateau profile is here used as a basis in illustrating base honing, in the profile showing base honing  the 

amplitude values of the plateau part of the plateau honed profile are increased with a zoom factor of 13, by this 

the same amplitude is obtained for the upper and lower part of the profile showing base honing. 
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4.2. Additional manufacturing techniques 

 

4.2.1. Laser honing 

 

There are alternative production methods for the interior surface of the cylinder liner. By 

using a high powered laser material can be evaporated from a surface, this creates a set of 

closed voids or valleys. In contrast to normal honing, laser honing is not confined to produce 

a characteristic surface pattern (e.g. cross hatched) , theoretically all types of surface voids are 

possible to manufacture, the only restriction is the movement capability of the laser beam and 

the adjacent manipulator. A laser honed surface consists of closed or open voids and a smooth 

plateau surface, the smooth plateaus allow a high percentage of contact area and the voids 

account for the adhesion of the lubricant to the contact zone [LII]. One disadvantage of laser 

honing is the introduction of at least one additional production step. Before laser honing the 

liner is pre-honed in the conventional manner, after the laser honing one further honing step is 

required; this last honing step is for generating the smooth plateaus and to remove the fusion- 

and oxide bulging generated in the laser process [LII]. 

4.2.2. Thermal spray 

 

Thermal spraying of cylinder liners is a coating process in which both the material properties 

and the surface morphology can be improved. In this process melted or heated particles, are 

sprayed on to a surface. In the thermal spray process it is possible to use a wide variety of 

materials [LIX]. It is important to achieve high bond strength between the thermally sprayed 

material and the bulk cylinder liner material, to increase this bond strength the surface of the 

cylinder liner can be grit-blasted prior to the coating process.  There are currently plenty of 

different thermal spray techniques; HVOF (High Velocity Oxygen Fuel), TWA (Twin Wire 

Arc system), APS (Air Plasma Spraying), HVSFS (High Velocity Suspension Flame 

Spraying) etc., some of which are currently used in serial production [LX].  

Thermally sprayed coatings can consist of a certain level of porosity, when the surfaces are 

honed after thermal spraying these porosities open and form closed voids. Instead of honing 

grooves in a plateau honed surface acting as the oil reservoir the voids originating from the 

porosities can act as the lubricant reservoirs [LXI]. It is possible to reach a very smooth 

plateau roughness on the cylinder liner surface using thermal spray but still retaining the 

valley component of the surface. Figure 24 shows a measurement of a plateau honed cylinder 

liner surface and a thermally sprayed cylinder liner surface. Although these surfaces have 

roughly the same value of peak-to-valley amplitude the morphological properties differ. The 

plateau honed surface has a Ssk of -2,1, the thermally sprayed surface is much more 

negatively skewed with an Ssk value of -4,8, indicating a much lower amplitude of the plateau 

part of the surface compared to the amplitude of the valley part of the surface. The honing 

scratches on the plateau part of the plateau honed liner can clearly be observed in Figure 24, 

while the honing scratches on the plateau part of the thermally sprayed surface is hardly 

visible. This is because almost all of the plateau roughness are on the same value of vertical 

amplitude, thus the plateau surface of the thermally sprayed liner is much smoother compared 

to the plateau honed liner. 
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Figure 24. Examples of surface roughness measurements of plateau honed cylinder liner (top) and 

thermally sprayed cylinder liner (bottom). 
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5. The Diesel Engine - Functionality 

5.1. Historical development of the Diesel Engine 

 

The four stroke spark ignition (SI) engine was developed by Nikolaus Otto in 1876, a few 

years later, in 1892, Rudolf Diesel invented the compression ignition (CI) Diesel engine. By 

igniting fuel with air heated from compression the Diesel engine permitted a doubling in 

efficiency compared to other internal combustion engines at the time [I]. The main parameter 

accountable for the increased efficiency is the allowable increase in compression ratio of CI 

engines; an SI engine has typically a compression ratio of between 8 and 12 whereas a CI 

engine has a compression ratio of between 12 and 24 [I]. Also the Diesel engine has improved 

gas exchange since no throttle, which is responsible to control the load for SI-engines, is 

needed.   

5.2. Functionality and Components of the Power Cylinder Unit 

 

The power cylinder unit consists (PCU) of piston, piston rings, gudgeon pin, connecting rod 

and cylinder liner. The power cylinder unit has the following responsibilities: 

• To transfer the combustion pressure into torque 

• To seal the combustion chamber from the crankcase 

• To remove heat from the piston (piston rings and cylinder liner)  

• To control the consumption of engine oil 

The diesel engine analysed in this thesis work operates according to the four stroke principle. 

Each stroke performs different tasks; the operating- and tribological contact conditions 

(pressures and temperatures) are different for the four strokes: 

• Intake stroke: This stroke starts at – 360 crank angle degrees with the piston at the 

upper reversal zone and ends at -180 crank angle degrees when the piston is at the 

lower reversal zone. The inlet valve(s) are opened just before the stroke starts and 

closed just after the stroke ends to maximize the amount of air introduced in the 

cylinder. 

• Compression stroke: This stroke starts at – 180 crank angle degrees with the piston at 

the lower reversal zone and ends at 0 crank angle degrees when the piston is at the 

upper reversal zone. In this stroke both the inlet and outlet valve(s) are closed, due to 

the piston motion the air injected in the intake stroke is compressed to a small volume 

and heated.  

• Power stroke: This stroke starts at 0 crank angle degrees (combustion top dead centre, 

CTDC) with the piston at the upper reversal zone and ends at +180 crank angle 

degrees when the piston is at the upper lower zone. The amount of torque generated in 

a Diesel engine is controlled by the amount of fuel injected in the power stroke. The 

pressure from combustion pushes the piston down, at high engine load around five 

times as much work is done on the piston in the power stroke compared to the work in 

the compression stroke. The pressure behind the compression ring(s) increases with 

the engine load [LXII], in a piston system with two compression rings the gas pressure 

acting behind the upper compression ring is significantly higher compared to the gas 

pressure behind the lower compression ring in the vicinity of the CTDC position. The 
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gas pressure behind the compression ring(s) pushes the ring in the radial direction 

generating radial force acting between the outer diameter of the piston ring and the 

cylinder liner. 

• Exhaust stroke: This stroke starts at + 180 crank angle degrees with the piston at the 

lower reversal zone and ends at +360 crank angle degrees when the piston is at the 

upper reversal zone. In this stroke the exhaust valve(s) is opened to let out the exhaust 

gas. As the piston approaches the upper position the cycle starts again with the intake 

stroke.  

 

An overview of the four strokes can be seen in Figure 25.  

 

 

Figure 25. Operating principle of the four stroke diesel engine. [LXIII] 

 

The engine investigated in this thesis work, Volvo MD13, has a piston with three piston rings; 

two compression rings and one oil control ring (see Figure 26). The two compression rings 

(top and second) are mainly responsible for sealing the crankcase from the combustion 

chamber, the oil control ring (third) is mainly responsible for scraping oil towards the 

crankcase and distributing a layer of oil film on the cylinder liner. To ensure a tight fit 

between piston ring and cylinder liner the piston rings are manufactured with a preload 

(piston ring tangential force) which acts between the rings and the cylinder liner. The 

tangential force of the oil control ring for the engine in this study is more than twice the 

tangential force of either of the two compression rings.   
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Figure 26. Left: Volvo D13 diesel engine. Right: Overview of the piston and piston ring design. 

 

5.3. Piston Rings and Frictional Losses  

 

The PCU is responsible for 50 % of the total frictional losses in the engine [I, II, III, IV]. The 

frictional power losses in the PCU are not only to be considered as a direct loss of torque, but 

also a thermal load caused by frictional heating of rubbing components has to be removed by 

the engine cooling system, thus the frictional thermal load is also to be considered as a loss 

mechanism.  

As stated previously in this section the force behind the top piston ring is dependent on the 

cylinder pressure, thus the top ring in an engine with high cylinder pressure will have a high 

radial force in the vicinity of the CTDC position. The contact pressure between the top piston 

ring and the cylinder liner will increase with the axial width of the top piston ring since a 

larger axial width creates a larger area on the backside (inner diameter) of the ring. In a 

previous study [III] it was shown that the oil control ring is accountable for 75 % of the total 

frictional losses from the piston rings, however, this value is dependent on the running 

condition and the geometry of PCU components. For a high loaded heavy-duty diesel engine 

it is likely that the frictional power loss from the top piston ring is higher than any of the other 

rings [LXIV], at least for operating points with higher load.  

A study [III] has shown that within the industry frictional losses in engines are currently being 

reduced mainly employing two measures; reducing the tangential force of the piston rings 

(mainly referring to oil control ring) and reducing the axial height of the top piston ring. 

Although these measures present a significant reduction in frictional losses it is also possible 

to significantly reduce frictional losses by reducing the hydrodynamic losses between piston 

ring and cylinder liner. The majority of the frictional losses between piston rings and cylinder 

liners are hydrodynamic losses [LXV], boundary friction losses are present mainly at low 

engine speeds in the reversal zones [LXVI, LXVII]. However, since the sliding speed is small 

at the reversal zones the boundary friction has little effect on the frictional power loss 

[LXXX].  

The governing parameter for controlling the friction in the hydrodynamic lubrication regime 

is the dynamic viscosity of the engine oil [LXVIII]. Decreasing the viscosity has a large effect 

on reducing the hydrodynamic friction losses of the power cylinder unit [LXIX], however, a 
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large reduction of the dynamic viscosity could significantly increase the frictional losses in 

the boundary and mixed lubrication regimes [LXX] and possibly increase wear.  

Large wear levels of the outer diameter profile of the piston rings could shift the main 

lubrication condition from hydrodynamic to boundary [LXXI]. 

 

5.4. Oil consumption and blow by 

 

The emission regulations of heavy duty diesel engines include, among other substances, 

particulate matter (PM). The consumption of engine oil has an important impact on the 

amount of PM, the primary factor in generation of PM is by incomplete combustion of fuel 

hydrocarbons (soot), however, since the combustion process is being intensively improved it 

is likely that the contribution of soot  emissions will decrease [LXXII]. Decreasing the 

amount of engine oil consumption will have positive effects not only for emission reduction 

but also for the function of the complete drivetrain; less oil in the exhaust gases will prevent 

both clogging of the particulate filter and poisoning of the catalytic converter. Oil may be 

consumed from various sources in the engine, including the turbocharger, the valve stem seals 

and the crankcase ventilation, the oil mass transport mechanisms from the power cylinder unit 

to the exhaust can be described with the following [LXXIII]: 

• Evaporation from the surface of the cylinder liner 

• Throw-off of oil that has accumulated on the piston above the top ring 

• Oil containing reverse gas flow, from the piston ring gap into the combustion chamber  

• Scraping of oil from the top edge of the piston (upper position on the top piston land) 

Blow by gases are combustion gases which flow through the ring pack into the crankcase. A 

minimization of blow by gases is desired since an increase in blow by gases causes a decrease 

in torque, an unnecessary heating of the piston rings and a deterioration of the engine oil (and 

possibly also an increase in fuel dilution of the engine oil). There is thus a need to decrease 

both oil consumption and blow by, however, there is a characteristic trade-off between the 

amount of blow by gases and the amount of oil consumption. Since the blow by gases push 

down the oil towards the crankcase an increase in blow by causes a decrease in oil 

consumption. To control this equilibrium it is possible to alter the gap clearance for the top 

piston ring in order to gain the lowest possible levels of both blow by and oil consumption 

[LXXIII].  

The surface roughness of the cylinder liner is an important factor in controlling the oil 

consumption. Experiments have shown that by altering the surface morphology of the 

cylinder liner a significant decrease in oil consumption can be obtained without an increase in 

the amount of blow by gases [LXXIV]. Although this experimental study only points to the 

cause of decreased oil consumption it does not provide a physical explanation for the decrease 

in oil consumption. In said study the oil consumption is likely decreased by means of 

reduction of the oil film between piston rings and cylinder liner. The oil film thickness 

between the piston rings and the cylinder liner is an important property in controlling oil 

consumption [LXXV]. Besides the oil film thickness of the piston rings other factors 

influencing oil consumption include rheological properties of the engine oil [LXXVI], 

conformability of the piston rings [LXXVII], cylinder liner out of roundness [LXXVIII] and 

the geometry of the piston skirt [LXXIX]. 
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6. The Diesel Engine - Experimental Techniques 

 

6.1. Experimental Tribometer Testing 

 

A tribometer is an experimental device used to analyse the friction and wear of surfaces in 

relative motion, most commonly a load is applied to one of the components where the mating 

component supports this load, thus causing a contact pressure between the components. 

Tribometer testing presents the opportunity to conduct isolated analysis of engine components 

and is a common procedure for analysis of frictional effects and the durability of PCU 

components [LXXX, LXXXI, LXXXII]. There are several types of tribometer configurations, 

the selection of configuration is dependent on the full-scale application and the lubrication 

regime of interest, in analysis of the PCU components a reciprocating tribometer is most 

commonly used. An overview of the most common tribometer configurations is shown in 

Figure 27.  

 

 

 

Figure 27. Illustration of the most common tribological test configurations. Left-to-right: Pin-on-disc, 

block-on-ring, reciprocating pin-on-plate, reciprocating ball-on-plate and reciprocating piston ring 

segment on cylinder liner specimen [LXXXIII, LXXXIV]. 

Two different reciprocating tribometers were used in this thesis work, both tribometers were 

reciprocating and both used a complete piston ring and a segment of a cylinder liner as 

experiment samples. Both tribometers also used piezo electric transducers to measure the 

friction (shear) force and a strain gage transducer to measure the normal load. Both the 

vibrator tribometer and the eccentric tribometer were built and developed in previous projects, 

however, the eccentric tribometer was modified in this thesis work to include different 

frequency settings in the DoE setup, also the lubrication system was modified in this rig to 

ensure a constant amount of oil supply to the piston ring/cylinder liner interface throughout 

the experiment.  
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Figure 28. Schematic illustrations of the tribometers used in the thesis work.  Left: Vibrator reciprocating 

tribometer. Right: Eccentric reciprocating tribometer 

 

   

Figure 29. Overview of used test specimens in tribometer testing. Left: Top piston ring and two cylinder 

liner samples. Right: Close up of two cylinder liner samples, the upper sample has been used in tribometer 

test, the lower sample is unused. 

 

6.2. Simulation of the Piston Ring/Cylinder Liner Interface 

 

It is possible to numerically analyse the frictional behaviour in tribological simulations thus 

enabling less costly full-scale verification of component alterations. Tribological 

calculations/simulations often require high detail and a high level of complexity. However, 

since computing power has steadily increased so has the possibility to investigate tribological 

phenomena using tribological simulations. The rise in computing power has not only 

decreased the duration of calculations and allowed for an increased sophistication of possible 

algorithms to be used but has also allowed for more detailed types of visualisation aids in 

presenting the calculation result. Under current prognosis it is estimated that in the year 2030 

computing power will have increased by a factor of one million compared to the reference 

year of 2001 [LXXXV], this presents a next to unlimited opportunity for the advancement of 

tribological calculations. 

Within this thesis work the contacts and the functionality of the piston system have been 

analysed using two different simulation tools. The main purpose of the calculations was to 

analyse the frictional response of different cylinder liner surfaces (Paper I and Paper IV), also 

the correlation between cylinder liner roughness and oil consumption was analysed (Paper I). 
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6.2.1. Piston Simulation 

 

In the initial part of this thesis (Paper I) the simulation tool “Piston Simulation” [LXXXVI, 

LXXXVII] was used, with this simulation tool it is possible to analyse the gas flows, piston 

ring dynamics and the surface interactions within the power cylinder unit. The simulation 

model in Piston Simulation uses a range of input parameters to quantify the geometry and 

functionality of the power cylinder unit: (1) detailed component geometries and material 

properties of the three piston rings, the cylinder liner and the piston including surface 

characterisation, (2) general component geometries of the PCU (such as bore, stroke, 

connecting rod length etc.), (3) the rheological properties of the engine oil (4), thermal 

deformations and (5) the temperature of the surface interfaces. Using the value of ring load, 

sliding speed and oil viscosity Piston Simulation solves the average Reynolds equation 

[LXXXVIII]. Using this equation it is possible to obtain values of the hydrodynamic pressure, 

the shear stress of the oil film, the roughness dependent flow factors and the oil film 

thicknesses. The illustrations in Figure 30 show the top piston ring at two locations of the 

stroke with areas indicating the contact pressure between piston ring/piston ring groove and 

piston ring/cylinder liner, the difference in contact load on different parts of the stroke can 

clearly be observed. 

 

 

 

Figure 30. Illustration of simulation result showing how contact load decreases with stroke position. 

Images are showing the top piston ring at two different locations in the expansion stroke. The red 

triangular areas (indicated with arrows) in the piston ring groove and the pointy red areas (indicated with 

arrows) in the contact between cylinder liner and piston ring represent the contact load acting between 

the components. Left: 0 crank angle degrees (combustion top dead centre). Right: 58 crank angle degrees 

(approximately 45 mm below top dead centre position). 

 

The characterization of surface roughness within Piston Simulation is done by calculating the 

root mean square of the combined roughness amplitude standard deviation (surface parameter 

Rq) for the piston rings and the cylinder liner. Since the surface morphology of cylinder liner 

surface is complex this characterisation suffers from some limitations. Firstly, the cylinder 

liner surface is ordinarily negatively skewed (non-standardly distributed), resulting from the 

final machining process of the cylinder liner (plateau honing, see section 4). Secondly, it is 

not possible to characterise the surface lay (honing angle) of the cylinder liner using the Rq 

parameter.   
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6.2.2. Deterministic Simulation 

 

The novel “Deterministic Simulation” software [LXXXIX, XC, XCI], used in Paper IV, has 

the possibility to more accurately describe the frictional interaction between oil control ring 

and cylinder liner. Deterministic Simulation is a simulation tool which calculates the 

operational frictional properties in the contact of the twin land oil control ring and the cylinder 

liner. The oil control ring in Deterministic Simulation is considered to be fully flooded (as 

opposed to starved) at all parts of the stroke. This means that oil always is considered to be 

available for the inlet of the contact between piston ring and cylinder liner. In this thesis work 

the Deterministic Simulation tool has been used for analysing the contact between oil control 

ring and cylinder liner, however, a complete model including the piston, top and second 

piston ring is currently in development [C]. Since Deterministic Simulation only models the 

oil control ring the complete model of the piston and the two compression rings was not 

needed, however all the other input data that also exists in Piston Simulation (such as detailed 

component geometry of the oil control ring and the piston oil control ring groove, material 

properties of the engine oil etc.) is also used in the Deterministic Simulation model.  The main 

input in the Deterministic Simulation model was a cylinder liner 3D surface measurement of 

arbitrary point spacing and area size. In this work a surface measurement of 3 mm (sliding 

direction) * 2 mm (tangential direction) with a point spacing of 2 µm was used, the surfaces 

were measured with a stylus with 2 µm tip radius. To analyse the frictional effects of different 

cylinder liner surfaces (both with different surface morphology and general production 

method) numerous simulations at different operating conditions were performed in this thesis. 

The result from the calculations using Deterministic Simulation was of great importance in 

this thesis since the result of the engine test and the following discussions and conclusions 

(Paper III) was numerically confirmed (Paper IV) by using Deterministic Simulation. 

 

6.3. Engine Testing 

 

It is desired to characterise the frictional behaviour of component alterations in engine tests. 

Frictional losses can be quantified both in motored engine tests and in engine tests that 

include combustion, however, the true representation of frictional losses can only be obtained 

by using a fired engine since [I]: 

• The temperatures are higher in combustion compared to motoring which alters the 

viscosity of the oil. Temperatures can also influence geometrical properties of the 

components (mainly referring to cylinder liner roundness) 

• The pressures are higher in test with combustion, in motoring only the compression 

pressure is acting on the piston, the piston rings and the bearings.  

Measurement methods of characterising frictional losses in engines with combustion include: 

• Measurement of Friction Mean Effective Pressure (FMEP) from Indicated Mean 

Effective pressure (IMEP) [I]:. By measuring the Brake Mean Effective Pressure 

(BMEP) and subtracting BMEP from IMEP the frictional losses can be quantified. 

• Floating Liner Technique [XCII, C]. In this setup the cylinder liner is fixed to piezo 

electric transducers, no additional modification of the piston system is necessary. All 

axial forces acting between the piston rings/piston and the cylinder liner are measured 
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with this technique. A comparative method, not that dissimilar from the Floating Liner 

technique, is the method in which the elongation of the connection rod is measured 

with crank angle resolution during fired operation of the engine [XCIII].   

By measuring forces directly on the cylinder liner (or directly on the connecting rod) 

the Floating Liner technique offers the best possibility of quantification of frictional 

losses with crank angle resolution. A frictional analysis with high detail enables the 

analysis of different lubrication regime transitions on different parts of the stroke with 

different operating conditions and also the analysis of the transitions of lubrication 

regime during the running in process (see Figure 31).    

 

 

Figure 31. Overview of the Floating Liner measurement showing the decrease in frictional losses at the 

reversal zones (exemplified with encircled areas) and the alteration of cylinder liner surface roughness 

during running in [XCII]. Reprinted with permission from SAE Paper No. 2004-01-0604 © 2004 SAE 

International. 

Measuring frictional losses directly in a fired engine is the only method with which true 

frictional losses can be quantified; however measuring friction in fired engine tests could 

prove difficult. There are different alternative motored methods to measure frictional losses in 

motored engine tests; in such tests an electrical dynamometer runs the engine. A summary of 

motored tests are as follows: 

• Direct motoring test method [I]. In this type of test the engine is motored at a constant 

speed and torque is measured, to mimic an engine with combustion temperatures of 

oil and coolant are kept as close to real conditions as possible. 

• Willans line [I, XCIV]. In this type of test the engine is motored for a specific set of 

speed intervals, torque is measured for each engine speed. A linear regression is 

performed for the measurement data and is extrapolated back to “zero” engine speed 

which gives a representation of the torque losses. Willans line is possible to use for 

tests with combustion in which the engine speed is constant and a range of different 

engine loads measured and quantified with the extrapolation technique.   

• Strip down method [XCV]. In this type of test the engine is operated at constant speed. 

The baseline torque of the engine is acquired with all components, after the baseline 

value has been acquired components are successively removed and torque is 

measured for each component removal. This technique offers the possibility to 

analyse the friction contribution of each component in the power cylinder unit, 

however, this method might not be ideal when a measurement with high sensitivity is 

required. If e.g. one piston ring is removed this would alter the amount of oil 
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available for the other piston rings which could be of importance for the frictional 

response of the engine.    

• Morse/misfire test [I]. In this type of test a multi cylinder engine is required. Firstly, 

the torque is measured generated from the engine at constant speed with combustion. 

After this is completed the injector from one of the cylinders is disconnected, the 

engine then run by the remaining cylinders at constant speed. This is repeated for all 

cylinders. From the loss of torque from the disconnected cylinders it is possible to 

calculate the frictional loss. By using this method a close value of real friction can be 

obtained since temperatures close to the combustion temperatures can be achieved.     

 

In this thesis work the engine testing was performed on a single cylinder D13 engine. The 

engine has primarily been used for combustion development [XCVI] but due to the high 

controllability of the engine it is also ideal for investigations involving measurement of fuel 

consumption and torque. The single cylinder engine corresponds to (in terms of power and 

torque) the commercial Volvo D13 six cylinder truck engine. By measuring Indicated Mean 

Effective pressure (IMEP) and the Brake Mean Effective pressure (BMEP) the Friction Mean 

effective Pressure (FMEP) could be calculated. The torque was set to a pre-determined 

constant level for each experimental point and the resulting Brake Specific Fuel Consumption 

(BSFC) that was required to sustain the level of torque was measured. Direct motoring test 

method was used in this thesis work.  
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7. Statistical Design and Analysis 

7.1. Design of Experiments 

 

A measurement is the ultimate test of a theory or a design and also the platform from which 

we build our understanding of the physical world, if physical variables are not measured they 

can only be estimated [XCVII]. In a system with several input parameters the procedure of 

altering one separate parameter at a time (often referred to as trial-and-error) is truly 

inefficient, both because this type of method might not be capable of interpreting (finding) an 

optimum and also that the ratio of the number of experiments divided by the precision of the 

result is higher compared to a statistical design model [XCVIII]. The biggest difference 

between Design of Experiments (DoE) and the trial-and-error approach is that all factors are 

varied simultaneously in the total number of experiments in the experimental design. The 

order of experiments could be randomized to make sure that time trends are left out from the 

experimental outcome. There are three types of designs within DoE; screening, optimization 

and response surface modelling (RSM). Both optimization and RSM requires knowledge of 

the potential important factors, thus only screening was used in this thesis work. A screening 

approach with a factorial two level design (high and low level, + and -) was used in order to 

study the influence of input parameters. Included in the screening model were also a set of 

centre points both to evaluate the experimental reproducibility and to account for changes 

over time (see Paper II). Within statistical analysis of surfaces it is usually not possible to 

generate input parameters that are in line with a factorial DoE approach. In this case it is 

important to maximize the amount of experiments (Paper IV) to create a statistical foundation 

which is used to analyse the correlation between input and output parameters.   

 

7.2. Multi Variate Data Analysis 

 

Multivariate analysis (MVA) is a statistical tool with which one can investigate the relations 

between an arbitrary number of input and output variables. There are several types of different 

MVA methods, the type of MVA method that was used in this thesis work was partial least 

squares regression (PLS). PLS is used to find the fundamental relation between input data, X 

and output data, Y. Using PLS it is possible both to analyse linear and non-linear correlations 

between parameters, a non-linear analysis naturally requires a more complex DoE setup. It is 

important to judge whether or not the generated statistical models are useful in correlating 

input parameters with output parameters. Two variables, R
2
 and Q

2
, are used to indicate the 

usefulness of the statistical models; R
2
 could be expressed as the model fit of experimental 

parameters and Q
2
 is the usability of the model showing how well an experimental parameter 

could be predicted with a model. What is used to a large extent in this thesis work is the 

scaled coefficients and the correlation to a single output parameter. By using scaled 

coefficient it is possible to judge whether or not an experimental input parameter is 

significant, the scaled coefficients are also useable to rank the level of significance in a set of 

input parameters (this is exemplified in Figure 37).   
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8. Main Results of Appended Papers 

 

Paper I 

 

In this study the frictional effect of different cylinder liner surfaces was investigated using 

both a simulation tool and experimental tribometer tests.  

A complete model of the PCU was constructed in the simulation tool “Piston Simulation”, 

several simulation cases were analysed in which the surface roughness of the cylinder liner 

was varied. The simulation result showed that the oil film thickness decreases with decreasing 

cylinder liner surface roughness. It was also shown that the friction could be reduced with 

decreased cylinder liner roughness. Engine tests (internal results) confirmed a decrease in oil 

consumption with a decrease in cylinder liner surface roughness. 

In the tribometer analysis friction between top piston ring and cylinder liner was studied. 

Cylinder liner samples with different honing angles were analysed in combination with 

different coatings, applied on the top piston ring. To measure the effects of running in each 

experiment was run for 3 hours, the wear volume of the cylinder liner sample was measured 

and the experiment was again run for an additional 13 hours with an additional measurement 

of wear. All experiments showed a higher wear rate for the initial experimental duration 

which is expected in the running in phase. The result from the experiments showed that the 

PVD (physical vapour deposition) coated top piston ring exhibited superior wear resistance, 

other coatings CCC (chromium ceramic coating) and HVOF (high velocity oxygen fuel) 

exhibited large scratches on the surface after the experiment (see Figure 32). 

 

 

 

Figure 32. SEM images of piston rings. Top left: CCC coated ring outside of wear scar. Bottom left: CCC 

coated ring inside wear scar. Top right: PVD coated ring outside of wear scar. Bottom right: PVD coated 

ring inside wear scar. 
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The cylinder liner sample used with the PVD coated top piston rings showed little signs of 

wear, in comparison to the other material combinations investigated, which exhibited roughly 

the same wear amount in the experiment. The cylinder liner with the PVD coated top piston 

ring exhibited 1 % of the wear (see Figure 33). Due to the high complexity of measuring wear 

volume for extremely small wear amounts a new parameter Rktot was proposed. With this 

parameter the wear is quantified by using a simplified integration of the Abbott Firestone 

curve. The parameter might prove useful to quantify wear, however, the parameter is 

dependent on the wear depth being smaller than the initial surface roughness amplitude. 

 

 

Figure 33. Wear volume of cylinder liner at 180 minutes and 960 minutes experiment duration. 

 

Paper II 

 

The aim with tribometer testing is to produce results which are comparable with the full scale 

engine test, related to research question 2. The restricted 8 mm stroke length of the vibrator 

reciprocating tribometer in Paper I results in studies being limited to the boundary and mixed 

lubrication regimes. The experimental input parameters (load, reciprocating frequency and 

temperature) were held constant in the vibrator tribometer tests. The tribometer used in Paper 

II was the eccentric tribometer. The experimental input parameters were; reciprocating 

frequency, normal force acting between cylinder liner and piston ring and temperature. These 

input parameters were continuously measured during the experiment and were controlled 

using a feedback loop which was active throughout the experimental duration. This procedure 

ensured a more consistent set of experimental input parameters. There were also two main 

operational differences between the vibrator and eccentric tribometers, firstly, the vibrator 

tribometer operated with constant experimental parameters whereas the eccentric tribometer 

used a predetermined Design of Experimental (DoE) experimental setup in which different 

levels of load, reciprocating frequency and temperature were varied in experiments. Secondly 

the reciprocating eccentric tribometer was capable of a stroke length of 30 mm, using the 

vibrator tribometer the stroke length was confined to 8 mm.  

Based on values obtained from piston simulation it was determined that the highest frictional 

power loss for the top piston ring occurs approximately between 10 – 30 CAD (see Figure 

34).  
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Figure 34. Friction power loss of top piston ring at 1200 RPM and 50%, 75% and full load. 

 

The dynamic viscosity, the contact pressure and the sliding speed were calculated for the top 

piston ring in the engine. Using the values of these parameters the Hersey parameter was used 

as a parameter to compare the operating conditions for the top piston ring in the engine with 

the operating conditions of the top piston ring in the tribometer. The values of the input 

parameters in the DoE setup of the tribometer were selected in such a way that the average 

values of the Hersey parameter in the tribometer represented the engine at the  3 – 28 CAD 

for full load and 3 – 22 CAD for 50 % load CAD (see Figure 35).   

 

 

Figure 35. Calculation of the Hersey parameter for engine and tribometer. 

 

Three different surface types were analysed using the developed approach, five experimental 

repetitions of each material type were conducted. There were relatively large frictional 

differences between the material types as shown in Figure 36. The frictional result correlated 

well with surface roughness parameters describing the surface, however, due to the multitude 

of surface roughness parameters that show a significant correlation to friction in combination 

with the relatively few number of material combinations it was difficult to draw conclusions 

of what surface characteristic (e.g. plateau or valley amplitude) is of most importance to 

decrease friction. 
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Figure 36. Average friction coefficient including running in stage. The error bars represent the standard 

deviation of the five experiments. 

 

Using statistical analysis it was possible to determine that the interaction of dynamic 

viscosity, velocity and contact pressure could be studied within one experiment. For a 

material/surface with lower friction (MATERIAL2) the importance of dynamic viscosity and 

velocity increases. For a material/surface with higher friction only contact pressure is of 

importance. This means that a surface has to be able to generate conditions for oil film build-

up. If this is not accomplished the properties of oil and the velocity have little (REF) or no 

(MATERIAL1) significance. 

 

 

Figure 37. Coefficient plots for describing the correlation between dynamic viscosity, velocity and contact 

pressure on mean friction coefficient for the three investigated materials. Left: REF. Centre: 

MATERIAL1. Right: MATERIAL2. The error bars in the coefficient plots represents 95 % confidence 

interval. 
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Paper III 

 

Paper III included tribometer testing as well as single cylinder engine testing. The objective of 

the analysis was to evaluate the most promising materials from the tribometer test in single 

cylinder engine tests. The experimental approach developed in Paper II was further used in 

Paper II, five different cylinder liner materials were experimentally evaluated. Of these four 

materials were thermally sprayed materials, the reference material was grey cast iron. The oil 

used in the tribometer experiments in paper II was fresh oil. To gain more representative wear 

levels and to accelerate the wear process in this study, oil extracted from an engine test 

containing wear particles was used in the tribometer tests.  Comparing the wear of results of 

the reference material from Paper II-III indicated the importance of three body abrasion on the 

wear of the cylinder liner surface. The introduction of wear particles, increasing the three 

body abrasion, causes a wear depth of the reference gray cast iron surface which was more 

than five times higher for the test including wear particles (see Figure 38). 

 

 

Figure 38. Comparison of wear in tribometer test. In the tribometer test of paper II fresh oil was used, in 

paper III oil from an engine test, containing wear particles, was used. 

 

The only difference in the experimental setup between paper II and paper III, apart from the 

oil, was the experimental duration; the experiment duration in paper II was 8 hours (DoE 

cycle step duration: 30 minutes), the experimental duration of paper III was 13 hours (DoE 

cycle step duration: 60 minutes). Using longer duration of each DoE cycle more data 

representing each cycle step can be acquired, this allows for an improved statistical analysis.   

The results from the analysis show that two of the thermally sprayed cylinder material 

exhibited much lower friction compared to all other investigated materials (see Figure 39, 

left), these thermally sprayed materials and the reference material were further evaluated in 

single cylinder engine tests. The frictional behavior measured in the tribometer correlated 

with the surface roughness parameters describing the plateau amplitude of the surface (see 

Figure 39, right) 
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Figure 39. Left: Measurement of frictional coefficient in tribometer test. Right: Coefficient plot of surface 

roughness parameters and the correlation to friction coefficient. The error bars reflect 95% confidence 

interval of the calculated surface roughness parameters. 

 

The results from the engine test show the opposite trends in comparison to the results of the 

tribometer tests. The MMC cylinder liner material which exhibited roughly 50 % lower 

frictional values in the tribometer tests showed high fuel consumption in the engine test for all 

but one experimental point (see Figure 40). The increase in friction with increased fuel 

consumption could not be reconciled with an increase in wear on the MMC thermally sprayed 

cylinder liner. 

 

 

 

Figure 40. Measurement of Brake Specific Fuel Consumption (BSFC) in single cylinder engine for 

reference cylinder liner and MMC thermally sprayed cylinder liner. Plot is showing difference between 

reference surface and MMC thermally sprayed cylinder liner surface. 

 

The cause of the increased frictional losses in the engine test compared to the tribometer tests 

was thought to be increased viscous losses for the MMC cylinder liner material. This 

assumption correlates with other research in which the floating liner approach has been used 

to quantify frictional losses [XCII]. In said study the frictional losses of a smoother cylinder 
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liner surface were compared with the frictional losses of a rougher surface. It was shown that 

the smooth surface showed lower frictional force at reversal zones whereas the rougher 

surface showed lower friction force at mid stroke positions (see Figure 41). 

 

 

Figure 41. Friction force measurement in engine test (with combustion) by “floating liner” technique 

[XCII].  Two different surfaces are investigated in this test, P-2; smoother plateau honed surface and S-

2.5; rougher single honed surface. The smoother surface exhibits a lower frictional force at the reversal 

zones whereas the rougher surface shows a lower frictional force at mid stroke. Reprinted with permission 

from SAE Paper No. 2004-01-0604 © 2004 SAE International. 

 

However, since the sliding speed is low at and around the reversal zones a large value of 

friction force at these positions has little impact on the total frictional power and the fuel 

consumption of the engine.     

The main result of this paper was not only that higher fuel consumption and frictional losses 

could be obtained with a smooth cylinder liner surface but also indicated the large 

contribution of viscous friction losses to the total friction losses and the fuel consumption.  

 

Paper IV 

 

In this paper the frictional loss of the contact between oil control ring and cylinder liner was 

investigated using the novel Deterministic simulation software. Tribometer experiments were 

also conducted to compare/validate the frictional output from the tribometer and the frictional 

output from the simulation software. With the simulation tool it was possible to study 

alterations of boundary friction and hydrodynamic friction separately for different cylinder 

liner surfaces. A complete simulation model was built of the oil control ring and the cylinder 

liner including thermal deformation, temperatures etc. (see section 5.6). The main input in the 

simulation model was cylinder liner surface measurements. In statistical analysis it is desired 

to have the experimental input data arranged according to a DoE approach, however, this is 

not possible when the measurement input data is measurements of real surfaces. Thus the 

focus was to generate a large amount of input data for improving outcome of the statistical 

analysis. A total of 18 surface measurements were analysed at five different engine speeds 

and with two different oil control ring beam widths which gave a total of 180 simulation 

cases.  
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The result from the simulation showed that the surface parameters Spq and Smq, describing 

the amplitude on the plateaus of the cylinder liner surface correlate well with friction. Plateau 

roughness governs both boundary and hydrodynamic friction.  Boundary friction increases 

with increasing plateau roughness amplitude (Spq), however the hydrodynamic friction 

decreases with increasing plateau roughness amplitude (Spq). Decreasing surface lay (|Std|) 

decreases both boundary and hydrodynamic friction (see Figure 42).   

 

 

Figure 42. Scaled coefficient showing the correlation between boundary friction (left) and hydrodynamic 

friction (right) for three surface roughness parameters. 

 

In Paper III higher frictional losses were measured in tribometer experiments and single 

cylinder engine tests for a thermally sprayed cylinder liner (S6/MMC), this cylinder liner and 

the plateau honed reference cylinder liner (S1/REF) were also evaluated using the 

Deterministic Simulation tool. The radial load on the oil control ring is not influenced by 

cylinder pressure, thus stroke dependent load variations were not included in the simulation. 

The result from the simulation shows the same trend as the engine test result; at lower engine 

speeds the frictional losses are lower for the S6, as speed increases the frictional losses 

increase and surpass S1 at 1200 RPM (see Figure 43).  
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Figure 43. Average FMEP values for the lower of the two oil ring beams with standard beam width for 

plateau honed surface (S1) and thermally sprayed surface (S6). 

 

The lambda ratio (oil film thickness divided by plateau surface roughness amplitude) is 

generally higher for S6, this gives a partial explanation as to why no wear was measured for 

S6 in Paper III. This together with the fact that S6 showed a higher wear resistance in 

tribometer tests gives an explanation for why no wear was measured for S6 in Paper III. Since 

the plateau surface roughness amplitude of S6 is much smaller than S1 the hydrodynamic 

friction losses are higher for S6 compared to S1. The increase in viscous friction with a 

smooth surface provides an explanation for the increased fuel consumption for the thermally 

sprayed surface measured in the engine test in Paper III (see Figure 40). 

 

 

Figure 44. Lambda ratio of surface S1 and surface S6 plotted vs. crank angle degree. 

 

A DoE tribometer setup was constructed in order to replicate the tribological contact between 

oil control ring and cylinder liner. Two surfaces were evaluated in tribometer experiments, a 

plateau honed reference surface and a smoother surface. Additionally to the tribometer 

experiments a simulation model was constructed, replicating the running conditions of the 

tribometer DoE setup. Although there are known physical differences between the tribometer 

and the simulation model an agreement between the average value of friction coefficient in 

the tribometer and the average value of friction coefficient for the plateau honed reference 

surface was found. The agreement between the experimental and simulation output for the 
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smooth surface was not as good as for the plateau honed surface. It was suggested to repeat 

this experiment using different surfaces, e.g. comparing plateau honed cylinder liners with 

varying plateau roughness amplitude.  

 

Paper V 

 

This paper aimed at decreasing hydrodynamic frictional losses by analysing the frictional 

effects of a novel type of surface texturing thus giving answers to the second research 

question. Based on the result from all previous papers it was evident that frictional losses 

were governed by the plateau surface roughness, however, result from other researches 

showed that it was possible to decrease hydrodynamic friction losses by using surface 

texturing. The frictional effects of textures were analysed in tribometer tests, the texture 

design was chosen with the following prerequisites: 

• Large sized features 

• Closed circular- or elliptical textures 

• A significant texture fraction of the total area 

• A surface lay of the textures which was  adjacent  to the direction of motion 

 

 

Figure 45. Overview of texturing on cylinder liner samples. 

The textures were manufactured by milling, an overview of the texturing on the cylinder liner 

sample can be seen in Figure 45. Two different depths (20 µm and 100 µm) of texturing were 

tested. Measurement of the textured samples showed that only the depth varied, besides 

texture depth other texture parameters such as the perimeter, the lay of textures, the area of 

textures etc. were constant for the two different manufactured samples.  

The frictional measurement showed that the textured samples exhibited much lower frictional 

values compared to the reference surface (see Figure 46). It was also observed that the amount 

of metal-to-metal contact, as quantified by the resistive coefficient, increased for the textured 

surfaces. By comparing the measured frictional values from the experiments with high and 

low values of input parameters it was seen that the majority of both the reference surface and 

the textured surfaces mainly operated in the hydrodynamic lubrication regime.  
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Figure 46. Measured friction coefficient, average of experiments for each surface type. The numbers 

above the x-axis (italic) indicates the duration of each experimental cycle step. 

Based on the experimental results a new hypothesis of how to decrease hydrodynamic friction 

with surface texturing was formed. The assumption was based on the equation describing 

shear force for two parallel planes fully separated by a Newtonian fluid (Eqn. (6)).  

 

 �� �
���

�
� �	� (6) 

 

In consideration of the terms of this equation it is here proposed that the introduction of 

textures does not alter the dynamic viscosity or the area of the contacting surface, however, 

the average oil film thickness is significantly increased considering that it could be assumed 

that the oil film thickness is approximately the same as the texturing depth (see Figure 47). 

Due to the increased metal-to-metal contact of surfaces it can be assumed that the oil film 

thickness in the contact between plateau of cylinder liner (untextured part) and the piston ring 

is lower for a textured cylinder liner surface compared to a typical plateau honed surface (see 

Figure 47). This means that the total boundary friction will be higher for the textured surface. 

However, as can be concluded from the results of the tribometer experiments, the decrease in 

hydrodynamic friction for the textures with 100 µm depth is greater than the increase in 

boundary friction, thus the total friction in the hydrodynamic lubrication regime will be 

significantly lower for the texturing with 100 µm depth compared to the reference surface.  
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Figure 47. Schematic overview of the oil film build-up for the reference surface (left in image) and a piston 

ring passage over the plateau of a textured surface, the piston ring passage over a 20 µm deep texture and 

the piston ring passage over a 100 µm deep texture (right in image). 

 

Based on the hypothesis that hydrodynamic frictional losses can be reduced with increased oil 

film thickness within textures a recommendation of texturing design on the cylinder liner 

surface was proposed. This design included that no texturing should be placed in the vicinity 

of the reversal zones because of the hydrodynamic friction losses is small at these positions. 

The design also included an increase of the area density of textures with increasing piston 

speed. By using this design, experimentally verified in Paper V, it is believed that the 

hydrodynamic friction losses in the full scale PCU can be significantly reduced. Based on this 

texture design and the result of Paper V a patent application [XCIX] was filed.  
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9. Discussion of Results 

9.1. Measurement of the cylinder liner surface morphology 

 

The surface roughness analysis in this thesis was constrained to the roughness wavelength 

output of Gaussian and Robust Gaussian filtering (additional to this is geometrical analysis of 

the textures in Paper 5). By using alternative filtering methods it is possible that the values of 

the surface rough ness parameters would have been somewhat different, however, it is not 

considered that this would have any influence on the conclusions of this thesis. Also, in this 

thesis work it could have been possible to use different types of surface roughness 

measurement equipment; however, when measuring the outcome of machining such as honing 

the equipment used has proved to be appropriate. The effectiveness of the surface roughness 

measurement methodology used is illustrated with the high correlation between surface 

roughness parameters and friction in the tribometer experiments of Paper III.  

9.2. Optimal surface of the cylinder liner, in reference to 
tribological simulation and manufacturing 

 

In the simulation model of Deterministic Simulation the surface of the oil control ring was 

modelled as nominally flat (both in terms of roughness and ring face profile). In the average 

Reynolds equation, used in Piston Simulation, a nominally flat surface is not capable of 

generating hydrodynamic pressure when the oil supply to the ring is smaller than the oil film 

thickness. In Deterministic Simulation it is possible to obtain a hydrodynamic pressure for a 

nominally flat surface because Deterministic Simulation is capable of calculating the 

hydrodynamic pressure generated at inter-asperity level [C]. In this respect Deterministic 

Simulation offers a much more detailed calculation approach in analysing frictional behaviour 

compared to Piston Simulation. 

In considering the different tribological contact conditions between the piston ring and the 

cylinder liner that are present at different parts of the stroke  it would be surprising if only one 

type of surface morphology is optimal independently of the tribological contact conditions. In 

the simulations carried out in this thesis it was not possible to use different surfaces for 

different parts of the stroke. It would be practically difficult both to machine different surfaces 

on different parts of the stroke and also to include several surfaces in one simulation model. 

However, until these steps have been accomplished it is challenging to see how frictional 

losses in the contact between piston ring and the cylinder liner can be systematically 

optimized.  

The simulation results of Paper IV indicated that friction (both boundary and hydrodynamic) 

could be decreased with a decrease in surface lay (lay oriented perpendicular to the direction 

of motion). The result of decreasing hydrodynamic friction with decreased surface lay has not 

to date been experimentally verified. Experiments, which could be considered to be partially 

related to the frictional issue discussed in this thesis indicate the opposite; an increase in 

surface/texture lay (grooves which are parallel to the sliding direction) decreases 

hydrodynamic friction at a high shear ratio [CVIII]. Since the generation of hydrodynamic 

pressure decreases with increasing angle of the surface lay [CI] it would not be practical to 

use a too high angle of the surface lay because this would most likely increase the mechanical 
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contact thus increasing the amount of wear. In combining the statements above; It is here 

considered that an optimal surface lay would be depending on the surface feature; textures 

should be manufactured having a high angle of the surface lay and the plateau surface should 

be manufactured having a low angle of surface lay. 

There are difficulties in simulating the frictional behaviour of the novel textures described in 

Paper V. Using the traditional simulation with average Reynolds equation on the textures 

analysed in Paper V is not possible since Reynolds equation is not valid when the depth of the 

texture is significantly larger than the oil film thickness [CII] (as is the case for the analysed 

texture with 100 µm depth). However, modifications of the Reynolds equation for analysing 

the frictional effects of textures are currently being developed [CIII]. In developing a 

calculation method for textures it is important to understand the physical aspects of the oil in 

relation to texture design. It is thus important to experimentally analyse the behaviour of the 

oil film in and around the point of contact, similar to studies conducted by Dellis et al. [CIV]. 

In summary, it is here considered important to increase the knowledge of the frictional 

behaviour of textures for sliding contacts operating in the hydrodynamic lubrication regime. A 

step towards this would be to analyse the frictional behaviour of oil for textured surfaces in an 

analysis which is similar to the one conducted by Dellis et al. Results from such a study could 

be used to develop an alternative calculation approach for accurate representation of the 

frictional behaviour of textures.  

 

9.3. Significant Contribution of Different Lubrication Regimes on 
Fuel Consumption  

 

The typical tribometer test uses a fixed set of experimental input parameters during an 

experiment. This approach is sufficient for analysing e.g. only the frictional characteristics of 

the top ring at CTDC. To optimize the friction between piston ring and cylinder liner it is 

important to analyse the frictional contribution of all lubrication regimes. In a tribological 

system in which the normal load is constant, such as for the oil control ring/cylinder liner 

contact, it is very likely that hydrodynamic friction will be the most significant contributor to 

the total friction power loss. This is illustrated in Figure 48 which shows a schematic 

overview of the contribution of different lubrication regimes to the frictional power. It is 

important to recognize that friction power is not the same as frictional coefficient, it is the 

frictional force multiplied by the instantaneous sliding speed, and thus the hydrodynamic 

frictional power losses have a significant impact on the total frictional power losses. 
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Figure 48. Schematic illustration of frictional power loss with the contribution of contact friction and 

hydrodynamic friction. 

9.4. Additional research questions 

 

A number of relevant additional research questions can be raised and discussed based on the 

findings of this thesis:  

Does running in decrease the frictional losses? The answer to this question is yes only if the 

contribution of mechanical frictional loss decreases more than the contribution of 

hydrodynamic friction losses increases.  

Could the hydrodynamic friction losses increase during running in? The answer to this 

question is yes if the plateau surface roughness of the cylinder liner is reduced during running 

in. By very close inspection of Figure 31 and by comparing T=0 h and T=30 h it can be seen 

that friction force increases at the mid stroke positions. This is true except for the mid stroke 

position after CTDC (90 crank angle degrees). The reason why the viscous friction does not 

increase at this position is most likely due to the increase
‡
 in temperature and pressure 

resulting from combustion resulting in mixed lubrication. The increase/difference in 

hydrodynamic friction is small and it could be possible that the measured increase in 

hydrodynamic friction is smaller than the measurement error. However, if the plateau surface 

at the majority of the stroke length is smoothened during running in it is here considered 

possible that the hydrodynamic friction losses could increase during running in. This 

assumption is in line with the results of Paper IV. 

                                                 
‡
 It is worth keeping in mind that all frictional measurements in this paper were conducted at full load. If a lower 

load level would have been used more hydrodynamic/less boundary lubrication conditions would have been 

expected.  
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Why do the frictional losses normally decrease during the running in process? The 

contribution of contact friction is highest at the reversal zones. Since the plateau amplitude of 

the surface at the reversal zones will experience more wear (more smoothening) than the 

plateau amplitude at mid stroke, it is highly likely that the frictional contribution of contact 

friction will decrease more than the assumed contribution of hydrodynamic friction.  

In reference to statements above; If textures are used in such a way that the hydrodynamic 

friction decrease is governed by textures located around the centre position of the stroke it 

could be possible to a gain larger frictional decrease during running without the increase of 

the hydrodynamic friction losses during running in.  

 

9.5. Additional Consequences of Applying Texturing Elements on 
the Cylinder Liner Surface 

 

In the design of a texturing on the cylinder liner surface it is important to keep in mind that 

the texturing should survive the wear procedure, the initial running in wear rate can be rather 

high. Due to the large texturing depth in the proposed texturing design it is possible to sustain 

the decrease in hydrodynamic friction throughout the lifespan of the engine. Also, as was 

shown in Paper V the wear particles generated in the contact between piston ring and cylinder 

liner were trapped in the textures. This reduced the three body abrasion which meant the 

plateaus between the textures showed little signs of wear. However, adding textures in a 

tribological contact could increase the wear [CV] thus it could be important to increase the 

wear resistance of the cylinder liner (and perhaps also the wear resistance of the piston rings) 

by using different materials. Thermally sprayed cylinder liners have exhibited great wear 

resistance (Paper II and III), thus it might be fruitful to use thermally sprayed cylinder liners 

in combination with textured surface, as the results of Paper II and Paper III indicate.  

The textures analysed in this thesis work are of a special geometry, consequently much larger 

than the majority of other textures (see Paper V, introduction section). The textures introduce 

an additional volume in the cylinder liner surface. Also the axial length of the textures is 

larger than the axial Hertzian contact length of any of the piston rings. Practically this could 

result in increased blow by and increased oil consumption. However, previous research has 

shown that the surface morphology of the cylinder liner has little effect on the amount of blow 

by [LXXIV], but in this work different honed surfaces were analysed and not larger scale 

textured features. An potential increase in blow by and oil consumption could be reduced by 

redesign of the piston ring package. An initial solution procedure might include gas tight 

piston rings [CVI] and letting the volume of the textures act as the ring gap ensuring a 

positive gas flow towards the crankcase. 
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10. Suggestions for future work 

 

The following suggestions for future work based on the results from this thesis work are as 

follows:  

10.1. Optimize manufacturing of textures 

 

As an example, by using a novel type of a grinding texturing method [CVII] it should be 

possible to produce a texturing on the mid stroke of the cylinder liner. To date this method has 

been applied on flat surfaces and the outer diameter of cylinders, to apply this method on the 

inner diameter of a cylinder requires development of the machining procedure However, it 

should not be impossible to accomplish this. There are two main benefits of applying the 

novel type of texturing method. Firstly the novel texturing method does not create any burrs 

on the surface, this means that no additional machining step is required (as often required in 

e.g. laser honing). Secondly the machining method is extremely fast, thus providing a solution 

that could be cost effective in large scale production.   

  

 

 

Figure 49. Surface patterning produced by a special grinding process. Left: Overview of different cutting 

geometries and the resulting surface pattern. Right: Detailed view of the surface after machining of 

surface pattern[CVII]. 

Naturally alternative machining methods like laser and EBM machining or etching by ECM 

or CM exist, and future tests needs to be carried out to judge the performance of these 

methods. 

 

10.2. Optimize/develop/invent tribometer test setup to analyse 
hydrodynamic friction in the power cylinder unit 

 

To analyse the frictional aspects of hydrodynamic lubrication it is here proposed to analyse 

the hydrodynamic lubrication separately (without also studying the contribution of boundary 

friction as measured in a reciprocating tribometer). Hydrodynamic effects can be analysed 

separately by keeping a constant separation between mating components, similar to the 

analysis conducted by Chen et al. [CVIII]. In this approach load is not included in the 

experiment thus frictional coefficient is not quantified. Instead the hydrodynamic drag 
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between the two surfaces is measured. By keeping a small separation between surfaces it 

should be possible to quantify the hydrodynamic drag of various texture geometries.  

 

 

Figure 50. Overview of a novel type of tribometer test setup, this setup or similar could be used to analyse 

hydrodynamic friction of PCU components [CVIII]. 

 

10.3. Analysis of the effects of blow by and oil consumption for 
novel textured surfaces 

 

As mentioned in section 9.3 the introduction of textures on the cylinder liner surface creates 

an additional volume in the surface which could generate an increase in blow by and oil 

consumption. Firstly it should be investigated if the proposed texturing design has a negative 

effect on blow by and oil consumption. If this proves to be the case it could be possible to 

solve this issue with a redesign of the piston ring package, with minimised gas leakage in the 

ring gap (gas tight piston ring). This solution could be used to compensate the possible effects 

of increased blow by with the novel texture design.  

10.4. Optimization of texture geometry; with experimental analysis 
and by calculation  

 

In Paper V a tentative example is given, this example shows how textures density is varied 

along the stroke length of the cylinder liner. For an accurate optimization of the texture design 

it could be possible to use/design a calculation approach for the issue. Since the average 

Reynolds equation is not valid when the oil film thickness is much smaller than the texturing 

depth perhaps it could be possible to utilize a meshfree method [CIX] for calculating and 

determining the optimal texture geometry for different positions of the stroke length.  
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11. Conclusions 

 

Within this thesis work the following research questions were posed: 

1. How should a pilot tribometer test be constructed in order to replicate the frictional 

and wear behaviour of the engine at boundary, mixed and hydrodynamic lubrication 

regime?  

2. What part of the surface morphology of the cylinder liner surface affects the frictional 

behaviour of the different lubrication regimes?  

 

In relation to the research questions the following apply:  

1. A tribometer test should be constructed in such a way that frictional effects in all 

lubrication regimes can be quantified. Currently, there is a strong focus, both in 

academia and industry, on analysing frictional effects in the boundary and mixed 

lubrication regimes. The results from this work have shown that the friction losses in 

the hydrodynamic lubrication regime have a significant contribution to the total 

frictional losses, thus future development of tribometers should be aimed at replicating 

hydrodynamic friction losses. 

2. For the boundary and mixed lubrication regime decreasing the plateau surface 

roughness decreases the friction in said lubrication regimes. For the hydrodynamic 

lubrication regime a decrease in plateau surface roughness increases friction. Using a 

novel texture design it is possible to decrease friction in the hydrodynamic lubrication 

regime.  

The overall conclusions in this thesis can be summarized as follows
§
:  

• 1
The Piston Simulation software shows how oil film thickness decreases with 

decreasing cylinder liner surface roughness. This is also implied from engine tests 

where oil consumption decreases with cylinder liner surface roughness. 

• 1
PVD-coated top ring has proved to confer exceptional wear resistance, in an 

accelerated tribometer test almost no signs of wear were detected on the piston ring or 

the counterpart, the cylinder liner sample.  

• 2
With the developed DoE tribometer test approach it was possible to measure and 

evaluate the frictional effects of sliding speed, dynamic viscosity and contact pressure 

in one tribometer experiment. Using the developed approach determined that: 

o 2
A surface has to be able to generate the necessary conditions for build-up of 

the oil film, if the surface does not accomplish this an increase in sliding 

velocity or a decrease in the oil viscosity has no effect on decreasing friction. 

o 3
The difference in friction coefficient correlates with surface roughness 

parameters describing the plateau part of the cylinder liner surface roughness, 

as plateau roughness decreases, friction decreases. 

• 3
The frictional measurements of the single cylinder engine test presented a 

contradiction in comparison to the results of the tribometer, a higher frictional loss 

                                                 
§
 Numbers in superscript indicate the conclusions related to each specific paper.  
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was obtained in the single cylinder test using a cylinder liner with smooth plateaus. 

The cause of increased friction was explained as an increase in viscous losses. 

• 4
Tribological simulation confirmed the cause of increased hydrodynamic friction using 

a cylinder liner with a smooth surface. The simulation result also showed that both 

boundary and hydrodynamic friction could be reduced by reducing the angle of 

surface lay. 

• 5
A novel texturing design was developed and experimentally analysed using a 

tribometer test.  

o It was shown that both textured surfaces and the reference plateau surface 

operated in the hydrodynamic lubrication regime.  

o An increase of wear was not detected for the textured surface, on the contrary 

textured surfaces exhibited smaller amounts of abrasive scratches, this was due 

to entrapment of wear particles within the textures. 

o Significant reduction in hydrodynamic friction was obtained with the novel 

texturing design. 

• 5
Based on the result of the textured surfaces a design suggestion was made, detailing 

how a texture pattern could be designed to decrease hydrodynamic friction losses. In 

essence this suggestion includes an untextured area in the vicinity of the reversal zones 

(where the contribution of hydrodynamic friction on total friction is small), and an 

increasing texture area density with increasing piston speed. A patent application was 

filed based on the experimental findings.  
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