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Göteborg, Sweden 2012



Stochastic systems with locally defined dynamics:
convergence and limiting properties
Anton Muratov
NO 2012:5
ISSN 1652-9715

c⃝Anton Muratov, 2012

Department of Mathematical Sciences
Division of Mathematical Statistics
Chalmers University of Technology and University of Gothenburg
SE-412 96 Göteborg
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Stochastic systems with locally defined dynamics: convergence and

limiting properties

Anton Muratov

Abstract

This thesis considers two large classes of models related to the dynamical
point processes. The first is the locally interactive sequential adsorption,
or LISA, models. We provide the general LISA framework, show that a lot
of well-understood models can be described within the framework, such
as Polya urn schemes, fragmentation processes, cooperative sequential
adsorption. We study several particular new examples of LISA processes
which possess the feature of scalability. Our results describe the limiting
behaviour of empirical measures of such processes.

The second class is Bit Flipping models, where we study a behaviour
of a sequence of independent bits, each flipping between several states at
given intensity pk. We investigate conditions on pk at which the model
switches from transient to recurrent behaviour, prove the central limit
theorem for the transient case, and provide a bound for moments of the
recurrence time in the recurrent case.

Keywords: point process, sequential adsorption, stopping set, random
measure, Polya urn, convergence of empirical measures, bit flipping, re-
currence, mixing times

iii



iv



Acknowledgment

I would like to thank my supervisor, Sergey Zuyev, for constant support.
This thesis would not have been possible without his help. I would also
like to thank Sergey Foss for the inspiring discussions which led to intro-
ducing the Bit Flipping models in the first place, and for the following
talks.

I want to thank people from the department, in particular Jeff Steiff,
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1 Introduction

This thesis consists of the two connected papers about dynamically con-
structed processes. The main points of interest are the limiting behaviour
of the models when time goes to infinity, the existence of the stationary
regime and its properties. In the first model that turns into the questions
of convergence for the empirical measures of the process. In the second
we address the questions of recurrence.

The thesis is organized in a following way. Section 2 is a review of the
paper on LISA processes, submitted for publication in Stochastic Models.
It starts with an original R. Darling construction, which gave us an idea
to consider the LISA models. In the term ”Locally Interacting Sequential
Adsorption” first two words emphasize the local character of the depen-
dence in the structure, ”sequential” means that we mainly consider the
processes in the discrete time, and ”adsorption” stands for the variant
of a branching process in which the particles don’t die but rather are
generated one-by-one in a stepwise manner. After the motivation comes
the formulation of a general LISA setting we are going to work with,
and the particular examples we consider, along with the brief overview
of some other models falling into the general setting. The topics include
Polya’s urn models and their connection to Dirichlet processes, branch-
ing random walks, unity-splitting process and some other fragmentation
processes, as well as the cooperative sequential adsorption models. In
the end of the first section we outline our main results on the proposed
examples.

The following Section 3 is devoted to the fascinating Bit Flipping mod-
els, work in progress. We begin with our original motivation, explaining
how flipping bits helps to handle a certain LISA-related problem. We
indicate a link between bit flipping and the areas of dynamic percola-
tion, random walks on Cayley graphs, and analysis of the algorithms.
We then proceed with formulating the two models, Binary Flipping (BF)
and Damaged Bits (DB), and our results. As a conclusion, we pose sev-
eral open questions and indicate the possibilities for further research.
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2 LISA: Locally Interacting Sequential Ad-
sorption

The main reason to consider LISA models was a particular problem intro-
duced by Richard Darling to my supervisor Sergey Zuyev. The original
model is defined as follows.

Let X0 = {x1, x2, . . . , xn0} ⊂ R2 be the starting configuration, where
all the points are disjoint. At each time step n = n0 + 1, n0 + 2, . . .
we are adding a new point to a configuration according to the following
algorithm:

• Sample χn – independent of the past, uniformly distributed over
the indices 1, 2, . . . , n. That is the number of point to generate a
new one during this time step.

• Find a smallest ball B(xχn , R), containing m,m ≥ 3 points from
Xn \xχn . Such ball is an example of a stopping set, which we define
somewhat later.

• Assume that m closest neighbours of xχn lying in B(xχn , R) come
from a normal distribution with mean xχn . Estimate the covariance
matrix C of that distribution from those m points.

• Sample a new point xn+1 from a normal distribution N(xχn , C)
with mean xχn

and the estimated covariance matrix C.

• Add a new point to the configuration: Xn+1 = Xn ∪ {xn+1}

So, at each step we choose the point to give a birth to a new one uniformly
over already existing points, then sample a new point from a normal
distribution with mean xχn and covariance matrix estimated from the
closest m points to xχn from Xn \xχn , for m ≥ 3, and add the new point
to the configuration.

Simulations of this iterative process (fig. 1 at pp. 3) show, that the
resulting model has several main properties:

(i) The rules of adding the new particle depend only on the local con-
figuration around that particle.

(ii) The geometry of a configuration tends to positively reinforce itself.

In other words (i) means, the dynamics of a system is defined locally,
hence we can for example embed the whole process in a continuous time
in a natural way, letting every particle generate new ones with fixed
intensity, and distributing them around itself according to local rules.
That reflects somehow the possible real-world applications of a model:
cities or bacteria growth etc.
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Figure 1: The sequence shows the simulated process after n =
104, 2·104, 3·104, 4·104 steps. Newly added particles are shown
in dark, previously existing – in light grey, initial particles are
contoured void circles.
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On the other hand, (ii) means that on a global scale the particles try
to behave similar to how their ancestors did: if we start from a round-
shaped configuration, then the covariance matrices will be isotropic and
hence the whole configuration will likely remain round-shaped. But every
now and then the configuration tends to shoot out ”beams” of particles,
in such ”beam” areas the correspondent covariance matrices estimated
are highly anisotropic, i.e. with high concentration along some vector,
and that behaviour is also self-reinforced.

One more significant feature of our model is scaling invariance, which
might imply stochastic self-similarity and various fractal properties for
the limiting empirical measure.

All in all, that seems to be a very interesting behaviour, however hard
to analyze rigorously on that level of complexity.

2.1 General LISA setting

Above we mention the so called stopping set. We believe that the stop-
ping set terminology is the right way to assess the spatial processes with
local dependence structure. It extends the notion of a stopping time for
Markov processes in one time-dimension. The definitions are borrowed
from [19].

Let E be a locally compact separable topological space, with K and F
being its system of compact and closed sets, respectively. Let (Ω, {FK},P)
be a filtered probability space. Filtration {FK} here is a collection of σ-
algebras FK indexed by compact sets K ∈ K that has the following
properties:

• monotonicity: FK1 ⊆ FK2 for any two compact K1 ⊆ K2;

• continuity from above: FK = ∩∞
n=1FKn

if Kn ↓ K.

A random closed set Ξ is a measurable mapping Ξ:(Ω, {FK},P) 7→ [F, σf ],
where σf is the σ-algebra generated by the system {F∈F : F ∩K ̸= ∅},
K ∈ K. We say that Ξ is {FK}-adapted, if the random set Ξ ∩ K is
FK-measurable for all K ∈ K. We will consider only adapted random
sets.

Definition 1. A random compact set δ is called a stopping set, if the
event {δ ⊆ K} is FK-measurable for all K ∈ K.

Having the stopping sets at hand, we can now define the general
setting for LISA processes. First, we need a sample spaceW . We consider
LISA processes in W = Rd, d ≥ 1. We have an initial configuration of
points in space, Xn0 = {x1, x2, . . . , xn0}. The core of the process is the
procedure of generation of new points. We follow the general scheme:

• Pick a parent point xχn uniformly among the existing at time step
n, n = n0, n0 + 1, n0 + 2, . . . .
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• Find a stopping set Sn = S(xχn , Xn) defined by the configuration
at time step n and previously picked xχn .

• Sample a random variable ζSn
, whose distribution is defined by the

geometry of a stopping set and which is otherwise not dependent
on Xn:

P(ζSn∈B|Xn) = P(ζSn∈B|Sn)

• Add the new point xn+1 = ζSn to the configuration:

Xn+1 = Xn ∪ {xn+1}

The natural idea for the continuous-time alternative, which tracks
back to [1], is to embed the procedure of generation of the new points
into a continuous-time branching process, so that every point x ∈ Xt

generates children with the same fixed intensity. The location at which
the children are placed is then controlled by the geometry of a stopping
set S(x,Xt) at the moment of birth.

As we see further, the above setting is quite flexible, in particular,
we can get any kind of a stepwise growing Markov point process by just
setting Sn = Xn, n = n0, n0 + 1, . . . . Tweaking Sn and ζSn

, one could
also obtain variants of branching random walks, segmentation processes,
Polya’s urn models, etc.

In our paper we analyze several particular examples of LISA models.

Example 1 Put X = [0, 1] ⊂ R, n0 = 1, Xn0 = {0}, r(x) := min{y ∈
Xn\{x}∪1 : y>x} and S(x,Xn) = [x, r(x)] That is, the stopping set of
the point is the interval to the right from it. Put ζ(S) ∼ Unif(S), so that
the new point is distributed uniformly on an interval to the right from
the parent point.

This is one of the many versions of a stick-breaking process, it is also
directly related to a construction of Dubbins-Freedman [7], particularly,
if we try now to draw the distribution function for the resulting limiting
measure, it will be distributed exactly as the random distribution func-
tion defined in [7]. This example in a bit more generality is thoroughly
analyzed in [17], the singular limiting measure is proven to exist and the
Hausdorff dimension of its support is computed. We use this example as
an illustration for the interesting properties of certain LISA processes.

Example 2 Put W = R, n0 ≥ 2, fix Xn0 ⊂ R consisting of n0 distinct
particles. Define d(x,X) = min

y∈X\{x}
|x − y|, S(x,X) = [x − d(x,X), x +

d(x,X)], and ζ(S) ∼ Unif(S). So, the new point is added at the uniform
distance from the parent point, scaled with the distance from the parent
point to its closest neighbour from already existing points.
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Example 3 Put W = Rd, n0 ≥ 2, fix Xn0 ⊂ Rd. As before, d(x,X) =
min

y∈X\{x}
||x− y|| is the Euclidean distance to the closest neighbour. The

stopping set S(x,X) is defined as a closed ball with center in x with
minimal radius, containing at least one point of X \ {x}. d(x,X) is then
the radius of the ball. Define ζ(S(x,X)) to be distributed as x+ψd(x,X),
where ψ is some Rd-valued random variable.

The examples 2 and 3 are the simplifications of the original R. Darling
model, where we restrict to depending on only one closest neighbour. We
provide our results for these two examples further in the text, after a
brief review of the related topics.

2.2 Polya’s urn schemes

The simplest version of a Polya’s urn model is defined as follows. Let
the urn initially contain k black balls and l white balls. Let n0 = k + l.
At each step, draw a ball from the urn, look at its color and return it
back to the urn, along with one more ball of the same color. Then the
proportion of black balls in the urn tends to a random limit, which is
distributed as Beta(k, l). In particular, if k = l = 1, the limit is uniform
on (0, 1) interval.

That version of Polya urn model is the ”degenerate” case of LISA
setting, obtained by putting the sample space W to be the set of two
colors, the stopping set S(x,X) = x and ζS(x,X) to be degenerate in x.
It is also a border case of R. Darling model: let us say that instead of
throwing its’ child away on normally distributed distance scaled with the
distance to the closest neighbour(s) the mother point lets a child stay at
her place. Then the points of initial configuration can be regarded as a
set of colors, and the starting configuration as an urn, containing one ball
of each of the n0 colors. The rest of dynamics is the same: pick a point
to reproduce, add one child to its location.

Polya’s urn model has lots of variations, with different amount of
colors and various rules for reinforcement. One generalization is having
the replacement controlled by a reinforcement matrix

A =

(
a b
c d

)
That means, when we pull out a black ball from the urn, we return it back
along with a additional black and b white balls, whereas if the pulled ball’s
color is white, we return it together with c black and d white balls. Then,
depending on the relations between a, b, c, d there are different cases. For
the details one should refer to [12, 6, 9, 14]. See [1] for the embedding
of the Polya’s urns into a continuous-time branching processes, and the
related results on limit behaviour. For more limit theorems see [10, 9, 3].
For the general survey on the processes with reinforcement, see [15]
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One of the nicest implications of a Polya’s urn model is the prob-
abilistic insight on how to construct random measures in general, [5],
along with a simple way to simulate the Dirichlet processes, a rich class
of priors, widely used in statistics due to their rigorous tractability. The
construction in [5] involves an infinite amount of colors with the limit-
ing measure being a sample from Dirichlet process with a corresponding
parameter measure on the space of colors.

2.3 Random Splitting

Example 1 above is a variant of a stick-breaking process. This is a sequen-
tial random splitting of [0, 1] interval where at each step the uniformly
picked sub-interval is split in two uniformly. As mentioned above, this
process in a slightly more general setting is studied in detail in [17].

The splitting of the unity in [17] is a variation of Kakutani’s splitting
procedure [13], and formally defined as follows. Let {χn}n≥1 be a se-
quence of i.i.d. random variables such that χn is uniform over {0, 1, 2, . . . , n}.
Let {Wn}n≥1 be a sequence of i.i.d. random variables with values in (0, 1).
Define Xn in a following way: X1 = {0, 1} and if ξ0 ≤ . . . ≤ ξn are the
elements of Xn, enumerated in the increasing order, then

Xn+1 = Xn ∪ {ξχn +Wn(ξχn+1 − ξχn)}

As the limit for the empiric measures, we get a random singular measure,
with probability one sitting on a (random) set of Hausdorff dimension D
which is found explicitly in [17]. Note that in the Kakutani’s procedure
we do not observe this kind of behaviour, but rather get a determinis-
tic uniform measure in the limit, because of different selection methods.
In [13] the longest interval is always selected for splitting, when as in [17]
the next interval to split is selected uniformly over those existing at the
moment. In continuous time that corresponds to giving weights to the
intensities of splitting proportional to the intervals’ lengths, and giving
all of the intervals splitting intensities 1, respectively. See [4] for the
entropies behaviour in the splitting procedure.

2.4 Cooperative Sequential Adsorption

The other class of the models included in our setting is that consisting
of various versions of adsorption models. The cooperative sequential
adsorption (CSA), for example, can be obtained by setting S(x,X) =
B(x,R), a ball with a fixed radius R, which is called the interaction
radius. Then the random variable ζS(x,X) is set to have the density
proportional to βK(S(x,X)), where K(S(x,X)) is the number of particles
in the ball and {βk}k≥1 is the fixed parameter set. CSA model is quite
popular in the applied physics, and the results known are quite vast, see
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[8, 16] and references therein. Especially interesting result in our context
is obtained in [18], where the limiting measures are studied.

2.5 Main results

The main points of interest in our paper are those related to the charac-
teristics of the limiting measure. At which conditions does the configura-
tion stay inside a compact region? At which conditions does the limiting
measure exist, what are its properties?

In the first paper we formulate and prove the following results for the
Examples 2, 3.

Theorem 2. Denote

mn = min{x : x ∈ Xn},
Mn = max{x : x ∈ Xn}

for the LISA model in Example 2. Then almost surely

−∞ < limmn ≤ limMn < +∞

Thus the configuration of the points in Example 2 stays almost surely
bounded. We also prove the existence of the limiting measure. Let νn =∑

1≤k≤n δxk
denote the empiric measure on the n-th step.

Theorem 3. Almost surely exists µ∗ – a random probability measure
such that νn

w→ µ∗

Moving on to Example 3, for which we come up with a sufficient con-
dition for the boundedness of the process. In the formulation of Example
3, let η = |ψ|, and introduce C = E η, Ĉ = E η̂.

Theorem 4. If C + Ĉ < 1, then sup
n

|ξn| <∞ a.s. Moreover,

E sup
n

|ξn| ≤ A0 +
n0D0C

1− Ĉ − C

where A0 = max
k≤n0

|xk|, and D0 is the maximal spacing of Xn0

We also provide a couple of estimates for the behaviour of the maximal
spacing of the model in the Example 3.
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3 Bit Flipping Models

The second paper included in the thesis is about Bit Flipping models.
The original model considered was born in the discussion with Sergey
Foss when we were looking for an example of LISA model having the
limiting measure with unbounded support.

In LISA setting, let W = {0, 1, 2, . . . }, Xn0 = X1 = {0}, let η be
the non-negative integer-valued random variable with distribution P, let
ψS(x,X) be distributed as η, if x is a single entry in X and be degenerate
in 0 if x is a multiple entry. Here we allow multiple entries, so the same
point can present in the configuration in many instances. Now take a
look at all of the particles generated by the first one. The question we
asked was, what is the probability for all the points generated by the
first one to be multiple at some moment of time? It is clear that the
above probability is always greater than zero, but is it ever one? And in
which cases is it less than one? The answer is given by the analysis of
the Damaged Bits model which follows below.

The term ”Bit Flipping” term is adopted from [2] where it is used in
the context of analyzing the behaviour of a random-edge simplex algo-
rithm on a Klee-Minty cube. There, in a sequence of bits indexed with
{1, 2, 3, . . . } each one is flipping its state with intensity one, and when
the bit changes its state, all of the bits to the right from it do so as well.
Note that although there is infinite amount of events happening during
any finite time interval, any finite consecutive subset of bits starting with
the first is still a Markov process in a continuous time with a finite state
space. Our models differ from the one in [2]: we do not have dependency
structure as of now, however, we let the bits have different intensities of
flipping, which yields some interesting behaviour too.

Bit Flipping models are somewhat related to the dynamical percola-
tion processes, see [11]. In that context, a particularly interesting ques-
tion might be, what if the intensities {pk} of flipping grow really fast?
Question is, can the probability of existence of a non-empty set of times
τ such that all the bits are idle at time τ be positive? What can we tweak
in the model to make it positive? We do not address these questions in
the current paper, but rather leave it for the possible future work.

3.1 Model description, main results

First, we are going to define the Binary Flipping (BF) and Damaged Bits
(DB) models in the discrete time setting. Then we show how to embed
them into continuous time naturally. In fact, that embedding, hinted
by R. Pemantle, turns out to be the main tool in the analysis. Both
models contain an infinite sequence of elements, or ”bits”, that change
their states one by one, according to certain dynamics. The number of a
next bit to change the state is sampled each time from a fixed distribution
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on positive integers. That distribution is the parameter in the model.

Binary Flipping (BF) In that version of a model, we let the bits
switch between the idle and active states. Let ζnk , k = 1, 2, . . . , n =
0, 1, 2, . . . denote the state of k-th bit at time n. Put ζnk = 0, that is, all
the bits start in the idle state. Let P = {p1, p2, . . . } be the probability
distribution on positive integers. We assume all of the pk to be positive
and ordered, p1 > p2 > p3 > . . . > 0 That is not a restriction, since
we always can throw out the null entries and reorder the rest (unless
only the finite number of pk’s are non-zero, which seems to be the trivial
case). At each time step n sample the index ξn from P independently of
everything, and change the state of ξn-th bit according to the dynamics

idle(0) ↔ active(1)

That is, if a chosen bit was idle, it becomes active, and vice versa.

Damaged Bits (DB) In that version there is three possible states:
idle, active and damaged. Again, let ζnk , k = 1, 2, . . . , n = 0, 1, 2, . . .
denote the state of k-th bit at time n and ζnk = 0. At each time step n
sample the index ξn from P independently of everything, and change the
state of ξn-th bit according to the dynamics

idle(0) → active(1) → damaged(2)

So, if we pick a damaged bit, nothing happens, the bit remains damaged.
As mentioned above, both BF and DB models have natural continuous

time implementations. That is, we can consider a sequence {ζk(t)}k≥1 of
independent continuous time Markov processes, each with the state space
{idle, active} (BF) or {idle, active, damaged} (DB). Then we let ζk(t)
start in the idle state and have the intensity pk of transitioning to the
next state, k = 1, 2, . . . Then if we denote by {Tn}n≥0, the sequence of
transition times of a correspondent Markov process {(ζ1(t), ζ2(t), . . . )}t≥0

with T0 = 0, we have the following distributional equality:

{(ζn1 , ζn2 , ζn3 , . . . )}n≥0
D
= {(ζ1(Tn+0), ζ2(Tn+0), ζ3(Tn+0), . . . )}n≥0

Here on the left stands the discrete-time version of a corresponding model
and on the right stands the continuous-time version taken at the times of
transitions. Further we use both discrete- and continuous-time setting to
formulate our results, depending on which of the two is more convenient
at the moment.

One of the main questions for the bit flipping models is, if we start
from the ground state where no bits are active, what’s the probability to
return to that state? It is quite transparent that the latter probability
is greater than zero, but can it be one? In other words, is the so called
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ground state recurrent? If it is, is the expectation of the recurrence time
finite? Can we give some estimate for the moments? Then, if the ground
state is not recurrent, how does the number of active bits grow as time
goes to infinity?

The model is clear and simple, and yet the answers to most of the
above questions turn out to be quite peculiar. First, we address the ques-
tion of recurrence. By recurrence in this context we mean the recurrence
of the ground state. In BF it means the recurrence of a corresponding
Markov chain in the usual sense. In DB it rather means the Markov
chain jumping out of some subset of states with probability one even-
tually. More precisely, we say that the BF or DB model is recurrent if
τ = min{n ≥ 1 : ζn is not active} is almost surely finite, otherwise we
say that the model is transient.

It turns out, that both BF and DB models exhibit recurrent or tran-
sient behaviour, depending on the speed of the decay of pk. We start with
proving the sufficient conditions for recurrence and transience of the BF
model.

Theorem 5. If the distribution P = {p1, p2, . . . } is such that:

(i) lim sup
k→∞

2kpk = C <∞, then BF model is recurrent, i.e.

P{τ <∞} = 1,

(ii) lim inf
k→∞

(2 + ε)kpk = C > 0 for some ε > 0, then BF model is

transient, i.e. P{τ = ∞} > 0.

Theorem 5 means, that the ”critical” decay is that of a geometric dis-
tribution with parameter p = 0.5. It is not a threshold in the usual sense,
since the strict criteria would have been connected with the convergence
of some series. However, one could still make sense to the criticality of
geometric decay in BF model, with the help of the deterministic version
of the process.

Imagine we have an infinite sequence of bits in state 0, numbered with
{1, 2, . . . }. Then, let k-th bit alternate its state every 2k−1 seconds deter-
ministically. That means that the frequency (or intensity) of switching is
2−k+1 for the k-th bit, which corresponds to the ”critical” decay in BF
model. Let us see what we have in first few steps of the process:
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k = 1 k = 2 k = 3 k = 4 . . .

t = 0 0 0 0 0 . . .
t = 1 1 0 0 0 . . .
t = 2 0 1 0 0 . . .
t = 3 1 1 0 0 . . .
t = 4 0 0 1 0 . . .
t = 5 1 0 1 0 . . .
. . . . . . . . . . . . . . . . . .


One can observe that the sequence of bits is the binary representation of
the amount of whole seconds passed! Therefore, at all times at least one
bit will be active, because that’s how the clock works. However, if we
now increase the decay speed, make it (2 + ε)−k+1 for some ε > 0, then
the first k bits will have time to go through all the possible combinations
(including all of the bits being idle) before the k+1-st bit becomes active.

We also prove the similar theorem for the DB model.

Theorem 6. If the distribution P is such that:

(i) lim sup
k→∞

exp(αk)pk <∞, for some positive α, then the DB model is

recurrent,

(ii) lim inf
k→∞

exp(kγ)pk > 0 for some γ ∈ (0, 1), then the DB model is

transient.

After we are done with the recurrence/transience question, we move
on to the different properties. We prove a central limit theorem for η(t)
– the number of active bits in the continuous-time version of BF, DB
models.

Theorem 7. Assume the BS or DB model is transient. Then

E η(t),var η(t) → ∞, t→ ∞,
η(t)−E η(t)√

var η(t)

D→ N(0, 1), t→ ∞

Here both E η(t) and var η(t) are given explicitly in a form of series.
Finally, we prove a bound for certain moments of recurrence time τBF

in a recurrent case of the BF model.

Theorem 8. Let pk = (1− p)pk−1 for some positive p < 1. Then E τ rBF

exists for any r: 0 < r < r0(p) whenever p < p0. Here

p0 =
3−

√
5

2
, r0 = 1−

log 2−p
1−p

log 1
p

12



Moreover, for such p, r and any positive δ there exists a constant C =
C(p, r, δ), such that

E(τ rBF|maxA(0)=a) ≤ Cap−(r+δ)a

The proofs can be found in paper II.

3.2 Conclusion, future work

The Bit Flipping models turn out to be posing interesting questions, some
of which are analytically tractable. The most interesting phenomenon in
our opinion is the existence of the threshold for the decay, bordering the
transient and recurrent cases in both of the models. The ironic part
is that “recurrence” in this context corresponds to the lack of mixing,
due to the mixing times’ distributions being very inhomogeneous. One
can picture it as the whole process being unable to reach the stability
due to highly inhomogeneous intensities of mixing of its independent
components. That said, we come up with several possible extensions for
our results.

One variant of an extension is to give the bits in BF different intensi-
ties {pk} and {qk} for turning active and idle, respectively. Then several
interesting behaviours arise, depending on the relations between those pa-
rameters, and their (non-)summability. This is a promising modification
we are working on currently.

The other option is to assume we are dealing with series of indepen-
dent identical copies of some Markov chain, in which the time is scaled
differently, according to parameters {pk}. The question one can ask is,
do those chains ever ”meet” in the same state. Mixing times and distri-
butional characteristics of various sorts can be of interest as well.

The modification that might be interesting from random geometry
point of view is adding some kind of spatial dependence structure into
the model. For instance, one could assign different intensities for turning
active, according to a number of neighbour bits that are active at the
time — in a fashion of contact processes.

One more way to extend is to interpret the bit turning on as a call
coming to the k-th service station with intensity pk. Then a call can be
transferred to a connected station with intensity rk or leave the system
with intensity qk. This can lead to a model similar to those considered in a
loss-network setting, but with non-homogeneous servers. Usual queueing
theory questions about performance of the system can be asked then.

Overall, the class of connected problems is quite rich and seems very
promising!
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models. Stat. Prob. Letters, 49:163–173, 2000.

14



[15] R. Pemantle. A survey of random processes with reinforcement.
Prob. Surveys, 4:1–79, 2007.

[16] M. Penrose. Random parking, sequential adsorption, and the jam-
ming limit. Commun. Math. Phys., 218:153–176, 2001.
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