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Process integration studies on Kraft pulp-mill-based biorefineries producing 

ethanol 

RICKARD FORNELL 

Heat and Power Technology 

Department of Energy and Environment 

Chalmers University of Technology 

 

ABSTRACT 

Large scale, sustainable production of biofuels will require commercialization of 

processes using lignocellulosic feedstocks. These processes are still not 

competitive with existing pathways, however.  The competitiveness of 

lignocellulosic biofuel production plants could potentially be improved if they 

were integrated with already existing facilities. One such example being explored 

currently is connected to the fact that the pulping industry is showing a growing 

interest in expanding their product portfolio, namely the complete or partial 

conversion of pulp mills into biorefineries for production of transport fuels. 

 

The objective of the work presented in this thesis has been to study different 

potential biorefinery concepts connected to chemical pulping, and more 

specifically the Kraft pulping process. Three different process combinations have 

been assessed in the project; a process where a Kraft pulp mill is repurposed to 

ethanol production (no pulp is produced), a process where ethanol and di-

methyl-ether is produced in a repurposed Kraft pulp mill, and finally a process 

where an ethanol plant is co-located with a modern Kraft pulp mill.  

 

The findings from the studies reveal that an increasing degree of heat integration 

leads to a lower production cost of ethanol both if the ethanol plant is based on a 

repurposed mill and if the plant is co-located with a modern mill. In the ethanol-

and di-methyl-ether process, which has much higher conversion efficiency from 

feedstock to biofuel than the other processes, it was shown that the process could 

be competitive with the other combinations in terms of production cost, if the 

biofuel price is high and if the biorefinery is perceived as a low risk investment. 

 

Keywords: Biorefinery, Process integration, Ethanol, Kraft pulp mill, Energy 

efficiency, Biofuels  
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1 Introduction 
The International Panel on Climate Change (IPCC) states that if society 

only focuses on adaptation to the impacts of climate change during the next 

century, this would come with a very high cost to both society and the 

environment. Only focusing on mitigation of greenhouse gas emissions 

would also not be enough, however. Both these issues (i.e. adaptation and 

mitigation) would most likely need to be addressed to reduce the hazards of 

climate change. Mitigation efforts can, according to the IPCC, be 

implemented by using technologies that are either currently available or 

expected to be commercialised in the near future. Figure 1.1 shows the 

results of different mitigation measures from four different climate models 

(IMAGE, MESSAGE, AIM, IPAC) that aim at stabilizing the CO2 

concentration at 650ppm or 490-540ppm [1]. 

 

Figure 1.1. Cumulative Greenhouse gas emission reductions due to mitigation 

measures according to different forecast models (Figure 3.23 in IPCC AR4 

WG III [2]). 

 

As can be seen in Figure 1.1, improving the efficiency in which energy is 

used in all sectors of society can play a critical role in issues of energy 

security, environmental impact, and achieving sustainability. According to 

the International Energy Agency (IEA) improving energy efficiency is a 

priority for all countries. The IEA has produced a number of recommended 
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actions ranging over a multitude of priority areas, which it has estimated to 

potentially save about 7.6 Gt CO2 / year by 2030 (1.5 times current US 

annual CO2 emissions) [3]. Within the European Union (EU) work on 

improving energy efficiency has intensified in recent years. For example, a 

project called the Energy Efficiency Watch Project was initiated in 2006. It 

focuses on promoting energy efficiency across Europe, and in 2007-2008 

National Energy Efficiency Plans (NEEAPs) were published by member 

states [4].  

In the industrial sector there is great potential to improve energy efficiency. 

Since the industrial sector accounts for one-third of the total global primary 

energy supply and 36% of global CO2 emissions these potential 

improvements will make a difference if implemented [5]. Actions needed 

according to the IEA are, e.g., improving the energy performance of electric 

motors, and improving energy management in industry at different levels of 

the energy system. The IEA says that it is important to coordinate policies 

in order to address barriers to energy efficiency that include high initial 

capital costs, discount rates, and difficulties in quantifying external benefits. 

This thesis presents studies of energy efficiency measures related to the pulp 

and paper industry and biorefineries that produce transport fuels. The 

central theme is the focus on 2nd generation ethanol production and the 

integration of this process concept with a Kraft pulp mill. The following part 

of this chapter includes a short introduction to the two industrial branches 

that are merged in this project. 

Kraft pulping – yesterday, today and tomorrow 
The Kraft pulping process was patented in 1884 in Germany. In 1890 the 

first Kraft pulp mill started in Sweden. When the Tomlinson boiler was 

invented in the 1930´s the Kraft process grew in strength since this boiler led 

to the possibility to recover and reuse the inorganic pulping chemicals in the 

process. Since then the Kraft process has become the leading chemical 

pulping process.  

In a global context, a shift in the capacity for Bleached Hardwood and 

Softwood Kraft Pulp has occurred in recent years. The traditionally strong 

pulping countries in North America and northern Europe are experiencing 

a decrease in capacity for these pulps (Figure 1.2). 
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Figure 1.2. Capacity closures (including idled plants) in northern Europe and 

North America 2007-2009 (green = Hardwood, brown = softwood). [6] 

 

Modern pulp mills that use low cost raw materials are being built in other 

parts of the world and give these countries an edge in terms of production 

cost. The difference in raw material cost is substantial; in a presentation by 

Jokinen (2009) the softwood prices in Scandinavia are the highest in the 

world. A pulp mill in South America had to pay less than one third of the 

price in Scandinavia for the raw material. In North America the price was 

about 50% lower than in Scandinavia, but due to other costs the Bleached 

Softwood Kraft Pulp price in North America was similar to Scandinavia. 

The pulp price for the “best mills” in South America was 50% lower than in 

North America and Scandinavia [6]. This is one of the reasons why 

traditionally strong pulping countries have begun to focus on finding new 

ways of processing forest material into profitable products. Since it is 

difficult to compete with the price of raw material and labour, other 

products than pulp are currently being explored. 

If new ideas were implemented the benefit would be large; for example, the 

synergetic effects of using existing infrastructure, process units and 

knowledge could be an important factor for the commercialisation of 2nd 

generation biofuel production.  
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Ethanol production – yesterday, today and 
tomorrow 

Ethanol is not a new transport fuel. Early in the beginning of the 

automotive era cars were built to run on this alcohol. During the First 

World War ethanol was used as fuel in the US, and before tetraethyl lead 

was introduced by the automotive industry, ethanol played an important 

role as an octane enhancer. Lead-enhanced gasoline was shown to be 

cheaper and easier to produce than ethanol, however, and in the aftermath 

of the Second World War ethanol was disregarded while the use of fossil 

fuels began to dominate the transport sector. 

When tetraethyl lead was phased out in the US in the mid 80´s MTBE 

dominated the market as an octane enhancer. In the early 21st century 

ethanol production and use in the US began to grow rapidly. The main 

reasons for this were that MTBE was banned in many states, and that the 

Energy Policy Act of 2005 stated an oxygen requirement in reformulated 

gasoline, which could be met by blending in ethanol [7]. 

In Brazil ethanol has been blended in gasoline since the early 20th century. 

As early as 1931 a compulsory blend of 5% was implemented by the 

government in order to reduce dependence on foreign petroleum fuels, as 

well as to make use of excess production in the sugar industry. Until 1975 

the blend of ethanol in gasoline in Brazil was fairly constant at 5%. Due to 

the oil crisis Brazil started up a program in order to increase the amount of 

indigenous automotive fuel used in its car fleet. Sugar cane ethanol was 

subsidized and the production in Brazil increased rapidly. In 1985 

approximately 8 billion litres of ethanol was being produced. In the 90´s the 

ethanol industry in Brazil experienced tougher times and much of the 

subsidies and governmental influence on prices that helped the industry 

thrive were removed. The blend of anhydrous ethanol in gasoline decreased 

from 20% to 10%, but rose slowly during the 90´s and is today 25%. In 2003 

the flexible fuel car was introduced in Brazil. This affected the demand for 

ethanol, increasing the use of hydrated ethanol which had diminished to 

virtually zero in the 90´s [8]. 

In Sweden ethanol was produced from sulphite pulp in the early 20th 

century. This ethanol was used in cars for a period of time, but then other 

areas of use (mainly alcoholic beverages) became dominant in the following 

decades [9]. Ethanol from sulphite pulp was used in the transport sector 
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again in the 90’s, and a pilot plant on lignocellulosic ethanol was built in 

2004 [10]. In 1998 a wheat-to-ethanol plant integrated with a combined heat 

and power plant was granted a building permit. This plant started 

production in 2001, and is currently producing about 210 000 m3 ethanol 

annually [11]. The development of alternative fuel in Sweden started as 

early as the 70´s, however, when the global oil crisis induced thoughts of 

decreasing oil dependence in the transport sector. The main choice at that 

point was methanol, and in the early 80´s the plan was to blend gasoline 

with 15% methanol. The interest for methanol declined in the late 80´s, and 

from the early 90´s focus turned to ethanol production.  

The current global production of ethanol is mainly located in the USA and 

Brazil, where 1st generation feedstock, such as corn (USA) and sugar cane 

(Brazil), is processed. In Europe ethanol is produced to some extent, mainly 

from sugar beets, cereal and wine alcohol [12]. Many crops used in 1st 

generation ethanol production have limitations and uncertainties with 

regard to environmental performance because of the use of fossil fuels in 

production, the use of fertilizers and of water for irrigation, along with 

competition with other important uses of the feedstocks  for food 

production (corn in the US, wheat in Europe) (cf. [13]). 

In order to meet the expected demand of ethanol in the future, many new 

processing plants are needed. Thus new feedstocks are required. 

Lignocellulosic biomass accounts for about 50% of the total biomass on 

Earth, and a transformation from 1st to 2nd generation feedstocks, i.e., from 

starch/sugar to lignocellulosic feedstocks, is seen as necessary in order to 

manage the growing demand for environmentally benign ethanol biofuel in 

the near future. Nevertheless, few commercial 2nd generation ethanol plants 

have been erected, but there are many projects currently running with the 

aim of commercialization. The main problems that remain are due to the 

recalcitrance of the lignocellulosic material, which makes it difficult to 

break down and free the sugars that are fermented into ethanol [14]. The 

main costs in the process are investment costs in pretreatment and 

boiler/turbines, and the cost for raw material [14, 15]. Process integration 

with other types of plants, e.g. CHP-plants, 1ste generation ethanol plants, is 

a way of decreasing the production cost for ethanol [14, 16].  

A list of some of the current and planned demonstration and commercial 

scale plants for lignocellulosic ethanol production is shown in Table 1.1. The 
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information is from the European biofuels technology platform and the US 

Department of Energy biomass program [17, 18]. 

 

Table 1.1. Planned and current demonstration and commercial size 

lignocellulosic ethanol projects in the USA and Europe, more information 

can be found in references [17, 18]. 

Company Technology Location Scale Annual 

production

Abengoa Biochemical Kansas, 

USA 
Commercial 97000 m3 

Bluefire LLC Biochemical Mississippi, 

USA 
Commercial 74000 m3 

Mascoma Biochemical Michigan, 

USA 
Commercial 155000 m3 

POET Biochemical Iowa, USA Commercial 97000 m3 

Rangefuels Thermo-gasification Georgia, 

USA 
Commercial 77000 m3 

Enerkem Thermo-gasification Mississippi, 

USA 
Demonstration 40000 m3 

INEOS Hybrid Florida, 

USA 
Demonstration 30000 m3 

Lignol Biochemical Washington, 

USA 
Demonstration 9700 m3 

Verenium Biochemical Louisiana, 

USA 
Demonstration 5400 m3 

Chemtex Biochemical Crescentino, 

Italy 
Commercial 50000 m3 

Inbicon Biochemical Kalundborg, 

Denmark 
Demonstration 5400 m3

Abengoa Biochemical Salamanca, 

Spain 
Demonstration 5000 m3
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Objectives 
The primary objective of the PhD project presented in this thesis has been 

to increase knowledge of how synergetic effects of the integration of biofuel 

production processes into Kraft pulp mills might affect the feasibility of 2nd 

generation biofuel production for the transport sector.  

Another objective has been to increase the understanding of process 

integration issues related to the studied processes.  

Appended Papers 
The work done in this PhD project has culminated in 5 different papers that 

are attached at the end of the thesis. A short description of the papers is 

included in this section. 

Paper I is a preliminary study of the potential for by-products export in a 

conceptual ethanol production plant. A typical Scandinavian Kraft pulp mill 

is assumed to have been repurposed to ethanol production, and different 

levels of energy efficiency measures are investigated and compared with a 

base case where only investments in ethanol production, i.e., no energy 

efficiency measures, are made. The results are also compared to a similar 

study of the Kraft pulp mill, in order to see if the conclusions drawn differ 

when ethanol is produced instead of pulp. 

Paper II is a detailed study of the possibilities for integration into a Kraft 

pulp mill repurposed to an ethanol plant. A number of different designs of 

the process are investigated to observe the potential for steam savings in the 

process, as well as to determine if there are differences in process design 

possibilities. 

Paper III is an economic assessment of the results in Paper II. The different 

designs are investigated in more detail, and the economic feasibility of 

different levels of energy efficiency measures are assessed, the robustness of 

the process economics is studied in a scenario analysis and compared to 

other 2nd generation processes. 

Paper IV is a study of a repurposed Kraft pulp mill where ethanol is 

produced instead of pulp, and the recovery boiler is replaced with a black 

liquor gasification process for the production of di-methyl-ether, another 

transport biofuel. The process is designed and assessed from an energy and 

economic viewpoint. 
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Paper V focuses on the potential for process integration in an ethanol 

process that is integrated with a modern state-of-the-art Kraft pulp mill. 

This mill is much larger in size than the ethanol process, which opens up for 

interesting possibilities for integration. Different energy efficiency measures 

are suggested, designed, and assessed both from an energy and economic 

perspective. 
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2 The Kraft pulping process 
The different studies included in this thesis are all based on biorefineries 

connected to a Kraft pulp mill. Therefore a short description of the Kraft 

pulping process is included. A block flow diagram of a Kraft pulp mill is 

shown in Figure 2.1. 

 

 
Figure 2.1. Block flow diagram of the Kraft pulp mill process. 

 
Digester 

The wood entering a Kraft pulp mill is first debarked, chipped, and 

screened. It is then sent to the digester where steam and cooking chemicals 

(Na2S and NaOH) are introduced in order to break the lignin seal in the 

wood and separate a pulp (mainly cellulose) from black liquor (mainly 

~
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lignin, hemicelluloses and degradation products from carbohydrates). The 

main reactions in the Kraft digester are the degradation and solubilisation 

of lignin and the degradation and hydrolysis of carbohydrates (that form 

carboxylic acids and fragmented carbohydrate chains) [19-21]. 

 

Evaporation 

The black liquor, which consists mainly of cooking chemicals, degraded 

carbohydrates and solubilised lignin, is sent to an evaporation plant where it 

is concentrated to a high dry solids content (typically 70-85% DS). The 

evaporation is done with steam in up to 7-9 heat-integrated evaporation 

effects. 

 

Recovery boiler 

The concentrated liquor from the evaporation is sent to a recovery boiler 

where the organic components are combusted in order to produce steam 

and electricity. The inorganic cooking chemicals are recovered in a smelt (as 

Na2CO3 and Na2S). 

 

Chemical Recovery cycle 

In order to recover the cooking chemicals Na2CO3 needs to be converted to 

NaOH. This is done in the causticizing plant where CaO from the lime kiln 

is mixed with the dissolved smelt (green liquor) from the recovery boiler 

producing NaOH and CaCO3. The CaCO3 formed is sent to the lime kiln 

where it is reburned to CaO at high temperatures by using external fuel, 

e.g., fuel oil, gasified bark. 

 

Pulping line (washing, bleaching, drying) 

The crude pulp from the digester needs to be processed further before being 

sold. First the pulp is washed, however, in order to separate dissolved 

organic and spent inorganic compounds, i.e., black liquor, from the pulp and 

fibres. After separating the pulp from the black liquor, knots and other solid 

impurities are removed by screening. Then the pulp is bleached and dried 

before leaving the process. Further delignification using oxygen can also be 

included in conjunction with the bleaching plant.   

More detailed descriptions of the Kraft pulping process can be found in 

[22]. 
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3 Lignocellulosic ethanol 

production 
Compared to the production of ethanol from feedstocks rich in sugar or 

starch, such as sugar cane or wheat, lignocellulosic feedstock requires a 

more complex process. The basic steps needed in for lignocellulosic ethanol 

production are shown in Figure 3.1. First the lignocellulose needs to be 

broken down in order for the polysaccharides to be accessible. These are 

then hydrolysed to monomeric sugars, which then are fermented to ethanol. 

Finally the ethanol is concentrated and purified up to the required 

specifications. As can be seen in Figure 3.1 there are two different pathways 

that can be used, either acid catalysed-or enzymatic hydrolysis. If enzymatic 

hydrolysis is chosen, the feedstock needs to be pre-treated in order to make 

the polysaccharides accessible for the enzymes. In acid hydrolysis this is not 

required. A short description of the different process steps is included in 

this chapter. 

 

Figure 3.1. Block diagram of acid-or enzyme hydrolysed production of 

ethanol from lignocellulosic raw material (softwood). 

 

Pre-treatment and hydrolysis 

The most common acid used in this process is sulphuric acid. The hydrolysis 

can either be done with diluted or concentrated acid. The benefits of a high 

concentration are low temperatures and high yields, while the downsides of 
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this alternative are the expensive recovery of the acid and corrosion issues. 

A dilute acid process has low consumption of acid, but high temperatures 

are required which increase the rates of sugar degradation to inhibitory 

compounds such as HMF and furfurals [23]. The dilute acid process could 

be done in two steps in order to decrease the degradation of sugars, but the 

cost would increase [16, 24]. 

The yield of monomeric sugars in enzymatic hydrolysis is higher than the 

acid hydrolysis processes due to the low temperature and the specificity of 

the enzymes [24]. There are a number of different ways to pre-treat the 

lignocellulosic raw material prior to enzymatic hydrolysis. They can be 

divided into acidic, neutral, and alkaline methods;  some alternatives 

described in the scientific literature are, steam explosion with acid catalysts 

(H2SO4 or SO2), Ammonia Freeze Explosion (AFEX), and Organosolv 

(C2H5OH) [13, 16, 19, 23-26].  

Enzymes used in hydrolysis of the cellulose are called cellulases. They are 

normally derived from fungi, such as Trichoderma reesei. Today there are 

several companies producing and selling cellulases, The enzymes are among 

the highest costs in the ethanol plant, and a lot of research is conducted in 

order to find ways to reduce this cost, e.g.,  increasing the enzyme activity 

and reducing the loading of enzymes in the hydrolysis [27]. 

 

Fermentation 

The fermentation of monomeric sugars to ethanol can be done in different 

ways. If the hydrolysis and following fermentation are done separately, both 

steps can be run at optimal conditions. The end-product inhibition in the 

enzymatic hydrolysis will impact this design negatively, however. Enzymatic 

hydrolysis and fermentation can also be carried out in one step (SSF). This 

will lead to a lower end-product inhibition, but some disadvantages exist 

such as difficulties to recycle the yeast used in fermentation. Today, 

commercial ethanol processes ferment only hexoses using ordinary bakers-

yeast (Saccharomyces cerevisiae). New microorganisms that have the ability 

to ferment pentose sugars as well are being developed, however. Compared 

to 1st generation ethanol production, the hydrolysis and fermentation in the 

lignocellulosic process also needs to be done at lower solids content. This 

affects the concentration of the ethanol into the purification section, and the 

water usage in the process. Finding ways to increase the yield at higher 
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solids content could therefore both improve the energy efficiency and 

reduce the water demand in the process.   

 

Ethanol purification 

Ethanol and water is a non-ideal mixture that forms an azeotrope at 

approximately 95% w/w ethanol at atmospheric pressure. The azeotrope is 

pressure-sensitive; if the pressure is low enough it should be possible to 

reach a high purity of ethanol exclusively through distillation. The 

distillation sequence is normally designed as 2 to 3 heat-integrated columns.  

The ethanol is first removed from bulk water, dissolved solids, 

carbohydrates and different degradation products in a stripper (a beer 

column), and then purified up to close to the azeotropic concentration in a 

distillation column (a rectifier). To concentrate the ethanol up to the 

specified purity a tertiary compound such as benzene can be used in order 

to break the azeotrope, but a more common method is to use molecular 

sieves to increase the purity. The organic material entering the beer 

column(s) may cause fouling, and since this occurs more extensively at 

higher temperatures and pressures, the beer columns are normally designed 

at as low a pressure as possible. One reason for fouling in the columns is the 

presence of proteins, so when woody raw material (that does not contain 

much protein) is used the fouling may be expected to be lower than in 

current, 1st generation, ethanol processes (cf. [28]). 
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4 Related work 
Since the project presented in this thesis is aimed at studying energy 

efficiency in a biorefinery that produces ethanol, albeit in connection with a 

repurposed Kraft pulp mill, there are numerous studies found in the 

literature that touch on parts of the subject. A search on the scopus 

database (www.scopus.com) indicated the large number of studies on 

ethanol as a biofuel in recent years. In 2011 approximately 820 articles were 

found with the search words ethanol and biofuel. For the words ethanol and 

energy efficiency the corresponding number was 91.  In the years 2007 to 

2011 approximately 15-20 articles/year were found with the search words 

pulp mill biorefinery. 

Energy efficiency studies in lignocellulosic ethanol 
production 
The importance of energy efficiency for the production of ethanol from 

lignocellulosic raw-material has been stated in several studies by leading 

experts on ethanol production [13, 24].  Studies on energy efficiency in 

ethanol production can be found in the literature from as early as the 1980´s.  

In a study by Collura (1988) the aim was to find distillation and evaporation 

designs that minimized the annual operating cost of these units in an 

ethanol production process.  Heat integration between distillation and 

evaporation, or internal heat integration in distillation, or evaporation with 

the use of a heat pump, was considered. The study presents some 

suggestions for designing a heat-integrated ethanol plant, and also for using 

heat pumps in both distillation and evaporation. The study concluded that 

heat pumping was a good alternative due to a decrease in  operating cost, 

but also that multiple integrated distillation columns could be interesting if 

the price of electricity is high or if the price of steam is low [29].  

Ficarella et al (1999) have produced a study that assessed the possibilities of 

energy conversion in an ethanol plant with 3 alternative distillation 

schemes. The introduction of a heat pump was also discussed. The process 

energy efficiency was improved by a process integration that focussed on 

heat exchanger network optimization of the distillation sequence [30].  
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Galbe et al (2002) have discussed the importance of energy integration in 

order to increase the export of lignin.  The conclusion was that minimizing 

energy demand, which in turn creates greater potential for by-product sales, 

is essential for process economics. Different integration aspects mentioned 

in the study are the integration of distillation and multi-effect evaporation, 

but also using the flash vapour from the pre-treatment step in other parts of 

the process [24]. 

In a study by Grisales et al (2005) an ethanol production plant was 

simulated in the flowsheeting software Aspen Plus. The process had two 

distillation columns (one stripper and one rectifier), and azeotropic 

distillation with benzene in order to obtain fuel grade ethanol. A process 

integration study was performed in order to improve the heat exchanger 

network, and the findings indicate that increased heat integration between 

distillation and evaporation is favourable [31].  

Summers (2006) has presented a paper on improving the design of the 

distillation columns in ethanol production. In this study the distillation 

scheme consists of a stripper and a rectifier. The author describes the 

benefits of using structured packing in part of the rectifying column, which 

leads to a lower pressure drop over the column. This in turn leads to a lower 

temperature difference between the condenser and the reboiler in the 

column. The benefit of this is greater potential for internal and external 

heat integration since the temperature difference in the column is lower 

[32]. 

A few different alternative designs for distillation and evaporation in an 

ethanol production plant were assessed in a study by Wingren et al (2007). 

A base case with 3 distillation columns (2 strippers and 1 rectifier) and a 5-

effect evaporation train were simulated, and then four different alternative 

designs (increasing the evaporation train to 8 effects, integrating one of the 

stripper reboilers with evaporation, increasing the internal heat recovery of 

the first evaporation effect by means of a heat pump, and using anaerobic 

digestion instead of evaporation) were suggested, investigated and 

compared. The results were presented both in energy terms and as total 

ethanol production cost. Using the parameters set in the study the authors 

concluded that using a heat pump in evaporation and anaerobic digestion 

were the most promising alternatives [33]. 
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The study by Sassner et al (2007) was built on Wingren (2007), and added 

the conclusion that integration with a district heating system could increase 

energy efficiency and reduce production cost even further [16]. 

In 2007 an extensive review article was presented by Cardona et al that 

included information that could be applied to energy efficiency studies. A 

list of potential co-products in ethanol production showed that there is great 

potential for using internal energy efficiency measures to improve the 

profitability of the process. Furthermore the study mentions the potential of 

optimizing distillation in various ways, and using heat pumps for integration. 

A study of different fermentation and distillation schemes within 

lignocellulosic ethanol production has also been conducted by Haelssig et al 

(2008). In this study 6 different alternatives were simulated in Aspen Plus. 

They were then evaluated for energy demand and economics. The 

distillation sequence was based on either one or two columns, and heat 

pumps were included in two of the alternatives.  No integration with other 

process equipment was considered in the study. The authors concluded that 

either two heat integrated columns, or one column using a heat pump, 

would be the most feasible option [26]. 

Energy efficiency studies in Kraft pulp mills 
The potential for improvements in energy efficiency in Kraft pulp mills in 

North America and northern Europe might be great, since many of the mills 

are relatively old and inefficient. In a paper by Bruce (2000) different Kraft 

pulp mills were benchmarked, and opportunities for energy conversion were 

discussed [34]. An assessment of the potential for improving energy 

efficiency in the US pulp and paper industry was produced by Martin et al 

(2000), who concluded that there was great potential for primary energy 

savings [35]. Lutz (2008) presented a more specific study on a Canadian 

Kraft pulp mill, and concluded that steam consumption could be reduced by 

16% through improved thermal integration [36]. 

At the research group where this project was conducted a large knowledge-

base for energy efficiency in Kraft pulp mills has been built up through the 

years. Wising (2003) has discussed several topics in her PhD dissertation, for 

example, redesigning the secondary heating system to release excess heat 

that could be used in the evaporation plant, and the energy consequences of 

lignin precipitation in a pulp mill setting. Together with Algehed, Wising 
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has presented a paper on energy efficient evaporation in pulp and paper 

mills [37].  

In her PhD project Algehed (2002) has developed a tool for simulating 

black liquor evaporation plants where excess heat can be introduced. This 

work was furthered by Olsson (2009), who added new features to the tool, 

e.g., lignin extraction coupled to the evaporation plant. This tool was used in 

this project and will thus be described further in the methodology chapter 

[38].  

Studies on energy efficiency measures in Kraft pulp mills continued with the 

PhD project by Bengtsson (2004) who has used pinch analysis tools to study 

process integration opportunities in the mills. In order to enhance the pinch 

analysis procedure, Nordman (2005) has put forth a set of new pinch curves 

which aid in visualizing the potential for process integration and energy 

efficiency measures in an existing industrial process. He has also presented a 

new method for designing hot and warm water systems in order to increase 

the availability of excess heat, which then can be used in other parts of the 

process [39]. 

Olsson collaborated with Axelsson (2008) on a series of studies where heat 

integration opportunities in model mills supported by the Swedish FRAM 

research program were assessed in different ways. In one study the resulting 

steam savings were transformed into sellable products (lignin and power), in 

order to assess the economic potential for taking energy efficiency measures 

in a typical average Scandinavian Kraft pulp mill [40, 41].  

New possibilities for Kraft pulp mills 
As discussed in the Introduction-chapter, the increased global competition 

in the pulp and paper industry negatively affects some of the more 

traditionally strong countries in this field. The current situation in these 

countries has lead to a growing focus on research on finding new ways of 

utilizing different components in the wood raw material. Here a short 

review of different studies focussing on issues related to this research topic 

is presented. The first part concerns studies from North America and then 

studies from Europe are discussed. 

In North America Van Heiningen (2006) has presented a paper that states 

that bioenergy and new biomaterials, in addition to traditional pulp and 

paper products, are needed in order for the industry to increase its revenue 

and remain competitive. The paper presented the concept of an Integrated 
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Forest Products Biorefinery (IFBR), producing value-added products such 

as bio-fuels, polymers and carbon fibres besides producing pulp. The co-

products are based on hemicelluloses and lignin, the cellulose should 

according to Van Heiningen still be used for pulp since the market price and 

yield are higher than that of cellulose-based ethanol [42].  

Two reports investigating in more detail than Van Heiningen the potential 

of new products from lignocellulose were published by the National 

Renewable Energy Laboratory in the USA. In the first report different 

building block chemicals that can be co-produced from sugars and syngas in 

a biorefinery in order to add value to the product portfolio were identified 

and evaluated [43]. The second report focused on the possibility of using 

lignin as a resource for different products. It was concluded that in the near-

term the most important potential for lignin lies within power, fuel and 

syngas production, while in the medium- to long-term, the production of 

macromolecules and aromatics and monomers hold promise as these 

products are expected to add more value to the product portfolio [44]. 

Several studies in the USA in recent years have focused on the IFBR 

concept. Frederick et al (2008) have investigated the potential for producing 

ethanol from hemicelluloses by extracting the hemicelluloses prior to 

pulping and hydrolysing, and fermenting the sugars to ethanol. The main 

conclusion of this study was that the loss of cellulose fiber in pre-extraction 

must be eliminated in order for the process to be competitive with other 

ethanol production processes found in the literature. Other conclusions 

drawn were that there was a strong dependence between the price of raw 

material and production cost, and that the small scale of the studied process 

resulted in a high capital cost per unit of ethanol produced [45]. 

Mao et al (2008) have conducted a similar study on the pre-extraction of 

hemicelluloses for the production of ethanol. They simulated the process in 

Aspen Plus as along with economic analyses in order to evaluate the process 

from a technical and an economic perspective. It was concluded that the 

rate of return of the investment varied depending on plant size and needed 

capital investments from a negative number up to approximately 13%. 

Benefits of this process were discussed, and it was stated that the positive 

effects of this new design were less degradation of pulp quality as well as 

potential for production increase if the recovery cycle was bottle-necked in 

the process [46]. 
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Utilizing the spent liquor (black liquor) in a pulp mill for the production of 

transport biofuels through thermochemical processes has also been studied 

in recent years. In a project sponsored by the US Department of Energy 

and the American Forest and Paper Association several different designs 

and products in a black liquor gasification plant were assessed [47]. The 

study concluded that producing biofuels from black liquor could be 

interesting both from an economic and a societal (i.e. decreasing foreign oil 

dependence in the USA) point-of-view, when fully commercialized.  

In contrast to the IFBR presented by van Heiningen, Phillips et al (2008) 

have presented a study on repurposing a pulp mill, thus producing ethanol 

from cellulose instead of pulp [48]. The conclusions from this paper were 

that this could be an interesting way of commercialising ethanol from wood 

due to the reduced capital costs needed, compared to Greenfield ethanol 

plants, and the benefit of an already existing supply chain. Several 

additional studies have been made regarding this concept since the first 

publication in 2008. An economic comparison between a repurposed pulp 

mill and a Greenfield ethanol process that indicates the benefits of 

integration and using hardwood as raw-material was made by Gonzales et 

al. [49]. Further studies on this concept have focused on optimizing the pre-

treatment and hydrolysis of this wood-to-ethanol process in various ways 

(cf. [50-53]). 

In 2009 Huang et al presented a study that describes how to model an 

integrated forest biorefinery. They used simulation tools to design a model 

of a biorefinery that produces ethanol, pulp, and liquid bio-fuels from 

syngas [54]. 

As in North America, Europe has seen a shift in research focus towards 

different pulp mill biorefinery solutions. One indication of this is the 

growing interest on biorefinery concepts at various branch-specific 

conferences in recent years. At the PulPaper 2007 Conference held in 

Helsinki, several topics highlighted research on pulp-mill-based 

biorefineries.  Axegård et al (2007) presented different alternative pathways 

for lignin and xylan, while Holmbom (2007) discussed the possibilities of 

producing new high-value health promoting compounds from knots and 

bark [55, 56]. At the Nordic Wood Biorefining Conference (NWBC) 2009 in 

Helsinki Axegård (2009) presented an overview of different possibilities for 

Kraft pulp mill biorefineries studied by the Swedish research institute 
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Innventia, namely lignin separation from Kraft pulp mills, separation of 

hemicelluloses from wood, and ethanol production from wood-cellulose 

(preferably forest residues) through alkaline delignification and subsequent 

hydrolysis and fermentation [57].  

A number of studies in Europe discuss the potential for extracting 

hemicellulose from wood in a Kraft pulp mill. Lundberg et al presented a 

study on the potential for process integration if a near-neutral hemicellulose 

extraction for production of ethanol and acetic acid was implemented in a 

Kraft pulp mill. The study concluded that the hemicellulose process did not 

need to imply an increase in the steam demand of the Kraft pulp mill, but 

that the sodium and sulphur balances of the mill would be disrupted in this 

process combination [58].  

The effect on pulp properties when extracting hemicellulose was studied by 

Helmerius et al [59]. In this study it was concluded that extraction in 

alkaline conditions did not affect the pulp quality or yield, but led to a lower 

concentration of fermentable sugars in the extracted liquor. On the other 

hand, extraction with water showed the opposite results, high concentration 

of fermentable xylan but deteriorated pulp quality. 

Extracting lignin for use as a biofuel or production of chemicals and 

materials has been studied extensively in Sweden in the past decade. The 

two main extraction methods are filtration or precipitation. Jönsson et al 

assessed the cost of extracting lignin by filtration in different parts of the 

Kraft pulping process. They concluded that recovering lignin from black 

liquor in the evaporation plant showed the lower cost than if recovered 

from the cooking liquor. The main reason for this was the difference in yield 

of lignin [60]. 

Precipitation of lignin from black liquor in a Kraft pulp mill was studied in a 

PhD project by Öhman [61]. The concept, named LignoBoost, was 

developed within the framework of a Swedish research programme (Future 

Resource Adapted Mill). The separation process was tested in a 

demonstration plant, and combustion trials in full scale plants were made 

[62].  

In accordance with the IFBR concept described previously, studies on black 

liquor gasification have been conducted in Sweden.  The goal of the 

BLGMF project (Black Liquor Gasification with Motor Fuel production) 

was to generate preliminary design and cost estimates for a BLGMF 
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process. The conclusions were that the process could be economically 

feasible, with a low payback period if methanol or Di-methyl-ether (DME) 

was produced [63, 64]. Studies on the effects of integration on economics 

and CO2 emissions were presented by Pettersson in her PhD project [65]. 

One conclusion from this work was that DME was the most profitable 

transport biofuel product from this type of biorefinery. 

Producing ethanol in a process co-located with a Kraft pulp mill was studied 

within the framework of the Swedish research programme “Ecocyclic Pulp 

Mill – KAM”. The results from this study indicated that the investment cost 

might be decreased if co-located due to synergetic effects of sharing utilities 

and water-and effluent treatment [66]. 

The repurposing of a pulp mill for the production of ethanol from wood-

cellulose was discussed by Innventia in several papers, where it was 

concluded that the proposed concept could potentially have low production 

costs. This was dependent on the assumed cost of the existing, reusable, 

equipment [67, 68]. This process will be discussed further in the following 

chapters of this thesis, since it has been used in the different process 

integration studies. 

A summary (from a Swedish perspective) of research activities on 

biorefineries in pulp mills can be found in reference [69].  
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5 Methodology 
Process integration studies can be used with various different aims, e.g., 

energy efficiency (heat integration), efficient raw material use, emissions 

reduction and improved process operation [70]. In this project heat 

integration studies on conceptual processes have been conducted using 

pinch analysis tools.  

Pinch analysis was originally developed in the 70’s at the ETH Zürich and at 

Leeds University [71]. The first centre for process integration was 

established in the early 1980’s. From its introduction up until today the 

pinch methodology has been used in a wide variety of processes, and several 

different new areas of use have been developed. The  methods have been 

applied to other aspects than energy efficiency, such as efficient use of 

water, hydrogen, and oxygen [70].  Another new development is the concept 

of total site heat integration (cf. [72-75]). This refers to the integration of 

several processes at an industrial site by using pinch analysis methods. In a 

similar manner, the potential for direct heat integration between different 

unit operations such as distillation columns and evaporation plants can be 

studied (cf. [70, 76]). Pinch analysis has also been combined with other 

methods for studying process integration, such as mathematical 

programming and exergy analysis (cf. [73, 77-79]). Further information on 

the different tools and methods included in process integration studies can 

be found in the books and guides written on this topic (cf. [70, 71, 76, 80]). 

At the research group where this project was conducted, a lot of knowledge 

on process integration issues related to the pulping industry has been 

developed through the years. Detailed studies on the potential for process 

integration of black liquor evaporation plants in Kraft pulp mills have been 

conducted (cf. [38, 81]), and tools for assessing the heat integration potential 

in the pulp mill hot and warm water system, so called tank curves, have 

been presented (cf. [82]). Previous research projects have also suggested 

new pinch analysis tools such as the matrix method for retrofitting heat 

exchanger networks [83],  and the so called advanced composite curves used 

for assessing the potential for heat integration and in retrofit situations (cf. 

[84-86]).  
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Pinch analysis in this project 
In the project in this thesis the main investigations into heat integration 

were coupled to thermal separation units such as distillation and 

evaporation, since these comprise a large part of the hot utility demand in 

ethanol production. Also, in Paper IV total site analysis curves were used in 

order to investigate the potential for integration of two biofuel production 

processes. 

Heat integration between a process and a few different unit operations are 

shown in the split Grand Composite Curves (GCCs) in Figure 5.1. The 

appropriate placement of distillation columns and evaporators should be 

above or below the process pinch. Otherwise heat would be transferred 

across the pinch, thus increasing both hot and cold utility demand. If a flash 

system is included in a process, the optimal number of flash steps can be 

estimated according to Figure 5.1, lower left quadrant. Finally, a heat pump, 

as shown in Figure 5.1, lower right quadrant, should be integrated through 

the pinch since removing heat from the excess region and adding it to the 

region where there is a deficit reduces both hot and cold utility demand. 

 

 
Figure 5.1. Examples of potential for integration by using split GCCs. 

Distillation column (upper left), evaporation plant (upper right), Flash 

system (lower left), and a heat pump (lower right). 
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Process-integrated evaporation 
The dominant hot and cold streams in an evaporation plant are the latent 

heat loads related to vaporization and condensation. Evaporation is 

normally restricted to the vaporization of one component (e.g. water), 

which indicates that the latent heat load is located at a constant 

temperature. Consequently, an evaporator can be depicted as a box in a 

Temperature-Enthalpy diagram when making a preliminary assessment of 

integration potentials. An evaporation plant normally consists of several 

heat integrated evaporation effects. It is therefore possible to add or 

withdraw steam at several different temperature levels, as well as vary the 

heat flow in the different effects (as shown in Figure 5.1, upper right 

quadrant). A simple estimation of the resulting steam demand of an 

evaporation plant with N effects can be done by dividing the total energy 

required for increasing the dry solids content by the number of effects (N). 

This will give an estimate of the steam demand and the potential for 

integration for this unit operation. More detailed studies on heat integration 

opportunities for evaporation plants, including variations in, e.g., boiling 

point elevation and heat transfer coefficients with temperature and 

pressure, were used in this project in order to further assess the initial 

suggestions made by the estimations described above.   

 

Process-integrated distillation 

Similar to the evaporation plant, the dominant heating and cooling demands 

in distillation are vaporization and condensation. For the initial 

investigation into the potential for heat integration, the box-approach 

should be sufficient, but in distillation latent heat loads are seldom located 

at constant temperatures since mixtures of components are often vaporized 

or condensed. Changing the pressure of a distillation column will also 

change the shape of the “box” in the Temperature-Enthalpy diagram. This 

is because the thermodynamic properties of the mixture change with 

changing pressures. For example, the relative volatility of the components 

generally decreases with increasing pressure [76]. As in evaporation, the 

distillation sequence can be designed with multi-effect columns. This opens 

up for integration potential both with the rest of the process and in 

isolation. The multi-effect distillation sequence could also be integrated in 
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various ways with the rest of the process, e.g., in two columns where one 

column is above and one below the pinch point.  

 

Process-integrated heat pumps 

Heat below the pinch point (where there is an excess) can be used above the 

pinch (in the deficit region) if the temperature level of the heat is raised by 

some type of primary energy in a heat pump. There are several heat pump 

cycles that could be used for this purpose, e.g., Closed Compression Cycles, 

Mechanical Vapour Recompression, Thermal Vapour Recompression and 

Absorption Cycles. A Grand Composite Curve (GCC) can be used to assess 

which type of heat pump is suitable for a specific process. This is dependent 

on the temperature lift, the heat sink and heat source temperatures, and the 

relative load of the heat sink and heat source. In this project Mechanical 

Vapour Recompression heat pumps have been deemed to be the best 

options for all cases studied, with reference to these parameters [87]. 

 

Process integration using advanced composite curves 

Advanced composite curves are a set of pinch curves that can be used to 

advantage in heat integration analyses. Compared to traditional curves, 

such as the GCC, these curves also give information about at what 

temperature levels existing units are located in the heat exchanger network 

[84]. The curves can be used in retrofit without the need for detailed design 

calculations, and also for the identification of temperature levels and the 

amount of excess heat available in a given process [86]. In Figure 5.2 the 

four of these curves that have been used in this project are explained 

(Figures 5.2a and 5.2b) and depicted (Figure 5.2c). A set of curves depicting 

the actual heating and cooling load temperatures, i.e., the process side of 

heaters and coolers in the heat exchanger network, have been defined 

(AHLC and ACLC in Fig. 5.2a and 5.2c). Also included in Figure 5.2 are 

the theoretical heating and cooling load curves, THLC and TCLC, which 

depict the maximum temperature of cooling demand (TCLC) and minimum 

temperature of hot utility demand (THLC) in the process, if the heat 

exchanger network is designed accordingly. The ∆THX is set as low as 

possible in order to increase the potential for internal heat recovery, and the 

∆Tmin is set to determine the minimum utility requirements. Compared to 
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the GCC, the THLC and TCLC can reveal greater potential for heat 

integration since these curves include the possibility of redesigning the 

process to increase the potential for integration for a given utility demand. 

This is further discussed in Papers II and III.  

 

 
Figure 5.2. Actual heating and cooling loads (a), Theoretical heating and 

cooling loads  (b), and advanced composite curves depicting these loads for 

the ethanol plant in Papers II and III (c).  

 

(a)

(b)

(c)
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In Papers II and III in this thesis the process has been divided into three 

different parts; the evaporation plant, the distillation sequence, and finally 

the rest of the process (named the background process). In the background 

process only the heat exchanger network is changed, while the evaporation 

and distillation plants are studied in more detail in order to improve 

integration. The reason for this is that making changes in the background 

process requires in-depth studies of pre-treatment, hydrolysis and 

fermentation, which are beyond the scope of the work presented here.  

 

Tank curves for assessing process integration opportunities 

In Paper V opportunities for the heat integration of a lignocellulosic ethanol 

plant with a state-of-the-art Kraft pulp mill have been studied. Excess heat 

in the pulp mill could be used for the purpose of integrating, e.g., 

evaporation or distillation in the ethanol process. In Kraft pulp mills the 

secondary heating system often produces more hot and warm water than 

needed. Using tank curves, the potential for reducing hot and warm water 

production and increasing the amount of excess heat available for 

integration with other processes can be assessed [82]. The assumption made 

when designing the tank curves was that water is heated in one or several 

tanks at specific temperatures, and demands for hot or warm water at other 

temperatures were met by mixing fresh water and hot water. One tank level 

was thus always the highest temperature in the hot and warm water system. 

As Figure 5.3 shows, the more tank temperature levels used, the more 

excess heat could be made available at a given ∆Tmin for the secondary 

heating system.  
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Figure 5.3. Tank curves with one and two tank temperature levels, indicating 

the excess heat made available for integration when increasing the number of 

tank temperature levels. 

Total site analysis 
In Paper IV the potential for heat integration between an ethanol process 

and a DME process is assessed. The integration of several processes 

through the utility system, as in Paper IV, can be studied by investigating 

the heat source-and sink profiles of the combined process (the site). This is 

done by starting from the GCC of each process, and then combining theses 

into a set of site composite curves, depicting the source and sink profile of 

the combined processes. The pockets in the GCC are normally omitted 

since it is assumed that this heat recovery will take place in the respective 

processes. In Figure 5.4 the site source and sink profiles are shown, as well 

as the potential for utility production (from the site source composite) and 

the utility demand (from the site sink composite). As can be seen in Figure 

5.4 there is a utility pinch, which indicates that some of the utility steam 

cannot be used. The boxes in the figure indicate the potential for 

cogeneration in the utility system [70, 74, 76, 88]. 
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Figure 5.4. Composite curves depicting the site sink and source profiles (left) 

and the resulting site utility system (right).  

Heat exchanger network design 
In Papers III and V heat exchanger networks (HENs) have been designed 

and included in the economic analysis. There exist several different methods 

for designing HENs when retrofitting existing plants (cf. [79, 85, 89, 90]). 

For grassroots designs a network close to the Maximum Energy Recovery 

(MER) for a relevant ∆Tmin of the system should be designed using a 

minimum number of units. In Paper III a network close to the MER was 

designed for each alternative with the help of the pinch analysis software 

Aspen Energy Analyzer [91]. In Paper V the existing network was 

retrofitted by using tank curves when necessary. This was done while 

changing the original design as little as possible, i.e., only removing the heat 

exchangers where excess heat could be released, and then adding the new 

heat exchange combinations. Detailed costs for piping and pressure drop 

have not been included in Papers III or V since the processes are only 

conceptual; the distance between units is not known. 
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Process simulations 
The suggested heat integration options in this project have been studied in 

more detail using process simulations of the different unit operations, such 

as heat pump integration, evaporation of residues, and product purification. 

A short description of the methods used and the main processes that have 

been simulated is presented in this subchapter. 

Evaporation plant simulations using OptiVap 
A tool for simulating multi-effect evaporation plants in Kraft pulp mills, 

OptiVap, was developed by Algehed and Olsson [38, 81]. This tool has been 

used in this project to assess the evaporation plant in the ethanol process in 

more detail. Using OptiVap one can calculate material and energy balances 

while considering physical properties such as boiling point elevation, 

viscosity and heat transfer coefficients. In the current work the tool has 

been used to assess both lignin separation using the LignoBoost concept [61, 

92], and for withdrawing and adding steam for heat integration at different 

stages of the evaporation train (Figure 5.5). In Papers III and V OptiVap 

has been used to assess the heat exchanger area needed for different plant 

designs. In Paper III an initial evaporation plant with defined size of the 

different units and heat transfer surfaces was included in OptiVap. This 

plant was then upgraded while reusing the existing units as much as possible 

and only investing in one or a few new effects. The tool is also capable of 

estimating viscosity changes when lignin is removed from the residue liquor, 

which is helpful when comparing lignin separation with electricity 

production in an ethanol process.  
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Figure 5.5. Evaporation plant with heat integration and lignin separation 

(which can be simulated in OptiVap). 

 

For further information about the OptiVap-simulation software, please 

refer to Olsson (2009) [38]. 

Process simulations using Aspen Plus 
Calculations connected to phase-changes in multicomponent mixtures are 

not easily done by hand. Flowsheeting software including predefined unit 

operations and databanks for physical properties for numerous compounds 

and mixtures of compounds are therefore often used.  A multitude of 

different such software is available, e.g., Aspen HySys, Aspen Plus, 

ChemCad, Pro II. All these programmes use similar approaches for solving 

the problems set up by the user. Empirical methods using different types of 

equations of state and/or activity factor models are included in the 

programmes, including binary interaction parameters for a multitude of 

compounds. In this study Aspen Plus [91] has been used to analyse different 

relevant unit operations in more detail. The main issue to consider when 

using this type of process simulation software is the selection of property 



Methodology 

                                         

33 
 

methods for estimating mass and energy balances. A simulation might give 

highly unrealistic results if an unsuitable property method has been used. It 

is therefore important to validate the calculations done by the programme 

in one way or another such as through experimental studies. In this project 

the property methods used for different simulations have been selected 

based on reference scientific literature, including experimental validation 

when possible (see appended papers for references).  

 

The main constraints with regard to the design of distillation columns in this 

project have been the temperatures of the condensers and reboilers. A 

temperature that is too high might lead to severe fouling of the heat 

exchangers and thus problems with short maintenance intervals, which in 

turn affect the economics of the process. A very low temperature would 

mean large volumetric flowrates, and higher cost for cooling. In this project 

the upper and lower limits have been set to 150°C and 35°C. Within these 

constraints two different types of distillation sequences have been 

investigated; distillation column(s) that increase the concentration of 

ethanol from the feed to the product concentration directly (either one 

column, or two or three in parallel sequence), or using one or two strippers 

to remove the main part of the compounds in the feed, and then a rectifier 

to separate ethanol and water (Figure 5.6). The sizing of the columns has 

been done according to methods described in [93]. The number of stages 

and feed entering stage was set to reach a reboiler duty that was close to 

minimum, i.e., a reflux ratio close to minimum. When integrating columns 

the designs were also in some cases specified to match reboiler and 

condenser loads, i.e., with higher reflux ratios than minimum, which also 

leads to fewer equilibrium stages needed [76]. Further details of the 

distillation column designs and assumptions can be found in Paper II.  
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Figure 5.6. Distillation columns in parallel (upper), and stripper + rectifier 

(lower) sequence, integrated with other parts of the process (from Paper II). 

 

In Papers II and III, distillation columns integrated with mechanical vapour 

recompression heat pumps (MVR) have been simulated. The heat pumps 

were all open cycles, i.e., ethanol-water was the working fluid. A flash drum 

was added after the heat pump and some of the ethanol-water from the 

stripper was recycled to the compressor in order to increase capacity 

(Figure 5.7). An open cycle gives both a lower investment cost and a higher 

coefficient of performance (COP) for the heat pump. The coefficient of 

performance (COP) was defined as the product of the heat sent to the sink 

and the work input (COP=Win /Qsink). The Carnot efficiency 

(ŋC=COP/COPCarnot, where COPCarnot=Th/(Th-Tl)) includes the COP and is a 

good measure of the effectiveness of a heat pump. The Carnot efficiency 
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has been calculated from the Aspen Plus simulations and has been found to 

be around 70% for all the suggested heat pumps in Paper III. In the process 

studied in Papers II and III there was no opportunity to introduce heat 

pumps other than in the distillation columns. Paper V includes an MVR 

integrated evaporation plant, however. The concept is similar to Papers II 

and III, but without the flash recycle. Instead the heat pump was designed 

with two-stage compression and intercooling. 

Figure 5.7. MVR-integrated distillation columns (from Paper III). 

 

In Paper IV several different processes have been simulated using Aspen 

Plus. A cleaning process for removing CO2 and H2S was designed as well as 

a process for DME synthesis and purification. The suggested designs for 

both of these processes were then reviewed by industrial licensors.  

Economic analysis 
The different investments in this project have been evaluated using the 

annuity method and payback period estimations. These tools are  standard 

tools for economic evaluations of investments in techno-economic studies 

(cf.[38, 40, 94]). They have been selected based on discussions with 

industrial representatives.  

The payback period (PBP) calculation does not include interest rate or the 

economic lifetime of the investment, and is therefore a rough but simple 

calculation of profitability. The PBP gives the best indications for low 
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values, but since the feasibility of an investment normally demands a low 

PBP (only a few years), this tool can be used. 

ሻܲܤሺܲ ݀݅ݎ݁ ܾ݇ܿܽݕܽܲ  ൌ ݏ݁ݑ݊݁ݒ݁ݎሺ ݈ܽݑ݊݊ܽ ∆ሻܫሺ ݏݐݏܿ ݐ݊݁݉ݐݏ݁ݒ݊ܫ  െ  ሻݏݐݏܿ ݃݊݅ݐܽݎ݁

 

The net annual profit, or net annual savings, has been estimated in order to 

annualize the economic results of the different investments discussed 

throughout the project. The revenues and operating costs were calculated 

for the year zero, and were assumed to be constant throughout the lifetime 

of the plant. The investment cost was annualized by using the annuity factor 

(also called the capital recovery factor), which was defined as the share of 

the loan for an investment that needs to be paid every year throughout the 

lifetime of the investment (n) in order to pay off investment and interest (i). 

,ݎݐ݂ܿܽ ݕݎ݁ݒܿ݁ݎ ݈ܽݐ݅ܽܥ  ሺܽሻ ݎݐ݂ܿܽ ݕݐ݅ݑ݊݊ܽ ݎ ൌ  ݅1 െ ሺ1  ݅ሻି 

ݐ݂݅ݎܲ ݈ܽݑ݊݊ܣ ݐ݁ܰ  ൌ ݏ݁ݑ݊݁ݒ݁ݎሺ ݈ܽݑ݊݊ܽ  ∆  െ ሻݏݐݏܿ ݃݊݅ݐܽݎ݁ െ ܫ ൈ ܽ 

 

Apart from the net annual profit, the economic analysis in Paper III has 

estimated the effect on ethanol production cost that the implementation of 

different investments have. The production cost was defined as the total 

operating costs and benefits (mainly from by-products) and the annualized 

investment cost for the plant. 

.݀ݎ ܪܱݐܧ  ݐݏܿ ൌ ݏݐݏܿ ݃݊݅ݐܽݎ݁  ܫ ൈ ܽ െ  ݏݐݑ݀ݎݕܾ ݉ݎ݂ ݏ݁ݑ݊݁ݒ݁ݎ 

 

Capital cost estimations  
The estimated costs for relevant equipment in the different studies have 

been retrieved in three different ways; for some equipment equations 

approximating correlations of costs dependent on a design variable have 

been used, in other cases estimations have been done using the economic 

process evaluation software Aspen Process Economic Analyzer [91], and 

finally reference investment cost data from other studies and industrial 

quotations have been used. 
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Operating cost estimations 
Costs related to the operation of the different ethanol processes have 

mainly been obtained from studies made by Innventia (cf. [67, 68, 95]).  

Estimation of the value of products 
Paper I includes a sensitivity analysis with respect to lignin and electricity 

prices. In the following papers the economic analysis has included an 

assessment of the sensitivity of the different biorefinery concepts by using a 

scenario tool developed by Axelsson and Harvey [96]. The benefit of using 

the tool is that within each scenario different prices and CO2 emissions are 

interconnected and related to the inputs in the tool, i.e., fossil fuel prices 

and different policy instruments. The results from the scenario analysis can 

thus give an indication of the potential and robustness of different 

biorefinery pathways under different assumptions regarding the future 

(Figure 5.8) 

 
Figure 5.8. Overview of the calculation flow in the scenario model used in this 

project (courtesy of Axelsson and Harvey [96]). Green arrows represent 

required inputs, boxes represent calculation units, black arrows represent 

information flow within the model, and blue arrows indicate outputs from the 

tool. 
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In the papers in this thesis the scenario tool has been used for generating 

prices for electricity and lignin that are coherent. The model assumes that 

the price for electricity is based on the total generation cost for the power 

plant that is the build margin, i.e., has the lowest production cost, in the 

scenario used (in most cases coal condensing power plants). The price of 

lignin is assumed to be equal to the Willingness To Pay (WTP), defined as 

the price coal power plants are willing to pay for biomass for co-firing. The 

price is equal to the market coal price (including CO2 emissions charge) 

with a small reduction due to the additional costs for the power plant 

related to the use and transport of wood fuel instead of coal. It should be 

mentioned that the value of lignin could be substantially higher in other 

applications, e.g., substituting fuel oil or being used for production of 

chemicals and materials. The prices used in here could therefore be seen as 

conservative. 

In Paper III the repurposed pulp mill has been evaluated by using inputs to 

the model (fossil fuel prices) from a report by the European Commission 

[97]. The marginal producer of electricity is assumed to be a coal power 

plant in all scenarios (output from the scenario tool). Three different 

scenarios have been assessed, where the difference is the assumed level of 

the charge for CO2 emissions. An assessment of the influence of financial 

support for green (renewable) electricity production has also been included 

in the paper (Table 5.1). 

 

Table 5.1. Electricity and lignin prices (when lignin is assumed to be co-fired 

in a coal power plant) in Paper III. 

Year 2020 w/o support with support 
Scenario 1 2 3 1 2 3 
Electricity [€/MWh] 59 95 65 85 121 91 

Lignin [€/MWh] 19 41 23 34 57 41 

  

In Paper IV the scenario tool has been used to estimate the effect of 

implementing CO2 captured in a biorefinery producing ethanol and DME. 

The cost for electricity is related to the value of the captured CO2, i.e., the 

CO2 charge, according to the scenario tool. The inputs to the scenario tool 

come from the IEA technology roadmap on biofuels for transport [98]. 

Since there is a net deficit of electricity in the process in this paper, 



Methodology 

                                         

39 
 

electricity needed for the compression of CO2 to pipeline pressure is bought 

from an assumed marginal producer (Table 5.2). 

 

Table 5.2. CO2 charge and corresponding electricity price for the four 

scenarios used in Paper IV. 

CO2 
charge 

(corresponding el. price 
[€/MWh]) 

[€/ton] 2020 2030 2040 
level 1 15 (58) 15 (62) 15 (62) 
level 2 20 (63) 27 (72) 37 (79) 
level 3 30 (72) 45 (87) 68 (93) 
level 4 52 (92) 85 (94) 117 (100) 
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6 Studied processes 

The Kraft pulp mills 
All the papers included in this thesis are based on computer models of Kraft 

pulp mills. In Papers I-IV a model of a typical Scandinavian Kraft pulp mill, 

developed in a Swedish research programme called FRAM (Future 

Resource Adapted Mill), was the basis [99, 100]. In FRAM several different 

models of Kraft pulp mills were defined, both typical mills and state-of-the-

art mills with hardwood or softwood as feedstock.  In Paper V an 

integration study was conducted on a modern state-of-the-art pulp mill 

based biorefinery. The model used in this paper was an updated version of 

one of the reference mills in the FRAM programme [101]. The feedstock to 

the mill was Eucalyptus Urograndis (hardwood) since this type of mill 

would most likely be built in a country with Eucalyptus feedstock, such as 

Brazil. Table 6.1 shows some key data and design information for the two 

model mills in this project [40, 101]. 

 

Table 6.1. Key data for the mills in this project (ADt = Air Dry tonne pulp). 

 FRAM type mill Updated reference mill Units 

Wood species 
Spruce 
 (softwood) 

Eucalyptus (hardwood) - 

Pulp production 326 600 1 400 000 ADt/yr 
Digester yield 46 55-56 % 
Process steam consumption 17.4 7.7 GJ/ADt 
    
Steam data:    
High pressure (HP) 60 bar (450°C) 101 bar (500°C)  
Medium pressure (MP) 11.5 bar 11.5 bar  
Low pressure (LP) 4.5 bar 4.5 bar  
    
Condensing turbine? No Yes  
Power generation 593 1438 kWh/ADt 
Power consumption 791 640 kWh/ADt 
Fossil fuel used? Yes, in lime kiln No - 

Evaporation plant 
5.5 effects, 
 73 % DS 

7 effects, 
 80% DS 

- 
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In the pulp mill in Papers I-III the steam produced in the recovery boiler 

was at 60 bar(a) and 450°C, and there were two steam headers at 11.5 and 

4.5 bar(a). Electricity was produced in a back-pressure turbine, but no 

condensing tail existed. Since upgrades to the steam network were assumed 

to have been made in the typical Scandinavian Kraft pulp mill, the turbine 

was too small to accommodate all the HP steam. Therefore some steam was 

let down through expansion valves and released to the atmosphere. A bark 

boiler existed in the plant, but was not used. Instead bark was assumed to be 

sold, and fuel oil was bought in order to fire the lime kiln in the chemical 

recovery cycle. 

In Paper V the steam produced in the recovery boiler was at 101 bar(a) and 

500°C. Electricity was produced in both a back-pressure and a condensing 

turbine. The power boiler was fired with bark and primary sludge from the 

waste water treatment plant, and the lime kiln was fuelled with bark. 

Process steam is supplied at two pressure levels, the same as in Papers I-III. 

 

The ethanol process 
In Papers I-IV the ethanol process was assumed to replace the pulping line 

in the typical Scandinavian Kraft pulp mill described in the preceding 

subchapter. The benefit of the design was that many of the unit operations 

in the ethanol plant already existed in the pulp mill to be converted.  In 

Paper V the ethanol process was co-located with the state-of-the-art pulp 

mill. The benefit of this was that the pulp mill recovery boiler, chemical 

recovery cycle, and utility systems could be utilized. 

 Figure 6.1 shows a block diagram of the ethanol process studied in Papers 

I-III. The processes in Papers IV and V are conceptually the same as shown 

in Figure 6.1; the difference is that in Paper IV the recovery boiler was 

replaced with a gasifier, and in Paper V the chemical recovery cycle was 

integrated with the Kraft pulp mill. 
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Figure 6.1. Block diagram of the conceptual ethanol production process. 

 

The ethanol process is less sensitive to the quality of the raw material than 

the pulping process. Therefore it should be possible to switch to a lower 

quality (and cheaper) raw material, e.g., fines, forest residues or 

lignocellulosic waste fractions. One problem with lower quality fractions is 

the heterogeneity of the biomass. In Papers I-IV in this project no data for 

lower quality fractions had been put forth, instead existing data for 

softwood was used.  The raw material composition in Paper V comes from 

studies made on lower quality feedstocks (Table 6.2). 
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Table 6.2. Chemical compositions of different biorefinery feedstocks (average 

values according to [19]) and the composition of the raw material in this 

project. The compositions of bark and forest residues vary substantially 

depending on wood species. 

Component  Wood Bark 
Forest 

residue 

Papers 

 I-IV 

Paper 

V 

Cellulose  40-45 20-30 35-40 40 41 

Hemicellulose  25-35 10-15 25-30 27 25 

 - Hexoses    14 15 

 - Pentoses    8 10 

 - Other    5  

Lignin  20-30 10-25 20-25 26 31 

Extractives  3-4 5-20 5 3 2 

Other  1-2 5-25 4 4 1 

 

The possible benefits of repurposing a Kraft pulp mill into an ethanol plant 

are that the pre-treatment can be done with the same chemicals as used in 

the pulping process, i.e., NaOH and Na2S, and delignification can be done 

prior to the ethanol production line. Studies on pre-treatment in a Kraft 

digester using only OH- as the cooking chemical were used in Papers I-III in 

this project [67, 68]. The benefit of this approach is the potential of 

extracting a sulphur-free lignin by-product. 

The capacity of the ethanol production process in Papers I-III is 

approximately 1800 tonnes dry wood/day. In the Kraft pulp mill, with a 

capacity of 2065 tonnes dry wood/day, sodium hydroxide is also produced 

by sulphide hydrolysis (S2- + H2O -> HS- + OH-). The absence of sulphide 

ions will decrease the production rate of the digester at a given alkali charge 

[95]. Pre-treatment yields and conditions in the papers in this project are 

shown in Table 6.3. 

In Paper IV it was assumed that both sodium hydroxide and sulphide are 

used as cooking chemicals. The yields were assumed to be the same as in the 

other papers, based on typical Kraft pulp mill pre-treatment yields, and 

references discussing  hydrolysis and fermentation of Kraft pulp (cf. [48, 

49]). 

In Paper V only sodium hydroxide was used as the cooking chemical, but 

since the pre-treatment unit was integrated with the Kraft pulp mill the 

cooking liquor was a mixture of make-up NaOH from the pulp mill and 
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oxidized white liquor. In the oxidized white liquor the sulphide was oxidized 

to SO3
- and SO4

2-. These sulphur ions were not active in the Kraft digester. 

 

Table 6.3. Pre-treatment yields and conditions used in this project (cf. [67, 68, 

95]). 

NaOH charge % on wood ~20 

Kappa number  ~30 

Cellulose yield % on cellulose 80 

Hemicellulose yield % on Hemicellulose 40 

Total carbohydrate yield % on wood 43 

Temperature °C 160-180 

 

The DME process 
In Paper IV it was assumed that the residue liquor in the ethanol plant was 

gasified and synthesised to DME (Di-Methyl-Ether) (Figure 6.2). Research 

projects on black liquor gasification from Chemrec in Sweden and Princeton 

University in the USA can be found in the scientific literature [47, 63]. A 

number of different process configurations and products were assessed in 

these projects. In Paper IV it was assumed that DME was produced 

according to the pathway presented by Chemrec, i.e., entrained flow 

gasification of the spent liquor, then removal of CO2 and sulphur by 

absorption in chilled methanol, and finally a two-step synthesis from syngas 

(CO, H2) via methanol to DME. The process is described in more detail in 

Paper IV. 

 
Figure 6.2. Block flow diagram of the black liquor gasification process for 

production of DME. 
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7 Results & Discussion 
In this project three different Kraft pulp-mill-based biorefineries have been 

studied from a process integration point-of-view. In Papers I-III the ethanol 

plant was based on a repurposed average Scandinavian Kraft pulp mill, in 

Paper IV the biorefinery was designed to produce both ethanol through a 

biochemical pathway and DME through a thermochemical pathway, and 

finally in Paper V the ethanol process was co-located and combined 

(chemical recovery and residue processing) with a state-of-the-art reference 

mill. The results from the different studies have been expressed in terms of 

either opportunities for improving energy efficiency, or economics. In this 

chapter a brief description of the results from the studies of each of the 

processes is included followed by a short summary of the findings.  

Energy efficiency 
Energy efficiency in ethanol production is an important parameter since 

higher efficiency means greater potential for selling by-products if the 

decrease in energy usage is transformed into electricity or other biofuels. 

The different processes in this project have all been subjected to pinch 

analysis studies, and the results are presented in brief in this chapter. 

Ethanol production in a repurposed Kraft pulp mill 
The base case in these papers was a repurposed pulp mill where the only 

investment made was in the ethanol line. No improvements in the utilization 

of utility steam were implemented and no upgrading of the evaporation 

plant was done. Since this pulp mill had a large surplus of steam and since 

ethanol production has a lower steam demand than pulp production, the 

base case vented a lot of steam to the atmosphere.  

Figure 7.1 shows the composite curves (CC) for a ΔTmin corresponding to 

the process steam demand of the background process, excluding 

evaporation and distillation, in the base case ethanol plant (ΔTmin=28.5 K). 

These curves indicate that there is potential for improving energy efficiency 

if the ΔTmin is decreased.  
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Figure 7.1. Composite Curves of the background process in the base case. 

The utility demand corresponds to a global ΔTmin of 28.5 K. 

 

A number of different heat integration alternatives between the heat 

exchanger network of the background process and the distillation and 

evaporation plants were assessed for this process concept (Figure 7.2). 

Alternatives A-I were derived using conventional pinch methods, i.e., 

solving pinch violations in the heat exchanger network and then integrating 

distillation and evaporation. Alternatives J-M were derived using the 

advanced composite curves (TCLC, THLC) described in the method 

chapter and maximizing the integration of distillation and evaporation with 

the heat exchanger network of the background process in order to reduce 

utility demand. Alternatives N-Q show different suggestions for heat pump 

integration. 

  

0

50

100

150

200

0 20 40 60 80 100

T
 (°

C
)

Q (MW)

Hot utility
38.9 MW

Cold utility
31.3 MW



Results & Discussion 

                                         

49 
 

 

 

A) B) C) 
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N) O) 
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Figure 7.2. The different alternatives included in this work. BG stands for 

background process. Alternatives D-I are distillation columns (D-F) or 

stripper(s)/rectifier (G-I). 

 

The demands for process steam in the different alternatives in Figure 7.2 are 

shown in Figure 7.3. As can be seen, the base case (orig) steam demand is 

approximately 105 MW, and the different suggested alternatives are about 

25-40% lower. In the alternatives where heat is integrated with the 

advanced composite curves (TCLC/THLC), the resulting steam demand is 

marginally lower than in alternatives A to I. Figure 7.3 also shows that 

including a heat pump in distillation can result in an even lower steam 

demand, but since the distillation utility demand is already low in the base 

case the reduction is not that great. The utility reduction owing to heat 

pump integration also comes at the expense of increasing electricity demand 

in the process. 
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 Figure 7.3. Steam demands in the studied process alternatives (based on data 

in Paper 2). 

Ethanol-and DME production in a repurposed Kraft pulp mill 
The conceptual design of a biorefinery, based on a repurposed typical 

Scandinavian Kraft pulp mill, producing both ethanol and DME, was 

assessed in this project. The ethanol process was designed previously, as 

described in the preceding subchapter. The thermochemical DME process 

was designed in this study by using process simulation software, however. In 

the study it was shown that in theory the two subprocesses could be 

thermally integrated enough to virtually remove the entire need for external 

fuel for hot utility production. If assuming a more realistic target, such as 

only heat integration through the utility system, the deficit of utility steam 

would be approximately 62 t/h, as indicated in Figure 7.4. Since the existing 

boiler at the plant only produces 50 t/h, there would be a need for external 

fuel in this case. One reason for this is that LLP steam is produced in the 

utility system, this steam cannot be utilized in the current design of the 

process.  
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Figure 7.4. Site source and sink profiles and the resulting utility system for the 

combined  ethanol and DME biorefinery. 

 

The utility demand in Figure 7.4 can be reduced so that the internally 

produced hot utility will be enough to cover for the process, if the process is 

to some extent redesigned. This is shown in more detail in the appended 

paper.  
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One result of this study was the generation of the main energy flows for the 

total process, as shown in Figure 7.5. As can be seen in the figure there is no 

demand for external fuel in the CHP plant. This is valid if the ethanol and 

DME processes are well heat-integrated. When gasifying the residue liquor 

to produce DME, the only possibility to produce power is through the high 

pressure steam from the bark boiler. Therefore the electricity production in 

this biorefinery concept will be low, and external electricity must be bought 

(as shown in Figure 7.5). 

Ethanol production co-located with a modern Kraft pulp mill 
If a comparatively small ethanol production plant is designed in 

combination with a modern Kraft pulp mill several new heat integration 

opportunities emerge due to the combination of the two processes. Since 

lignin is extracted as a by-product in this ethanol process design, the residue 

liquor only needs to be evaporated to approximately 35% dry solids content 

(DS) in the ethanol plant. At this dry solids content the lignin can be 

extracted, and then the remaining residue liquor can be sent to the pulp mill 

evaporation plant. The difference in the evaporation target (35% DS 

instead of the 80% DS in the repurposed pulp mill) generates new 

possibilities for heat integration.  There is also potential for heat integration 

between the ethanol process and the pulp mill that might result in an 

increase in the energy efficiency of the process. 

The study was performed as a comparative analysis with a base case 

biorefinery process where no opportunities for heat integration were 

implemented. The evaporation plant was assumed to be designed with 4 

steam effects, the distillation sequence was comprised of three heat-

integrated columns (two parallel strippers followed by a rectifier column), 

and the pre-treatment unit utilized recycled flash steam for presteaming. 

The evaporation plant and distillation sequence were designed in various 

ways in this paper, in order to compare different alternatives in terms of 

energy efficiency.  

The different heat integration alternatives investigated in this paper are 

shown in Figure 7.6. 
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Figure 7.6. The different heat integration alternatives in the co-located ethanol 

plant and Kraft pulp mill. EPEP = Ethanol Process Evaporation Plant, 

PMEP = Pulp Mill Evaporation Plant. 

 

One benefit of only evaporating the residue liquor to about 35% DS is that 

the elevation of the boiling point is low (approximately 4.5°C for one 

evaporation effect at atmospheric pressure). Due to the low temperature 

lift, an evaporation plant integrated with a mechanical vapour 

recompression heat pump (MVR) could be interesting (Figure 7.7, upper). 

Since the evaporation plant in this pulp mill is much larger than in the 

ethanol plant, and has a surface condenser operating at 54°C on the hot 

side, it is also possible to integrate the evaporation into the ethanol plant at 

temperatures below the surface condenser temperature of the pulp mill 

evaporation plant (Figure 7.7, lower). The benefit of this would be 

negligible live steam demand, and the downside would be that the size of 

the plant would have to be large due to large volumetric flowrates and low 

heat transfer coefficients. 
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Figure 7.7. Ethanol process evaporation plant integrated with MVR-heat 

pump (upper) and pulp mill evaporation plant (lower). 

 

The secondary heating system in the pulp mill could also be modified by 

using the tank curves, described in the methodology chapter, in order to 

improve the potential for heat integration between the two processes. 

Excess heat at high temperatures is available in the secondary heating 

system. This heat could be used for integration in several ways in this 

process concept. Both of the evaporation plants (in the ethanol process or in 

the pulp mill) and the distillation columns could be run with excess heat 

covering part or all of the hot utility. The distillation sequence in the 

ethanol process integrated with the excess heat from the secondary heating 

system is depicted in the split Grand Composite Curves (GCCs) in Figure 

7.8. 
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Figure 7.8. Split Grand Composite Curves indicating the potential for 

integration of the ethanol beer column and excess heat in the pulp mill 

secondary heating system. 

 
Figure 7.9. Process integration between excess heat from the pulp mill 

secondary heating system and the first column in the distillation sequence. 

 

A more detailed description of the heat integration in Figure 7.8 is shown in 

Figure 7.9. The steam condensed in the turpentine condenser in the pulp 

mill is used to reform steam at atmospheric pressure. The atmospheric flash 

steam, the reformed steam, and the steam from the smelt dissolver, are used 

in the stripper reboiler in the distillation sequence. Some utility steam might 

be needed in the reboiler as well.  
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Another integration possibility included in the study was to upgrade the 

ethanol process evaporation plant to 5 effects, i.e., to reduce steam demand 

from the base case (30 MW) to 24 MW low pressure steam demand, and to 

have a high enough design pressure for this plant so as to be able to 

integrate it with the ethanol distillation section. 

It is, in some cases, possible to integrate the pulp mill evaporation plant 

with the excess heat from the secondary heating system, and at the same 

time make improvements in the ethanol process. For example, the MVR-

integrated evaporation in the ethanol process does not reduce the excess 

heat available in the secondary heating system in the pulp mill. 

The resulting hot and cold utility demands for the different alternatives 

investigated are shown in Table 7.1. The table also includes a case where the 

evaporation plant is upgraded to 5 effects steam economy (alternative A) 

and a case where the pulp mill evaporation plant is integrated using the 

excess heat available in the hot and warm water system (alternative B). 

 

Table 7.1. Hot and cold utility demands, and potential increase in electricity 

production, for the different alternatives. 

Alternatives          Qh Qc ∆Qh ∆Qc ∆Woutput
(A-G in Figure 6.7) [MW] [MW] [MW el]

Base case 400 410 - -
A - 5 eff EPEP 394 404 6 6 1.3
B - Pi PMEP 392 413 8 -3 1.7
C - Pi EPEP 375 398 25 12 5.3
D - Pi Dist 390 400 9 10 1.9
E - Int EPEP/PMEP 377 379 23 31 4.7
F - MVR EPEP 375 391 25 19 1.6

F with int PMEP 363 398 37 12 4.1
G - Int Dist/EPEP 386 401 14 9 2.9

G with int PMEP 371 410 29 0 6.1  
 

The base case process has a hot utility demand of 400 MW and a cold utility 

demand of 410 MW. If the EPEP is designed with 5 heat integrated 

evaporation effects instead of the original 4 the savings would be 6 MW of 

LP steam (24 MW  steam demand with 5 effects compared to 30 MW with 4 

effects). If the distillation columns were integrated with the hot and warm 

water system the decrease in utility demand would be 9 and 10 MW, 

respectively (duties of reboiler and condenser connected to utility streams). 

The highest reduction of utility demand for one single measure is when the 
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EPEP is integrated with the PMEP. Combined measures (as in alternatives 

C, F and G) would reduce the hot and cold utility demands the most. 

Comparing the potential for reduction of utility demand when integrating 

the EPEP or PMEP with the excess heat from the hot and warm water 

system, it can be seen that integration of the EPEP shows much larger 

potentials. 

Summary - energy efficiency  
A comparison of the different ethanol process steam and electricity 

demands, and energy allocation possibilities, are shown in Figure 7.10. All 

of the processes are self-supplied in terms of hot utility, which means that 

the steam demand is supplied from a steam boiler at the process site. 

Electricity demands are also supplied internally in all cases except for the 

combined ethanol-and DME process. 

 

Figure 7.10.  Utility demands (negative values) and energy allocation 

possibilities (positive values) in the different processes studied. 

 
The results indicate that the repurposed Kraft pulp mill, in this case, almost 

doubles the output of by-products (electricity or lignin), if steam-saving 

measures are implemented. The output of lignin would almost be of the 

same order as ethanol. Adding a gasification plant to the ethanol process 

would substantially change the energy balance of the process. The steam 
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demand would become lower due to the potential for the heat integration of 

the two processes, but the production of steam would also become lower 

since there is no recovery boiler. Power would need to be imported to the 

process, and DME would be the main product instead of ethanol. Finally, 

co-locating and combining an ethanol plant with a much larger Kraft pulp 

mill would not change the utility demands of the process in the base case. 

The new opportunities for heat integration in this process combination 

would, however, reduce the utility demand substantially, if implemented.  

Economic analyses 
An increase in energy efficiency can be transferred to an increase in by-

products sales since less energy is needed internally in the process. Since an 

increase in by-products sales normally also demands an increase in 

investment costs owing to the larger production capacity needed, it is not 

always clear that the economics of the process will improve from a decrease 

in internal energy usage. In this chapter the results from the economic 

analyses made in this project are described in brief. 

Ethanol production in a repurposed Kraft pulp mill 
In the studies conducted on the ethanol process based on a repurposed 

Kraft pulp mill the energy efficiency analysis indicates that the process 

could be designed in a way that would enable the energy input to be 

transferred to the output of different products in a better way than is 

suggested in the base case design. But is this beneficial from an economic 

point-of-view? In Figure 7.11 the costs coupled to the different alternative 

investment possibilities analysed are shown, i.e., costs for evaporation, 

distillation and HX network redesign. Original means the base case process 

with minimum investment costs, i.e., only the investment in a new 

distillation unit is included in Figure 7.11. Only HX means that additional 

investments are necessary in order to improve the heat exchanger network, 

and only evap means that original + upgraded evaporation are invested in. 

Recovery includes the different alternatives where internal heat recovery in 

the background process is the objective (alternatives A-B and D-I in Figure 

7.2), Integration means the alternatives for improving heat integration 

between the three parts of the process (alternatives J-M, N and P in Figure 

7.2). MVR depicts the different alternatives including an MVR heat pump 

in the distillation (alternatives C and N-Q in Figure 7.2). As can be seen in 
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Figure 7.11 measures intended to decrease steam demand come at a cost, 

and the lower the steam demand the higher the cost. The lowest steam 

demand can be reached by investing in an MVR heat pump but the demand 

for electricity will consequently increase. It should also be noted that 

Integration alternatives in general have a lower steam demand than 

Recovery but that the cost is somewhat higher. The alternatives called only 

HX and only evap can be combined into alternative F or I, which are the 

best Recovery alternatives (with a steam demand similar to the Integration 

alternatives). The benefit of combining alternatives, as in alternatives F and 

I, are that the investment can be made in two steps, while all the Integration 

alternatives need to be dealt with in one major investment. Since high 

capital costs might be a barrier to implementing energy efficiency measures 

this might be an important parameter to consider [3]. 

Figure 7.11. Installed equipment cost (distillation, evaporation and 

background process) vs. process steam demand for the studied 

alternatives in the repurposed pulp mill ethanol plant. 

 

A comparison between extracting lignin and increasing electricity 
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investment strategies employed (Case 1 is the base case, Case 2 includes 

upgrading of evaporation and the HX network (no heat integration), Case 3 

includes heat integrated evaporation) showed similar correlations between 

electricity and lignin prices. If the electricity price was more than 2.9 -3.1 

times higher than the lignin price, electricity would yield higher annual 

earnings than lignin.  

 

 
Figure 7.12. Lignin price where annual earnings for lignin extraction and 

increased power production are equal, at a given electricity price. 

 

Figure 7.13 shows the ethanol production cost for 6 different alternatives. 

The alternatives F, L and N have been selected since they are the best 

alternatives in each category (heat recovery, heat integration and MVR) in 

terms of the incremental cost for steam-saving measures. Two other 

alternatives are included for comparison (New is the base case with 

investment in turbines or lignin extraction, HX includes an improved HX 

network and investments in turbines/lignin extraction). With regard to the 

discussion above the electricity price / lignin price is 2.45, which implies that 

lignin in most cases would be the better choice in Figure 7.13. This is 

evidently not the case for the alternative with only a new HX network. The 

reason for this is that the relatively higher steam demand in the process 

limits the possibility of extracting lignin.  
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The ethanol production cost is largely dependent on the price of raw 

material and the investment cost. With the initial estimates of the 

investment cost for existing equipment, i.e., the pulp mill, and raw material, 

i.e., softwood, these two costs alone would add up to approximately 460 

EUR/m3 ETOH. This is set as the intersection between x/y-axes in Figure 

7.13. In the original case the total ethanol production cost was 635 EUR/m3 

ETOH, indicating that raw material and investment costs comprise a very 

large part of the cost of ethanol. Nevertheless the decrease in ethanol 

production cost when implementing energy efficiency measures could be 84 

€/m3 EtOH (Alternative F with lignin as the by-product, compared with the 

base case), which in annual profits is a difference of almost 11 M€/yr. The 

difference between only using excess heat (New turb/lign) and far-reaching 

energy efficiency measures is 53 €/m3 EtOH, i.e., almost 7 M€/yr in annual 

profits. 

 
Figure 7.13. The ethanol production cost (Minimum selling price) for the 

evaluated design alternatives.  

 

Figure 7.14 shows the effect of different measures in the short term, using 

the prices stated in Table 5.1. As seen in the figure all improvements done 

in the process will lead to a lower production cost for all three scenarios. It 
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can also be seen that if the by-product in the process is electricity a more 

energy efficient process leads to a lower production cost. The only 

exception is alternative N where the MVR heat pump adds to the 

production cost.  

  

Figure 7.14. Short-term effects of by-product sales on the total ethanol 

production cost, given 3 different energy market scenarios. (The x-axis and y-

axis intersect at 460 €/m3 EtOH, corresponding to the cost for raw material 

and purchase of the existing pulp mill). The dotted line in the figure indicates 

the base case production cost. 
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decrease the production cost of ethanol. The second scenario shows that if 

the fossil fuel price is assumed to increase and the CO2-charge for emissions 

from non-renewable sources is high, a process with high energy efficiency 

will be clearly better than the original process. In the third scenario, which is 

somewhere in between the two others, the results are slightly better than 

scenario 1.The PBP for making investments in energy efficiency 

improvements are between 8 years (alternative N with lignin in scenario 1) 

and 1 year (only extracting lignin in scenario 2), and the PBP for the total 

investment (assuming the same ethanol revenue as before, 0.6 €/l) is 

between 12 years (HX with lignin in scenario 1) and 6 years (alternatives F 

and L with lignin as by-product in scenario 2). 

Figure 7.15 shows the effect of different measures when a support of 26 

€/MWhel for renewable electricity production is introduced (as shown in 

Table 5.1). It is obvious that all alternatives benefit from the higher value of 

the by-product, and also that the alternatives with a high degree of energy 

efficiency measures benefit the most.  

The PBP for making investments in energy efficiency improvements are 

between 5 years (alternative N with turbines in scenario 2) and 1 year (only 

extracting lignin in scenario 3), and the PBP for the total investment 

(assuming the same ethanol revenue as before, 0.6 €/l) is between 9 years 

(new turbines in scenario 1) and 6 years (alternative F with lignin and L 

with lignin in scenario 2). 
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Figure 7.15. Long-term effects of by-product sales on the total ethanol 

production cost, given 3 different energy market scenarios. (The x-axis and y-

axis intersect at 460 €/m3 EtOH, corresponding to the cost for raw material 

and purchase of the existing pulp mill). The dotted line in the figure indicates 

the base case production cost. 

Ethanol-and DME production in a repurposed Kraft pulp mill 
The feasibility of the biorefinery that produces both ethanol and DME is 

sensitive to several different variables. In the base case, with an annuity 

factor of 0.1, an electricity price of 60 €/MWh, and estimated selling prices 

of ethanol and DME at 490 and 440 €/m3, respectively, the net annual 

earnings would be approximately 25 M€/yr. Since the investment cost is 

350

400

450

500

550

600

650

700

1 2 3

Power production with support

new turb

HX turb

Alt F turb

Alt L turb

Alt N turb

612617

300

350

400

450

500

550

600

650

700

1 2 3

Lignin extraction with support

lign

HX lign

Alt F lign

Alt L lign

Alt N lign

587

460

460

€/
m

3 
Et

O
H

€/
m

3 
Et

O
H



Results & Discussion 

                                         

65 
 

high, the annuity factor will have a substantial effect on the profitability of 

the process concept (Figure 7.16).  
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Figure 7.16. Sensitivity analysis of net annual earnings vs. annuity. 

 

Other important parameters are shown in Figure 7.17. In the figure, 

different variables have been increased/decreased up to 30% in order to 

study the effects on annual earnings.  
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Figure 7.17. Sensitivity analysis of net annual earnings vs. different important 

parameters. 

 

As can be expected, the prices of the products (DME and ethanol) have the 

greatest effect on plant profitability. An increase in ethanol or DME price 

by 30% would give an increase in annual earnings of 20 to 30 M€/year. The 
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costs of investment and raw material are the two other major influences on 

the feasibility of this process; a 30% change in these parameters would 

imply a change in annual earnings of 15-20 M€/year. 

The net annual earnings allocated to CCS in this conceptual biorefinery are 

shown in Figure 7.18, for four different CO2 charge levels (Table 5.2). Since 

the lowest charge level is constant and below the calculated cost for CCS, 

the net annual earnings will be negative. For the other three cases the CCS 

will give positive annual earnings, although for level 2 the increase is low. 
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Figure 7.18. Net annual earnings when investing in a CCS plant for four 

different CO2 charge levels. 

Ethanol production co-located with a modern Kraft pulp mill 
The different suggested designs for the ethanol process co-located with a 

state-of-the-art Kraft pulp mill, shown in Figure 7.5, have been subjected to 

a comparative profitability analysis. If the annuity factor is 0.1 and the 

electricity price 60 €/MWh, the increase in revenue from greater electricity 

production versus the increase in investment cost compared to the base case 

can be estimated according to Figure 7.19. 
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Figure 7.19. Results from the economic analysis at an annuity factor of 0.1 

and an electricity price of 60 €/MWh. Pi = integration with pulp mill hw/ww 

system, EPEP = Ethanol Process Evaporation Plant, PMEP=Pulp Mill 

Evaporation Plant. 

 

Several of the alternatives in Figure 7.19 have similar economic potential. 

Alternatives B, C, D, and E differ in terms of investment needed and in the 

expected revenue from electricity, but have similar payback periods. 

Alternatives A, F and G have less potential (are located low and to the 

right), but since these alternatives can be combined with the heat 

integration of the pulp mill evaporation plant and the secondary heating 

system, they can still be of interest. The complexity of the process would 

increase due to the need for several measures, however. 

In Figure 7.20 the payback periods for the different heat-integration 

alternatives are shown at different electricity prices. Since the cost for 

integrating ethanol distillation is low the payback period for this alternative 

will be close to 0. The payback period for the 5-effect evaporation plant is 

long, while all the other alternatives show approximately similar results, 

between 1 and 3.5 years depending on the electricity price.  
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Figure 7.20. Sensitivity analysis of the payback period versus the electricity 

price for the alternatives in Table 2. EPEP = Ethanol Process Evaporation 

Plant, PMEP=Pulp Mill Evaporation Plant. 

Summary - economic analyses 
The studies show that there are large potentials for improving the 

profitability in the ethanol process when repurposing a typical Scandinavian 

Kraft pulp mill, in part due to the fact that the mill is old and inefficient. 

The economic analysis indicates that energy efficiency measures are 

beneficial even if only existing excess steam is utilised in the process. It was 

found that the process will be substantially improved, i.e., the production 

cost will decrease, in all the scenarios, whether electricity or lignin is the by-

product, if far-reaching energy efficiency measures are implemented, 

however. 

The by-products are shown to play an important part in the economic 

feasibility of the conceptual biorefinery.  As shown in Figure 7.21, the 

combined ethanol and DME process shows a similar ethanol production 

cost as the best alternatives for production of ethanol in a repurposed mill 

with a recovery boiler, i.e., when the lignin price is high, if the revenue from 
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DME sales are allocated to the ethanol production cost. As can be seen in 

the figure, the ethanol and DME process is sensitive to the selling price of 

the products. A change in the annuity factor will also affect this process 

substantially due to the high investment cost, as shown in Figure 7.16. 

 

 
Figure 7.21. Comparison between the repurposed mill producing ethanol, and 
the ethanol and DME process. Both the ethanol and DME selling prices are 
varied. 
 
The ethanol plant co-located with a modern Kraft pulp mill cannot be 

compared with the other two concepts since the information given is not 

enough to assess the production cost in this case. Only the opportunities for 

heat integration have been studied, but the results indicate that there is 

great potential for decreasing the utility demand in this conceptual ethanol 

process as well. As Figure 7.17 indicates there are different levels of 

measures that can be implemented that show similar economic results, and 

for most of the alternatives the payback period is less than 3.5 years even 

for low values of the product which the steam savings are transformed into 

(electricity). 
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8 Conclusions 
In this project different biorefinery concepts in connection to a Kraft pulp 

mill have been explored. Process integration studies have been produced 

and the economics and energy efficiencies of the processes have been 

assessed. Some overall conclusions can be drawn from the different studies 

included in this thesis. 

 

When repurposing a typical Scandinavian Kraft pulp mill to an ethanol 

plant, process integration studies can play an important part in making the 

investment feasible. It was shown that instead of only making investments 

to utilise excess steam, the aim should also be to improve energy efficiency 

by means of improved heat integration. 

 

There are several different process designs that lead to a similar 

improvement of energy efficiency and economics in the repurposed Kraft 

pulp mill, therefore the practical potential for implementation should be 

based on issues of operability. 

 

Lignin extraction, by means of the LignoBoost process, shows higher 

potential (if compared with electricity production) in an ethanol plant than 

in a Kraft pulp mill. This is due to the possibility of using internally 

produced CO2 (a by-product in fermentation) for precipitating lignin. 

 

Lignin extraction, by means of the LignoBoost process, in a typical 

Scandinavian Kraft pulp mill repurposed to an ethanol process can be 

increased substantially by implementing measures found in process 

integration studies. The output of lignin, if well-integrated, is limited by the 

capacity of the LignoBoost process and not the utility demand of the 

ethanol plant. In fact lignin can be deemed as the main product, in terms of 

energy output from the plant, in a well-integrated process. 

 

Repurposing a typical Scandinavian Kraft pulp mill to a combined ethanol 

and DME biorefinery can be an interesting option since the conversion 

efficiency from raw material to biofuel product is high, but the process has a 
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high investment cost compared to producing ethanol and power and/or 

lignin.  

 

CO2 Capture and Storage could play a vital role in process feasibility for the 

ethanol and DME biorefinery if implemented, since the cost for capturing 

CO2 in this process is low.  

 

Integration studies show that improvements in both energy efficiency and 

economic profitability are possible when an ethanol plant is integrated with 

a state-of-the-art Kraft pulp mill to utilise the chemical recovery cycle and 

recovery boiler process. Compared to the repurposed Kraft pulp mill 

biorefinery, this concept shows new heat integration opportunities that have 

short payback periods. 

 

The process integration studies in this project indicate potential design 

alternatives that give improvements in both the energy efficiency and the 

economic feasibility of the suggested concepts. This shows the importance 

of including these types of studies in the preliminary assessment of 2nd 

generation biorefinery investments in the early phases of deployment. As 

the different studies have shown there are often several different design 

alternatives that can generate high energy efficiency and low cost process. 

These alternatives can be valuable for more practical discussions related to 

matters of, e.g., operability before deciding which design to include in the 

more detailed design studies.  
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9 Further work 
This project shows the importance of process integration studies in the early 

stages of the deployment of the biorefinery concepts included. It has also 

indicated the importance of residual fractions in ethanol processes. Some 

ideas for future work on the concepts described, and using the methods 

included, are proposed in this chapter. 

 

The studies in this project have all been based on conceptual computer 

models of typical or reference pulp mills. In future work the biorefinery 

concepts, as well as the heat integration opportunities, would benefit from 

assessments in cooperation with industry, and in case studies conducted at 

real mills. This would give information on the practical feasibility of the 

alternative designs, as well as possibilities for more detailed process 

integration studies. The potential benefits of supply chain issues in this type 

of process could also be addressed more readily in a case study. 

 

The studies in this project have not included assessments of the potential for 

refining the residual fraction of carbohydrates to value-added products 

other than electricity or DME. There are numerous alternative pathways 

for these compounds that could be assessed and compared with the 

products in this project, e.g. pre-extraction of hemi-cellulose in the pre-

treatment unit, fermentation to other products than ethanol, such as lactic 

acid or butanol, anaerobic digestion of residual fractions from ethanol 

purification, gasification, and the production of compounds other than 

DME. 

 

Another factor that could have a great effect on the feasibility of process 

integration and feasibility in the different biorefinery concepts studied in 

this project is the composition of the raw material. Therefore, it should be 

interesting to assess different types of feedstocks in future studies. 

 

There are a number of different concepts for the production of 

lignocellulosic ethanol in the scientific literature. There can be differences 

in pre-treatment conditions, process design and the structure of residual 
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fractions. A comparative analysis of the process integration opportunities in 

these different alternatives could therefore be interesting in order to assess 

when and why one concept is preferable over another. 

 

Finally, assumptions are made in the studies included in this project based 

on the residual components in the process. Further experimental analyses of 

the formation of by-products in the ethanol line, and the physical properties 

of the residue liquor (in comparison with black liquor in a Kraft pulp mill) 

could be of benefit for generating a more detailed understanding of the 

process. 

 

  



References 

                                         

75 
 

10 References 
1. IPCC, Climate Change 2007: Synthesis report. 2007. 
2. IPCC, Contribution of Working Group III to the Fourth Assessment 

Report of the Intergovernmental Panel on Climate Change, ed. B. 
Metz, et al. 2007: Cambridge University Press, Cambridge, United 
Kingdom and New York, NY, USA. 

3. IEA/OECD, 25 Energy Efficiency Policy recommendations - 2011 
update. 2011. 

4. Geiss, J., A.-D. Müller, R. Schüle, C. Arens, V. Höfele, D. Becker, T. 
Boermans, K. Bettgenhäuser, J. Harnisch, and P. Jaworski, 
Promoting energy efficiency in Europe. 2009, EEWP (Energy 
Efficiency Watch Project),  European Forum for Renewable Energy 
Sources. 

5. IEA/OECD, Implementing Energy Efficiency Policies - Are IEA 
Member Countries on Track? 2009. 

6. Jokinen, J., Development of Pulp Capacities 2003-2008 (presentation 
material), in Andritz Capital Market Days. 2009. 

7. Solomon, B.D., J.R. Barnes, and K.E. Halvorsen, Grain and 
cellulosic ethanol: History, economics, and energy policy. Biomass 
and Bioenergy, 2007(31): p. 416-425. 

8. BNDES (the Brasilian development bank) and CGEE (Center for 
Strategic Studies and Management in Science Technology and 
Innovation in Brazil), Sugarcane-based bioethanol; Energy for 
sustainable development. 2008, Rio de Janeiro, Brazil. 

9. Thorbjörnson, B., Tillverkning av råbrännvin. Teknisk Tidskrift 
Kemi, 1931. häfte 3. 

10. www.sekab.se, last visited: 2012-02-21. 
11. www.agroetanol.se, last visited: 2012-02-21. 
12. Sapp, M., Europe´s ethanol affair. Biofuels, Bioproducts & 

Biorefining, 2007. 1(2): p. 88-91. 
13. Sims, R., M. Taylor, J. Saddler, and W. Mabee, From 1st to 2nd 

generation biofuel technologies - An overview of current industry and 
R&D activities, IEA Bioenergy, Editor. 2008, OECD/IEA. 

14. Galbe, M., P. Sassner, A. Wingren, and G. Zacchi, Process 
engineering economics of bioethanol production, in Advances in 
Biochemical Engineering/Biotechnology. 2007. p. 303-327. 

15. Hamelinck, C.N., G. Van Hooijdonk, and A.P.C. Faaij, Ethanol from 
lignocellulosic biomass: techno-economic performance in short-, 
middle- and long-term. Biomass and Bioenergy, 2005. 28: p. 384 - 410. 

16. Sassner, P., Lignocellulosic ethanol production based on steam 
pretreatment and SSF, in Department of Chemical Engineering. 2007, 
Lund University: Lund. 

17. http://www1.eere.energy.gov/biomass/integrated_biorefineries.html, 
last visited: 2012-02-21. 



Rickard Fornell  
 

76 
 

18. http://www.biofuelstp.eu/cell_ethanol.html, Last visited: 2012-02-21. 
19. Alén, R., Biorefining of Forest Resources. Papermaking Science and 

Technology. Vol. 20. 2011: Paper Engineers' Association/ Paperi ja 
Puu Oy. 

20. Bogren, J., H. Brelid, and H. Theliander, Reaction kinetics of 
softwood kraft delignification - General considerations and 
experimental data. Nordic Pulp and Paper Research Journal, 2007. 
22(2). 

21. Wigell, A., H. Brelid, and H. Theliander, Kinetic modelling of 
(galacto)glucomannan degradation during alkaline cooking of 
softwood. Nordic Pulp and Paper Research Journal, 2007. 22(4). 

22. Gullichsen, J. and C.-J. Fogelholm, Chemical Pulping. Papermaking 
Science and Technology. Vol. 6A. 1999: Paper Engineers' 
Association/ Paperi ja Puu Oy and TAPPI. 

23. Aden, A., M. Ruth, K. Ibsen, J.Jechura, K. Neeves, J. Sheehan, B. 
Wallace, L. Montague, A. Slayton, and J. Lukas, Lignocellulosic 
Biomass to Ethanol Process Design and Economics Utilizing Co-
Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for 
Corn Stover. 2002, National Energy Renewable Laboratory, 
NREL/TP-510-32438: Technical Report. 

24. Galbe, M. and G. Zacchi, A review of the production of ethanol from 
softwood. Applied Microbiology and Biotechnology, 2002. 59(6): p. 
618-628. 

25. Garcia, A., M.G. Alriols, R. Llano-Ponte, and J. Labidi, Energy and 
economic assessment of soda and organosolv biorefinery processes. 
Biomass and Bioenergy, 2010. 35(1): p. 516-525. 

26. Haelssig, J.B., A.Y. Tremblay, and J. Thibault, Technical and 
economic considerations for various recovery schemes in ethanol 
production by fermentation. Industrial and Engineering Chemistry 
Research, 2008. 47(16): p. 6185-6191. 

27. Stephen, J.D., W.E. Mabee, and J.N. Saddler, Will second-generation 
ethanol be able to compete with first-generation ethanol? 
Opportunities for cost reduction. Biofuels, Bioproducts & 
Biorefining, 2012. 6: p. 159-176. 

28. Wilkins, M.R., R.L. Belyea, V. Singh, P. Buriak, M.A. Wallig, M.E. 
Tumbleson, and K.D. Rausch, Analysis of heat transfer fouling by 
dry-grind maize thin stillage using an annular fouling apparatus. 
Cereal Chemistry, 2006. 83(2): p. 121-126. 

29. Collura, M.A. and W.L. Luyben, Energy-saving distillation designs in 
ethanol production. IND. & ENGNG. CHEM.:RES., 1988. 27(9): p. 
1686-1696. 

30. Ficarella, A. and D. Laforgia, Energy conservation in alcohol 
distillery with the application of pinch technology. Energy Conversion 
and Management, 1999. 40(14): p. 1495-1514. 

31. Grisales, R., C.A. Cardona, O.J. Sanchez, and L.F. Gutierrez, Heat 
integration of fermentation and recovery steps for fuel ethanol 
production from lignocellulosic biomass. 2nd Mercosur Cong. 



References 

                                         

77 
 

Chemical Engineering and 4th Mercosur Cong. Process Systems 
Engineering, 2005. 

32. Summers, D.R., Rectifier Design for Fuel Ethanol Plants, in AIChe 
Annual Meeting: Advances in Distillation Equipment and 
Applications, Paper 264b. 2006: San Francisco, USA. 

33. Wingren, A., M. Galbe, and G. Zacchi, Energy considerations for a 
SSF-based softwood ethanol plant. Bioresource Technology, 2008. 
99(7): p. 2121-2131. 

34. Bruce, D.M., Benchmarking energy consumption and identifying 
opportunities for conservation. Pulp and Paper Canada, 2000. 
101(11): p. 35-38. 

35. Martin, N., N. Anglani, D. Einstein, M. Khrushch, E. Worrell, and 
L.K. Price, Opportunities to Improve Energy Efficiency and Reduce 
Greenhouse Gas Emissions in the U.S. Pulp and Paper Industry. 2000, 
Ernest Orlando Lawrence Berkeley National Laboratory. 

36. Lutz, E., Identification and analysis of energy saving projects in a 
kraft mill. Pulp and Paper Canada, 2008. 109(5): p. 13-17. 

37. Wising, U., Process Integration in Model Kraft Pulp Mills - Technical, 
Economic and Environmentail Implications, in Department of 
Chemical Engineering and Environmental Science. 2003, Chalmers 
University of Technology: Gothenburg. 

38. Olsson, M.R., Simulations of Evaporation Plants in Kraft Pulp Mills, 
in Div. Heat and Power Technology, Dept. Energy and Environment. 
2009, Chalmers University of Technology: Gothenburg. 

39. Nordman, R., New process integration methods for heat-saving 
retrofit projects in industrial systems, in Div. Heat and Power 
Technology, Dept. Energy and Environment. 2005, Chalmers 
University of Technology: Gothenburg. 

40. Axelsson, E., Energy Export Opportunities from Kraft Pulp and 
Paper Mills and Resulting Reductions in Global CO2 Emissions, in 
Div. Heat and Power Technology, Dept. Energy and Environment. 
2008, Chalmers University of Technology: Gothenburg. 

41. Olsson, M.R., E. Axelsson, and T. Berntsson, Exporting lignin or 
power from heat-integrated kraft pulp mills: A techno-economic 
comparison using model mills. Nordic Pulp and Paper Research 
Journal, 2006. 21(4): p. 476-484. 

42. Van Heiningen, A., Converting a kraft pulp mill into an integrated 
forest biorefinery. Pulp and Paper Canada, 2006. 107(6): p. 38-43. 

43. Werpy, T., Petersen, G., Top Value Added Chemicals from Biomass 
Volume I—Results of Screening for Potential Candidates from Sugars 
and Synthesis Gas. 2004, U.S. Department of Energy. 

44. Holladay, J., Bozell, JJ., White, JF., Johnson, D., Top Value-Added 
Chemicals from Biomass Volume II—Results of Screening for 
Potential Candidates from Biorefinery Lignin. 2007, U.S. Department 
of Energy. 

45. Frederick Jr, W.J., S.J. Lien, C.E. Courchene, N.A. DeMartini, A.J. 
Ragauskas, and K. Iisa, Co-production of ethanol and cellulose fiber 



Rickard Fornell  
 

78 
 

from Southern Pine: A technical and economic assessment. Biomass 
and Bioenergy, 2008. 32(12): p. 1293-1302. 

46. Mao, H., J.M. Genco, S.H. Yoon, A. van Heiningen, and H. Pendse, 
Technical economic evaluation of a hardwood biorefinery using the 
"near-neutral" hemicellulose pre-extraction process. Journal of 
Biobased Materials and Bioenergy, 2008. 2(2): p. 177-185. 

47. Larson, E.D., S. Consonni, R.E. Katofsky, K. Iisa, and J.W. 
Frederick, A cost-benefit assessment of gasification-based biorefining 
in the kraft pulp and paper industry, final report (in four volumes). 
Available at: www.princeton.edu/~energy 2006. 

48. Phillips, R.B., H. Jameel, and E.C. Clark Jr. Technical and Economic 
Analysis of Repurposing a Kraft Pulp and Paper Mill to the 
Production of Ethanol. in TAPPI Press - Engineering, Pulping and 
Environmental Conference. 2008. 

49. Gonzalez, R., T. Treasure, R. Phillips, H. Jameel, and D. Saloni, 
Economics of cellulosic ethanol production: Green liquor 
pretreatment for softwood and hardwood, greenfield and repurpose 
scenarios. BioResources, 2011. 6(3): p. 2551-2567. 

50. Xue, Y., H. Jameel, R. Phillips, and H.M. Chang, Split addition of 
enzymes in enzymatic hydrolysis at high solids concentration to 
increase sugar concentration for bioethanol production. Journal of 
Industrial and Engineering Chemistry, 2012. 18(2): p. 707-714. 

51. Xue, Y., J. Rusli, H.m. Chang, R. Phillips, and H. Jameel, Process 
Evaluation of Enzymatic Hydrolysis with Filtrate Recycle for the 
Production of High Concentration Sugars. Applied Biochemistry and 
Biotechnology, 2012: p. 1-17. 

52. Koo, B.W., T.H. Treasure, H. Jameel, R.B. Phillips, H.M. Chang, 
and S. Park, Reduction of enzyme dosage by oxygen delignification 
and mechanical refining for enzymatic hydrolysis of green liquor-
pretreated hardwood. Applied Biochemistry and Biotechnology, 
2011. 165(3-4): p. 832-844. 

53. Jin, Y., H. Jameel, H.M. Chang, and R. Phillips, Green liquor 
pretreatment of mixed hardwood for ethanol production in a 
repurposed kraft pulp mill. Journal of Wood Chemistry and 
Technology, 2010. 30(1): p. 86-104. 

54. Huang, H.J., Ramaswamy, S., Al-Dajani, W. W., Tschirner, U., 
Process modeling and analysis of pulp mill-based integrated 
biorefinery with hemicellulose pre-extraction for ethanol production: 
A comparative study. Bioresource Technology, 2009. 101(2): p. 624-
631. 

55. Holmbom, B. Specialty high-value chemical products -from wood and 
bark at pulp and paper mills. in PulPaper 2007 Conference: 
Innovative and Sustainable use of Forest Resources. 2007. 

56. Axegard, P., B. Backlund, and P. Tomani. The pulp mill based 
biorefinery. in PulPaper 2007 Conference: Innovative and Sustainable 
use of Forest Resources. 2007. 



References 

                                         

79 
 

57. Axegard, P. Overview of Pulp Mill Biorefinery Concepts at Innventia. 
in Nordic Wood Biorefinery Conference. 2009. Helsinki, Finland. 

58. Lundberg, V., E. Axelsson, M. Mahmoudkhani, and T. Berntsson, 
Process integration of near-neutral hemicellulose extraction in a 
Scandinavian kraft pulp mill - Consequences fro the steam and Na/S 
balances. Applied Thermal Engineering, 2012,  
doi:10.1016/j.applthermeng.2012.03.037. 

59. Helmerius, J., J.V.v. Walter, U. Rova, K.A. Berglund, and D.B. 
Hodge, Impact of hemicellulose pre-extraction for bioconversion on 
birch Kraft pulp properties. Bioresource Technology, 2010. 101: p. 
5996-6005. 

60. Jönsson, A.-S. and O. Wallberg, Cost estimates of kraft lignin 
recovery by ultrafiltration. Desalination, 2009. 237: p. 254-267. 

61. Öhman, F., Precipitation and separation of lignin from kraft black 
liquor., in Dept. of Chemical and Biological Engineering. 2006, 
Chalmers University of Technology: Gothenburg. 

62. Tomani, P., The LignoBoost process. Cellulose Chemistry and 
Technology, 2010. 44: p. 53-58. 

63. Ekbom, T., N. Berglin, and S. Lögdberg, Black Liquor Gasification 
with Motor Fuel Production - BLGMF II, in Swedish Energy Agency, 
P21384-1. 2005: Stockholm, Sweden. 

64. Ekbom, T., M. Lindbom, N. Berglin, and P. Ahlvik, Technical and 
Commercial Feasibility Study of Black Liquor Gasification with 
Methanol/DME Production as Motor Fuels for Automotive Uses - 
BLGMF, in Altener II report. 2003. 

65. Pettersson, K., Black Liquor Gasification-Based Biorefineries - 
Determining Factors for Economic Performance and CO2 Emission 
Balances, in Div. Heat and Power Technology, Dept. of Energy and 
Environment. 2011, Chalmers University of Technology: 
Gothenburg. 

66. KAM, Final report from the Ecocyclic pulp mill programme, 1996-
2002, in KAM Report A100. 2003: Stockholm, Sweden. 

67. Jansson, M., N. Berglin, and L. Olm, Second generation ethanol 
through alkaline fractionation of pine and aspen wood. Cellulose 
Chemistry and Technology, 2010. 44(1-3): p. 47-52. 

68. von Schenck, A., N. Berglin, and J. Uusitalo. Ethanol from Nordic 
wood raw material by alkaline simplified sodacooking pretreatment. 
in proceedings of the International Symposium of Alcohol Fuels 
(ISAF) conference. 2011. Verona, Italy. 

69. SEA, Swedish Pulp Mill Biorefineries - a vision of future possibilities 
in The Swedish Energy Agency, Report no. ER 2008:26. 2008: 
Eskilstuna, Sweden. 

70. Klemes, J., F. Friedler, I. Bulatov, and P. Varbanov, Sustainability in 
the Process Industry: Integration and Optimization. 2011, New York, 
USA: McGraw-Hill. 



Rickard Fornell  
 

80 
 

71. Kemp, I.C., Pinch analysis and Process Integration: A User Guide on 
Process Integration for the Efficient Use of Energy. 2007, Oxford: 
Butterworth-Heinemann, Elsevier Ltd. 

72. Bandyopadhyay, S., J. Varghese, and V. Bansal, Targeting for 
cogeneration potential through total site integration. Applied Thermal 
Engineering, 2010. 30(1): p. 6-14. 

73. Hackl, R., E. Andersson, and S. Harvey, Targeting for energy 
efficiency and improved energy collaboration between different 
companies using total site analysis (TSA). Energy, 2011. 

74. Klemes, J., V.R. Dhole, K. Raissi, S.J. Perry, and L. Puigjaner, 
Targeting and design methodology for reduction of fuel, power and 
CO2 on total sites. Applied Thermal Engineering, 1997. 17(8-10): p. 
993-1003. 

75. Varbanov, P. and J. Klemes, Integration and management of 
renewables into Total Sites with variable supply and demand. 
Computers and Chemical Engineering, 2011. 35(9): p. 1815-1826. 

76. Smith, R., Chemical Process Design and Integration. 2005: John 
Wiley & Sons Ltd, West Sussex, England. 

77. Anantharaman, R., O.S. Abbas, and T. Gundersen, Energy Level 
Composite Curves - A new graphical methodology for the integration 
of energy intensive processes. Applied Thermal Engineering, 2006. 
26(13): p. 1378-1384. 

78. Linnhoff, B. and V.R. Dhole, Shaftwork targets for low-temperature 
process design. Chemical engineering Science, 1992. 47(8): p. 2081-
2091. 

79. Morandin, M., A. Toffolo, A. Lazzaretto, F. Marechal, A.V. Ensinas, 
and S.A. Nebra, Synthesis and parameter optimization of a combined 
sugar and ethanol production process integrated with a CHP system. 
Energy, 2011. 36(6): p. 3675-3690. 

80. Linnhoff, B., D.W. Townsend, D. Boland, G.F. Hewitt, B.E.A. 
Thomas, A.R. Guy, and R.H. Marsland, User guide on process 
integration for the efficient use of energy. 1st ed. 1982 (revised edition 
1994): IChemE, Rugby, UK. 

81. Algehed, J., Energy Efficient Evaporation in Future Kraft Pulp Mills, 
in Dept. Heat and Power Technology. 2002, Chalmers University of 
Technology: Gothenburg. 

82. Nordman, R. and T. Berntsson, Design of kraft pulp mill hot and 
warm water systems - A new method that maximizes excess heat. 
Applied Thermal Engineering, 2006. 26(4): p. 363-373. 

83. Carlsson, A., P.-A. Franck, and T. Berntsson, Design better heat 
exchanger network retrofits. Chemical Engineering Progress, 1993. 
89(3): p. 87-96. 

84. Nordman, R. and T. Berntsson, Use of advanced composite curves for 
assessing cost-effective HEN retrofit I: Theory and concepts. Applied 
Thermal Engineering, 2009. 29(2-3): p. 275-281. 



References 

                                         

81 
 

85. Nordman, R. and T. Berntsson, Use of advanced composite curves for 
assessing cost-effective HEN retrofit II. Case studies. Applied 
Thermal Engineering, 2009. 29(2-3): p. 282-289. 

86. Nordman, R. and T. Berntsson. Advanced pinch technology based 
composite curves for evaluating the usable excess heat potential. in 
The International Conference on Efficiency, Cost, Optimization, 
Simulation and Environmental Impact of Energy Systems, ECOS. 
2005. Trondheim, Norway. 

87. IEA, Industrial Heat Pumps - Experiences, Potential and Global 
Environmental Benefits. 1995, IEA Heat Pump Centre, Sittard, the 
Netherlands. 

88. Dhole, V.R. and B. Linnhoff, Total site targets for fuel co-generation, 
emissions, and cooling. Computers and Chemical Engineering, 1993. 
17(Suppl): p. 101-109. 

89. Smith, R., M. Jobson, and L. Chen, Recent development in the retrofit 
of heat exchanger networks. Applied Thermal Engineering, 2010. 
30(16): p. 2281-2289. 

90. Wang, Y., M. Pan, I. Bulatov, R. Smith, and J.K. Kim, Application of 
intensified heat transfer for the retrofit of heat exchanger network. 
Applied Energy, 2012. 89(1): p. 45-59. 

91. AspenTech, AspenOne  Engineering v7.2. 2010. 
92. Tomani, P., N. Berglin, and P. Axegård. The LignoBoost process and 

use of lignin as a new biofuel. in proceedings of the TAPPI 
Engineering, Pulping and Environmental Conference. 2009. 
Memphis, TN, USA. 

93. Luyben, W.L., Distillation Design and Control Using Aspen 
Simulation. 2006, Hoboken, New Jersey: American Institute of 
Chemical Engineers (AICHE) and John Wiley & Sons, Inc. . 

94. Jönsson, J., Analysing different technology pathways for the pulp and 
paper industry in a European energy systems perspective, in Div. Heat 
and Power Technology, Dept. Energy and Environment. 2011, 
Chalmers University of Technology: Gothenburg. 

95. von Schenck, A., E. Axelsson, and N. Berglin, System study of 
ethanol production in a pulp mill converted to a biorefinery, in STFI-
Packforsk report no. 266. 2007. 

96. Axelsson, E. and S. Harvey, Scenarios assessing profitability and 
carbon balances of energy investments in industry, in AGS Pathways 
report 2010:EU1. 2010: Goteborg, Sweden. 

97. Capros, P., L. Mantzos, V. Papandreou, and N. Tasios, Energy and 
transport: Trends to 2030 - update 2007, in European Commission: 
Directorate-General for Energy and Transport. 2008. 

98. IEA, Technology Roadmap - Biofuels for Transport. 2011, Paris, 
France: International Energy Agency. 

99. Axelsson, E., M.R. Olsson, and T. Berntsson, Heat integration 
opportunities in average Scandinavian kraft pulp mills: Pinch analyses 
of model mills. Nordic Pulp and Paper Research Journal, 2006. 21(4). 



Rickard Fornell  
 

82 
 

100. Delin, L., N. Berglin, A. Lundström, Å. Samuelsson, B. Backlund, 
and Å. Sivard, Bleached market kraft pulp mill -  Reference and type 
mill, in Report FRAM 9. 2004. 

101. Berglin, N., A. Lovell, L. Delin, and J. Törmälä. The 2010 Reference 
Mill for Kraft Market Pulp. in proceedings of the TAPPI Peers 
conference 2011. Portland, Oregon, USA. 

 
 
  



Acknowledgements 

                                         

83 
 

11 Acknowledgements 
First and foremost I would like to acknowledge my supervisors Thore 

Berntsson and Anders Åsblad. Our discussions on the work I have 

presented in this thesis, and their expert insights, have been of great value 

to me and my development as an engineer and researcher. 

 

This project has been done in collaboration with Innventia (formerly STFI-

Packforsk), without whose inputs and efforts none of what I have produced 

would have been possible. I would like to thank Niklas Berglin, Anna von 

Schenck, Mikael Jansson and Christian Hoffstedt for a fruitful and 

interesting collaboration. I hope the results presented in this work will 

provide good inputs for the continued work at Innventia. 

 

At the division of Heat and Power Technology there are many people, past 

and present, to thank for various reasons. Marcus Olsson needs to be 

recognized for his invaluable support in evaporation plant simulations with 

OptiVap. I would also like to thank Stefan Heyne for not succeeding in 

beating me at the “Svensk klassiker”. Apart from these specific mentions I 

would like to thank all of the employees at HPT for providing a good 

working environment, no-one mentioned no-one forgotten! 

 

I would like to thank my nearest and dearest for supporting me on my quest 

to reach the end of this long and winding road.  

 

Finally, Bodil and little Leo need a special recognition for helping me pull 

through when times are tough, and for bringing so much joy into my life. I 

love you both!   



      
 
 
 
 

     
      


