
Viterbi Accelerator for
Embedded Processor Datapaths

Muhammad Waqar Azhar, Magnus Själander, Hasan Ali, Akshay Vijayashekar,
Tung Thanh Hoang, Kashan Khurshid Ansari, and Per Larsson-Edefors

VLSI Research Group, Dept. of Computer Science and Engineering,
Chalmers University of Technology, 412 96 Gothenburg, Sweden

Abstract—We present a novel architecture for a lightweight
Viterbi accelerator that can be tightly integrated inside an
embedded processor datapath. We investigate the accelerator’s
impact on processor performance by using the EEMBC Viterbi
benchmark and the in-house Viterbi Branch Metric kernel. Our
evaluation based on the EEMBC benchmark shows that an
accelerated 65-nm 2.7-ns processor datapath is 20% larger but
90% more cycle efficient than a datapath lacking the Viterbi
accelerator, leading to an 87% overall energy reduction and a
data throughput of 3.52 Mbit/s.

I. INTRODUCTION

Wireless communication requires channel coding to ensure
reliable delivery of data over unreliable communication chan-
nels. The continuous drive to improve spectrum efficiency
imposes a growing need to employ efficient forward error
correction (FEC) schemes, for example, Viterbi, Turbo, and
low-density parity-checking (LDPC) codes, for many stan-
dards (see Table 1 in the work of Krishnaiah et al. [1]).
Convolutional encoding is widely used for encoding data in
FEC schemes, and the subsequent decoding can be done using,
for example, Viterbi decoding or Turbo decoding. Convolu-
tional encoding along with Viterbi decoding is particularly
suited to wireless channels, in which the transmitted signal
is corrupted mainly by additive white Gaussian noise [2]. The
decoding process in such FEC schemes is computationally in-
tensive, and since wireless devices often are synonymous with
portable devices, also the requirements on energy dissipation
are extremely tight. Customized circuits can indeed efficiently
handle decoding with high performance and energy efficiency.
However, the lack of flexibility in customized circuitry is a
major issue, since there is an ongoing evolution of wireless
standards that the hardware needs to adapt to.

The advantages of integrating FEC acceleration inside a
processor datapath include instruction-level flexibility and
compatibility with standard software development flows. We
therefore explore acceleration of Viterbi decoding within the
datapath of a standard five-stage single-issue processor—as
a representative of embedded processors—with the aim to
identify a sweet spot between flexibility and computational
efficiency for FEC implementations. We show that integrating
such a Viterbi accelerator into the datapath of a placed and
routed 65-nm FlexCore processor [3] reduces the execution
time for the EEMBC Viterbi benchmark [4] by 90% at an
area cost of only 20%.

Input

OUT 1

OUT 2

Fig. 1. Example of convolutional encoder. FF denotes flip-flop.

II. PRELIMINARIES

We will review the encoding and decoding phases of convo-
lutional codes, and make an estimation of hardware resources
necessary for implementing the Viterbi decoding circuitry.

A. Convolutional Encoding and Viterbi Decoding

A convolutional encoder consists of a shift register with
K − 1 memory elements, where K is called the constraint
length. The total number of encoder states is 2K−1. For each
new input, the data of the memory elements are shifted one
step, which discards the least recent input. An output symbol

is generated for each new input by applying a generator
polynomial on the stored data. A convolutional encoder is
shown in Fig. 1 for K = 3, R = 1/2, and with generator
polynomials G1 = 1112 and G2 = 1012. Here, the code rate
R = m/n is the ratio of the number of input bits (m) to the
number of output bits (n).

The key to achieving error correction is that each input bit
has an influence on K successive output symbols [5]. The
higher the K , the higher is the complexity of the code and the
higher is the error correcting capability. On the downside, an
increase in K exponentially increases the decoding complexity
as well as the memory required for decoding.

Starting in a certain encoder state, the next state depends on
the input bit. The possible state transitions can be visualized
in a trellis diagram [6]. For the encoder in Fig. 1, the
corresponding trellis diagram is shown in Fig. 2. Here, the
solid line corresponds to an input bit of 0, whereas a dotted
line corresponds to an input bit of 1. The thick lines show the
trellis path for the input sequence that is shown underneath
the diagram. The general idea is that a sequence of input bits
generates a valid path through the trellis diagram, from left to
right. In the event of transmission errors, the Viterbi decoder
can find the valid path on the trellis diagram that is the closest
match to the received sequence [6].

2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors

1063-6862/12 $26.00 © 2012 IEEE

DOI 10.1109/ASAP.2012.24

135

2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors

1063-6862/12 $26.00 © 2012 IEEE

DOI 10.1109/ASAP.2012.24

135

2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors

1063-6862/12 $26.00 © 2012 IEEE

DOI 10.1109/ASAP.2012.24

135

2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors

1063-6862/12 $26.00 © 2012 IEEE

DOI 10.1109/ASAP.2012.24

133

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Encoder input 0 1 0 1

Encoder output 00 11 10 00

Received 00 11 11 00

Errors X

Fig. 2. Example of trellis diagram.

Considering Fig. 2, we can traverse through a few encoding
iterations. Initially the encoder is reset to state “00”. In the
first iteration, the input bit is 0, so the encoder will go to
state “00” as represented by a thick line. An output symbol
of “00” will be transmitted and the Viterbi decoder on the
other side of the channel will have to reconstruct the input
bit from the received symbol. Since there are only two valid
output symbols in each state, if there is an error, the decoder
will try to find the state that is closest to the received symbol.
In the second iteration, the input bit is 1, so the encoder will
go to state “10” and transmit “11” as symbol. In the third
iteration, the input is 0, leading the encoder to state “01” with
a corresponding output symbol of “10”. However, for some
reason, a transmission error occurs, so the received symbol on
the decoder side is “11”. Thanks to the Viterbi algorithm, the
original symbol can be recovered.

In the branch metric calculation, the difference of the
received symbol and all possible encoder output combinations
is computed. The difference is called distance and is either
based on the Hamming distance—a hard-decision decoder—or
the Euclidean distance—a soft-decision decoder1. With 2K−1

states and an encoder input bit of either 0 or 1, there exist 2K

output combinations. Based on the generator polynomial, the
outputs are computed and stored in an output table.

The path metric calculation is the most computation-
intensive portion of Viterbi decoding. It employs add-compare-
select (ACS) operations on the branch metric from the previous
step to compute a path metric that is the accumulated distance
that is associated with each path through the states. For each
pair of branches leading into a given state, the ACS operation
discards the branch with the largest accumulated distance,
which is the sum of the previous path metric and the branch
metric itself. A metric table stores the accumulated distance
values—the survivor paths—as the decoder receives symbols.

Fig. 3 shows a hardware-oriented view for the two steps
above. The output table contains all 2K encoder outputs. The
distance between each symbol in the output table and the
received symbol is calculated to get the branch metric. The
path metric from the previous iteration is stored in the metric
table. The current branch metric values along with the previous
path metrics are used to compute the current path metric.

1Soft-decision decoding offers a coding gain that is approximately 2 dB
higher than that for hard decoding [2].

2

3

0

3

2

0

1

1

2+2=4

0+3=3

1+0=1

1+3=4

3

1

Previous metric

table column

Branch

metric

Add Compare

Select

Next metric

table column

=+
0

2

1

1

0+2=2

2+3=5

1+0=1

1+3=4

2

1

00

11

10

01

11

00

01

10

Output table

Distance

calculation

Received

symbol

”11”

Fig. 3. Snapshot of path metric calculation in Fig. 2. Output table entry 1-4
represent symbols that result from an encoder state of “00”, “01”, “10”, “11”
combined with an input bit of 0 (Fig. 1). Similarly, entry 5-8 represent the
symbols that result from an input bit of 1.

Survivor path decoding is the last decoding step. Using
a hardware-efficient traceback process, the accumulated dis-
tances are analyzed, starting by choosing state zero in the
last memory column of the metric table. The two possible
previous states are identified and the state corresponding to the
minimal distance among those two is selected, by storing this
in a survivor state table. The traceback process continues in a
backward fashion until reaching the first column of the metric
table. Finally, by using the survivor state table it becomes
possible to recreate the original message.

As has been shown, the main idea of Viterbi decoding is
to map a received sequence of symbols, of which some may
be corrupted during the transmission, to the most likely valid

sequence. The basic steps in the decoding process are

1) Branch metric calculation
2) Path metric calculation
3) Survivor path decoding

B. Memory and Computational Requirements

The decoding process is memory intensive and the buffers
required for a complete, stand-alone Viterbi accelerator have a
significant impact on the implementation area and power. The
size of the output table is 2K−1

· 2m
·n bits, while the metric

table is 2K−1
· b · (5K + 1) bits, where b is the number of

bits in each metric table entry2. Clearly, it is a challenge to
implement the metric table in an area-efficient way.

Each entry in the output table is accessed once for every
symbol. Consequently, this table is accessed 2K times for
every symbol received during decoding. Each entry in the
metric table is accessed twice for every symbol. Consequently,
this table is accessed 2K times. In a processor-based imple-
mentation, the memory accesses contribute to a significant
overhead in terms of performance and power dissipation and,
thus, it is important to use memory in the accelerator to
enable local memory accesses. However, there is a limit to

2As a rule of thumb, a minimum traceback length of 4K to 5K is
required [7]. Any deeper traceback lengths increases decoding delay and
decoder memory requirements, while not significantly improving the error
correcting capability.

136136136134

Output table

Control

logic Metric table

Traceback unit
Decoded

output

Encoded

input

Computational

unit

Fig. 4. Stand-alone Viterbi decoder architecture.

80

120

160

200

M
e

m
o

ry
 S

iz
e

 [
k

b
it

s]

n=2, b=5

n=2, b=6

n=2, b=Kr1

0

40

2 4 6 8 10

M

K

Fig. 5. Memory size for metric table.

the memory size that can be used, since the accelerator needs
to be small enough to fit inside the datapath.

Two distance calculations and one ACS computation are
required to calculate one new entry in the metric table. Thus,
2K distance calculations and 2K−1 ACS computations are
required for every received symbol, to calculate one metric
table column. When one column of the metric table has been
filled, the process continues for the remaining symbols.

III. VITERBI DECODING ACCELERATION

This work focuses on hardware-based Viterbi acceleration
that can be integrated inside a processor datapath to achieve
flexible, yet high-throughput decoding. An accelerator solution
that is based on both software and hardware yields flexibility,
however, the accelerator unit is bound to incur an area, power,
and timing overhead that becomes visible when acceleration
does not occur. The wider the processor application domain,
the smaller the Viterbi accelerator has to be.

A stand-alone Viterbi decoder, with memory enough to store
large data sets, requires huge area for reasonable constraint
lengths. To explain the tradeoffs between, on the one hand,
memory requirements and area, and, on the other hand, data
throughput, we will first describe a basic stand-alone decoder
implementation. Later, a lightweight accelerator, suitable for
processor datapath integration, is presented.

A. Stand-Alone Decoder

A straightforward implementation of a stand-alone Viterbi
decoder for an arbitrary constraint length K is shown in Fig. 4.
The computational unit is made up of only one ACS unit and
one distance calculator, of which the latter is used twice for

0.10

0.15

0.20

0.25

A
re

a
 [

m
m

2
]

Total Area

Metric Table Area

0.00

0.05

K=5 K=6 K=7

Fig. 6. Total area and metric table area for varying constraint lengths.

every ACS operation. Using b to define the number of bits
required for each metric table entry and n to define the number
of output bits, Fig. 5 shows the metric memory size (in number
of bits) for an increasing constraint length K . Stand-alone
decoders for different constraint lengths were synthesized on a
65-nm cell library at a clock rate of 370 MHz3, and verified for
various test cases. Fig. 6 shows the area of the implementations
for three different constraint lengths.

Considering the exponential increase of memory size with
constraint length, unless K is very limited, a stand-alone
decoder is not appropriate for tight integration into a datapath.
As shown in Fig. 6, the major portion of the area is consumed
by the metric table. Our focus is therefore on minimizing the
size of the metric table.

B. Acceleration for Viterbi Decoding

To strike a good balance between flexibility and perfor-
mance, a mixed software-hardware approach must be em-
ployed to make an accelerator amenable for datapath integra-
tion. In general, this means that the portions of the Viterbi
code that constitute the majority of the execution time and
memory accesses are accelerated. Other portions, which are
not as frequently executed, are handled using the general-
purpose features of the processor.

Minimizing the accelerator memory will significantly im-
prove the trend of Fig. 5, however, the memory will still
grow as constraint lengths are increased. Since memory is
such a precious resource, the most efficient implementation is
achieved when optimizing the Viterbi accelerator for a certain
constraint length, but this is not a flexible approach.

A key feature of the scheme of this paper is that the
accelerator should be able to provide significant performance
improvements also for Viterbi applications that use constraint
lengths that are larger than that of the accelerator. Assume,
for example, an accelerator that is optimized for K = 7.
This accelerator will be very efficient in handling applications
such as DVB and GSM [1], since its memory resources
are matching the applications. However, our goal is that the

3The choice of this operating frequency was based on predicted timing
constraints in the datapath integration phase in Sec. IV.

137137137135

Computational

unit

Symbol

buffer

Configuration

register

s

Symbol_in

Control unit

Address

32

64

DATA_OUT

DATA_IN

32

Metric table

Output table

2
b

p

2
n

p
Address pointer

incrementer

OPCODE
3

HALT

ADDRESS_OUT

MUX1

MUX2

Fig. 7. Lightweight Viterbi accelerator.

accelerator of this specific example should also efficiently
accelerate applications with K > 7.

C. Lightweight Datapath Accelerator

The first challenge in designing an accelerator is to identify
and define an appropriate boundary between the hardware and
the software. To this end, application profiles in conjunction
with memory and computational requirements are analyzed
(Sec. II-B) and the following conclusions are made:

• The branch metric and path metric calculations are com-
putation intensive and often recurring steps.

• Initialization of the output table is done once.
• Traceback is required once, after the whole metric table

is computed.
• Only the previous column of the metric table, along with

the output table, is required to compute a new column.

We propose to perform only the branch and path metric
calculations inside the accelerator, that is, the metric table
computations are local. The computations of the output table
and the traceback, however, are done in other parts of the
datapath. This design decision is based on the fact that
the output table is fairly static; its values depend upon the
generator polynomials and are only computed once for a
certain application. Thus, the output table is generated using
the general-purpose portions of the datapath, in relatively few
cycles, and subsequently loaded into the accelerator.

The computation-intensive branch metric calculations can
be efficiently accelerated by specialized hardware. The metric
table is therefore computed by the accelerator. To reduce
the required memory space and memory bandwidth, only the
entries of the last metric table column are kept in dedicated

local memory in the accelerator as these are essential for
computing the next column. The complete metric table is
stored in the processor’s main memory, where it is available
for the traceback process.

The proposed accelerator is a compromise solution, in which
we significantly decrease the memory size from a stand-alone
version: We implement the metric table memory portion that
ensures that a very high number of accesses are local, limiting
communication power dissipation. As the size of these metric
table buffers scales up with an increasing value of K , there
will be a practical limit to the code complexity, that is, before
the accelerator area starts to dominate the datapath. Sec. V
will present quantitative data for a number of accelerators and
their size in relation to a processor datapath.

Fig. 7 presents the new Viterbi decoder architecture, which
in this configuration has four computational units. In this soft-
decision Viterbi accelerator, each computation unit contains
two Euclidian distance calculation units and one ACS unit to
increase throughput. This accelerator is designed to support
Viterbi decoding for literally any constraint length. When
the application constraint length is less than or equal to
the accelerator’s K , the complete metric table computation
can be done in hardware (Sec. III-C1). However, for cases
when the software application’s constraint length is greater
than the accelerator’s, a so-called sub-state mode is employed
(Sec. III-C2).

1) Full Mode: When the accelerator memory is sufficient
for the constraint length of the applications, the complete path
and branch metric calculations are done by the accelerator.
Fig. 8 shows the detailed sequence of steps for Viterbi de-
coding while using a hardware accelerator whose constraint
length fits that of the application.

2) Sub-State Mode: When the accelerator memory is not
sufficient for the constraint length of the applications, the
accelerator operates on a subset of the states. The metric table
value is provided directly from the datapath register file, so the
accelerator approaches the behavior of execution units such as
ALUs. Fig. 9 shows the detailed sequence of steps performed
for the sub-state mode.

The gray boxes of Fig. 8 and Fig. 9 represent portions of the
code that are performed in software, while transparent boxes
represent portions that are accelerated by the accelerator. As
far as execution data given in the figures, this is the topic of
the next section.

IV. EVALUATION SETUP AND FLOW

Verifying and evaluating a software-hardware solution is
a challenge. To make a comprehensive evaluation, statistics
based on two different Viterbi benchmarks are provided. First,
the EEMBC Viterbi benchmark [4] is used. EEMBC is a well-
known benchmark suite, but it provides a limited evaluation
capability as it is defined only for K = 6 and R = 1/2. Thus,
to enable evaluations for other constraint lengths and code
rates, a parameterizable Viterbi kernel was developed [8]. Both
benchmarks employ soft-decision decoding.

138138138136

Compute

output table in

software

Compute K-1

columns of metric
table in software

Pack K-1th

column of

metric table

Compute

1 metric table
column

Traceback

Load K-1th

column of

metric table

Load new

symbol

1 CC

((2
K-1

×2)÷D) (2K-1÷C)

1 CC

(2
K-1

× 2 HD and

2
K-1

ACS calculations)

Overhead for hardware mode: 273 CC

Load base

address
pointer

Pack

output
table

Load

output
table

2
K-1

×(B÷4)(2
K-1

×2×(A÷8))

K - Constraint length of accelerator and software application = 6

A - #Cycles required for packing 8 output table entries = 20

B - #Cycles required for packing/unpacking 4 metric table entries = 12

C - #Metric table entries loaded in 1 cycle = 4

D - #Output table entries loaded in 1 cycle = 8

321 iterations

1 iteration = 9 CC
321 iterations = 2,889 CC

Unpack metric

table column

Overhead for 321
symbols: 30,816 CC

OT

MT TB

Total cycle count for pre- and post-processing in

software (OT + MT+ TB) = 23,501 Clock Cycles (CCs)

(2K-1×(C÷4)

160 CC 96 CC 8 CC 8 CC 8 CC 96 CC

Fig. 8. Sequence of steps while using a Viterbi accelerator with K = 6 in full mode. The cycle count values are based on decoding of the EEMBC Viterbi
benchmark, which uses K = 6, a code rate R = 1/2 and 326 input symbols.

Compute output

table in software

Compute KR-1

columns of metric

table in software

Load new

symbol

Compute 1 metric table entry

from 2 metric table entries

available on input of accelerator

Traceback

Load

metric table entries

in two registers

((2KA-1×2)÷D)

1 CC

(2 HD & 1 ACS calculation)

One time

overhead

Pack

output

table

Load portion

of output table

(2KR-1×2×(A÷8))

KA - Constraint length of accelerator = 7

KR - Constraint length of software application = 9

A - #Cycles required for packing 8 output table entries = 20

D - #Output table entries loaded in 1 cycle = 8

2KA-1 = 64 iterations

1 iteration = 5 CC, or 64 iterations = 320 CC

Read metric table

entry and store in

memory

1,280 CC 1 CC 16 CC 2 CC 2 CC

(2KR-1
×2) ÷ (2KA-1

×2)

= 2KR – KA = 4

1 iteration

per symbol

1 iteration = 16 + 320 = 336 CC, or 4 iterations = 1,344 CC

1 symbol = 1 + 1,344 = 1,345 CC, or 321 symbols = 431,424 CC

Fig. 9. Sequence of steps while using a Viterbi accelerator with KA = 7 in sub-state mode. The cycle count values are based on decoding of a Viterbi
kernel that uses KR = 9, a code rate R = 1/4 and 321 input symbols.

A. Evaluation Setup: Datapath

To study the processor enhancements made possible by
the Viterbi accelerator in Sec. III-C, we use the FlexCore
processor [3] as evaluation platform. Fig. 10 shows the
baseline FlexCore processor datapath. This baseline datapath
configuration consists of the units found in a five-stage single-
issue pipeline, such as the MIPS R2000 datapath [9], that is,
load/store (LS), register file (RF), arithmetic and logic unit
(ALU), program counter (PC) and multiplier (MULT) units.

Conventional architectures have dedicated interconnects be-
tween datapath units as well as instructions that are hard-coded
to make datapath operations hidden to the compiler. In con-
trast, in a FlexCore processor the datapath control signals—

for execution units as well as interconnect—are fully exposed
to the compiler. Ease of accelerator integration and efficient
scheduling, by exploiting routing freedom, for identification of
potential parallelism are among the advantages of this scheme.
The FlexCore datapath interconnect is based on switchboxes,
to essentially allow data being routed from one unit to any
other unit. The datapath unit outputs are routed to a number of
switchboxes, where each switchbox output is connected to the
input of a certain unit. For the full interconnect configuration
in Fig. 10, each of the ten switchboxes has nine inputs and
requires four instruction-driven address bits4. By removing

4Assuming M output ports and N input ports, N⌈log
2

M⌉ switchbox
address bits are needed.

139139139137

L
S

B

M
S

B

O
p

B

B
U

F
1

R
E

G

R
E

G

B
U

F
2

R
E

G

R
E

G

MULT PC ALU RF LS

O
p

A

C
on

tr
ol

O
p

A
O

p
B

D
at

a
 W

rit
e

A
dd

re
ss

D
at

a

R
E

G

Input

Data

Fig. 10. Baseline FlexCore datapath.

switchbox inputs the full 90-link datapath interconnect can be
reduced and customized to less area- and power-demanding
interconnect configurations [10]. Throughout this paper we
assume the full interconnect configuration, since it is easily
scalable. To put this configuration in a perspective, a MIPS-
based interconnect configuration [9] has 33 interconnect links.

The FlexCore datapath has its control bits fully exposed to
the compiler: The datapath unit control field comprises signals
for datapath units (that is, enable or opcode signals), while
the interconnect control field includes address signals to the
interconnect switchboxes.

B. Evaluation Setup: Accelerator Integration

The complete datapath integration of the Viterbi accelerator
(which has its output registers embedded) is shown in Fig. 11.
The input data to the Viterbi unit need to be routed from the
RF and the LS units and, consequently, the accelerator unit
has no need for a complete switchbox at its input. One 32-
bit word from the RF unit is directly made available to the
Viterbi unit. The 2-way multiplexer at the Viterbi unit input
accepts one 32-bit word from the RF unit (In A) or the 32-bit
word from the LS unit (In B). The interconnect control field
is increased by one bit to control this multiplexer. Similarly,
the output of the accelerator, whose data are intended to
either be stored directly in memory or in register file, is
only required to be routed to the RF and the LS units. Thus,
the input switchboxes for the RF and the LS units need to
accept one more data input. When adding the accelerator to
the baseline configuration in Fig. 10, there is no need to
extend the number of switchbox address signals, since the
four bits can support 16 multiplexer inputs. However, if a
reduced interconnect configuration is used, a suitable number
of switchbox addresses can be ascertained after performing
design exploration [11] on the application domain and its need
for interconnect links. Finally, the datapath unit control field
needs to be extended by three control bits, which serve as
opcode for the accelerator.

C. Evaluation Flow

The RTL code of the Viterbi accelerator unit was first
developed and comprehensibly verified, after which this block
was made available to the configurable FlexCore VHDL
generator (FlexGen). The FlexCore generator has access to
RTL code for several datapath units and can generate an

D
at

a
W

rit
e

D
at

a
A

dd
re

ss

Input

Data

In
p
u
t D

a
ta

 (3
1
:0

)

In B In A

O
ut

pu
t D

at
a

A
dd

re
ss

 P
oi

nt
er

In
p
u
t D

a
ta

 (6
3
:3

2
)

Fig. 11. Integration of the Viterbi accelerator.

instance of the FlexCore processor based on different datapath
configurations. Other tools at our disposal include a compiler
(FlexComp) to schedule applications to a register transfer
notation (RTN) code used for the processor, and a simulator
(FlexSim) to perform cycle-accurate simulation and profiling
of MIPS assembly and RTN code. The full evaluation flow for
gathering information on execution time, post-layout timing,
power, and energy dissipation is shown in Fig. 12 [11].

C code

Compilation to assembly

using MIPS cross-compiler

FlexComp

FlexSim

Cycle count extraction

FlexGen

Total energy dissipation

Power, timing, and

area extraction

In
te

rc
on

ne
ct

 a
nd

 d
at

ap
at

h
co

nf
ig

ur
at

io
n

se
le

ct
io

n RTL code of

accelerator unit

RTL datapath units

(LS, RF, MULT etc.)

Synthesis, place and route

Fig. 12. Evaluation flow.

140140140138

V. EVALUATION RESULTS

The following section will present results obtained from
running the different benchmarks using different accelerators
in different modes.

A. Evaluation for Full Mode

Our first evaluation is based on the EEMBC Viterbi bench-
mark [4], which is a soft-decision algorithm with K = 6,
R = 1/2 and 326 input symbols. Fig. 8 shows not only
the sequence of execution, but also the execution times in
clock cycles (CC), with emphasis on the computation-intensive
kernels of the benchmark. Also, the figure details the overhead
associated with the accelerator, for packing/loading data into
the accelerator as well as unpacking data for traceback.

Table I shows the evaluation results for the EEMBC Viterbi
benchmark, based on post-layout implementations in a 1.2-V
65-nm LP-SVT cell-based flow, with a target clock rate of
370 MHz (2.7-ns timing constraint). The energy dissipation is
for the whole benchmark, that is, #Cycles total × Power.

In integrating the Viterbi accelerator, the datapath has be-
come 20% larger, which directly impacts power dissipation (a
38% increase). However, thanks to the improved performance,
the reduced execution time (90% for the total benchmark
or 99% for the benchmark kernel) yields an 87% energy
reduction for the whole benchmark.

TABLE I
EVALUATION USING EEMBC BENCHMARK

Architecture
#Cycles

total
#Cycles
kernel

Area
(µm2)

Power
(mW)

Energy
(µJ)

Software-only 275,076 251,575 53,737 8.97 6.67

Accelerated 26,614 3,113 64,209 12.4 0.89

We can also consider a case when we have integrated
an accelerator with a larger constraint length than necessary.
Assume an accelerator that supports K = 7. This accelerator
has the same number of computational units as that for K = 6
and, thus, the performance gain will be the same. However, the
datapath area increases to 70,370 µm2, the power to 15.3 mW
and the energy to 1.10 µJ. The constraint length overkill
impacts the area and the power, but still the energy reduction
is high, at 84%.

B. Evaluation for Sub-State Mode

The evaluation of the sub-state mode requires a different
Viterbi benchmark than the one in the EEMBC suite. Thus, a
new benchmark kernel, emphasizing the branch metric and
the path metric calculations, was developed [8]. The basic
block in this new benchmark computes one new metric table
entry, that is, it performs one ACS and two Euclidian distance
computations. This exactly models one computational cycle in
the hardware accelerator, while in sub-state mode. The flow is
shown in detail in Fig. 9, together with performance numbers
for this mode. For the computation of the Viterbi kernel for
321 symbols, the software-only solution requires 9,614,592

cycles, while the accelerator in sub-state mode requires only
431,424 cycles.

A cumulative comparison of cycle counts for the compu-
tation of the new benchmark with and without accelerator is
also presented for two different cases of benchmark constraint
lengths KR (8 and 9) and for two accelerators with constraint
lengths KA of 6 and 7 (Table II).

TABLE II
EVALUATION USING VITERBI KERNEL BENCHMARK

Accelerator
constraint

length KA

Required
constraint

length KR

#Cycles
software

#Cycles
hardware

Performance
gain (%)

7 9 9,614,592 431,424 95

6 9 9,614,592 431,424 95

7 8 4,807,296 216,033 95

6 8 4,807,296 216,033 95

It is important to note that the performance gain for the sub-
state mode is higher than for the full mode. This is to a large
extent explained by the benchmark used, that is, the Viterbi
kernel. In an evaluation of the whole decoding operation,
the performance gain would reduce. Also, we have assumed
constant latency for memory accesses. This assumption is not
completely true in a real application scenario.

Moreover, the number of executed cycles does not depend
on the constraint length of the accelerator. The reason is that it
is only the accelerator’s internal memory that is changed with
KA; the computational unit of the accelerator is intact.

C. Evaluation of Throughput

The evaluations performed above focus on execution time
and energy dissipation. For an embedded processor for con-
volutional decoding the possible data throughput is a critical
parameter. Thus, Table III presents the throughput achieved
for several combinations of KA and KR.

TABLE III
EVALUATION OF THROUGHPUT

KA KR Mode Throughput (Mbit/s)

7 9 Sub-State 0.27

7 8 Sub-State 0.55

7 7 Full 1.84

7 6 Full 3.52

6 9 Sub-State 0.27

6 8 Sub-State 0.55

6 7 Sub-State 1.10

6 6 Full 3.52

VI. RELATED WORK

There are several examples of decoder circuits that are more
or less customized to the decoder algorithm. An implementa-
tion can be tailored to different configurations of, for example,
decoding scheme, constraint length and code rate [12]. With
special considerations at the circuit level, highly optimized
fixed-function implementations can be obtained [13]. The

141141141139

circuitry can also include some rudimentary flexibility that
allows for reconfiguration between a few operating modes,
such as different code rates [14]. Thanks to circuit innovations,
despite the 90-nm Viterbi implementation supports several
constraint lengths (up to K = 9), it reaches a top performance
of almost 2 Gb/s for K = 6 [15].

As there are algorithmic similarities between Viterbi and
Turbo decoding, implementations that can operate on either
convolutional or Turbo codes have been extensively researched
in the past. Besides support for a single Turbo mode, there
is, for example, one ASIC implementation that supports four
different Viterbi modes [16], another ASIC implementation
that supports two Viterbi modes [17], and an FPGA imple-
mentation that supports a wide range of Viterbi modes [18].

Programmability via the instruction support of a processor
offers the highest degree of flexibility. A programmable FEC
decoder can be implemented as a memory-mapped coproces-
sor, such as the loosely coupled Viterbi decoder by Hocevar
and Gatherer which supports constraint lengths from 5 to 9
and code rates of 1/2, 1/3, and 1/4 [19]. Application-specific
instruction-set processors (ASIPs) offer an alternate imple-
mentation route: Based on an array of processing elements,
the RECFEC architecture [20] is versatile in that it handles
several decoding schemes, including Viterbi, Turbo and LDPC.
The FlexiTreP ASIP comprises a 15-stage pipeline that has
been optimized for Turbo and convolutional codes [21]. In
the context of a SIMD processing elements in an MPSoC
architecture, Kunchamwar et al. demonstrate hardware accel-
erators that are common to different FEC kernels (Viterbi and
Turbo) [22]. Research also has been carried out on FEC ASIPs
that can handle both Viterbi and LDPC codes: As an extension
to FlexiTreP above, FlexiChaP was introduced to also handle
LDPC [23]. Kunze et al. propose another ASIP, in which one
and the same functional unit handles Viterbi and LDPC [24].

Most accelerators listed above are stand-alone coprocessors,
in a system-on-chip configuration. The accelerator we present
is, relatively speaking, a lightweight accelerator for datapath
integration efficiently providing a hybrid approach for Viterbi
decoding, using both software and hardware. Since the com-
putational intensive kernel is accelerated under strict software
control, our approach provides a high degree of configurability.

VII. CONCLUSION

A versatile datapath accelerator for forward error correction
based on Viterbi decoding has been provided. Innovative
software/hardware codesign concepts, such as micro-coding
and compiler control, were used to minimize memory sizes.
The EEMBC Viterbi benchmark was applied to a 2.7-ns 65-
nm processor datapath with and without a Viterbi accelerator;
a performance increase of 90% is achieved with a datapath
area overhead of 20%.

REFERENCES

[1] G. Krishnaiah, N. Engin, and S. Sawitzki, “Scalable Reconfigurable
Channel Decoder Architecture for Future Wireless Handsets,” in Proc.

Design, Automation Test in Europe Conf., Apr. 2007, pp. 1–6.

[2] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding. Wiley-IEEE Press, 1999.

[3] M. Thuresson, M. Själander, M. Björk, L. Svensson, P. Larsson-Edefors,
and P. Stenstrom, “FlexCore: Utilizing Exposed Datapath Control for
Efficient Computing,” J. Signal Processing Systems, vol. 57, no. 1, pp.
5–19, 2009.

[4] Embedded Microprocessor Benchmark Consortium. [Online]. Available:
http://www.eembc.org

[5] O. O. Khalifa, T. Al-Maznaee, M. Munjid, and A.-H. A. Hashim,
“Convolution Coder Software Implementation Using Viterbi Decoding
Algorithm,” J. Computer Science, vol. 4, no. 10, pp. 847–856, 2008.

[6] G. D. Forney, Jr., “The Viterbi Algorithm,” Proc. of the IEEE, vol. 61,
no. 3, pp. 268–278, Mar. 1973.

[7] J. Heller and I. Jacobs, “Viterbi Decoding for Satellite and Space
Communication,” IEEE Trans. Communication Technology, vol. 19,
no. 5, pp. 835–848, Oct. 1971.

[8] Viterbi Branch Metric Kernel. [Online]. Available: http://www.flexsoc.
org/download/

[9] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann Publishers, 1998.

[10] M. Själander, P. Larsson-Edefors, and M. Björk, “A Flexible Datapath
Interconnect for Embedded Applications,” in Proc. IEEE Computer
Society Annual Symp. on VLSI, May 2007, pp. 15–20.

[11] T. T. Hoang, U. Jälmbrant, E. der Hagopian, K. P. Subramaniyan,
M. Själander, and P. Larsson-Edefors, “Design Space Exploration for
an Embedded Processor with Flexible Datapath Interconnect,” in Proc.
IEEE Int. Conf. on Application-Specific Systems Architectures and

Processors, Jul. 2010, pp. 55–62.
[12] T. Gemmeke, M. Gansen, and T. G. Noll, “Implementation of Scalable

Power and Area Efficient High-Throughput Viterbi Decoders,” IEEE J.
Solid-State Circuits, vol. 37, no. 7, pp. 941–948, Jul. 2002.

[13] M. Kawokgy and C. A. T. Salama, “A Low-Power CSCD Asynchronous
Viterbi Decoder for Wireless Applications,” in Proc. Int. Symp. Low
Power Electronics and Design, 2007, pp. 363–366.

[14] M. Kamuf, V. Öwall, and J. B. Anderson, “Optimization and Implemen-
tation of a Viterbi Decoder Under Flexibility Constraints,” IEEE Trans.

Circuits and Systems I: Regular Papers, vol. 55, no. 8, pp. 2411–2422,
Sep. 2008.

[15] M. A. Anders, S. K. Mathew, S. K. Hsu, R. K. Krishnamurthy, and
S. Borkar, “A 1.9 Gb/s 358 mW 16-256 State Reconfigurable Viterbi
Accelerator in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43,
no. 1, pp. 214–222, Jan. 2008.

[16] C.-C. Lin, Y.-H. Shih, H.-C. Chang, and C.-Y. Lee, “A Low Power
Turbo/Viterbi Decoder for 3GPP2 Applications,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol. 14, no. 4, pp. 426–430,
Apr. 2006.

[17] M. A. Bickerstaff et al., “A Unified Turbo/Viterbi Channel Decoder for
3GPP Mobile Wireless in 0.18-µm CMOS,” IEEE J. Solid-State Circuits,
vol. 37, no. 11, pp. 1555–1564, Nov. 2002.

[18] J. R. Cavallaro and M. Vaya, “Viturbo: A Reconfigurable Architecture
for Viterbi and Turbo Decoding,” in Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, vol. 2, Apr. 2003, pp. 497–500.

[19] D. E. Hocevar and A. Gatherer, “Achieving Flexibility in a Viterbi
Decoder DSP Coprocessor,” in Proc. 52nd IEEE Vehicular Technology
Conf., vol. 5, 2000, pp. 2257–2264, vol.5.

[20] A. Niktash, H. Parizi, and N. Bagherzadeh, “A Reconfigurable Processor
for Forward Error Correction,” in Proc. Int. Conf. on Architecture of

Computing Systems, 2007, pp. 1–13.
[21] T. Vogt and N. Wehn, “A Reconfigurable ASIP for Convolutional and

Turbo Decoding in an SDR Environment,” IEEE Trans. Very Large Scale

Integration (VLSI) Systems, vol. 16, no. 10, pp. 1309–1320, Oct. 2008.
[22] M. K. Kunchamwar, D. P. Prasad, P. Hegde, P. T. Balsara, and R. San-

gireddy, “Application Specific Instruction Accelerator for Multistandard
Viterbi and Turbo Decoding,” in Proc. Int. Conf. Parallel Processing

Workshop, Sep. 2010, pp. 34–43.
[23] M. Alles, T. Vogt, and N. Wehn, “FlexiChaP: A Reconfigurable ASIP

for Convolutional, Turbo, and LDPC Code Decoding,” in Proc. 5th Int.

Symp. Turbo Codes and Related Topics, Sep. 2008, pp. 84–89.
[24] S. Kunze, E. Matus, and G. P. Fettweis, “ASIP Decoder Architecture

for Convolutional and LDPC Codes,” in Proc. IEEE Int. Symp. Circuits

and Systems, May 2009, pp. 2457–2460.

142142142140

