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Maximally Supersymmetric Models
in Four and Six Dimensions

Fredrik Ohlsson
Department of Fundamental Physics
Chalmers University of Technology
SE-412 96 Goteborg, Sweden

Abstract
We consider two examples of maximally supersymmetric models; the N’ = 4 Yang-
Mills theory in four dimensions and the (2, 0) theory in six dimensions. The first part
of the thesis serves as an introduction to the topics covered in the appended research
papers, and begins with a self-contained discussion of principal fibre bundles and
symplectic geometry. These two topics in differential geometry find applications
throughout the thesis in terms of gauge theory and canonical quantization.
Subsequently, we consider the A/ = 4 supersymmetry algebra and the massless
Yang-Mills multiplet representation. In particular, we discuss the vacuum structure
of the N' = 4 theory in a space-time with the geometry of a torus, and the compu-
tation of its weak coupling spectrum. We investigate the case with a gauge group
of adjoint form and discuss the implications of non-trivial bundle topology for the
moduli space of flat connections. Furthermore, we consider gauging the R-symmetry
of the theory by introducing a corresponding background connection. We identify a
special class of terms in the partition function, which are BPS and can (in principle)
be computed at weak coupling, and discuss the action of S-duality on this sector.
Finally, we consider the (2,0) theory in six dimensions, provide a general intro-
duction and derive the free tensor multiplet representation of the supersymmetry
algebra. We then proceed to study (2,0) theory defined on a manifold which can
be described as a circle fibred over some five-dimensional manifold. We discuss the
dimensional reduction of the free (2,0) tensor multiplet on the circle and derive the
(maximally supersymmetric) abelian Yang-Mills theory obtained in five dimensions
for the most general metric of such a fibration. We discuss the properties of the
Yang-Mills theory corresponding to the superconformal symmetry of the (2,0) the-
ory and propose a generalization to the interacting (non-abelian) case, where a field
theory description in six dimensions is problematic. The case when the circle fibra-
tion description becomes singular is also considered and we give a concrete example
of such a manifold and discuss the degrees of freedom located at the singularity.

Keywords
Maximal supersymmetry, Yang-Mills theory, Topologically non-trivial connections,
Flat connections, (2,0) theory, Circle fibrations, Taub-NUT space.
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Introduction

The conventional way to introduce a thesis in theoretical high energy physics ap-
pears to consist in conscientiously listing a number of great physicists, active in
the beginning of the previous century, whose contributions to our understanding of
quantum mechanics and general relativity - the cornerstones of fundamental physics
- were monumental. Even though this is of course the historically correct starting
point (and relativity and quantum mechanics are certainly integral parts of the con-
tents of this thesis) it may be a slightly misguiding one for the purpose of putting
the work described below into context. Instead, it is perhaps more appropriate to
begin this introduction with the advent of gauge theory in 1954 through the works
of C. N. Yang and R. L. Mills [1]. It had previously been discovered that the two
constituent particles of the atomic nuclei, the proton and the neutron, had very sim-
ilar masses and interactions. The observation lead to the proposal that the two are
different states associated to a single particle called the nucleon. More specifically,
these states correspond to the eigenstates of the projection onto the third compo-
nent of a conserved quantity known as the isospi of the nucleon. The proton and
neutron are related through a rotation in an internal space associated to the isospin
quantum numbers. A more technical statement is that the proton and neutron fur-
nish the fundamental two-dimensional representation of the isospin symmetry group
SU(2). The theory describing the nucleons is invariant under such SU(2) rotations
and the distinction between a proton and a neutron simply amounts to an arbitrary
choice of a basis in the module of the fundamental representation.

The realization of Yang and Mills was that in order for the choice of basis to be
void of physical significance, as suggested by the local nature of quantum field theory,
it must be allowed to be made independently at every point in space-time. (It is of
course still possible to consider global continuous symmetries where this is not the
case, and the choice of basis at one point determines the distinction between (say)

1So named for its resemblance with the ordinary spin of quantum mechanics.
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a proton and a neutron throughout space-time. However, such symmetries appear
to be absent in nature.) The consequence is a sharpening of the requirement on the
theory describing the nucleons and their interactions; it must be invariant under
local SU(2) rotations called gauge transformations?. In order to accommodate the
space-time dependence of the SU(2) rotations one is forced to introduce a bosonic
space-time vector field, commonly denoted A, (where p = 0,1,2, 3 label the space-
time coordinates), transforming in the adjoint representation of SU(2). This so called
gauge field is then used to define covariant derivatives with well-defined properties
under the local SU(2) symmetry transformations. Consequently, the gauge field A,
is associated with the force describing the interactions in the theory.

It is straightforward to generalize Yang-Mills theory by replacing SU(2) by an
arbitrary Lie group G encoding a local symmetry. The generators in field theory
of the gauge symmetries form the Lie algebra g, encoding the local (or infinites-
imal) structure of the symmetry group G. The matter contents of these theories
are described by fermionic spinor fields falling into irreducible (but not necessarily
fundamental) representations of G while the particles mediating the corresponding
forces are described by the gauge field in the adjoint representation of GG. In fact, it
could be argued that the most successful theory in the history of physics (and possi-
bly in the history of science) is the standard model describing all observed particles
of naturdd and unifying the known forces (excluding gravity) of particle physics: the
electromagnetic, the weak nuclear and the strong nuclear forces. All matter particles
of the standard model are organized into multiplets of the G = SU(3) x SU(2) x U(1)
gauge group and the respective vector fields describe the bosonic particles mediat-
ing the corresponding forces. Yang-Mills theories appear frequently in theoretical
physics and the concept of gauge symmetry is an immensely powerful and versatile
one.

In fact, as we will return to discuss in the introductory part of this thesis, gauge
symmetry is not a symmetry of a physical theory in the strict sense of the word, but
a redundancy in its description. Investigations of all possible proper symmetries
of the S-matrix of a realistic (local and relativistic) quantum field theory in four
dimensions resulted in 1967 in a theorem by S. Coleman and J. Mandula [2]. The
theorem states that that the most general Lie algebra of generators of continuous
such symmetries is given by the Poincaré algebra (encoding symmetry transforma-
tions between different inertial reference frames in space-time) together with the
generators of a compact internal Lie groupH. However, in 1975 it was shown by
R. Haag, J. Lopuszanski and M. Sohnius [3] that it was possible to introduce a

2In fact, as is pointed out in [I], this phenomenon was already established in electromagnetism
where the wave function can be transformed by a local phase factor corresponding to a U(1) gauge
transformation.

3Hopefully, this statement will be rendered incorrect by future discoveries at the LHC.

4Here, the internal Lie group encodes global symmetries. In addition, local (gauge) symmetries
are compatible with the Coleman-Mandula theorem.
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new kind of symmetry, with fermionic generators, which relates particles of different
spin. The symmetry generators are then no longer required to form a Lie algebra,
thus circumventing the theorem by Coleman and Mandula. The novel symmetry
was named supersymmetry and it provides a connection between the seemingly un-
related fermionic matter fields and bosonic force carrier fields of the theory. Just
as is the case with other symmetries the particles related by supersymmetry, called
superpartners, fall into multiplets. (We will provide a more technical discussion of
supersymmetry in later chapters.) Since its inception supersymmetry has been in-
tensely investigated and is (in spite of the fact that it has yet to be experimentally
established as a symmetry of nature) expected to solve a number of outstanding
problems in theoretical particle physics.

Theories of particle physics in four dimensions are usually restricted to include
particles of spin less than or equal to one in order to avoid problems regarding the
quantization of gravity, which is associated to particles of spin two. (In fact, gravity
is normally several orders of magnitude weaker than the gauge interactions of the
theory so to a very high accuracy this is not really a restriction.) As a consequence,
the amount of supersymmetry allowed is limited accordingly and there is a notion of
a maximally supersymmetric theory. Such theories are highly constrained and have
turned out to possess remarkable properties. Furthermore, they frequently appear
in the context of string theory and M-theory - seemingly the only viable candidates
for a quantum theory of everything - as effective theories in the limit where gravity
decouples.

As the title suggests, the main theme of this thesis is the study of theories with
maximal supersymmetry. The content of such theories depend on the dimension of
space-time in which the corresponding particles propagate and the work presented in
this thesis is concerned with two specific models; the N' = 4 supersymmetric Yang-
Mills theory in four dimensions and the (2, 0) theory in six dimensions. The names,
which at this point appear rather cryptical, refer to the algebra of generators of the
supersymmetry transformations and will be further elucidated during the course
of this introductory part of the thesis. The supersymmetric Yang-Mills theory is
quite simply the supersymmetric extension of ordinary Yang-Mills theory obtained
by adding the superpartners of the vector gauge field. The (2,0) theory on the
other hand, is perhaps best described as the theory living on certain extended five-
dimensional objects, called M5-branes, appearing in M-theory; a perspective which
we will not consider further here but return to discuss in more detail in due time.

It turns out that the two models are closely related through a process called
dimensional reduction: Consider two out of the six dimensions of the space-time in
which (2,0) theory is defined to be curled up, or compactified, into two tiny circles
forming a torus. On energy scales which are small compared to the inverse radii
of the circles an observer in the four uncompactified dimensions cannot detect the
two extra directions. From the point of view of such an observer the (2,0) theory
therefore appears as an effective four-dimensional theory: the A/ = 4 supersymmet-
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ric Yang-Mills theory. This connection may seem somewhat contrived but can in
fact provide significant insight into both theories involved. For example, the N = 4
theory possesses a remarkable symmetry called S-duality which is geometrically
manifested in the compactification as symmetries of the torus.

At present, the title of this thesis would appear to be very appropriate. However,
we would like to point out that it can in fact be slightly misleading. The models we
consider are indeed maximally supersymmetric but the investigations conducted in
the introductory part, as well as in the appended papers, are rarely explicitly incor-
porating the feature that the amount of supersymmetry is maximal. Furthermore,
not even the dimensions appearing in the title are strictly correct: The (2,0) theory
in six dimensions in general has no field theory description. It is therefore convenient
to consider the dimensional reduction to five dimensions which in analogy with the
situation described above yields a (maximally) supersymmetric Yang-Mills theory.
Finally, the (2,0) and A/ = 4 theories share another property called conformal sym-
metry, that can be thought of as a generalization of scaling invariance of the models,
which we will only consider briefly in six dimensions?. Nevertheless, the array of
interesting properties displayed by the (2,0) and N' = 4 theories offers sound moti-
vation for the furthering our understanding of these models and their connections.
Contributing to this end is the purpose of the study carried out in this thesis.

Outline

When starting work on the introductory part of this thesis I decided to keep in
mind a piece of advice offered by my thesis advisor: To write a text I would have
appreciated reading myself when I began my graduate studies. Accordingly, I have
taken the liberty to begin by giving an introduction to selected topics in differential
geometry in Chapter [2l The aim of this section is to provide a rigorous mathemat-
ical introduction to certain constructions appearing in gauge theory and canonical
quantization. To reflect the more introductory nature and the ambition to make
the presentation self-contained, the style of chapter 2] differs from the remaining
chapters@, which are concerned with the original work presented in the appended
papers. The selection of included topics is far from complete and is furthermore
biased by a personal inclination towards a geometrical description of these matters,
which historically was obtained significantly later than the inception in physics of
the concepts themselves. A thorough command of the formal aspects of the physical
concepts is however often helpful for understanding them. Furthermore, modern
research in theoretical particle physics is often concerned with questions bordering

5The title of this thesis is in fact inspired by E. Witten’s lecture [4] on the supersymmetric and
conformally invariant theories considered here.

6This fact should not be mistaken for any illusions on the part of the author of being able to
offer novel insights into the topics treated. Rather, it is a reflection of a fastidious nature and a
fascination with the formalities of mathematical physics.
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on pure mathematics which also warrants the establishment of a firm mathematical
foundation.

In Chapter [3] we initiate the study of the N/ = 4 supersymmetric Yang-Mills
theory. We provide a more detailed introduction to supersymmetry and the Yang-
Mills theory before specializing to the situation consider in PAPER I-II: The N = 4
theory defined on a space-time of the form M = T° x R, where R denotes time.
We consider the vacuum structure of this theory for a gauge group on adjoint form,
which implies that topological aspects must be considered, and study the moduli
space of flat connections or gauge fields. In particular, we identify certain vacua
which admit a perturbative expansion of the theory at weak coupling and study the
energy spectrum of the theories located there.

Along similar lines we perform in Chapter [ an investigation of N' = 4 Yang-
Mills theory on a space-time T for special unitary gauge groups. By coupling the
theory to a background gauge field for the so called R-symmetry, corresponding to
rotations among the supersymmetries, we can identify certain terms in the parti-
tion function which are independent of the coupling strength. They can then be
computed using a weak coupling approximation and the S-duality mentioned above,
which is the topic of PAPER III.

Finally, we then consider in Chapter [Bl the (2,0) theory on a six-dimensional
manifold which can be described as a circle fibration over some five-dimensional base
manifold, a geometry which is the generalization of the compactification on circle(s)
mentioned above. We summarize the results of PAPER IV where the dimensional
reduction to five dimensions of the simplest (2,0) theory is derived and the general-
ization to all (2,0) theories is discussed. We also consider what happens when the
circle fibration becomes singular. A particular example of such a situation is the
concern of PAPER V.
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Mathematical preliminaries

The work presented in this thesis, both in the introductory part and in the appended
papers, utilizes results from a variety of areas in mathematics, one of the most
important of which is differential geometry. During the course of the past century a
geometric perspective on several areas of modern physics evolved, which provides a
description that is often both compact and powerful. Furthermore, by exhibiting the
underlying mathematical structure of physical systems it is possible to gain further
insight into their properties.

In this chapter we provide a brief, but self-contained, overview of a selection
of concepts in differential geometry and their application to physics. The purpose
is two-fold: First, we aim to give working definitions of a number of fundamental
concepts that appear throughout this thesis and place them into their geometrical
context. Second, we attempt a more detailed introduction to selected topics that
appear in the work presented in the following chapters. More specifically we will
discuss the theory of fibre bundles, providing the mathematical foundation for gauge
theory, and symplectic geometry which finds application in the description of clas-
sical dynamical systems and their quantization. We will return to both these topics
in later chapters and discuss their application in the works described in PAPER I-V.
The reader who is well versed in differential geometry and gauge theory may want
to omit this chapter and proceed to the next one.

2.1 Differential geometry

This section aims to provide a very brief overview of some basic concepts of differen-
tial geometry that are needed for the discussion in the present chapter. For a more
detailed account of the material covered here we refer the reader to e.g. [5H7].

7



8 Chapter 2 Mathematical preliminaries

2.1.1 Manifolds

The purpose of the discipline of differential geometry is to extend the notion of a
curve to curved surfaces of arbitrary dimension and apply the theory of differential
calculus to study their geometry. The desired generalization of the curve is provided
by the concept of a manifold, which can be thought of as a space that locally looks
like R™, where n is called the dimension of the manifold. However, this is not quite
sufficient: In order to ensure that the machinery of differential calculus is accessible
we need to endow the space with further structure.

Definition 1. A differentiable structure or C'*°-structure on a topological space
X is an atlas {(U;, ¢;)}, where U; C X are open subsets and ¢; : Uy — R™ are
homeomorphisms, satisfying

(“) VUian:UimUj#@’@[)ijngiogbj—lGCOO

The homeomorphisms ¢; are called the coordinate maps and the U; are called the co-
ordinate neighbourhood; together they constitute a chart (U;, ¢;). The homeomor-
phisms ¢; is given by a coordinate presentation ¢;(p) = {z*}, where u =1,...,n
and z*(p) are the coordinate functions. In terms of differentiable structures we can
now give the rigorous definition of a manifold.

Definition 2. A differentiable manifold or smooth manifold M is a topological
space equipped with a C'*-structure.

i

Rm

« 2" = ¢i(p)

A 4

Figure 2.1: Hlustration of the basic concept of a manifold.
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By definition a manifold is thus homeomorphic to R" locally, but globally this
is only true if the transition functions ¢;; are trivial. The smoothness allows us
to apply the machinery of ordinary calculus on M in a coordinate independent way,
i.e. independent on which coordinate presentation we choose on U; N U; # (), since
the v;; defining the change of coordinates are differentiable.

Having defined manifolds we can consider a map f : M — N from an m-
dimensional manifold M to an n-dimensional manifold N:

Mm |
&/

¢ ¥

R™ R™

.x“:(lﬁ(p) .

Figure 2.2: A map between two manifolds M and N.

With notation according to figure 2.2 the coordinate presentation of f is given by

pofogp™t : R™ — R"
oy = o fogl(ah). @1)

If the coordinates y(z#) are smooth with respect to each x*, the map f is smooth.
This is of course a coordinate independent property since by assumption the transi-
tion functions are smooth. A bijective smooth map with a smooth inverse is called
a diffeomorphism and such maps define an equivalence relation among manifolds.
In fact, we consider all manifolds belonging to the same equivalence class under
diffeomorphisms to be identified.

A special case of maps between manifolds, that will be particularly useful for
us (and is indeed generally exceptionally useful) is that of smooth maps from an
arbitrary manifold to the real line.

Definition 3. A function on a manifold M is a smooth map f : M — R. The set
of all functions on M is denoted F(M).
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2.1.2 Tangent vectors and differential forms

We are now in a position where we can define other geometric objects, in addition
to maps, on manifolds. The first such object is the generalization of the familiar
notion of a vector in Euclidean space. The usual definition in R™ must be refined in
order to accommodate the more general structure of a manifold.

Definition 4. Let M be a manifold and let ¢ : (a,b) — M with a < 0 < b be a
curve in M. A tangent vector X, atp = c¢(0) € M is then defined as a differential
operator satisfying

df (c(t))

X =T | v VieFan). (2.2)

In local coordinates z* the defining relations become

of dz* (c(t))
X = 7 2.
=i (2.3
so that the local expression for the vector X, is
0 dz* (c(t))
X, =XIt— Xt = ———— . 2.4
P Pogn 7 P dt 0 (24)

From the definition above it is clear that there may be several curves that give
the same differential operator at p € M. We can therefore identify the tangent
vector X, as the equivalence class of such curves. The set of all tangent vectors at
p € M form the tangent space 7,M which is a vector space that may thus be
identified with the set of all equivalence classes of curves through p € M. A basis
of T,,M is provided by {0/0z*}. Because T,,M has the structure of a vector space
we can define its dual space, called the cotangent space T;M at p € M, whose
elements are linear maps w, : 17,M — R. The basis of T;M dual to {9/0z"} is
given by the coordinate differentials {dz*}.

It is possible to extend the definition of vectors and cotangent vectors to the
entire manifold M in the following way:

Definition 5. A vector field X on a manifold M is a smooth assignment of a
vector X, € T,M ,¥p € M. The set of vector fields is denoted x(M).
Definition 6. A differential 1-form w is a smooth assignment of a cotangent

vector w, € TyM ,¥p € M, i.e. a map

w : x(M) - F(M)

X = w(X). (2:5)

The space of 1-forms on M is denoted Q' (M).
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The definition of 1-forms generalizes in a straightforward way to differential
r-forms, which are totally antisymmetric maps

w:X(M)x...xx(M)—)}"(M). (2.6)

i

Vv
rtimes

A basis for the space Q" (M) of r-forms is given by {dxz"* A... Adxz""}, the elements

of which are the totally antisymmetric tensor products of dz**, ..., dz* . In local
coordinates we thus have the expression

_ 1 dz dztr 2.7

W—me...urﬂf A...Ndx (2.7)

for an r-form. We furthermore identify the space of zero-forms on M with the space
of functions Q°(M) = F(M). Evaluating e.g. a 2-form o € Q?(M) on two vectors
X = X#0/0z* and Y = Y*0/0xH gives

1
o(X.Y) = 5o (XHYY = Y'X") = 0, XY (2.8)

We now consider two of the most basic operations acting on the space Q" (M)
of r-forms. The first is the exterior derivative d, : Q" (M) — Q" (M) which
generalizes the ordinary derivativd]. In local coordinates this operation acts on
we Q' (M) as

1
dw = = 0uwy, _pda® N AN da (2.9)
r

Forms in the image of d are called exact while forms in the kernel of d are called
closed. The exterior derivative is nilpotent d> = 0, which implies that every ex-
act form is closed. The converse, however, is only true locallyld. The topological
obstruction to globally extending this result is encoded in the de Rham cohomol-
ogy group defined as

ker d,

im dr,1 ’

H" (M,R) = (2.10)
where two closed forms a, b € ker d, are called cohomologous if a — b € imd,_;.

We can also define the contraction of a r-form with a vector, known as the
interior product tx : Q" (M) — Q" '(M) with the vector X € x(M), which is
defined by

LXW(Xl,...7XT,1)EM(X,Xl,...7XT,1) s X,XZ EX(M) (211)
or in local coordinates

Lxw = X Wy pdx™ NN d2T (2.12)

1

"'We will often suppress the explicit subscript on d, for convenience.
2In a contractible coordinate neighbourhood any closed form is exact by Poincaré’s lemma.
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2.1.3 Induced maps and submanifolds

A smooth map between manifolds f : M — N induces maps of both tangent vectors
and r-forms. The induced map of vectors is called the push-forward, or differential
map, f.: TyM — Ty, N and is defined by

f:Xp(9) = Xplgo f) , Vge F(N). (2.13)

Note that the composition g o f € F(M) so that both sides of the defining relation
make sense. Similarly, we may define the induced map of a r-form using the push-
forward of vectors. This map is called the pullback f*: %} (N) — (M) and is
defined by

FulXy,.. X)) =w(f X, .. X)), Xi€T,M. (2.14)

@/—\O

> >

Figure 2.3: The push-forward f, : T,M — Ty, N induced by the map f: M — N.

Using again the notation of figure we can obtain the local expression for the
induced maps. The components of a vector V on M and its push-forward W = f,V
are related by

oy“

W =VH_—

Ox#

The Jacobian (Ox*/0y“) of the map f also relates the components of a r-form w on

N to those of its pullback ( = f*w through

oy
M1 T aq1...00p al‘“l 8,]7“7" .

(2.15)

(2.16)

We recognize the familiar tensorial transformation properties under diffeomorphisms
for both vectors and r-forms.
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A concept that will be use repeatedly in the present chapter is that of subman-
ifolds, i.e. subsets of manifolds that are themselves manifolds. To make this notion
precise we use the induced maps to introduce the following two concepts:

Definition 7. Let M, N be two manifolds with dim(M) < dim(N) and let f : M —
N be a smooth map. If f. is injective, the map f is called an immersion. If f is
an ingjective immersion it is called an embedding.

The definition of a submanifold is then straightforward.

Definition 8. The image f(M) of an embedding f : M — N is a submanifold of
N.

An important property of the submanifold f(M) is that (at least locally) it may be
expressed as the zero locus of (dim(/N) — dim(M)) functions {v;}.

The conceptual difference between an immersion and an embedding, and the
reason why the latter has the structure of a manifold, can be illustrated by the
canonical example of a map f : S' — R? in figures 24 and

R? R?
Sl

1
I S f £(5Y)

Figure 2.4: Immersion of S! into R2. Figure 2.5: Embedding of S into R2.

It is clear from this simple example that while the immersion maps 7,,S* to a
vector subspace of Tf(p)RQ, the fact that f itself is not injective means that f(S!)
is not a manifold. The embedding, on the other hand, has an image f(S') that is
diffeomorphic to S! itself and thus a manifold.

2.1.4 The Lie derivative

Having defined vector fields and differential forms on a manifold M we would now
like to extend the definition of the directional derivative of a function in R™ in order
to measure the rate of change of these objects on M. The first thing we need is
thus a way to specify the direction on M in which we would like to investigate the
change of an object.
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Definition 9. Given a vector field X € x(M) the flow generated by X is the
map oy(p) : R x M — M solving the initial value problem

dz* (o4(p))

o = X"(0up)) , oolp) =p. (2.17)

For each p € M the flow is the integral curve o; of X which satisfies o = p
and whose tangent vector at o is given by X|,,. Furthermore, for fixed ¢, the flow
constitutes a smooth map o : M — M, i.e. a diffeomorphism.

We can now consider the change of a vector Y and a 1-form w along the flow o (p)
generated by X. However, evaluating Y and w at two infinitesimally separated points
p and o (p) is not sufficient since this produces elements of the distinct vector spaces
T,M(T; M) and Ty, () M(T} M) respectively. Fortunately, for a given p € M the
flow itself induces the maps needed to obtain well defined differences in 7,/ and
T M. The result can then be used to define the desired Lie derivative Lx along

the flow generated by X

1
LxY = ll_I)% - (0—e():Y |ocw) — Yy) (2.18)

and )
Lxw = 11_1301 p; (0e(P) wlop) — wp) - (2.19)

The definition of the Lie derivative can be extended in a straightforward manner to
tensors of arbitrary rank. We also note that £x reproduces the familiar directional
derivative for a function f € F(M) and satisfies the useful relation

,CX :dbx+Lxd. (220)

An important property of the Lie derivative is that it endows the set of vector
fields x (M) with the structure of a Lie algebra. We define the Lie bracket [, -] :
X(M) x x(M) — x(M) by

(X, Y] =Lx(Y). (2.21)

In local coordinates the bracket takes the form
(X,Y] = (X“@MY” — Y“@MX”)&,, (2.22)

in which bilinearity and antisymmetry are manifest. Furthermore, the Lie bracket
is easily shown to satisfy the Jacobi identity

X, Y], Z]+[[Y,Z], X]+[[Z,X],Y] =0, (2.23)

constituting the last defining property of a Lie algebra.
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2.1.5 Lie groups

A concept closely related to Lie algebras is that of Lie groups. In the context of
this chapter we will be mostly interested in the geometric description of Lie groups
and their connection to Lie algebras. For an introduction to Lie algebras, their
representation theory and application in encoding symmetries in physics we refer to
the rich literature available, see e.g. [8-10].

A Lie group is quite simply an object that is simultaneously a group and a
manifold. The definition ensures that the two structures defining these two classes
of objects are compatible.

Definition 10. A Lie group G is a (smooth) manifold equipped with o differ-
entiable group structure, i.e. such that the group operations multiplication and
inverse are differentiable.

Using the group structure of G we can define two particular diffeomorphisms by the
left and right actiond of G on itself, also called the left-translation L, : G — G
and the right-translation R, : G — G by an element g € ¢

Ly(h) =gh , Ry(h)=hg. (2.24)

The push-forward map (Ly). : T,G — T,,G between the tangent spaces of G can
be used to define the notion of a left-invariant vector field X € y(G) satisfying

(Lg)sXn = Xgn - (2.25)
From the definition of the push-forward it follows that
(Lg)«[X, Y] = [(Lg)« X, (Lg)sY] (2.26)

which implies that the set of left-invariant vector fields closes to a Lie sub-algebra
of x(M) under the Lie bracket. The set of left-invariant vector fields are referred to
as the Lie algebra g of the Lie group G and is isomorphic to T.G by (2.25), where
e € (G denotes the identity@. In particular, given a basis of left-invariant vector fields
{T*}, where a = 1,...,dim(g), called the generators of the Lie algebra, a basis of
T,G is given by {T7'}. Conversely, given a basis {U*} of T.G, {(L,).U®} provides a
basis of T,G and consequently also a basis of the vector space g. The closure of g
implies that

[T, T = f.T°, (2.27)

where the f_ are the structure constants of g. We will always use antihermitian
generators T so that the structure constants are real. Note that because of (2.25))
they are indeed constants on G.

3We will always use the standard notation where juxtaposition denotes group multiplication.
4We will identify these two isomorphic spaces when convenient.
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A left-invariant vector field X defines an integral curve o,(e) through e € G
which allows us to construct a map from the Lie algebra to G called the exponential
map exp : 1.G — G by

exp(tX.) = oy(e), (2.28)

The exponential map provides an important connection between the Lie group and
its Lie algebra since it allows the local structure of G to be described in terms of
g. The integral curve of X through an arbitrary g € G is recovered as o,(g) =
gexp(tX,), so that the flow of X (c.f. (ZI7)) is given by 0t = Rexpix.)-

On every Lie group manifold there exists a particular Lie algebra-valued one-
form called the Maurer-Cartan form wyc € Q'(G, g) such that wycl, : T,G —
T:G,Vg € G. It is uniquely defined by left-translation of the identity map 1. :
T.G — T.G at the identity

wmclg = (Lg-1) 1. (2.29)

From the definition it follows that wyic is left-invariant and acts on X, € T,G by
wnc(Xy) = (Ly-1).Xy = X.. The Maurer-Cartan form is commonly denoted g~'dg
and can be thought of as containing the same local information about G as the Lie
algebra g. We will find applications for wys¢ in the discussion of fibre bundles below.

2.2 Fibre bundles

Having established a number of important concepts in differential geometry we are
now ready to proceed towards the first goal of this chapter: The formulation of gauge
theory in terms of the geometric construction called a fibre bundle. In this section
we will give an overview of the basic concepts of fibre bundles and some selected
properties that will be useful throughout this thesis. There are several excellent
references, including [51/6,111[12], detailing various aspects of fibre bundles.

2.2.1 Definitions

A fibre bundle is a manifold which locally looks like a direct product of two
manifolds called the base space B and the fibre F. We can think of the fibre
bundle as a copy of the manifold F' attached to each point b € B. However, the
global topology of E can differ from M x F. This notion can be formalized in the
following definition{:

Definition 11. A fibre bundle with fibre F' over the base manifold B consists
of a total space FE, a surjective projection 7 : E — B and a Lie group G called
the structure group with the following properties:

5In line with the previous section we will always assume that manifolds and maps involved in
the bundle constructions are smooth.
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(i) The structure group G acts on F' from the left.

(ii) Given a covering {U;} of B there exists a local trivialization ¢; : 7~ 1(U;) —
U; x F such that (with P; projecting to the U; factor) the following diagrams

commute:
i
ﬂfl(Ui) U, x F
s
B
Ui
Denoting the components of the local trivialization by ¢; = (7, f;) we obtain a

diffeomorphism 7~1(b) — F for each b € B by restricting to f;. The inverse image
is therefore called the fibre at b and is denoted F, = 7~ 1(b) = F. The topology
of the fibre bundle is encoded in the obstruction to globally extending the local
trivialization. A convenient way to describe this obstruction is by means of the
transition functions g;; : U; N U; — G defined by

fi=9ij 15 (2.30)

relating different trivializations ¢; = (7, f;) and ¢; = (m, f;) on an overlap U;NU; #
(). The transition functions can therefore be viewed as a prescription for glueing
together the (topologically trivial) local pieces to form the total space E of the
bundle. The transition functions satisfy the cocycle condition g;;g;x = gir on triple
overlaps U; N U; N U, # 0, and completely determine the topology of the fibre
bundldd. In particular, if (and only if) there exists a local trivialization such that all
gi; = €, where as before e € G is the identity, the bundle is topologically trivial:
E = B x F. In the application to gauge theory described in later chapters, an
important construction is a (local) section of a bundle (E, 7, B), which we define
as a map o : U; = E such that m oo = 1,.

A bundle map between two bundles (E, 7, B) and (E', ©’, B) is a pair of maps
f:E— E' and g : B — B’ such that the following diagram commutes:

E / E'
m 71'/
g
B B’

SIn fact, an equivalent description of a fibre bundle is given by specifying the covering {U;} of
B and the corresponding transition functions g;;.
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(In fact, a map f: E — E’ which maps the fibre Fj, onto a fibre Fj, induces a map
g: B — B'.) If B= B and n’of = 7 the map is called a bundle isomorphism and
if furthermore E = E’ we refer to the isomorphism as a bundle automorphism.
We will consider isomorphic bundles as equivalent (c.f. diffeomorphic manifolds)
and classify bundles according to their isomorphism class.

2.2.2 Principal bundles

We will now introduce an important type of fibre bundles, that will in particular
play a central role in the remainder of this thesis.

Definition 12. A principal bundle 7 : P — B is a fibre bundle which admits a
free right action of G, such that w(pg) = w(p) forp € P and g € G, whose restriction
to 7= 1(b), b € B is transitive.

An equivalent way of defining a principal bundle (or a G-bundle) is thus as a bundle
where the fibre F' is isomorphic to the structure group. Furthermore, the base space
can be identified with the quotient P/G and the fibre F} is (isomorphic to) the
G-orbit of any point p € 7~ 1(b).

The existence of a right action] is a feature of principal bundle which will be
essential when we consider connections below. It also provides a convenient descrip-
tion of bundle automorphisms f : P — P. An element of the group Aut(P) of such
automorphisms is called a gauge transformation and defines a map g : P — G
such that f(p) = pg(p). In particular, a gauge transformation induces an action on
sections of P according to o; — 0;g, which we will return to below.

Given a principal bundles we can construct other bundles with the same structure
group and base space, but with a fibre given by a space which admits an action G
from the left:

Definition 13. Let 7 : P — B be a principal G-bundle and let F' be a manifold
which admits a left action of G. The associated bundle s 7g, : Ep — B with
total space P x F'/~, where the equivalence relation is defined by the simultaneous
action of G in both factors as (p, f) ~ (pg~*, gf), and projection 7, given by w(p).

In later chapters we will be concerned with the particular case when F' = V is a
G-module carrying a representation p : G — End(V'). Then the associated vector
bundle, denoted

Px,V, (2.31)

1 p(g)v). We will later encounter the

is obtained by the identification (p,v) ~ (pg~
bundle

ad(P) = P Xaq 9 (2.32)

"In fact, the right action is globally defined in contrast to the left action of the transition
function which depends on a choice of local trivializations ¢;.
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associated to P through the adjoint action of G on its Lie algebra g. The transition
functions relating local trivializations of the associated vector bundle on overlapping
coordinate neighbourhoods U;NU; # () are determined in terms of the corresponding
quantities of the principal bundle as p(g;;). Since the topological class (or isomor-
phism class) is completely determined by the transition functions this implies that
the associated bundles inherit the topology of the principal bundle P from which
they are constructed.

2.2.3 Topology of principal bundles

We will now briefly consider the problem of characterizing the topological class, or
isomorphism class, of principal bundles. In doing so we restrict attention to the case
when the structure group G is a compact simple Lie group (which is the case we
will consider almost exclusively in this thesisﬁ). As mentioned above the transition
functions completely determine the global structure of the bundle, but there is a
more convenient description of the topology in terms of characteristic classes.

For the purpose of this subsection it is sufficient to let dim(B) < 4 and consider
bundles where the structure group is on the adjoint form G = G /C', where G is
the simply connected cover of G and C' is the center subgroup of G. The non-
trivial homotopy groups of G relevant for bundles over B are then m(G) = C' and
73(G) =2 Z. The restriction of the bundle P to a two-sphere S? in B can be described
by trivial bundles over the two hemispheres Uy and Ug with a transition function
gns : UvNUg = S' — G describing the topology of the (restricted) bundle by
defining an element in 71(G). Using the isomorphism H?(S? C) = C' we can thus
describe the restriction using an element v € H?(S?, C). Similarly, the restriction of
P toan S* in B can be described by glueing trivial bundles over the two hemispheres
using a transition function gyg : Uy N Ug = S® — G defining an element of 73(G).
Here, H%(S*, C) is trivial but H*(S*,Z) = Z which means that the bundle topology
is characterized by an element k € H*(S*,7Z).

In general, the topological class of the bundle can be completely characterized
by two characteristic classes: The 't Hooft flux v(P) € H*(B, () and the fractional
instanton number (or second Chern class) k(P) € H*(B,Q). However, they are not
independent, which is the reason for k generally taking its values in QQ rather than
Z, but related through [13]

1
k — SV € HYB,7). (2.33)
The product v-v is defined by composition of the cup product and the non-degenerate

symmetric pairing C' x C' — R/Z. (We assume that the base manifold B admits a
spin structure, since we will always consider supersymmetric gauge theories, in which

8In the final chapter [ we will consider U(1) fibrations in some detail. However, there we will
not be concerned with global properties of the fibrations.
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case the product v - v is divisible by two in a canonical way.) We will encounter
both these classes in the following chapters of the thesis and also see some examples
from gauge theory below. In particular, chapter Bl and PAPER I-II are concerned
with bundles over a three-dimensional base which implies that the topological class
is determined uniquely by the magnetic 't Hooft flux. The instanton number and
the pairing v - v is discussed in the context of PAPER III in chapter [4

2.3 Connections and curvature

Having introduced the notion of a principal fibre bundle P over some base space B
in the previous subsection, we will now proceed to consider its geometry in more
detail. In particular, we will consider parallel transport of a point p € P along a
curve v in the base B. In order to accomplish this we need to introduce a notion of
what parallel means, which is accomplished by the definition of a connection on
P. The present exposition will be somewhat technical. However, the patient reader
will be rewarded by physical applications to gauge theory in the final subsection.

2.3.1 Connections

In order to define parallel transport we first define the notion of a vector in the fibre
direction.

Definition 14. The vertical subspace V,P C T,P at p € P is V,P = ker (7).

Thus, V, P is the component of T, P along the fibre F; at b = 7(p). The lack of a
canonical definition of a corresponding horizontal subspace H, P, complementary to
V, P, is what requires the introduction of further structure on P.

Definition 15. A connection on P is a smooth decomposition of T, P into a ver-
tical and a horizontal subspace which is equivariant with respect to the right action
of G on P. In other words, it is a smooth assignment of H,P such that

(i) T,P =V,P & H,P
(ii) Hy,yP = (Ry).H,P Vg € G.

In particular, this means that any vector X € T, P is decomposed as X = XV + X,
Given a connection we can now define the unique parallel transport of p € P along
a curve v in B in the following way:

Definition 16. Let v : [0,1] — B be a curve in B. A horizontal lift of v is a
curve 7 : [0,1] — P such that ©(5(t)) = ~(t) and the tangent of ¥(t) is an element
Of Hy(t)P-
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In particular, there exists a unique horizontal lift ¥(¢) through p € 7=(7(0)) and
consequently a unique parallel transport of p given by (1).

We will now begin to make contact with the gauge field that we usually asso-
ciated to a connection in gauge theory. This is done by giving an alternative (but
equivalent) definition of a connection. First we consider the vertical subspace V,P
in more detail. In particular, we can construct V, P by considering the curve in P

oi(p) = pexp(tA) (2.34)

obtained from the exponentiation of an element A € g (not to be confused with the
local connection one-form introduced below) through the right action of G on P.
The vector tangent to this curve is X 4|, € T, P given (c.f. the definition (2.2)) as

df (o:(p))

Xalf) = 2

(2.35)

t=0

In fact, X 4|, is an element of V, P and 0;(p) a curve in the fibre F,,, since 7 is invariant
under the action of G on the right. The definition can be smoothly extended over
all of P to define the left-invariant fundamental vector field X 4 associated to A
and generating the flows o;(p).

Definition 17. A connection one-form w € Q'(P) ® g is a Lie-algebra valued
one-form satisfying w|r, = wye and Ryw = Ady-1w,Vg € G.

(Here, the restriction to Fy, = 7—1(b) is obtained by pulling back w with the embed-
ding of GG into P using its right action.) The fact that w acts like the Maurer-Cartan
form in the fibre implies that w(X4) = A (recall that wyc is left-invariant). We
now define the horizontal subspace H,P as the kernel of the connection

H,P = kerw|,. (2.36)

The properties of w ensures the equivalence with the definition as a separation of
the tangent space of P.

An appealing feature of the connection one-form is that it is defined globally on
P. When considering gauge theory we will, however, be concerned with quantities in
the base manifold B. It is therefore useful to define the equivalent of the connection
one-form on B, a construction which is accomplished using sections of P. However,
for topologically non-trivial bundles we can only define local sections and the one-
forms on B are therefore inherently local:

Definition 18. Let o; be a local section with respect to some covering {U;} of B.
The local connection or gauge potential A; € Q' (U;) ® g is defined as

Ai=olw. (2.37)
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In order to ensure that this definition is invertible, i.e. that a set of local connections
A; uniquely defines a connection one-form on P, we define

wi = g; ' Aigi + 97 'dpgi (2.38)

where g¢; is the canonical local trivialization relative to the section o; (defined by
¢i(p) = (7, g;) with p = 0;(p)g;) and dp is the exterior derivative on P. It can be
shown that (2.38)) satisfies (2.37)) and the requirements on a connection one-form on
P. In order to obtain a globally defined w we require that on U; N U; # () we have
w; = w; which implies that the gauge potentials are related by

where d is now the exterior derivative on U;NU; and g;; are the transition functions of
the bundle. This transformation property of A; thus contains the global information
encoded in the connection w.

A similar transformation is obtained by considering a different choice o] of the
(arbitrarily chosen) section o; appearing in (2.37) for a coordinate chart U;. The
two sections are related through a bundle automorphism (or gauge transformation),
given by some element of the structure group G, as o.(p) = 0;(p)g(p). The corre-
sponding local one-form gauge potentials are then related through

Al =g Aig+g'dyg (2.40)

which we recognize as a local gauge transformation of the potential A;. This
implies that we can identify gauge invariance as the redundancy in the descrip-
tion of a connection of the principal bundle in terms of the local gauge potential,
corresponding to a choice of local coordinates on P.

Finally, we can now return to the parallel transport, motivating the introduction
of the connection, and express it in terms of the local connection A;. Let v be
a curve in U; and 7 its horizontal lift through p € 7=1(7(0)). Given a section o;
such that o;((0)) = (0) the lift can be expressed as 4(t) = o;((t))g;(t) and the
fact that the tangent of 4 is horizontal translated to a differential equation for g;()
defining parallel transport:

dg

where A; = ofw and X is tangent to 7 at v(0). Integrating this we obtain

7(t)
gi(t) = Pexp —/ Al (2.42)
7(0)

where P denotes path-ordering. In particular, if we let v be a loop in B we obtain
the holonomy of the connection around -

gly] = Pexp (_ L A) : (2.43)
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which describes the change in the fibre as p = 4(0) is parallel transported around
v. We will return to this concept in the next chapter when we describe vacua in
Yang-Mills theory.

2.3.2 Curvature

In order to provide a geometric interpretation for the gauge field strength similar to
the one provided for the vector potential A; in the previous subsection, we define a
covariant derivative of a Lie-algebra valued form using the connection on P:

Definition 19. Let ( € Q" (P)® g and Xi,...,X,11 € x(P). The covariant
derivative D¢ € Q""1(P) ® g of C is defined by

D((X,. o Xopr) = dpC(XP . XE). (2.44)

(Here, dp acts in the differential form factor of ¢.) The differentiation is indeed
covariant with respect to the connection on P since, by definition, the connection
determines the decomposition T,,P = V,P ® H,P.

We can then define the Lie-algebra valued curvature on the principal bundle P
as the covariant derivative of the connection:

Definition 20. The curvature two-form Q € Q?(P) x g is defined as
Q=Dw. (2.45)

Just as the connection one-form, the curvature transforms in the adjoint under right
translation

RQ=Ad,Q , Vge@ (2.46)

and satisfies Cartan’s structure equation
1
Q:dpw+§[w,w]:dpw+w/\w, (2.47)

where we define the Lie bracket between two Lie-algebra valued forms ¢ € Q"(P)®g
andn € *® g as

Gl =¢An—(=1)"nA¢=C"An" @ fur'T.. (2.48)
The local curvature is then defined in analogy with the local connection:

Definition 21. Let o; be a local section with respect to some covering {U;} of B.
The local curvature or gauge field strength F; € Q?(P) ® g is defined as

F,=0Q. (2.49)
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The gauge transformation properties of F; under a change of the section o; to o) =
0,9 is given by the relation
F =g'Fyg, (2.50)

and the local descriptions on overlapping charts U; N U; are related analogously.
Using the fact that the pull-back and exterior derivatives commute we immediately
obtain the local relation between the curvature and the connection as

which in local coordinates on B reproduces the familiar definition

Fo, = 0,A% — 0,A% + f*, AL AL (2.52)

bet tut v

From (Z.47)) we derive the local form of the Bianchi identity D = 0 as
dF +[A, F] = 0. (2.53)

In the previous subsection we encountered the (second) Chern class, which was
introduced abstractly as a certain element in cohomology characterizing the isomor-
phism class of a bundle. We can now give a more tangible definition in terms of the
curvature of the bundld’:

Definition 22. Let 7 : P — B be a principal bundle with curvature F'. The total
Chern class is defined by

¢(P) = det (1 + %F) | (2.54)

Ezpanding c(P) we obtain
¢(P)=14+¢1(P)+c(P)+... (2.55)
where ¢, (F) is called the n-th Chern class.

It can be shown that ¢, (P) € H*"(B) and that the cohomology class is in fact inde-
pendent on the curvature of the bundle, motivating the notation ¢(P). Furthermore,
when integrated over a 2n-cycle ¥ in B yields the Chern numbers

Co(P) = /2 en(F) (2.56)

which are topological invariants of P. Since we will mainly focus on bundles where
dim(B) < 4 the only non-vanishing Chern classes are ¢ (F') and co(F) (the latter of

9The 't Hooft flux on the other hand cannot be expressed in terms of F.
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which we encountered above as the fractional instanton number k). The expressions
for these classes are given by

c1(F) = %TrF . eo(F) = # [Te(F A F) — TvF A TrF] (2.57)
and we will return to compute them in explicit examples in gauge theory below.
We now return to the vector bundles Ep = P X,V associated to P and use the
connection on P to define a covariant derivative of sections of Ep. Such a section
o is described by (the equivalence class of) a pair [(p,v)], with p : B — P and
v: B — V, and we define the covariant derivative D : Q°(B, Ep) — Q' (B, Ep) by

Do(X) = [(p, dv(X) + p(w(p.X))v)] , VX € x(B). (2.58)

In local coordinates on Ep and B a section ¢ € Q(B, Ep) is interpreted as a field
¢ on B in the representation p of the structure (gauge) group G. The covariant
derivative then takes the familiar form

D¢’ = 80,¢" + p(To)' ;AL (2.59)

where we let x* be coordinates on B. In particular, for the associated bundle
ad(P) = P X,q g we will encounter in subsequent chapters p is the adjoint repre-
sentation in which the representation matrices are given by the structure constants
and we recover the local expression

D¢ = 0,0" + [ ALdC . (2.60)

Finally, we now complement the definition of curvature given above with a ge-
ometric interpretation. We found that the horizontal lift 4 of a closed loop ~ in
B is generically not closed. The curvature measures this failure of closure of 4 as
indicated by the local relation

Dy DJ6" = 3" Fl (2.61)
Consequently, the operation of parallel transport using the covariant derivative com-
mutes only when the curvature vanishes. A connection for which € = 0, and the
gauge field strength consequently vanishes, is referred to as a flat connection. Par-
allel transport using such a connection is independent of the path between the two
points v(0) and (1) in the base manifold B. Flat connections are of special interest
in this thesis through their connection to vacuum states in gauge theory.

2.3.3 Gauge theory

Having endured a substantial amount of abstract geometry it is now time for the
zealous reader to reap the reward: An inherently geometric definition of gauge



26 Chapter 2 Mathematical preliminaries

theory. As we have hinted at several times before, gauge theory is essentially the
study of connections (or gauge vector potentials) A, on principal bundles over some
base manifold B, which we will always assume is equipped with a metric. We
can then define the Hodge duality operator * : Q"(B) — Q47"(B), where d is the
dimension of B, by its action on an r-form w € Q" (B) which for a flat metric takes

the form .

~orl(d—r)!
with e#1#d being the totally antisymmetric tensor density. (The generalization to
curved manifolds is treated in the context of Riemannian geometry in section [5.11)
The Hodge dual appears frequently throughout the remainder of this thesis.

The structure group G encodes gauge symmetries of the theory, which corre-
spond to bundle automorphisms and are therefore more accurately thought of as
a redundancy of the description, rather than an ordinary symmetry of a physical
system corresponding to a conserved quantity. To be more specific, states of the
physical theory are required to be invariant under the connected subgroup Autg(P)
of gauge transformations homotopically equivalent to the trivial transformation.

In order to formulate a physical theory, we must then supplement the geometric
Bianchi identity for A, (or rather the field strength F),,) with some dynamical way
of determining the evolution of the gauge potential. This is done in the Lagrangian
formulation (see section .51 for further details) by specifying an action functional
on the space of gauge inequivalent connections. The action is then required to be
stationary under arbitrary variations of the field A,. For ordinary Yang-Mills theory
the action is given by

M1 Mr+1 Hd
* W w "€t piritooopig AT Ao A det (2.62)

S— % /B Te(F A «F), (2.63)

where xF' is the dual field strength so that the integrand is proportional to Fj, F!*.
The equation of motion derived from the variation of (Z.63) is

DxF =0 (2.64)

or equivalently
D,F*" =0. (2.65)

We will now proceed to consider two classicall examples of topologically non-trivial
gauge bundles (i.e. connections obtained by solving the equations of motion). In
particular, we will compute the Chern class of the two examples using the curvature.

The Dirac monopole bundle

We first consider the bundle describing a magnetic Dirac monopole [I4] located at the
origin of R3. This is accomplished by a principal U(1) bundle over S? (or equivalently

10Tn the sense that they are well-known and often recurring examples; not in the sense of classical
as opposed to quantum.
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R3\ {0}). Since S? cannot be covered by a single coordinate neighbourhood we
consider the atlas consisting of the two hemispheres Uy and Ug, with intersection
Uy NUg = S! along the equator. The bundle is then defined by the transition
function gng = e~?, where we require n € Z for consistency.

One particular solution to Maxwell’s equations is given by the gauge potentials

An = zg(l —cosf)dp , As= ig(—l —cosf)do, (2.66)

where (0, ¢) are the standard coordinates on S? and the integer n is called the charge
of the monopole. The potentials are indeed related through the transformation

As = Ax + gysdgns (2.67)

along the equator Uy N Ug, and consequently define a connection on the bundle
described above. This is Dirac’s solution describing a magnetic monopole in the
center of the ball bounded by the S%2. We note that the potentials are not well-
defined over all of S%. In particular, when considered in R*\ {0} the connection
An has a stringlike singularity along the negative z-axis (and similarly for Ag)
which is known as the Dirac string. The resolution to this singular behaviour is to
consider Ay and Ag as defined only on Uy and Ug respectively, in agreement with
the definition of local connection one-forms given above.

We can now consider the first Chern number of the monopole bundle by defining
Fn =dAy and Fs = dAg and computing using (2.57))

Cy=— F F = — Av — Ac) = — fld — —n.
1 2 </UN N_'_/US S) o /Sl< N S) o [g1 InsAINS n

(2.68)
Thus, we find that the monopole charge must be integral and is given by (minus)
the first Chern number.

The instanton bundle

The next example is provided by SU(2) Yang-Mills theory in R*, which implies that
adding a point at infinity we consider principal bundles over B = S* We will
consider the (anti-)self-dual instanton solutions [15] to the Euclidean Yang-Mills
equations which satisfy «F' = £+ F. In order for the corresponding Yang-Mills action
to be finite we must require that the connection satisfies

A—gtdg | |v|— oco. (2.69)

In the compactification of R* this defines the two hemispheres Uy and Ug of S* as
being respectively the complement of and a neighbourhood of the south pole (at
|z| = 00). On the overlap Uy N Ug = S® we can then take

Ayv=A=g'dg , As=0, (2.70)
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where the transition function g : S — SU(2) defining the topology of the bundle
and appearing in the gauge transformation of Ag is given by

o(z) = E(:UO + ixiai)} " (2.71)

Here, o, are the Pauli matrices, r is the S® radius and k € Z. In order to compute
the second Chern clasf] we note that locally TrF A F = dC'S (A), where the Chern-
Simons form is defined by

2
CS(A)="Tr (A/\dA+ gA/\A/\A) . (2.72)
Consequently, we have for the second Chern number
1 1 1
Co=— | TtFAF=— CS(A)=— TrANANA. 2.73
2782 Jo ! snz J, O 247?2/53 ' (273)

where we have used F = 0 on S3. For k = 1 we have TrA A A A A = 12Volg, and
thus C5 = —1; for arbitrary k£ one similarly finds Cy = —k. Thus, the integer k
characterizing the winding of the transition function g : S* — SU(2) in the gauge
group is again given by the (negative) Chern number in analogy with the monopole
bundle above. (In the previous section the fractional instanton number was denoted
k € HYB,Q). For G = SU(n) which is simply connected the 't Hooft flux is trivial
and the instanton number is really an integral class which integrated over B gives

kel)

2.4 Symplectic geometry

The geometric formulation of classical mechanics and the process of canonical quan-
tization is the second objective of this chapter. Here, we develop some further
geometrical concepts that will be needed for this application, which turns out to
involve a certain class of manifolds, called symplectic manifolds, equipped with an
additional structure. Further reading on the theory of symplectic manifolds and
canonical quantization can be found in e.g. [6,[16L17].

2.4.1 Symplectic manifolds
We begin by giving the definition of a symplectic manifold:

Definition 23. A symplectic manifold is a pair (M, o), where M is a manifold
of dimension 2n and o € Q?(M) is closed and non-degenerat.

Since G = SU(n) the generators are traceless and ¢1(P) = 5=TrF = 0.
12The form o is non-degenerate if o(X,Y) =0, VY € x(M) implies X = 0.
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The 2-form o is called a symplectic form, and is said to equip M with a symplectic
structure. An important consequence of the existence of the symplectic form is that
it associates a vector field to each element of F(M).

Definition 24. Given a function f € F(M) the associated Hamiltonian vector
field Xy is defined by
Lx,0+df =0. (2.74)

In the next chapter we will consider the application of symplectic geometry to
Hamiltonian mechanics, motivating the name Hamiltonian vector field. The non-
degeneracy of o implies that the defining equation for Xy, which can also be ex-
pressed as

o(XpY)+df(Y)=0 , VY € x(M), (2.75)
has a unique solution. From the properties do = 0 and (2.20) it follows that

Lx,0=dix,0+1x,do =0, (2.76)

f

which means that the flow generated by Xy preserves the symplectic form o. Con-
sequently, the pair (M, o) is invariant under the flow which is therefore called a
symplectomorphism. Another important feature of the associated vector field is
that it endows F (M) with an algebraic structure.

Definition 25. The Poisson bracket of two functions f,g € F(M) is given by

{f,9} = o(Xp, Xy) (2.77)

For arbitrary elements f,g,h € F(M) the Poisson bracket, which is bilinear and
antisymmetric by construction due to the properties of differential forms, satisfies
the Jacobi identity {f,{g,h}} + {g.{h, f}} + {h.{f,9}} = 0 and consequently
endows F (M) with the structure of a Lie algebra. In fact, (274) constitutes a
homomorphism of Lie algebras F(M) — x(X).

There is a particular interpretation of the Poisson bracket that makes it central in
the application to classical mechanics below: From the definition of the Lie derivative
it follows that {f, g} = Lx,(g), that is { f, g} gives the change of the function g along
the flow generated by the Hamiltonian vector field associated to f (and vice versa).
A special case is {f, g} = 0 which implies that g is preserved by the flow generated
by X;.

Before proceeding to explore symplectic geometry and the algebraic structure
of F(M) further, it is convenient at this point to make a slight detour to discuss
submanifolds of symplectic manifolds. To this end we consider vector spaces that
carry a symplectic structure.

Definition 26. A symplectic vector space (V,0) is a vector space V' equipped
with a skew-symmetric and non-degenerate bilinear form o :V x V — R.
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In particular, the tangent space T, M at each point p € M of a symplectic manifold
is given the structure of a symplectic vector space by restriction of the symplectic
form ¢ on M. Due to its non-degeneracy, o provides a notion of orthogonality in
the context of symplectic vector spaces.

Definition 27. Let (V, o) be a symplectic vector space and let W C V' be a subspace
of V. The symplectic complement of W is

WH={XecV]|o(X,Y)=0,YY e¢ W} . (2.78)

The elements X € W+ are said to be symplectically orthogonal to W. Using
the symplectic complement we can now define a special class of submanifolds that
will appear in the discussion of constrained dynamical systems below.

Definition 28. Let My C M be a submanifold of a symplectic manifold (M, o). M,
1s a symplectic submanifold if

T,Mo 0 (T,Mo)- =0, Vp € M,. (2.79)

An appealing feature of symplectic submanifolds (and the reason for their name)
is that the symplectic structure ¢ on M induces a symplectic structure on Mj.
Let i : My — M be the inclusion map. Then (2.79) implies that the pullback
oo = i*o € Q(My) is non-degenerate and consequently (since d commutes with the
pullback) that (My, 0g) is a symplectic manifold called the symplectic restric-
tion of (M, a). Finally, a symplectic submanifold induces a decomposition of the
tangent space

T,M = T,My & (T,My)*, ¥Yp € M. (2.80)

The components of a vector field X € x(M) relative to this decomposition are
denoted
X=XT4+Xx*. (2.81)

2.4.2 Canonical coordinates

Before proceeding to the prime example of symplectic manifolds in physics we state,
without proof, a theorem by Darboux which allows for a convenient local formulation
of symplectic geometry: On any symplectic manifold (M, o) it is possible to find
local coordinates (¢, p;), i =1,...,n, such that the symplectic form is given by

o= Z dp; A dq" . (2.82)

13The symplectic restriction can be generalized to the case when (TpMO)J— C T,My Vp € M.
Such submanifolds are called coisotropic and the corresponding construction is called symplectic
reduction.
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In other words; on each coordinate patch U; in the covering of M it is possible to
choose the homeomorphism ¢; so that ¢ takes the standard form of Darboux. The
coordinates (¢, p;) are referred to as canonical coordinates for reasons that will
become apparent below.

We can now derive the coordinate expression for the geometric quantities intro-
duced above as a first step towards making contact with the familiar Hamiltonian
formulation of classical mechanics considered in the next section. From the defining
relation (2.74) we find the coordinate expression

90 af D
T 0pi 0 oq p;

for the Hamiltonian vector field associated to the function f € F(M). For the
Poisson bracket on the other hand we obtain, in local coordinates, the familiar form

of o9 Of g
Op; 0  O¢* Op;

(2.83)

{f.g} = (2.84)

2.4.3 The cotangent bundle

We are now ready to consider the (perhaps) most important examples of symplec-
tic manifolds in physics, namely that of cotangent bundles. In fact, as we will
see shortly, cotangent bundles are also important in their own right through the
connection with the local description of general symplectic manifolds provided by
Darboux’s theorem.

Definition 29. Let ) be an n-dimensional manifold. The cotangent bundle
m o T*Q — Q 1is the vector bundle over ) defined as the disjoint union of the
cotangent spaces Tq*Q

Q= J{} xT;Q. (2.85)

q€Q

From the definition™ it is clear that the fibre over a point ¢ € Q is I, = T;Q
and that a point m € M = T*Q is a pair (¢,p), where ¢ € Q and p € T/Q. The
projection operator is simply given by the projection to the first element 7(q, p) = q.

There is a canonical symplectic structure on the cotangent space M = T*Q)
for any manifold (). This structure is provided by the tautological one-form
7 € QY(M) which is most transparently defined by its value when evaluated on an
arbitrary vector X,, € T,,M at a point m = (¢, p) :

(Xm) = Pl (X)) (2.86)

14To make contact with the previous section we note that the definition does not imply that
T*Q is globally a direct product (trivial bundle) for a generic manifold Q. The non-triviality of the
cotangent bundle is encoded in transition functions valued in GL(n,R) corresponding to coordinate
transformations on Q).
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The vector X,,, and its push-forward are illustrated in figure 2.6l Taking the exterior
derivative of the tautological one-form we obtain

o=dr, (2.87)

which is a closed and non-degenerate two-form making (M, o) a symplectic manifold.

T°Q X,

m = (¢,p)

Q T (Xom)

»
>

Figure 2.6: Schematic illustration of the push-forward of a vector X,,, € T,, M, where
M = T*@Q, by the projection map 7 : M — Q.

To prove the claim that o is a symplectic form on M = T*() it is convenient to
work in local coordinates. Given coordinates {¢'} on a patch U; C @Q we recall that
for ¢ € U; a basis for the cotangent space 7@ is provided by {dq'}. A cotangent
vector p € T7(Q) is then written in terms of components as p = p;dg'. Thus, on on
U; x T*U; we have local coordinates

H = (glj___,qi,?h...,p@). (2.88)

VvV VvV
xt T«

In these coordinates an arbitrary vector X,, € T,,M is expanded as

7 8 « a
X=Xz + Xnmo, (2.89)

and evaluating a one-form 7 € Q'(M) on the vector X, gives

T(Xm) = 1 X0+ T, X2 . (2.90)
The coordinate expression (ZI5]) for the push-forward becomes

-9k 0 ag* 0 -0
! — + X —— =X ‘ 2.91
" Oxt Ogk + " Qx> OgF ™ Oqt (2.91)

(X)) =
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and evaluating p € T;/Q on this vector yields
P(m( X)) = X501 (2.92)
Recalling the definition 7(X,,) = p(m.(X,,)) of the tautological one-form we obtain
T = pidq’, (2.93)

and applying the exterior derivative to 7 we get the local expression for o € Q?(Q)
as

o=dr = Z dp; A dq' (2.94)

which is indeed a symplectic two-form on the standard form of Darboux.

We now see the significance of cotangent bundles in symplectic geometry: By
Darboux’s theorem every symplectic manifold locally looks like a cotangent space.
The canonical coordinates on an arbitrary symplectic manifold are then those in
which the symplectic form o takes the form of the canonical symplectic form on the
corresponding cotangent bundle.

Finally, we note that although much of the discussion in this section has been
concerned with the local coordinate formulation, the tautological one-form (and con-
sequently also the canonical symplectic structure of 7*Q) is defined in a coordinate
independent way.

2.5 Canonical quantization

We are now ready to consider the application to classical mechanics of the theory of
symplectic manifolds developed in the previous section. We will assume familiarity
with both Lagrangian and Hamiltonian formulations of classical mechanicd! and
show how they can be conveniently formulated in terms of geometric quantities. In
particular, the Hamiltonian formulation, its connection to symplectic geometry and
the process of canonical quantization are explored.

2.5.1 Hamiltonian mechanics

Any description of a classical dynamical system, i.e. any formulation of classical me-
chanics, can be seen as originating with the configuration space () of a mechanical
system. The points in @) describe the (generalized) positions or configurations acces-
sible to the system. In other words at any given time the system will be described
by some g € ). We will assume that () is a smooth manifold which is generically the
case for ordinary mechanical systems. With time the system may change its position

5Detailed accounts of the material reviewed in the first part of this section can be found most
textbooks on classical mechanics e.g. [16L[1§].
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in configuration space and the corresponding trajectory is a curve v : R — @ that
completely determines the evolution of the system.

In order to describe the state of the system at some instant, Lagrangian mechan-
ics uses the tangent vector of the trajectory v(t) parametrized by the time ¢. That
is, instantaneously the system is completely characterized by the position ¢ = ~(t)
and generalized velocity ¢ = v.(d/dt) € T @ which together define a point in the
tangent bundle T'Q) (defined in analogy with the cotangent bundle as the disjoint
union of all tangent spaces of ) so that a point m € T'Q) is described by the pair
m = (q,q))-

The Lagrangian function L(q,¢) on the tangent bundle determines the dy-
namics of the system as a initial value problem by requiring that the trajectory ~(¢)
extremizes the action functional

Slg, 4] = /dtL(q,cJ) : (2.95)

This requirement, referred to as the variational principle, implies the familiar Euler-
Lagrange equations of motion

4 (i) o) 2.96)

dt g dq

Given an initial position and velocity (¢, ¢) these equations determine uniquely the
trajectory 7(t) of the system.

To transition to the Hamiltonian formulation, which is the formulation used in
canonical quantization below, we begin by defining the (generalized) conjugate
momentum p(q, §) as the derivative of L(q, ¢) in the fibre direction of the tangent

bundl
dL(q, q)

o (2.97)

p(g,q) =
Using the momentum p(q, q) € T;Q we can now characterize the state of the dy-
namical system at some time as an element (g, p) of the cotangent bundle rather
than the tangent bundle. Thus, the phase space P of the dynamical system is
precisely the cotangent bundle T*() of the configuration space Q.
Under the technical assumption that (2.97) is invertible, so that we can solve for
the velocity as a function of (¢, p), we can define the Hamiltonian function of the
system on the cotangent bundle

H:T°Q—R (2.98)

16To make this expression more precise we note that since the Lagrangian is a function on T'Q
the desired quantity p must be in the dual space of the variation ¢ € T,Q), which implies p € T;'Q
and that the defining relation is p(6¢) = dL.



2.5 Canonical quantization 35

through the Legendre transformation]

H(q,p) = p(q) — L(q,4q)- (2.99)

The Hamiltonian H(q,p) gives the total energy of the system at some point (g, p)
of phase space. The equations of motion in the Hamiltonian formulation can be
derived from the Euler-Lagrange equations. The equations are called Hamilton’s
equations and in canonical coordinates they are given by

d¢*  OH dp; 0OH

— = 2.1
dt  Op; = dt oqt (2.100)

Previously, we showed that the phase space P = T*(Q) together with the canonical
symplectic form o is a symplectic manifold (P,o). We can therefore consider the
Hamiltonian vector field Xy associated to the Hamiltonian through the symplectic
form o, i.e.

tx,0+dH =0. (2.101)

Recalling that in canonical coordinates this implies that the Hamiltonian vector field
is given by

OH 0 O0H 0
0= - — — (2.102)
Op; 0¢  Oq' Ip;
and inserting Hamilton’s equations we obtain
dgt 0  dp; O d
d b Ly (2.103)

= E@qi dt Op; T dt

Thus Xy is the vector field that generates time translations on the phase space
P = T*Q of the dynamical system, or equivalently; the system evolves along the
flow on P generated by Xp.

Physical observables of the system in classical mechanics then correspond to
functions f € F(P). Thus, there is a canonical algebraic structure on the set
of physical observables induced by the symplectic structure of the phase space,
namely the Poisson bracket discussed in the previous chapter. In particular, the
time evolution of an observable f € F(M) is given by

d
T tmy) (2.104)
dt

and an observable satisfying {H, f} = 0 is a constant of motion for the system. A

special case is {H, H} = 0 which entails conservation of energy. Conversely, the
antisymmetry of the Poisson bracket implies that given a flow that preserves the

"Here, p(q) denotes the cotangent vector p evaluated on the vector ¢ at ¢ € Q.
8The final equality is somewhat schematic; d/dt is of course a vector on the domain of the curve
~(t) and we are referring to the push-forward of d/dt to a vector tangent to T*Q as defined above.
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Hamiltonian H (and thus constitutes a continuous symmetry of the system) there is
a corresponding conserved charge, associated through (Z74) to the vector that gen-
erates the flow. This correspondence is simply Noether’s theorem for Hamiltonian
mechanics [17,18].

2.5.2 Canonical quantization

Equipped with the geometric formulation of classical mechanics considered in some
detail in the previous section we can now take the first step towards the correspond-
ing quantum theory. As we saw above the classical theory is described by the phase
space P where physical observables are functions f € F(P). The symplectic struc-
ture of the phase space induces a canonical algebraic structure of F(P), making it
a Lie algebra with respect to the Poisson bracket{,} : F x F — F.

The quantum theory on the other hand is described by a Hilbert space H,
which is a linear space over C equipped with a sesquilinear inner product. Physical
states correspond to rays in Hilbert space, i.e. one-dimensional subspaces of H. A
set of observables of the quantum theory is given by a subset of endomorphisms f €
F = End(H), called quantum operators, acting on the states of the Hilbert space.
Multiplication of operators f , g can be defined by successive action on states in H
and the space of endomorphisms closes to an algebra under the ordinary commutator
L]: FxF— F.

Canonical quantization of a classical theory then amounts to an algebra homo-
morphism {f} — { f }, implying that observables of the classical theory are mapped
to quantum operators that satisfy commutation relation given by the Poisson bracket

[f.al=ilf.q}. (2.105)

Thus, the quantization preserves (to the extent possible) the canonical algebraic
structure of the classical theory, induced by the canonical symplectic structure of
phase space P.

There are several remarks regarding canonical quantization to be made at this
point. The fact that the algebraic structure of the classical theory is carried over to
the quantum theory implies that the quantization respects the continuous symme-
tries of the classical theory (barring quantum anomalies which we will not discuss
here). Conserved quantities, i.e. constants of motion, of the classical theory are
mapped to quantum operators that act as symmetry generators of the quantum
theory through commutation. This can be viewed as the purpose of requiring the
quantization to preserve the canonical algebraic structure.

However, it is important to recognize that canonical quantization is not a well-
defined procedure. First of all, it is in general not possible to associate quantum
operators to all functions f € F(P) that are potential physical observables. Thus,
canonical quantization involves a choice of a subset (or rather a subalgebra) of
observables of the quantum theory. Perhaps more severely, there is an ordering
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ambiguity in the quantum theory: We define the product on F(P) by point wise
multiplication of functions, which is commutative. However, because of (ZI05]) the
multiplication of operators in the quantum theory (which is itself well-defined as we
saw above) is not commutative whenever the Poisson bracket of the two correspond-
ing function is non-vanishing. Thus, given an observable of the classical theory that
is expressed as a function of the canonical coordinates (¢, p;), the corresponding
operator is not well-defined as a product of the operators ¢, p;.

Finally, one of the distinctive features of the Hamiltonian formulation (which
is the setting of canonical quantization) is that is singles out time by describing
it as the parameter of the trajectory of a system in phase space, while the posi-
tion parametrizes the configuration space ). Thus, manifest Lorentz invariance is
lost when applying canonical quantization to a quantum field theory. I order to
keep Lorentz invariance manifest we must consider path integral quantization in the
Lagrangian formulation.

2.5.3 Constraints

So far we have always implicitly assumed in our treatment of the Hamiltonian for-
mulation and canonical quantization of classical dynamical systems that the system
is not subject to any constraints. This means that the available phase space is the
entire cotangent bundle T*(@) over the configuration space (). The evolution accord-
ing to Hamilton’s equations, or equivalently the flow generated by the corresponding
Hamiltonian vector field, can then in principle reach any point of P given appropri-
ate initial conditions. In this context it is important to recognize that conservation
of the constants of motion, i.e. the conservation of total energy and any other phys-
ical observable that has vanishing Poisson bracket with H, should not be considered
as constraints. From the geometric perspective they are simply invariants under the
flow generated by Xpg.

A set of constraints on a dynamical system corresponds to a set of functions
{14} on the symplectic manifold (M, o), where M = T*() is the cotangent bundle of
the configuration space () of the system as before, for which we require that ¢, = 0.
The phases space of the constrained system is therefore not the cotangent bundle
M but rather the submanifold

My = {p € Mtou(p) =0, Va} , (2.106)

i.e. the zero locus of the set of constraints {wa}@.
Below we will review the classification of constraints due to Dirac [19,20] and
discuss the properties of the corresponding submanifolds. The purpose is to arrive at

9The representation of the constraints as at set {1} of functions is not unique. Physically,
any set of functions defining the same submanifold, and consequently the same phase space for the
dynamical system, must be considered equivalent.
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a geometric understanding of Dirac’s procedure for quantizing constrained classical
systems, which involves using the so called Dirac bracket instead of the Poisson
bracket. In addition to Dirac’s classic lecture notes, an excellent reference for the
geometrical part of this discussion is [2I], to which we try to conform in terms of
notation.

Let U C F(M) be the linear span of the constraint functions {1, } and I C F(M)
be the ideal in F(M) generated by {t¢,}. In other words, I is the set of functions
that vanishes when restricted to the subspace 1, = 0. According to Dirac we then
let ¥ C ¥ denote a maximal subspace of functions whose Poisson bracket with the
constraints belong to this ideal

{F,v}CI. (2.107)

We refer to a basis {¢;} of F', by definition satisfying {¢;, ¥4 }|m, = 0, Va, as first
class constraints and basis {x,} of the complement of F' in U as second class
constraints. First class constraints are always associated to a group of symmetries
of the dynamical system, generated by the Hamiltonian vector fields of the constraint
functions. Correspondingly, there is a redundancy in the canonical description of the
system which can be used to eliminate the first class constraints through a choice
of gauge, resulting in a system of only second class constraints. (Below we will
always assume this gauge fixing has been carried out.) Detailed accounts of these
results, which we will not discuss further here, can can be found in e.g. [20,22]23].

A system of second class constraints {y,} are by definition such that no linear
combination of their Poisson bracket vanishes even after restriction to My. Let {Z,}
be the Hamiltonian vector fields corresponding to the constraints

L7,0 +dxa =0. (2.108)
By definition, a vector field X is tangent to My iff dx,(X) = 0, Ve, or using (2I08))
0(X, Zs) = 0,Va. (2.109)

The tangent bundle 7'M, of the submanifold (Z106]) is therefore given by the sym-
plectic complement of the span of {Z,}. Taking the symplectic complement of this
relation we find

TMy = (Z,), (2.110)

i.e. {Z,} is a (local) basis of TMg-. From the second class property it follows [19]
that {xa,Xxs} is non-singular, or correspondingly by (277) that o(Z,, Zs) is non-
degenerate. We can now express Dirac’s result in terms of symplectic geometry: A
system of second class constraints defines a submanifold M, that satisfies T'My N
TMj = (); a symplectic submanifold.

Since the phase space of the mechanical system is M, rather than the full cotan-
gent bundle, its dynamics is described in the Hamiltonian formulation by the flow on
(Mo, 0¢) generated by the Hamiltonian. We are therefore interested in the explicit
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form of oy in terms of o, or in other words a description in which the constraints
of the dynamical system are manifestly satisfied. In particular, we can use the
construction in 2.4.1l to compute the Poisson bracket on M, defined in terms of oy.

Let f, g € F(My) be functions which extend to functions f, g € F(M) and denote
the corresponding Hamiltonian vector fields w.r.t. (M, o) by X, X,. By (2.81) they
decompose as

Xp=X{+Xy , X,=X]+X,, (2.111)

From the definition of oy and T ]\40L we can express the Poisson bracket on (M, o)
as

{f.g}o=0o(X]. X)) =0(X}, X,) —0o(X}, X,). (2.112)
The orthogonal component of a vector X € x(M) is expanded in terms of the basis
{Zu} of TMOL as

Xt=>"¢"2, (2.113)

yielding
0(X, Zo) = 0(X*, Zo) =Y (Po(Zp. 2) . (2.114)
B

Now, since M is a symplectic submanifold the matrix

Cap = 0(Zay Zg) = {Xa» X5} (2.115)

is invertible and, denoting its inverse by C*?, we can solve for the coefficients in

2113)
P =" a(X, Z.)C. (2.116)

«

Finally, we can then compute

o(XF, X)) = > 0((fZa.C)Z5)

aB
- Za(Xf,Za)Caﬁa(Zﬁ,Xg)
aB
= S X} C s, g} (2.117)
aB
and obtain the Poisson bracket on the symplectic submanifold (Mg, 09) as
{f.9%0 ={f.9} =D _{f xa}C{xs.9} - (2.118)
aB

This is the Dirac bracket constructed in [I9]. The derivation above in terms of sym-
plectic submanifolds provides a geometrical interpretation of its role in the Hamil-
tonian description of constrained dynamical system@.

20The geometric derivation is also significantly simpler than the original one due to Dirac. In
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2.5.4 Quantization of constrained systems

Applying the canonical quantization procedure to a constrained classical system is
straightforward given the developments in the preceding section: The phase space
P and its canonical symplectic structure comprise the symplectic manifold (M, o)
defined by the constraints in (2.I06) and the commutation relation in (2.105) is
consequently given by the Poisson bracket on M,

f. 8l =iTf. g% (2.119)

The discussion in 2.5.2] which is solely based on the symplectic structure of P,
remains valid even when the phase space is submanifold of the cotangent bundle.
In this sense it is trivial to extend canonical quantization to constrained systems,
which is not surprising; a constraint can indeed be viewed as a redundancy in the
description in terms of the configuration space ) and the Dirac bracket can be viewed
as the Poisson bracket defined for the physical degrees of freedom parametrizing the
actual phase space.

From a more pragmatic point of view, however, it can be advantageous to retain
the redundant description of the classical system in terms of () and an accompanying
set of constraints. The "problem” of canonical quantization is then to ensure that
the constraint equations y, = 0 are consistent with the commutation relations | f .4
assigned. Consider for example the simple system

¢ =0, p'=0 (2.120)

of second class constraints. This is obviously inconsistent with the ordinary com-
mutation relation [g;, p’] = —iéf obtained from the ordinary Poisson bracket. In
this case the inconsistency can be remedied by eliminating the degree of freedom
corresponding to the index value ¢ = 1 and redefining the Poisson bracket in terms
of the remaining canonical coordinates. (Indeed, this provides the simplest example
of symplectic restriction of the cotangent bundle.) Generalizing the example, it is
possible to derive the property

~

[f.xa]l =0, Va (2.121)

using the expression (ZII8]), which guarantees the consistency of the Dirac bracket
with the constraints y, = 0. Thus, canonical quantization of a system subject to
second class constraints is consistent when the commutation relations are provided
by the Dirac bracket. In chapter 3l we will use this construction quantize the N' = 4
supersymmetric Yang-Mills theory located at isolated vacua at weak coupling, which
is the concern of PAPER I-II.

fact, Dirac himself pointed out [20] that there ought to be a simpler way of establishing the Jacobi
identity for the new bracket than a brute force computation. In the geometric formulation this
follows immediately from the definition o¢g = i*o.



Isolated vacua in Yang-Mills
theory on T

After the mathematical introduction of the previous chapter we begin the discussion
of the first of the two main topics of this thesis: The maximally supersymmetric
N = 4 Yang-Mills theory in four dimensions. As is indicated by the title of the
present chapter we will be particularly interested in the case when the spatial part
of My = B x R is a flat torus B = T° = R3/Z?, which is the case considered in
PAPER [-II. We will first consider the supersymmetry algebra in four dimensions
and construct the massless N/ = 4 vector multiplet, whose dynamics is described by
the Yang-Mills theory. Subsequently, we will consider the vacuum structure of the
Yang-Mills theory on 7%, and in particular the moduli space M of flat connections of
principal bundles over T°. The fact that 7 is not contractible implies the existence
of topologically non-trivial bundles and M is decomposed into disjoint subspaces
according to the topological class of the bundle.

In particular, there exist for some gauge groups G isolated points in M which
correspond to normalizable vacua of the classical Yang-Mills theory and are well
suited for performing a perturbative analysis in the weak coupling regime. PAPER I
is concerned with computing the energy spectrum of the free theory in the weak
coupling limit at all such isolated points of M for arbitrary simple gauge group.
PAPER II is devoted to an attempt to give a perturbative description of the in-
teracting Hilbert space of the theories located at isolated points for SU(n) gauge
groups.

3.1 Supersymmetric Yang-Mills theory

The first order of business is to properly introduce the concept of supersymmetry
mentioned in chapter [Il It generalizes the ordinary notion of a symmetry transfor-

41
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mation of a theory by the introduction of fermionic supersymmetry generators that
exchange bosonic and fermionic fields. This can be contrasted to e.g. a translation
of a field which is related to the same field at a different point in space-time. In
this chapter and the next we consider supersymmetry in four dimensions and denote
vector indices of the Lorentz group SO(3,1) by u =0,...,3. We will denote by ~+*
the matrices satisfying the Clifford algebra {y#*,7"} = 2n*” where n*” is the (in-
verse) Minkowski metric. (We consider exclusively flat space-times in this chapter
since our present investigations concern the flat 73.) There are a large number of
references complementing the material covered in this section, including e.g. [24H26].

3.1.1 The supersymmetry algebra

In the introduction we mentioned that the theorem of Coleman and Mandula [2]
states that the most general algebra of generators of continuous symmetries in
quantum field theory is given by the Poincaré algebra together with the algebra
of a (finite) internal Lie grou. In the case of a theory describing massless particles
the Poincaré algebra can in fact be enlarged to accommodate conformal symmetry
generators. We will however not consider conformal symmetry at the algebraic level
in this thesis.

We also mentioned how Haag, Lopuszanski and Sohnius found a generalization [3]
by removing the assumption that the symmetry generators form an ordinary Lie al-
gebra. More specifically, the supersymmetry algebra is obtained by considering a
Zs graded Lie algebra with an bosonic (even) part X consisting of the Poincaré
generators P, and M,,, and the internal symmetry generators T, according to the
Coleman-Mandula theorem, while the fermionic (odd) part @ consist of the super-
symmetry generators. The Lie bracket is given by commutation and anticommu-
tation for the bosonic and fermionic parts respectively. In particular, in order to
respect the grading we must have

[X,Qlc@ (3.1)

which implies that the supersymmetry generators furnish a representation of the
bosonic subalgebra. From the super-Jacobi identity (generalizing the ordinary Ja-
cobi identity to the Zs-graded case) it follows that the supersymmetry generators
transform as spinors under the Lorentz group SO(3, 1) while they commute with P,
and are consequently space-time translation invariant. In four dimensions, consis-
tency of the algebra requires the T, to generate the internal symmetry group SU(N),
in the supersymmetric context commonly called the R-symmetry group@, where the
cases N =1 and N > 1 are referred to as minimal and extended supersymmetry.
The supersymmetry generators ) transform in the A-dimensional representation

'Here, internal refers to the generators being invariant under the Poincaré subalgebra.
2In fact, the R-symmetry group allowed by the algebra is SU(N) x U(1). The U(1) factor is
anomalous and broken in the quantum theory and we will not consider it further here.
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of the R-symmetry group. Supersymmetry in various space-time dimensions is de-
scribed in e.g. [24,27,28] and in particular all possible supersymmetry algebras
relevant for particle physics are classified in [29] together with their representations
(see also [30] for a comprehensive treatment).

We will be exclusively interested in the NV = 4 algebra in the present chap-
ter, which is in fact the maximally extended algebra in four dimensions [29], with
R-symmetry group SU(4) = SO(6). The supersymmetry generators are Majorana
spinors under the Lorentz group and their chiral and anti-chiral parts are conven-
tionally distinguished by the vertical position of the R-symmetry index as @); and
Q!, withi=1,...,4. We then have Q = Q; + Q* where the two terms are related by
complex conjugation. In the present case (); transforms in the (2 ;4) representation
of the bosonic subalgebra so0(3,1) @ su(4), where 2, is a chiral Lorentz spinor and
4 is the fundamental spinor representation of SU(4).

In order to complete the description of the supersymmetry algebra we must
now specify the anticommutation relations for the (0’s. From the properties of the
bosonic subalgebra it follows that

(017} = 51+ 91" B 32

where v is the chirality operator in four dimensions. It is also possible to have
non-zero anticommutators

(QuQ} =50 +)2y , {QQ} =307 (33

with Z;; an antisymmetric matrix of central charges of the algebra. We will, however,
almost exclusively consider massless representations in this thesis for which Z;; must
vanish.

3.1.2 The N = 4 vector multiplet

Having introduced the A/ = 4 supersymmetry algebra in the previous subsection we
now proceed to construct the massless representation of this algebra which will be
considered below. To find this representation we use Wigner’s method of induced
representations, by studying the little group which leaves invariant the light-like mo-
mentum of a massless particle and can be put on the standard form P, = (£,0,0, E).
Since the internal generators 7, commute with P, the little group in the present case
is SO(2) x SU(4). We are therefore interested in the decomposition of the super-
symmetry generator ) under the subgroup SO(1,1) x SO(2) x SU(4) of the bosonic
group SO(3,1) x SU(4).

3As mentioned in the introduction maximal supersymmetry in a theory of particle physics is
due to the restriction to particles of spin less than or equal to one.



44 Chapter 3 Isolated vacua in Yang-Mills theory on T3

In general, the little group for massless representations induces a decomposition
of the supersymmetry generators according to

Q=Qip+ Q-1 (3.4)

where the subscript denotes the SO(1,1) weight. From the supersymmetry algebra
it can be shown that for light-like momenta the )_;/» generators anticommute with
all other generators, implying that they must be represented by zero when acting
on the physical Hilbert space of states. Consequently, only the so called active (see
e.g. [30]) supersymmetry generators @)1/, are associated to physical states of the
representation.

In four dimensions we find that )/, transform under the little group as

(1.,4) @ (1_,4) (3.5)

where the first factor contains SO(2) chiral spinors and the SO(1,1) weight is sup-
pressed. From the anticommutation relation ([3.2) it follows that the two parts
constitute the creation and annihilation operators of a Clifford algebra. The repre-
sentation is thus obtained by successively acting with the creation operators (taken
to be the ones which increase the helicity) as

(1.181)®60® (412D 4_1)2), (3.6)

where the subscript denotes the helicity eigenvalue. The multiplet with the above
representation content can be represented in terms of fields as a vector gauge field
A, six scalar fields ¢4 in the 6 vector representation of SO(6) and a Majorana
spinor ¢ = 1); + 9" transforming in the (2,,4) @ (2_,4) as the supersymmetry
generators. The multiplet obtained is called the Yang-Mills multiplet due to the
highest spin particle being a massless gauge vector potential. We can no return to
the statement made in the previous subsection regarding N = 4 being the maximally
extended algebra: By the above procedure for constructing representations, any
N > 4 multiplet will necessarily include particles of helicity greater than one.

3.1.3 A ten-dimensional formulation

Having determined the representation content of the N’ = 4 vector multiplet, we
will now consider its field theory realization. If the gauge field A, is the connec-
tion of a non-abelian principal bundle the dynamics of the theory is given by a
Lagrangian in four dimensions which, in addition to the ordinary gauge invariant
kinetic terms for the fields, include a ¢* self-interaction term and a Yukawa coupling
term (schematically given by) ¢in).

A convenient way to describe this theory, which we will find useful below, is as
the dimensional reduction of the N" = 1 vector multiplet in ten dimensions [31]. The
field content of this theory is a gauge vector field Ay; and a Majorana-Weyl spinor
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¥ transforming respectively in the representations 10 and 16, of the Lorentz group
SO(9, 1), and both transforming in the adjoint representation of the Lie algebra g of
the gauge group G. Here, the vector index is M = 0,...,9. The Lagrangian density
of the supersymmetric Yang-Mills theory is

1 1 1—

S== / d"z Tr <—ZFMNFMN + §¢FMDM¢) (3.7)
g

where I'M are the generators of the ten-dimensional Clifford algebra and g is the

gauge coupling constant. The gauge field strength and covariant derivative D,; are
defined as usual by (c.f. section 2.3))

Fin = O A%y — On A%y + 4. AL A (3.8)

and
DMWL = aMwa + fabcA?MQ/}C7 (39)

where a takes it values in the adjoint representation of g. (We will frequently
suppress the Lie algebra index when the transformation properties are clear from
the context.) The action is invariant under the supersymmetry transformations

1 1

where 7 is the constant fermionic parameter of the transformation in the same
spinor representation as i of the Lorentz group. The variations indeed represent
the ten-dimensional N = 1 supersymmetry algebra since on-shell they satisfy (up
to numerical constants)

01, 8a)10 = T PmDpy , [01,62) Fayv = 00 mDp Farw - (3.11)

The dimensional reduction to four dimensions implies the splitting of the vector
index in ten dimensions according to M = (u, A). Here, u = 0,...,3 correspond
to the coordinates x# of the four-manifold M, = 73 x R while A = 4,...,9 corre-
spond to the six transverse coordinates. In order to have a dimensional reduction
(rather than a compactification) we demand that 94 = 0 so that there is no depen-
dence on the transverse coordinates remaining in the four-dimensional theory. In
particular, this implies a restriction of the (spatial) momentum eigenvalues of the
ten-dimensional theory to the form p; = (p1, p2, p3,0,...,0), where I =1,...,9 de-
notes all spatial directions in the higher-dimensional theory in contrast to: =1,2,3
which we will now reservel for the spatial directions on 7.

The decomposition of the vector index corresponds to a decomposition of the
Lorentz group according to SO(9,1) — SO(3,1) x SO(6), where the second factor

4The R-symmetry index i used above will be suppressed for the rest of the present chapter. It
should always be clear from the context which of the notationally coinciding indices we refer to.
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corresponds to rotations in the transverse directions constituting a global symmetry
of the theory on M. The fields of the ten-dimensional theory decompose under the
reduction according to their respective representations as

10 — (4,1) & (1,6) (3.12)

and
16, — (2,,4) @ (2_, 4_1) , (3.13)

which we recognize as the representation content of the A/ = 4 multiplet with the
SO(6) transverse rotational symmetry identified with the R-symmetry. For the
vector field the decomposition corresponds to interpreting the A, components as
a gauge vector field on M, and the transverse components A4 as six scalars ¢4.
The spinor is interpreted as the chiral components of a Majorana spinor ¢ in four
dimensions. Performing the dimensional reduction one obtains from the action (B3.7),
in addition to the gauge invariant kinetic terms of the vector multiplet (A4,, ¢4, v),
the Yukawa and ¢* terms from the transverse part of the gauge field.

3.2 Vacuum structure

Having introduced the N' = 4 Yang-Mills theory in the previous section we will
now consider its vacuum structure, that is field configurations of vanishing energy.
Throughout the remainder of the chapter we will restrict our attention to compact
simple gauge groups on adjoint form, that is G = G /C' where G is the simply
connected cover of G and C' is its center subgroup as in section 2.2.3l Furthermore,
we will consider a Hamiltonian formulation (as hinted at by the product structure
of My, = B x R) and work in temporal gauge Ay = 0. In particular, this allows
us to consider the spatial part A; of the gauge field as the Lie algebra valued local
connection one-form A = A;dz’ of a principal G-bundle P over B (rather than over
the full space-time M,). The scalar and spinor fields are then related to the space
I'(E) of sections of the bundle

E=ad(P)=P xu4g, (3.14)

associated to P through the adjoint action of GG on its Lie algebra g, since the su-
persymmetry require them to transform in the adjoint representation just as the
gauge field A7, Consequently, vacuum states of the Yang-Mills theory are charac-
terized by the topological class of the bundle P (which we recall is inherited by the
associated bundles).

5More precisely, the scalars are sections of E while the spinors are sections of £ ® S where S is
a spinor bundle over space-time.



3.2 Vacuum structure 47

3.2.1 The moduli space of flat connections

A zero energy configuration in supersymmetric Yang-Mills theory requires all con-
tributions to the (manifestly non-negative) Hamiltonian to vanish independently. In
particular, the contribution to the energy from the gauge field is given by the sum
of the electric and magnetic energies, proportional respectively to Tr(F* F¥) and
Tr(F%F%). Since both contributions are manifestly positive vacuum states must
have F¥ = 0 and F% = 0. The first of these conditions implies that vacua are
supported on the moduli space M of gauge inequivalent flat connections on P. The
second condition, together with the fact that the conjugate momentum of A; is F'%,
implies that the wave functions of the vacua are constant on (each component of) M.
In addition to the gauge field the AN/ = 4 multiplet also contains scalars and spinors;
only the covariantly constant modes of these fields give vanishing contributions to
the energy and feature in the description of a vacuum state.

Since B is three-dimensional we recall from section 2.2.3] that the topological
class of the bundle P is determined by the 't Hooft flux

m e H*(T?,C), (3.15)

which measures the obstruction to lifting P to a principal G-bundle. In the Hamil-
tonian formalism we are currently employing m is really to be thought of as part
of the 't Hooft flux v of the full space time bundle. Following 't Hooft [32/[33], m
is therefore referred to as the magnetic 't Hooft flux. The other components of v
are similarly referred to as the electric 't Hooft flux e € H'(T3, (') and describe the
transformation properties of states in the Hilbert space under large transformation
properties [33,34]. We will not be concerned with these transformation properties
in the context of the present chapter or that of PAPER I-II.
Through the restriction to the T2 in the ij directions the magnetic 't Hooft flux
m defines a triple of elements m;; € H*(T?,C) = C which provides an isomorphism
H?*(T3,C) = C3
m = (mgg, masy, m12) € 03 . (316)

The triple transforms as a vector under the SL(3,7Z) mapping class group of the
torus [34]. If the center subgroup C' is cyclic it is possible to put the magnetic
flux on the form m = (1,1,m). In this chapter we will only consider such cases
and identify the SL(3,Z) equivalence class of m € H*(T?,C) with the m = my,
component, which uniquely determines the topological class of the bundle P. The
moduli space M is correspondingly decomposed into disjoint subspaces as

M= JM(m), (3.17)
where M(m) are the moduli space components corresponding to different topological

sectors. Below we will consider the structure of the components M(m) in more
detail.
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3.2.2 Almost commuting triples

In order to proceed with the study of vacuum states and the structure of the moduli
space M we use the fact that the space of flat connections is parametrized by the

holonomies (see section 2.3.7)
Ui = Pexp </ A) (3.18)
i

around the three homotopically inequivalent generators 7; of the fundamental group
71 (T3). They constitute well-defined coordinates since the connection is flat and
the holonomy U; is therefore independent on the choice of representative in the
homotopy class of ;. However, in order to consider only gauge inequivalent flat
connections we must account for the fact that the holonomies transform as

under a gauge transformation in Autg(P) with parameter g (evaluated at the com-
mon base point of the curves ;). Thus, the moduli space M is parametrized by the
holonomies (Uy, Uy, Us) modulo simultaneous conjugation.

In terms of these coordinates we can describe the topology of the bundle by
considering the curve v = v;v;7, lfyj’l. Because it is trivial in 71 (7®) the holonomy
around < is also trivial and the holonomies U; are consequently mutually commuting
elements in G. However, their lift ((71, Uy, Ug) to the covering group will satisfy

mi; = UiU;U; U (3.20)

where m;; € C are the components in (316 of the magnetic 't Hooft flux [34].
The elements (U, Uy, Us) are therefore referred to as an almost commuting triple of
elements of G. (In fact, (Uy, Uy, Us) with m = 0 is referred to as a commuting triple
when it is clear from the context that we are considering the lift.) Different lifts of the
holonomies are related through multiplication of the U by elements of the center C,
so the relation ([B:20) is well-defined. Furthermore, the action of the mapping class
group SL(3,Z) on 7;(T?) induces an action on the triple of holonomies (Uy, Us, Us)
which in turn induces an action on the lift (Uy, Us, Us) and the magnetic 't Hooft
flux m € H*(T?,C) [34,35]. We also see that the m;; describes the obstruction
to lifting P to a flat G-bundle over T° and determines the topological class of the
G-bundle P.

As we saw above, the moduli space M is decomposed into disjoint subspaces
M(m) C M of flat connections on bundles belonging to distinct isomorphism
classes. We can obtain further structural information by considering that the gauge
group G is broken by a flat connection down to its centralizer H C G, defined as the
subgroup of G that simultaneously commute with all three holonomies (Uy, Us, Us).
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The rank of H can be shown to be locally constant on the components M (m), which
can thus be further decomposed as

M(m) =M., (3.21)

where 7, denote the rank of H on M,,. The ranks r, satisfy the relation

> ra+1)=9g", (3.22)

a

where ¢¥ is the dual Coxeter number of the Lie algebra g. The relation, which
was first found by Witten for the topologically trivial component in [36] and later
extended to non-trivial m [37], can be understood in terms of the A’ = 1 super-
symmetric Yang-Mills theory in the following way [34]: For simplicity we consider
only the component M(0) of topologically trivial flat connections. By arguments
involving the breaking of chiral symmetry it can be shown that the Witten index
(or supersymmetric index) Tr(—1)f [38] is equal to ¢ for arbitrary simple gauge
group G. On the other hand, it can be shown that on a component with unbroken
gauge group H of rank r, there are r, + 1 unpaired vacua contributing r, + 1 to the
Witten index. Summing the contribution from all components of M(0) one obtains
the relation ([3:22)). An adaptation of the Witten index argument to the A" = 4 the-
ory, where the analysis is complicated by the absence of a mass gap, was considered
in [39,40] by counting normalizable bound states at threshold.

Historically the conjugacy classes of almost commuting triples were first stud-
ied in mathematics [41],[42] as a property of simple gauge groups. In [36] Witten
then used the insight that the moduli space M(0) was disconnected to resolve the
mismatch in the computation of supersymmetric index Tr(—1)%, discussed in the
preceding paragraph, for the Spin(n) groups. A complete classification of commut-
ing triples in all simple gauge groups was soon obtained [43H46]. Borel et. al. [37]
then extended the analysis to the topologically nontrivial components of M and pro-
vided a complete classification of almost commuting triples in simple gauge groups,
subsequently used by Witten [34] for completing the analysis of the supersymmetric
index in four-dimensional gauge theories.

3.2.3 The structure of moduli space

We will now review the construction of the moduli space M(m) of flat connections,
or equivalently almost commuting triples, for arbitrary topological class m [37].
We will only concern ourselves with finding the disconnected components M, and
determine the corresponding rank r, of the unbroken gauge group. Further details
of the construction are discussed in PAPER I but will not be repeated here.

Let D be the extended Dynkin diagram of g and ¥ be the group of diagram
automorphisms o : D — D. The o acts by permutation on the nodes of D with
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identical dual Coxeter labels g, and it can be shown [37] that ¥ = C', allowing us to
associate an element o(m) € ¥ to each topological class of principal G-bundles. The
relevant diagram for the component M (m) is then the quotient diagram D /o (m)
with dual Coxeter labels g5 = n4ga, Where n,, is the cardinality of the orbit of nodes
with label g,. For each integer k£ > 1 dividing at least one of the g5z the moduli space
M(m) contains (k) components, where (k) is the number of integerdd coprime to
k, with r, + 1 given by the number of gz such that k|gg. The integer k is called the
order of the components.

As an example let us consider the case of G = G5, which we will return to below.
Since G5 is simply connected the moduli space of flat connections contains only the
topologically trivial component. This is also apparent from the extended Dynkin
diagram in figure B.I] which has no non-trivial automorphisms.

o—&=0

1 2 1

Figure 3.1: The extended Dynkin diagram D of Gs.

We see that k£ = 1 divides all three g, and since ¢(1) = 1 we obtain the identity
component of rank r, = 2. (It is generally true that the moduli space contains one
maximal rank component since k = 1 divides any integer. For commuting triples this
is the identity component with rank(H) = rank(G).) Furthermore, k = 2 divides
only g, = 2 corresponding to an additional component of rank r, = 0 where the
gauge group is completely broken down to a finite H. The total moduli space of flat
connections for GGy can thus be written

Mg, = My UM, (3.23)

and since g¢, = 4 we see that ([8.22) is indeed satisfied.

The dimension of each component of M(m) is given by 3r, since the holonomies
locally vary in a maximal torus of the unbroken gauge group. In particular, this
implies that components with r, = 0 are isolated points in M. The corresponding
holonomies break all generators of the gauge group (c.f. the M for the case of Gy
discussed above) and are therefore referred to as isolated triples or rank zero triples.
Below, we will consider exclusively such points in M(m). A complete classification
of rank zero triples in simple gauge groups was obtained in [37] and is the basis for
the considerations of PAPER I.

3.3 The weak coupling spectrum

In this section we will consider a weak coupling expansion around a certain class of
vacuum states of the N' = 4 theory along the lines of PAPER 1. As we saw above,

5The number ¢(k) is also known as the Euler o-function of k.
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the scalar and spinor fields appearing in the low energy theory are required to be
covariantly constant. Consequently, the corresponding zero modes are valued in
the maximal torus of the unbroken gauge group. The most general form of the Lie
algebra of H is h = s u(1)", where s is semi-simple. However, the presence of zero
modes complicates the description of the vacuum states located at the subspaces
MHE C M(m). In particular, the u(1) factors corresponds to flat directions in
phase space and plane wave solutions for the scalar zero modes which cannot be
normalized. To avoid the problems with zero modes we restrict our investigation to
the isolated points in M (m), discussed above, where the gauge group is completely
broken by the holonomies. Due to the absence of spinor and scalar zero modes such
a rank zero triple of holonomies completely describes the isolated vacuum state.

Let (U, Uy, Us) be the holonomies of an isolated flat connection that we will
denote by A. Since the holonomies are mutually commuting and the center C' acts
trivially on g in the adjoint representation it is possible to introduce a basis {7} of
g where the action of the U; are diagonal

U'T.U; = 2T, . (3.24)

The action of the holonomies Uj; is of course also diagonal, with the same eigenval-
ues z; in this basis. Since the fundamental group m (7°) of the torus is cyclic, the
holonomies are elements of finite order in G, and the eigenvalues z; are consequently
complex roots of unity. A distinctive feature of a rank zero triple is the absence of
an eigenvalue vector Z = (1,1,1) since all generators of the gauge group have been
broke[T. Furthermore, the SL(3,7Z) action on the holonomies induces a multiplica-
tive action in each component of z. In the case of trivial topology of the bundle P
the spectrum of z; is SL(3, Z)-invariant, while the twisting by m in the non-trivial
case breaks this symmetry to an SL(2,Z) in the first two components of Z.

The self-adjoint covariant derivative with respect to the connection A is denoted
iD; and, as was mentioned in section Z:3.2] it acts on the space of sections I'(E) of
the associated adjoint bundle. The eigensections u,(x) of ¢D;, defined by

iDiuy () = 2mpiuy(z) , (3.25)
form a basis of I'(F) with the properties
Up =ty , (Up,Upy)=0py. (3.26)

Here we have introduced the sesquilinear inner product on I'(E) defined by

(a, B) = /T3 d*rTr(ap) . (3.27)

"Indeed, the diagonalization of the adjoint action of the holonomies can be performed for an
arbitrary almost commuting triple in M. The unbroken generators will then correspond to the
generators T, with 7= (1,1,1).
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In PAPER I the eigensections u, are constructed and the eigenvalues p; are related
to the z; of the previous paragraph through

27

where Arg denotes the principal argument and k; € Z correspond to dual lattice
vectors on T3, Tt is interesting to note that this relation implies that in the theory
located at isolated vacua the fact that Z# (1, 1, 1) introduces an IR cutoff by shifting
all reciprocal lattice vectors by a non-zero rational number. In the last subsection
we will discuss the eigenvalues z; in more detail. First, however, we will consider
the weak coupling quantum theory located at the isolated point of moduli space
corresponding to the flat connection A.

Pi =

3.3.1 The quantum theory at isolated vacua

We now utilize the formulation of the NV = 4 theory in terms of the minimally
supersymmetric Yang-Mills theory in 9 4+ 1 dimensions, in order to study the weak
coupling expansion around an isolated vacuum state. The background connection
is then identified with the flat connection A = A;dz’ on T3, while the components
corresponding to scalars in N’ = 4 theory vanish. Expanding around this background
(which also has vanishing fermionic fields) at weak coupling we obtain

A=A+ga , ¥ =g\. (3.29)

We denote the covariant derivative with respect to the full connection A by D to
distinguish it from the D introduced above. In order to stay in temporal gauge we
impose ap = 0 so that a = a;dx!, and impose the (background) Coulomb gauge
condition Dra’ = 0 to fix the remaining gauge invariance. To lowest order in the
coupling constant g the Yang-Mills action is then

1 1
S = / dx <——DMaNDMaN + —)\FMDMA> : (3.30)
s 2 2

which describes the free effective theory in the weak coupling regime, i.e. when
g — 0. In order to perform canonical quantization of this theory we must then
consider the transition to a Hamiltonian formulation. The momenta conjugate to
the dynamical fields a; and \ are 7/ = a! and #® = 1AT° so the Hamiltonian of

— 2
the system is given by
1 1 1—
H= | &z zmr’"+ =DrayD'a’ — XI'Dp ) . (3.31)
T3 2 2 2

We can then proceed to expand the fields and their conjugate momenta in the basis
of complete eigenfunctions wu,(z) of the covariant derivative iD; as

ar(@) =Y arp)up(z) , 7'(@) =Y 7' Plup(z) , Az) =D Ap)uy(e). (3.32)

p
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Inserting the expansions and using the properties of the eigenfunctions u,(x) we
obtain the expression for the Hamiltonian in momentum space

H =33 (mi(=p)w' (0) + 4n%as(—p)a’ (p) = 20M(p) TTIpAD)) . (3.39)

p

where we have also used that realityﬁ of the a and X imply that the Fourier modes
satisfy the reality conditions

ar(p)* = ar(=p) , Ap)"=A(-p). (3.34)

We can now proceed with the canonical quantization of the free theory according
to the procedure outlined in chapter 2l The fermionic sector is not subject to any
constraints that make inconsistent the assignment of the ordinary anticommutation
relation

{ex(z), M(a')e'} = cpeld 6B (z — 2') (3.35)

where we have introduced bosonic spinors €, € to contract the spinor indices and an
overall normalization constant cp.

For the bosonic fields we must use the Dirac bracket {f, g}o of section [25.4] in
order to obtain consistent commutation relations. Using the temporal gauge ag = 0
and the antisymmetry of the gauge field strength, which implies 7 = 0, we can
begin by eliminating the corresponding degrees of freedom. The bosonic sector is
then described by the components a; and 7! which parametrize the cotangent bundle
of configuration space and are subject to the constraints?

Xiz = (Dra ()", x5, = (Dim' ()" (3.36)

These constraints are second class since the matrix defined in (2I15), whose inde-
pendent component is given by

a b b a
ce, = / d%’[ Oxte Xz Oy __0xi, ] — DD (& — y)o
T3

= Sas /) bl (o)~ dai(o”) S (o)
(3.37)
is invertible. Using the definition (ZII8) we find the commutation relations
a b N ab ¢(3) / PiPJ _, by 1
[af(x), 75 (z")] = cp | 01,070 (x — 2") — FE Uy (z)u, (") (3.38)
p

8 Assuming that we have chosen a representation of the Clifford algebra in which the Majorana
condition implies reality of the spinor A.

9In momentum space the constraints in the bosonic sector translate into the conditions pra’ = 0
and prr! = 0 for the Fourier coefficients.
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where cp is again a normalization constant, and
[af(2),a5(x)] =0 . [xf(x),75(z")] = 0. (3.39)

The presence of the second term in (B.38) is the consequence of the second class
constraints which cannot be removed by gauge fixing as discussed in section 2.5.2]

We finally wish to obtain the momentum space description of the quantum the-
ory. This is accomplished by introducing creation and annihilation operators acting
in the Hilbert space ‘H of the weak coupling effective theory. We first introduce the
bosonic operators

arlp) = %w%(p)wémp%[(p) (3.40)
al(p) = %w%(p)—ﬂmwpw?af(p) (3.41)

which (with the appropriate choice of ¢p) satisfy the commutation relations

ar(p), o ()] = ((m - %) Sy (3.42)

Thus, a bosonic single-excitation state of momentum p is created by Oz}(p) and
annihilated by ar(—p).
The fermionic operators can be found by considering the Hermitian operator

Ly = [p|~'p 0T, (3.43)

which anticommutes with all the I'™. Since it squares to unity it acts as a projection
operator corresponding to the decomposition of the ten-dimensional Lorentz group
SO(9,1) — SO(1,1) x SO(8), which singles out the spatial direction of p from the
directions transverse to it. Under this decomposition the chiral spinor representation
of SO(9,1) decomposes according to

16, — 8, &8_. (3.44)

Consequently, the fermionic Fourier coefficients decompose as

A(p) = Ar(p) + A-(p) (3.45)

where the terms transform respectively in the 8, and 8_ representations of SO(8),
and satisfy
LpAs(p) = £A+:(p) - (3.46)

Furthermore, since I'_, = —I', we have that [, AL (—p) = FAL(—p) and we see that
A+ (—p) and A_(—p) transform in the 8_ and 8, representations of SO(8),, which is
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simply a consequence of the fact that reversing p exchanges the positive and negative
chiralities. We also have

AL (p) = A (—p) (3.47)

from the reality properties of the Fourier coefficients A(p). The creation and annihi-
lation operators are required to have the same transformation properties suggesting
that they should be defined in terms of A\, (p) and A_(p). Indeed, from the anticom-
mutation relation (338 it follows that

{AT(p), A ()} = 0™ Gpapr 0 (3.48)

where we have introduced the index m = 1,...,8 labeling the operators creating
and annihilating a state of momentum p.

The full Hilbert space H is then obtained by acting with the creation operators
al(p) and AT (p) on the vacuum state |0). Inserting the definition of the creation
and annihilation operators into (8.33]) we obtain

H=3 I (a}(p)a1<—p) + AT (p) AT (—p)) . (3.49)

This is the Hamiltonian of eight fermionic and eight bosonic harmonic oscillators
for each p whose energies are given by |p|. Consequently, the spectrum of the theory
(i.e. the eigenvalues of H acting in the Hilbert space) are completely determined in
terms of the momentum eigenvalues p; of the covariant derivative ¢D; with respect
to the flat background connection A on T°. These eigenvalues are computed for all
isolated vacua in simple gauge groups in PAPER I while PAPER II is concerned with
an investigation of perturbative corrections in the regime of weak, but finite, gauge
coupling g¢.

3.3.2 Momentum eigenvalues

In the final part of this chapter we will give an overview of the results of PAPER I
where the eigenvalues z; of ([B.24) are found by diagonalizing the adjoint action
of the rank zero almost commuting triples (Ul, Uy, Ug) defining the isolated vacua.
The momentum eigenvalues (and the energy spectrum of the theory) are then given
by ([B28). For the classical matrix groups SU(n), Spin(n) and Sp(n) the almost
commuting triples have been explicitly constructed [43-46] (see also [39,[40]) and
the eigenvalues are simply found by diagonalizing their adjoint action on the Lie
algebra. The exceptional groups are treated by embedding the almost commuting
triple in maximal regular subgroups of G. We will consider two examples, namely
G = SU(n) and G = G5. The SU(n) example is particularly important since the
result is used in the treatment of the exceptional groups. The G5 examples was
treated in PAPER I using a description of G5 as the subgroup of Spin(7) stabilizing
a fixed spinor.
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The SU(n) example

Using the method for constructing the moduli space [37] described above it is found
that M(m) contains rank zero components when m is a generator of the center
Csu(ny- The corresponding element a( ) € ¥ acts regularly on the extended Dynkin

diagram D of A,_; in figure B2 The quotient diagram D/c(m) is a single node

Figure 3.2: The extended Dynkin diagram D of A,_;.

with dual Coxeter label gz = n, implying that the moduli space M(m) consists
entirely of isolated points. Using the property

D k) =n (3.50)

k|n

of the (k) function we find that more precisely M(m) contains n isolated points
of orders k such that k|n.

The corresponding almost commuting triples can be constructed by taking the
pair (U, U3) to be the unique elements [37,44] in SU(n) satisfying 0,0, = ngUl
The n distinct triples are then obtained by choosing Us in the commutant of (Ul, Ug)
which is the center Csy(,) = Z,. The adjoint action of these triples on the Lie algebra
su(n) is diagonalized in PAPER I and the resulting eigenvalues are given by

(21,22, 23) € {(&,&, 1)|€ = 1} (3.51)

where we make use of the compact notation introduced in PAPER I, where a set
of eigenvalue vectors from which zZ = (1,1,1) has been excluded is denoted by
{(&1, &, &3)}. Indeed, the number of eigenvalue vectors is n? — 1 in agreement with
the dimension of SU(n), the z; are complex roots of unity and the spectrum exhibits
SL(2,Z) symmetry in the first two components as expected.

The G, example

We will finally use the G = G, to illustrate a useful method for determining the
spectra for the exceptional groups. As mentioned above, it consist in embedding
the pair (Uy, Us), satisfying the almost commutation relation (3.20), in a maximal
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regular subgroup S of G in such a way that they completely break the group S. The
final element of the triple is then obtained by choosing an element Uy that breaks G
to S. The moduli space M, was constructed above and found to contain a single
isolated point of order k = 2. The relevant maximal regular subalgebra is obtained
by deleting the node with g, = 2 (for commuting triples the order k is given by
the dual Coxeter label of the deleted node [37]) from the extended Dynkin diagram
in figure Bl giving s = su(2) @ su(2). (The relevant subalgebra is always a sum
of su(n;) terms [34] which is consistent with the result of [37] that the only groups
containing almost commuting pairs are products of simple SU(n;) factors.)

The embedding ¢ : SU(2) x SU(2) < G2 of the exponentiation of s into Gy
has a non-trivial kernel K C CgU(Q) which must be accounted for in the description
of the subgroup S [34]. In order to determine K we consider the fundamental
representation of GG which decomposes under the subalgebra s as

7=(1,3)®(2,2). (3.52)

Since the elements c1,c; € Cgy) = Zy act trivially on the adjoint representation
3 and by an overall phase on the fundamental representation 2 it follows that the

kernel is K = {(1,1), (—1,—1)}. The subgroup of G, in which we wish to embed

the commuting triple is thus
S =8SU(2) x SU(2)/K C Gy. (3.53)

The first two elements of the triple are constructed in analogy with the SU(n)
case as Uy = (A, A) and U, = (B, B), where

A:<_01(1)) ,B:(é _OZ) (3.54)

are the SU(2) matrices satisfying the almost commutation relation ABA™'B~! = —1
discussed above. According to the results for SU(n) we know that these elements
completely break SU(2) so that (U, Us) break both SU(2) factors. Furthermore,
the holonomies satisfy the almost commutation relation (3.20) with m = (—1, —1)
which is identified with the identity through the division by K. To summarize, we
have obtained two commuting elements (Uy, Us) in G5 that break all the generators
of the subgroup S as desired.

To complete the triple we must supply a third element in the commutant of
(01,02) which must be of the form U; = (c1,¢2) with ¢; € Cgy(z). Furthermore,
Us must break G5 to S which leads us to consider the adjoint representation of Gs.
Under the subalgebra s it decomposes according to

14 =(1,3)® (3,1) ® (2,4) (3.55)

where 4 is the totally symmetric product of three fundamental 2 representations and
the last summand contains the generators of GG not in S. Hence, Us; is required to
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act non-trivially on (2,4) which implies that there are two possibilities provided by
(1, —1) and (—1, 1). However, these are identified as elements of .S and consequently
there is a single rank zero commuting triple in G5 in agreement with the structure
of the moduli space in (3.23)).

In order to compute the spectrum of eigenvalues (z1, 29, z3) we consider the first
two summands of (B.55) whose contributions are obtained directly from the SU(n)
result as {(£1, &, 1)|€2 = 1}1. Since there are two identical factors the eigenvalues are
doubly degenerated. Finally, since the triple (Ul, Us, (73) is commuting the complete
spectrum is obtained by requiring SL(3, Z)-invariance as

(21,22, 23) € {(&1,&,&)[EF = 1} (3.56)

with two-fold degeneracy. Once again, we verify that the eigenvalues are complex
roots of unity and that 2(2% — 1) = 14 agrees with the dimension of G».



BPS partition functions in
Yang-Mills theory on T

In supersymmetric theories there is an exceptionally important class of states char-
acterized by the property that they are invariant under a fraction of the supersym-
metries. They therefore furnish short representations of the supersymmetry algebra
including fewer states than a generic representation. We have already encountered
such a representation in the previous chapter when we considered the massless NV = 4
vector multiplet in four dimensions. Generically, however, we consider single par-
ticle states of some non-vanishing mass M in which case we obtain long multiplets
where all supercharges () act non-trivially on the states. The central charge Z;;
discussed in the previous chapter can then be non-vanishing. In fact, the central
charge is a topological charge of the theory, measuring the topology of extended field
configurations [47]. Classically, the mass is constrained by the BPS bound [48-50]

M? < |Zi?, (4.1)

where Z; are the independent components of the central charge matrix Z;;. States
for which this bound is saturated fall into short supermultiplets as mentioned above.
In particular, this implies that in the quantum theory their mass cannot receive any
corrections, since the bound (@J]) would then no longer be saturated and conse-
quently the number of particle states in the multiplet would be changed [47,51].
States which saturate the bound (4.]]) and are protected from quantum corrections
are called BPS states. A special case, which is the one we will concerned with below,
is massless states which saturates the bound for Z = 0 and are %-BPS states.

The importance of the BPS-states lie in the protection offered by the saturation
of the BPS bound. Since the number of states in a multiplet cannot change when the
parameters of the theory are continuously varied, the BPS states can be considered
at arbitrary values of the coupling strength of the theory. In particular, their mass

99
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spectrum can therefore be computed in perturbation theory in the weak coupling
limit and reliably extrapolated to strong coupling. It is fair to say that much of the
progress in understanding the strong coupling properties of supersymmetric gauge
theories has been obtained through the use of BPS states.

The purpose of the present chapter is to provide an introduction to PAPER III,
which concerns certain terms in the partition functions of N = 4 Yang-Mills the-
ory on a Euclidean torus 7* that only receive contributions from BPS states, and
summarize the results obtained.

4.1 Partition functions in NV =4

In this section we will consider the partition function of the NV = 4 Yang-Mills
theory defined on an Euclidean four-torus 7. After discussing certain aspects of the
theory and its topological sectors we will consider certain terms in the expansion of
the partition function around a background R-symmetry connection that preserves
one of the supersymmetries. We find that they are independent of the coupling of
the theory and can therefore be reliably computed at weak coupling.

4.1.1 The path integral

The first order of business in the present chapter is a quick review of the concept of
path integrals and in particular the partition function in quantum field theory. This
is an exceptionally useful tool because it contains essentially all information about
the quantum theory and can be used to compute physical quantities like transition
amplitudes and derive the Feynman rules of the theory. For a more exhaustive
treatment than the working definitions offered here we recommend e.g. [52/53] which
we will follow below. The starting point will be the Lorentzian path integral but we
will also discuss the connection to its Euclidean counterpart through Wick rotation.
The canonical way of introducing path integrals is to first consider a single de-
gree of freedom corresponding to a (generalized) coordinate ¢ and the transition
amplitud
(a7, T4, 0) = {qs| exp(—iHT)|g;) (4.2)
for evolution between two eigenstates |¢;) and |gs) of the position operator ¢ during

a time T'. By inserting a complete set of eigenstates of ¢ at some intermediate time
we get

(qr,T)q:,0) = /dq (qr,Tq,t)(q,t]q:0) . (4.3)

Repeating the division of the time interval into steps of equal length ¢ and taking the
limit where § — 0 we obtain (after some technical manipulations) the path integral

!The different notations refer to the Heisenberg and Schrédinger pictures.
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representation of the transition amplitude

(a7 Tlaw.0) = [laaly exp( / TdtL(q,q'>) — [l exolis). (19

where S is the action functional. The measure [dg] represents all paths from |g;) at
time ¢t = 0 to |¢y) at time ¢ = T', hence the name path integral.

The oscillating properties of the factor exp(iS) makes the Lorentzian path in-
tegral difficult to work with. An improvement of its properties can be achieved
by performing an analytical continuation to imaginary time; a so called Wick ro-
tation ¢ — —iu. The weight of the path integral is then exp(—Sg), where Sg is
the Euclidean action, which improves the convergence properties. It is therefore
often convenient to compute path integrals in Euclidean signature and analytically
continue the result back to Lorentzian signature.

The main focus of the present chapter is the partition function Z which is per-
haps most familiarly defined in Euclidean space (where the analogy with statistical
mechanics is most transparent). It is defined as the trace

Z = Tryexp(—UH) (4.5)

over the Hilbert space H, which gives the sum over states weighted by their energy
eigenvalue, and U is the equivalent of 1" in Euclidean mgnaturt% The partition
function can be represented in terms of the path integral by expressing the trace as
an integral

Z = /dd (Gl exp(=UH)|q) = /dd/[dQ]gjgexp(—SE) = /[dQ]T2 exp(—Sg)
(4.6)
where [dg|r2 represents integration over all paths on the interval [0, U] with ¢(0) =
¢(U), which is equivalent to the integration over all closed paths on T? = R?/Z?.
In Lorentzian signature the corresponding partition function is given by the Wick
rotated expression

Z = Try exp(—iTH) = /[dq]Tz exp(iS) . (4.7)

It is possible to modify the partition function by adding to the trace the operators
corresponding to further conserved quantities in addition to the energy. Consider
the partition function

Z = Try exp(—iTH +iXP) = /dq (G+ X, T|q,0) /dq/ dg)255" exp(iS) .
(4.8)

2In statistical physics the coefficient multiplying the Hamiltonian is conventionally denoted S.
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Just like the parameter T appeared in the integral of the Lagrangian in (44]) there
is a connection between the parameter X and the manifold over which we integrate
to obtain the action S. In particular, the partition function (4.8) can be expressed
as the path integral

Z = Try exp(—iTH + iX P) = /[dq]Tz exp(iS) (4.9)

over all paths defined on the T? space-time defined by the the pair (T, X). The
generalization to the corresponding partition function of field theory (with an infinite
number of degrees of freedom) in four dimensions is then

Z = Try exp(—iTH +iX-P) = /[D(I)]T4 exp(iS) (4.10)

where all fields ® of the theory are defined on the torus 7% defined by the vector
(T, X). Conversely, the inclusion of the momentum operator in the trace can be
viewed as the restriction of the path integral to field configurations on the appropri-
ate space-time T%. We will use a further refinement of the partition function below,
when we consider BPS states and their contribution to Z.

4.1.2 The N =4 theory on T*

We will now consider the N' = 4 supersymmetric Yang-Mills theory on a manifold
M which is a flat FEuclidean torus. The geometry can be described as the quotient

M =T*=R*T, (4.11)

where T' is a rank four lattice in R* defining the torus. The gauge field A is the
local connection one-form of a principal bundle P with structure (gauge) group G.
In order to allow for the most general non-trivial bundle topology we take G of the
adjoint form

G = SU(n)/C (4.12)

where C' is the center subgroup of SU(n) which is (isomorphic to) Z/nZ. In order
to simplify the analysis below we restrict n to be prime, which implies that C' is a
field. From section we recall that since M is now four-dimensional we have not
one but two characteristic classes describing the topological class of the bundle P;
the 't Hooft flux v € H?(M,C') and the instanton number k € H*(M, Q) which are
related through (2.33]). The product of 't Hooft fluxes, appearing in the quantit

%v -ve HY(M,R/Z) (4.13)

3Recall that for M a spin manifold, which is certainly the case for M = T4, the product v - v
is divisible by two in a canonical way.
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(known as the Pfaffian of v) in the relation (2.33]), is obtained by a composition of the
cup product in cohomology and the pairing of center elements, given by identifying
C' = Z/nZ and then computing the product of the lift to Z and reducing modulo n.
For n prime the Pfaffian, which is invariant under the SL(4, Z) mapping class group
of T*, completely determines the equivalence class, i.e. the SL(4,7Z) orbit, of the 't
Hooft flux when %v -v # 0. There are in addition two orbits with %v -v = 0; one
consisting of the trivial element v = 0 and the other being generated by an element
of the form v = e' U e?, where {e#}]_, denotes a basis of H'(M,Z).

The field content of the Yang-Mills theory is the one described in the previous
chapter, but for the purpose of studying the partition function of the theory it is con-
venient to remain in the four-dimensional description where the gauge field strength
F' is the curvature of a principal G-bundle, and the scalar and spinor fields ® and
U are described as sections (i.e. zero-forms on M) of associated adjoint bundles.
In addition, the fields transform respectively in the 6 and 4 representations of the
SU(4) = SO(6) R-symmetry. Furthermore, we recall that the supersymmetry gen-
erators () transform in the same 4 representation as the spinor ¥ and are unbroken
by the flat T%.

Contrary to the case in the previous chapter, however, we will now consider
gauging the R-symmetry by considering a connection B on a principal SU(4)-bundle
over M. The connection is non-dynamical and for simplicity we take the bundle to
be topologically trivial and B to be flat. The kinetic part of the action of the
Yang-Mills theory minimally coupled to the connection B is then given by

ImT
47

Shin = / Tr (FA*F +(D+iB)® A*(D +iB)® + Voly, V(D + iB)¥) |
M

(4.14)
where D is the covariant derivative with respect to the connection A and the complex

coupling constant is 0 umi
g

=5 + 7
where the gauge coupling constant is given by g. The action also contains the
topological term

T

(4.15)

i1Rer

Stop = / Te(FAF). (4.16)
M

Neither the interaction terms of the full Yang-Mills action, nor the topological term
will contribute in the weak coupling analysis which is the subject of the next section,
and they have therefore been excluded from (£.14).

The partition function of the N' = 4 theory is defined according to the previous
section and depends, in addition to the coupling constant 7, on the flat metric on
T* and the background R-symmetry connection B:

47

Z(t|l',B) = /DADCI)D\II exp(—95). (4.17)
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However, the integral over all gauge inequivalent connections A decomposes into a
sum of contributions from P belonging to distinct topological classes of principal
bundles over T*. In particular, we will find it useful to consider an organization of
the contributions according to the 't Hooft flux v and introduce the quantities

Zy(7|T, B) = Z/DADCDD\II exp(—9), (4.18)

where the sum is over all instanton numbers satisfying (2.33]), or equivalently over
all isomorphism classes of bundles with 't Hooft flux v.

4.1.3 S-duality

One of the many remarkable properties of the N' = 4 Yang-Mills theory is a (con-
jectured) SL(2,Z) symmetry, called S-duality, acting on the coupling parameter
7. Tt generalizes the strong-weak Z, duality of Montonen and Olive [54,55] tak-
ing 7 — —1/7 and exchanging the electric and magnetic charges of the theory
(corresponding in the present case to exchanging G = SU(n)/C for its dual group
GY = SU(n)). Using supersymmetry it was shown in [47] that the dyonic mass
formula of N = 2 Yang-Mills theory is invariant under the exchange of electric and
magnetic charges. Furthermore, it saturates the BPS bound (.J]) implying that
the masses receive no quantum corrections as discussed in the introduction to this
chapter. In the N' = 4 theory the spectra of electrically charged elementary particles
and magnetically charged topological monopole excitations are also identical [51],
as required by S-duality.

In addition to direct evidence in field theory [13,[56] it is possible to argue for
the S-duality of the N/ = 4 theory through its appearance as a low energy effective
theory in string theory [57]. Equivalently, as we will discuss in more detail in the
next chapter, the SL(2,Z) duality is made manifest if we consider N' = 4 theory as
the dimensional reduction of (2,0) theory on T2, in which case it corresponds to the
mapping class group of the torus.

In the present chapter we will consider the transformation properties of the par-
tition function of N' = 4 Yang-Mills theory which, as we saw above, decomposes
according to the 't Hooft flux v. The S-duality conjecture can then be extended
to linear relations between the components Z,(7|I", B) under SL(2,Z) transforma-
tions of 7. For M = T* the group of transformations is generated [I3] by the
S-transformatior]

Zy(—1/7|T, B) = |C|_3Zexp <2m'/Mv-v') Zy (7T, B), (4.19)

4This transformation can be thought of as exchanging the electric and magnetic 't Hooft fluxes
in a Hamiltonian formulation (see section B:ZTl) which are related by a Fourier transform [32133].
A more detailed discussion for arbitrary M is given in [13].
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where |C] is the order of the finite center subgroup, and the T-transformation which
simply shifts 7 — 7 + 1 and acts on the Z,(7|I, B) by a multiplicative factor
corresponding to the change in the topological term in the Yang-Mills action.

4.1.4 Flat connections on 7%

Below we will be particularly interested in flat connections on principal bundles.
In analogy with flat connections on principal bundles over T3, which was the topic
of chapter B, flat connections on principal bundles over M = T* can be described
by their holonomies around generators of 7 (T*) yielding a quadruple of commuting
group elements whose lift to the universal covering group satisfy almost commutation
relations encoded by v € H*(M, C).

Since the gauge group G is not simply connected the 't Hooft flux v can be non-
trivial and the lift of the holonomies of A can be almost commuting. The moduli
space M consists of disjoint subspaces M (v) corresponding to topologically distinct
bundles P just as in three dimensions. However, the instanton number introduces
significant differences. As we saw in section 2.3.2/the instanton number £ is expressed
in terms of the curvature as

1

k=— Tr(FAF). 4.20
oz | TEAP) (420)

Consequently, only bundles with £ = 0 admit flat connection. In particular, due to
the relation (233) this implies that only the moduli spaces M(v) with sv-v =0
are non-empty. As a consequence the remarkable relation (3.22)) is only applicable
in three dimensions and does not generalize to connections on bundles over 7.

For n prime we can then investigate the moduli space of flat connections by
considering the distinct 't Hooft fluxes which allows for an instanton number k& = 0.
For v = 0 the quadruple of holonomies is commuting after the lift to SU(n) and can
therefore be simultaneously conjugated to a maximal torus of SU(n). Consequently,
the corresponding moduli space contains a single maximal rank Component of di-
mensions 4(n — 1). As mentloned above, the 't Hooft flux v # 0, —v v = 0 can
be put on the form v = e! U e?, in analogy with the the case of almost commuting
triples, using SL(4,7Z) transformation. Since any element is a generator of C' for n
prime we can construct n rank zero triples according to the prescription in section
B.3.2l Since the commutant of the almost commuting pair (Ul, U,) is the center C
any quadruple of holonomies must have Us, U, € C' yielding n? rank zero quadruples
(showing again that (3.22)) is violated in the case of T*). However, since these are
all identified in G = SU(n)/C' they define a unique flat connection on P.

Using its holonomies we can also describe the R-symmetry connection B by
a quadruple of commuting elements of SU(4). (The elements are commuting by
virtue of the R-symmetry group being simply connected implying that the SU(4)
bundle necessarily has vanishing 't Hooft flux.) Since, as we argued in the previous
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paragraph, such elements can be simultaneously conjugated to a maximal torus 7T
of SU(4) we can identify

Be HYM,T). (4.21)

We thus need to describe the action of 7 on the modules of the 4 and 6 repre-
sentations relevant to the Yang-Mills multiplet. In fact, it is sufficient to consider
the fundamental 4 representation since the action in an arbitrary representation is
then determined by its tensor product construction. Denoting the weights of 4 by
w;, 1 = 1,2,3,4 we can identify an element in T by the phase by which it acts on the
corresponding weight spaces. The weights furthermore satisfy w; +wy + w3z +w, = 0

which implies that the connection can be described by a quartet of elements B =
(B, B?, B3, BY) in HY(M,R/Z) subject to the relation

B'4+B*+B*+B*=0. (4.22)

In the manipulations involved in the computations described in the remainder of
this chapter we will need to lift the elements B* to H'(M,R). The lift preserves the
property (4.22) and is conveniently denoted by the same symbols.

Finally, we will need to describe the action of B as it appears in (£14]), which
implies that we must consider it at the level of the Lie algebra. The relation to the
above description is given by the exponential map and consequently the action of B
on an element v; € V,,, in the w; weight space is given by

Bv; = 21 B'v;, (4.23)

where there is no summation of indices. Note that this expression is applicable to
the weight spaces of arbitrary representations and not just that of the fundamental
4 representation.

4.2 The BPS terms

After introducing all of the necessary machinery we can now begin to make contact
with results of PAPER III by considering an expansion of the R-symmetry connec-
tion around some B = (B!, B? B3 B*) which leaves one of the supersymmetries
unbroken. From (L23) it follows that a generic B acts non-trivially in all weight
spaces of 4 and consequently breaks all supersymmetries. In order to preserve one
of the supersymmetries we must thus take (say) B* = 0 which leaves the Q of weight
wy unbroken.

We can then expand the R-symmetry connection around B by adding a pertur-
bation § B = (0,0,0,5B%). Since the B!, B%, B® are arbitrary we need only consider
a non-vanishing perturbation in the fourth component. Again we denote by 0 B also
the lift of the perturbation to H'(M,R), which we require to be minimal to ensure
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that perturbation theory in 6 B makes sense. The partition function can then be
expressed as power series in 6 B according to

Zy (7T, B+ 6B) = Z(T, B) + z\V(T", B|6B) + O((6 B)?) . (4.24)

That the components Zéo)(l“, B) and Zq(,l)(F,B\éB) of order zero and one are in-
dependent of 7, as indicated by the notation, can be shown in the following way:
Consider a Wick rotated Hamiltonian formulation with the decomposition of the
lattice I' into temporal and spatial parts induced by d B. As we discussed above, the
partition function takes the form

Zy(7|T, B) = Try, ((—1)F exp(—itH +ix- P+ z’BO)) (4.25)

where (¢, x) defines the torus 7% and we have refined the expression by inserting the
fermion number operator and the time component By of the R-symmetry connection.
Since the connection B = (B!, B2, B3,0) breaks three of the supersymmetries, only
the two pairs of creation and annihilation operators associated to the weight wy
act non-trivially on H,. Therefore, all states in the Hilbert space must fall into
N = 1 multiplets. In particular, the contribution of long (non-BPS) multiplets with
E? > p? to the partition function is proportional to

1 — 2exp(27id By) + exp(47id By) = O((6B)?), (4.26)

which shows that only short (BPS) multiplets contribute to the terms Zéo)(l“, B)
and Zél)(l“, B|dB). The mass of the short multiplet (or equivalently the relation
E? = p?) is protected under the continuous deformations of the theory and the spa-
tial momenta p are quantized and therefore independent of 7. We can thus indeed
conclude that the Z\° (', B) and z{M (', B|0 B) are independent of the coupling con-
stant 7 and are consequently referred to as the BPS terms of the partition function
(expanded around the loci where one of the supersymmetries is unbroken).

Having identified quantities that are independent of the coupling constant 7 we
must now proceed to investigate if there is any value of 7 where we can in fact
compute their value in order to capitalize on this feature. The limit of weak gauge
coupling 7 — ioo (almost) allows us to perform such a computation. To see how
this is accomplished we use the fact that

/Tr(F/\*F)i/Tr(F/\F)ZO. (4.27)

Since the real part of the action contains only positive definite terms we have
1 8
Re S > —2/ Te(F A +F) > —— / k;' (4.28)
9" Jm 9 M
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where we have used the definition (A20) of the instanton number in terms of the
curvature. Consequently, the contributions to the partition function from connec-
tions on bundles P with non-vanishing k are exponentially suppresses as we take
g— 0.

Using the result of the previous section that bundles with 't Hooft fluxes in the
%v -v # 0 necessarily have k£ # 0 we can immediately conclude that the partition
function is identically vanishing in this limit, which in particular implies that we
have

ZO(T,B)=0 , Z(T,B|6B)=0 (4.29)

for these orbits.

4.2.1 Non-trivial 't Hooft flux

We now proceed to consider bundles with 't Hooft fluxes in the %v cv=0,v#0
SL(4,7Z) orbit, in which case there is an isomorphism class with k£ = 0 which gives a
non-vanishing contribution to Z, (7|, B) in the weak coupling limit. According to
the results discussed in section [£.1.4] this bundle admits a unique flat connection A.
In analogy with the previous chapter we then expand the fields of the N/ = 4 theory
around the corresponding isolated vacuum configuration according to

A=A+ga , @=g¢ , V=g, (4.30)

and denote by D, the covariant derivative with respect to the flat background con-
nection by A.

In order to evaluate the partition function we must also account for gauge fixing.
We use the conventional generalized Feynman gauge (with gauge fixing functional
D,a* and real parameter §) which modifies the effective Lagrangian of the gauge
field and introduces a complex fermionic ghost field which we denote w. The action
to be inserted into the path integral is then given by

S = / Tr (*a A (*D *D+ D« D*) a + Voly (M + i)y
M
—xp A %(D+1B) * (D +iB)¢ + 0 A xD * Dw) + O(g)  (4.31)

so that in the weak coupling limit the partition function is given by the one-loop
contribution

det (*D * D) det (P + iB)
det'/? (+D % D + £71D x Dx) det'/? (x(D + iB) * (D + iB))
(4.32)
Computing the determinants in the one-loop partition functions requires knowl-
edge of the spectra of the various differential operators appearing in the weak cou-
pling effective action. Since the action of B on the various fields is determined

ZQ(})nefloop<F7 B) —
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through their respective representations the only information missing is the spec-
trum of the covariant derivative with respect to the flat connection A. In complete
analogy with the construction described for the case of a three-torus in the previous
chapter we can construct simultaneous eigenfunctions u,, satisfying

iD,u, = 2mp,u, (4.33)

and spanning the space of sections of the ad(P) bundle. (Here the index p refers to
the basis {e#} of HY(M,Z) introduced in the previous section.) In order to describe
the (real) eigenvalues p, constituting the allowed momenta on M for a bundle of 't
Hooft flux v, in a covariant manner we introduce the set

So={pe H'(M.C)|p#0, p-v=0} (4.34)

where p-v € H3(M,R/Z) using the same pairing as above. (Note that the set S, is
well-defined for arbitrary 't Hooft flux v.) The allowed momentum eigenvalues for a
't Hooft flux v in the orbit %v -v =0, v # 0 presently under consideration are then
given by the sets

P, = {p c H' <M, %Z) ’ np] = p} (4.35)

for p € S,, where [np] denotes reduction of np modulo n.

Before proceeding it is illuminating to make contact with the formalism of chap-
ter Bl by considering the particular example of the 't Hooft flux v = e! Ue?, in which
case the allowed p are on the form

p=(p1,p2,0,0) , (p1,p2) # (0,0) (4.36)

where we have identified C' = Z/nZ so that p; € Z/nZ. These are the (logarithms
of) eigenvalues of the adjoint action of the holonomies on the Lie algebra su(n) of
G. The allowed momenta then take the form

p= (ﬂ vz.2 17, Z) (4.37)
n n
in analogy with the three-dimensional formula (3.28]).

It is possible to show that the one-loop partition function is free of ultraviolet
divergences and can be used to compute the BPS terms for the %v cv=0,v#0
orbit. The detailed arguments and computations are given in PAPER III and the
result is most conveniently presented as

ZO(,B)=1 , Z{)(,Bl6B)=> Z(p, BIoB), (4.38)

PESyY
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where we have introduced a shorthand notation for the rather unwieldy quantity

_ +B'+B%.-6B* (—p+ B'+4 B?) -§B*
Z(p, BIsB) = Y. <(p ) (=p )

et (p+ Bl + BQ)Q (_p+ Bl + BZ)Z
(p+B*+B*)-6B* (—p+B'+B*)-6B*
(p+ Bl + BB)Z (_p+ Bl + B3)2
(p+ B2+ B3) - 6B* (—p+ B? +B3)-5B4> (4.39)
(p+ B2 + B3)? (—p + B2 + B3)?

The reader might justly ask at this point if the omission of this expression would
not have served this introductory part of the thesis well. Unfortunately, it turns out
that the final result obtained below is succinctly presented in terms of the quantity
E(p, B|0B), and its definition is therefore included for completeness.

4.2.2 Trivial 't Hooft flux from S-duality

At this point, it remains only to compute the BPS terms for the single 't Hooft
flux v = 0. Just as in the previous section there exist an isomorphism class of such
bundles with instanton number £ = 0 which can give non-vanishing contributions
to the partition function in the limit of weak gauge coupling. As we saw above,
however, this bundle has a 4(n — 1) dimensional moduli space of flat connections
corresponding to vacuum states of the theory. Just as was the case when considering
flat connections over T°, the unbroken generators of G correspond to zero modes
which make the perturbative approach used for the %v-v =0, v # 0 orbit intractable.
Consequently, it is not possible to directly compute the partition function for the
trivial orbit v = 0 even at weak coupling.

At this point we recall that S-duality of the N' = 4 (or more specifically the
generating S-transformation introduced in the previous section) relates the partition
functions Z,(7|I", B) of distinct 't Hooft fluxes, albeit for couplings related by 7 —
—1/7. However, since the BPS terms are independent of the coupling they can
still be computed using (£I9). The result for arbitrary 't Hooft flux v, obtained in
PAPER III, can then be summarized in terms of the set S, as

S|

n® —

, ZW(T,BlI6B) = E(p, BdB), (4.40)
pPESy

where |S,| denotes the cardinality of S,. As mentioned above, S, can be defined for
any v € H*(M, () and in particular is empty for the non-trivial orbits %v v #0in
agreement with the result of the previous subsection. Finally, it remains to verify
that the result is self-consistent, i.e. compatible with (£I9) which is an overdeter-
mined system of constraints on the Z,(7|I", B). In PAPER III it is shown that (Z.40)
is in fact the unique solution which reproduces the weak coupling partition functions
for non-trivial v.



(2,0) theory on circle fibrations

In this final chapter of the introduction we will consider the second example of a
maximally supersymmetric theory, namely the superconformal (2,0) theory in six
dimensions. In contrast to the previous two chapters, where the space-time geome-
try was that of a torus, we will now consider more general geometries, in particular
manifolds with non-vanishing curvature. Therefore, we will begin with a brief rec-
ollection of the basic geometrical concepts of Riemannian manifolds and, because
of the application to (2,0) theories we have in mind, their conformal structure.
Throughout this chapter, we will implicitly assume all manifolds to have Lorentzian
signature.

Subsequently, we give an overview of the (2,0) theories and their role in string
theory and M-theory before proceeding to a summary of the work presented in
PAPER IV-V concerning (2, 0) theory on (spatial) circle fibrations and the low energy
effective theory obtained upon reduction on the circle.

5.1 Riemannian geometry

In this first section we will discuss some of the concepts from Riemannian geometry
appearing in the study of (2,0) theory on circle fibrations. We will review the
definition of conformal equivalence classes of metrics and the introduction of Lorentz
spinors in curved space-time of arbitrary dimension before restricting our attention
to the special case of six-dimensional circle fibrations considered in the following
sections.

5.1.1 Conformal structure

We consider a manifold M parametrized by local coordinates y*, with M, N =
0,1,...,d — 1 and equip M with a symmetric and non-degenerate (Lorentzian sig-

71



72 Chapter 5 (2,0) theory on circle fibrations

nature) metric tensor field G sy, providing an inner product of vectors X, Y € x (M)
throughEI
(X,Y) = Gy XMy, (5.1)

We define the covariant derivative Vu using the unique symmetric and metric
compatible Levi-Civita connection

. 1
Pfﬂv = §GPQ (aMGNQ + GNGMQ — GQGMN) , (52)

where GMYN denotes the inverse metric. The inner product is then preserved by
parallel transport using the covariant derivative. The Riemann curvature tensor

measures the non-commutativity of covariant derivatives, or equivalently the change
in a vector parallel transported around a closed loopﬁ in M.
A diffeomorphism f : M — M that preserves the metric,

[*Gy = Gy, (5.4)

and thus the pair (M, G) constituting a Riemannian manifold, is called an isometry.
(In particular, the Riemann curvature is therefore invariant under isometries.) The
generators of isometries are Killing vector fields X satisfying £Lxg = 0, which in
local coordinates takes the form @( mX ) = 0, or in other words; the flow generated
by a Killing vector field preserves the metric.

As we saw in chapter 2l the metric Gy allows the definition of an isomorphism
between the spaces of differential forms of different degrees through the Hodge dual
operation x¢g : Q" (M) — Q4"(M). Given an r-form w we define its dual as

-1 1
*q W Ml---MTMTH...Mdd?/Mr“ A A dyMa (5.5)

- ri(d—7)'v=G Whty... M, €

where G is the determinant of the metric and eV is the totally antisymmetric
tensor density with ¢”?~1 = 1. In particular, in six dimensions this operator squares
to unity in the middle dimension (that is acting on three-forms we have %% = 1),
inducing a decomposition of 23(M) into self-dual and anti-self-dual parts.

1--Mg

!Throughout the present chapter we will always work in the tensor calculus formalism of Rie-
mannian geometry. For an introduction to the differential form description of Cartan we refer to
e.g. [BL6].

2 Anticipating the dimensional reduction in subsequent parts of this chapter we denote by hatted
symbols six-dimensional quantities whose reduced counterparts cannot be conveniently indicated
by replacing upper by lower case symbols.

3The connection and curvature of Riemannian geometry can be alternatively be described in
terms of fibre bundles using the machinery developed in previous chapters. We will not pursue
such a description here.
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We will be particularly interested below in the description of field theories with
conformal symmetry, i.e. that are invariant under diffeomorphisms f : M — M that
preserve the metric up to scale transformations

f*Gf(p) = G_QUGP, (5.6)

where o € F(M) is an arbitrary function. Note that this is not a coordinate trans-
formation; a point p € M is taken to a different point f(p) € M. Conformal trans-
formations are generated by conformal Killing vectors satisfying the generalization
of the Killing vector equation to §(MXM) — éGMN@pXP = 0. A transformation
(56) furthermore induces transformations of the various fields of a theory defined
on M. Following [58] we will use a convenient formulation of conformal invariance
of a field theory: A theory is invariant under conformal transformations if it is co-
ordinate invariant and invariant under simultaneous rescalings Gyn — e Gy
(called Weyl rescaling) of the metric and of the fields & — e*?®, where w is called
the conformal weight of ®. Correspondingly, the equations describing the dynamics
and symmetries of the theory are required to transform covariantly.

We are thus led to consider manifolds M equipped not with a metric structure
but with a conformal structure, which is an equivalence class of metrics defined by
the relation

GMN ~ G_QUGMN . (57)

The Weyl transformations thus relate different representatives of a conformal class
of metrics. Furthermore, the Riemann curvature tensor (53] is not invariant under
conformal rescalings of G, but it is possible to extract the part of the curvature
that is: It is given by the traceless part of of RF oumn called the Weyl tensor

o o 1 ~ o o ~
Cunrg = Runrg — 1—92 (RMPGNQ — RnvpGrg + RnoGup — RMQGNP)

A

R
————— (GnpGng — GNpG . 5.8
+(d—1)(d—2)( mMpPGNQ nPGuMQ) (5.8)
Here, we have introduced the Ricci tensor and the scalar curvature as the usual
contractions of the Riemann tensor

~

5.1.2 Spinors on curved manifolds

Since the focus of this thesis is supersymmetric theories we must also be able to
describe spinors on curved manifolds. The obstacle in doing so is that for a general
manifold M coordinate transformations are not encoded in SO(d — 1,1) but in
GL(d — 1,1) matrices. Fields of the theory are usually required to transform in
irreducible representations of this group@, which has no spinor representations.

4In particular the covariant derivative Vo introduced above acts on fields in such representa-
tions to produce objects with definite transformation properties.
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The way to introduce spinors is instead to introduce an orthonormal frame of
the tangent space at each point, called the vielbein E4;. Here, the indices A, B =
0,1,...,d — 1 enumerate the basis vectors and are raised and lowered using the
Minkowski metric n45. The vector index M is raised and lowered using the metric
G . Orthonormality of the E4; then implies the two equivalent relations

EYEyp =14 , E4Eys=Gun. (5.10)

The key observation is now that the choice of basis is arbitrary up to local Lorentz
transformations acting on the (thusly named) Lorentz index A. In other words,
there is a local SO(d — 1, 1) invariance in the vielbein formalism. We can therefore
introduce the gauge field Q4 5, called the spin connection, corresponding to this
symmetry as the connection of the principal orthogonal frame bundle of M. The spin
connection can then be used to define a derivative that in is covariant with respect
to both local Lorentz transformations and general coordinate transformations.

Let us now return to the motivating example for the introduction of the spin
connection, namely that of a field U(z) on M transforming in the spinor representa-
tion of SO(d — 1, 1). The generators on this representation are X 45 = %F AB, which
is the antisymmetric product of two I'y Minkowski I'-matrices, and the covariant
derivative is given as

1
Vu¥ = oyV + ZQ;;BFAB\II : (5.11)

The quantity transforms as a covariant vector under general coordinate transfor-
mations and as a spinor under local Lorentz transformations as requiredﬁ. Given a
vector on M we can also use the vielbein to obtain a Lorentz vector or vice versa.
In particular, this practice can be applied to the ordinary matrices I'4 generating
the spinor representation, yielding the curved space gamma matrices I'y; = E4T 4,
satisfying {I'y;, 'y} = 2Gy N, which are needed to describe the dynamics of the
spinor field as we will see below.

We must impose the consistency condition that the vielbeins are covariantly
constant, i.e. that V;E4 = 0, in order for the transition between flat and curved
vector indices A and M to be well-defined. From this relation it is possible to solve
for Q47 in terms of 4,

0 = EN49, EY, — ENP0, Eqy — EPAECP0 B0 By (5.12)

and obtain the usual form (5.2)) of the Levi-Civita connection. Finally, we note that
the field strength of the spin connection is related to the curvature of M through
the vielbein. Useful references for more detailed accounts of the material reviewed
above are [5,[59,[60].

5This construction can of course be generalized to arbitrary representations of SO(d — 1, 1).
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5.1.3 Metrics on circle fibrations

So far, the discussion of Riemannian geometry has been very general. We will now
specialize to the geometry of interest in the remainder of the present chapter and
in PAPER IV-V. Following [61] we therefore consider a manifold Mg of dimension
d = 6 which is a fibration of a circle S! over some five-dimensional base manifold
Ms. This construction is equivalent to the existence of a free action of U(1) on M;
which preserves the metric G,;y. The base manifold is then reconstructed as the
quotient M5 = Mg/U(1), obtained by identifying all points in the orbits of U(1), or
equivalently by the projection operator 7 : Mg — Mj5 in the bundle description.

Since the U(1) action preserves the metric there exists an isometry along the
St fibre direction. Using this isometry we can obtain the general form of a metric
on a circle fibration. To this end we split the curved vector index according to
M = (u,p), with p = 0,1,...,4, and denote the local coordinates on M5 by z*
while S! is parametrized by a coordinate ¢ of periodicity 27. In terms of local
coordinates we can write the invariant length squared on the form

ds® = Gudrtdz” + r? (dp + Qudyc“)2 ) (5.13)

The isometry along the S! implies that the g,,, r and 6, are all independent of
the coordinate ¢. Thus, g,,(x) can be interpreted as the metric on Mj;, r(x) as the
radius of the S* fibre and the vector 6, (x) as an obliqueness parameter. The vielbein
on Ms is denoted e, where the flat vector index is split according to A = (a, 5) with
a=0,...,41in analogy with the curved index M. In PAPER IV explicit expressions
are presented for the metric, vielbein, Levi-Civita connection and spin connection
on Mg in terms of the corresponding quantities on Ms.

From the expression (B.I3)) it is clear that a reparametrization ¢ — ¢ + A(z)
corresponds to a transformation

0, — 0, + O\, (5.14)

implying that we can interpret 6, as the gauge field of the U(1) action on the fibre of
Mg — Ms5. The gauge field 6, is non-dynamical in the sense that it is determined by
the geometry of Mg and not governed by equations of motion derived from any action
functional. However, reparametrization invariance in six dimensions implies that all
physical quantities on Ms must be invariant under ¢, gauge transformations (5.14]).
Generically, this means that they can only include a dependence on 6, through its
gauge invariant field strength

Fuw =040, — 0,0, (5.15)

which is the curvature of the U(1) bundle over Ms;.
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5.2 The (2,0) theory

Even though the stated purpose of the present chapter is the study of the (2,0)
theories we have yet to introduce them. In order to remedy this we devote the
present section to describing the (2,0) supersymmetry algebra, which give these
theories their name, and its simplest representation that will feature prominently
in the rest of this chapter. We also give a basic overview of the appearance (and
importance) of (2,0) theory in string theory and M-theory, even though the work
described below makes little use of this connection.

In the first part of this section we will consider the space-time to be flat Minkowski
space, contrary to what is suggested by the content of the present chapter so far.
The reason is that on a generic curved manifold all supersymmetries will be broken
by the geometry, rendering the name somewhat misleading. It is therefore appro-
priate to be more specific: (2,0) theory on an arbitrary curved manifold is taken to
mean the conformally invariant theory that in flat space is invariant under the (2,0)
supersymmetry algebra. We will return to the question of which manifolds admit
unbroken supersymmetries below.

5.2.1 The supersymmetry algebra

In six flat dimensions the (2,0) supersymmetry algebra is the maximally extended
Poincaré superalgebra which can be considered without the inclusion of gravity@.
(In fact, there exist no supersymmetry algebra which can accommodate conformal
symmetry in higher dimensions [29].) The bosonic part of the algebra is isomorphic
to s0(5,1)@so(5), where the two factors are respectively the algebras of the SO(5, 1)
Lorentz group and the USp(4) = SO(5) R-symmetry group. As we saw in section
[B.I]it follows from the general form of the supersymmetry algebra that the fermionic
generators furnish a representation of the bosonic subalgebra, and in particular a
spinorial representation of the Lorentz algebra. In the case of the (2,0) algebra the
supercharges Q® transform as (4;4) under the bosonic subalgebra [29,[30], where
the two 4’s refer to the chiral spinor representation of SO(5,1) and the fundamental
spinor representation of USp(4) respectively. The index a = 1,...,4 refers to the
latter, and can be used to impose a symplectic reality condition

(Q™)" = MusB) Q" . (5.16)

Here, M, is the USp(4)-invariant symplectic metric (with inverse T%#) used to lower
(and raise) spinor indices «, 3, . .. in the fundamental 4 representation of USp(4) and
B is related to the charge conjugation matrix in six dimensions. Various spinor
conventions (we will always suppress spinor indices below) and conventions regarding
the symplectic structure related to the R-symmetry are given in the appendix to
PAPER IV.

6C.f. the N' = 4 algebra in four dimensions considered in the two previous chapters.
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From the transformation properties of Q“ under the bosonic algebra so(5,1) ®
s0(5) we can derive the most general form of the anticommutator {Q%, Q°} by
considering the symmetric tensor product representation

[(4;4) ® (4;4)], = (6;1) ® (6;5) @ (104; 10), (5.17)

where 6 is a Lorentz vector, 10 and 5 are respectively symmetric and traceless
antisymmetric USp(4) bispinors, and 10, is a self-dual three-form tensor. As a
result, the anticommutation relation is given by [62]

{Q*, Q" = =2iM*TM Py + TV 237 + TN 207 1 (5.18)

where P is the energy-momentum vectorl] while Z}ff and Zz‘f‘fN p are central charges
transforming according to the above tensor product decomposition. In this chapter
we will predominantly be concerned with the tensor multiplet representation for
which the central charges vanish, but we will find the general form of the algebra
useful for understanding (2,0) theory in the context of string theory and M-theory
below.

Before proceeding we note that according to [29] the supersymmetry algebra
described above can be extended to the superconformal algebra whose bosonic sub-
algebra is 50(6,2) @ s0(5). Even though we will not consider this algebra in detail
here, its existence is what allows us to consider the (2, 0) theories, which in addition
to invariance under the super-Poincafe group exhibit conformal symmetry.

5.2.2 The tensor multiplet

We will now review the construction [30] of the free tensor multiplet representation
of the (2,0) supersymmetry algebra. With vanishing central charges we once again
use Wigner’s method of induced massless representations. The little group is in this
case SO(4) = SU(2) x SU(2) x USp(4), with respect to which the representation of
the supercharge Q“ is decomposed according to

(4;4) = (2,1;4) @ (1,2: 4) . (5.19)

The first term corresponds to the active supercharges )1/ while the second term
corresponds to the unbroken generators annihilating physical states. In order to
determine a set of creation and annihilation of the Clifford algebra generated by
Q172 we consider a further decomposition relative to the SO(2) subgroup of SU(2)
yielding

(2:4) =412 B 42, (5.20)

where we have suppressed the the SU(2) singlet and denote the SO(2) weight with
a subscript. In this way we achieve the separation of )/, into creation and annihi-
lation operators related by hermitian conjugation. Acting repeatedly on a vacuum

"The factor of —2i in the Pjs term is introduced to conform with conventions in PAPER IV-V.
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state |0) in the 1_; representation with the creation operators in 4;/,, we obtain the
tensor multiplet representation as

110109 1) D5 D (4—1/2 ) 41/2) (5.21)
or expressed in terms of representations of the SO(4) x USp(4) little group
(3,1:1) @ (1,1;5) @ (2,1;4) . (5.22)

Having established the tensor multiplet representation content we can proceed
to identify the corresponding fields realizing the representation. The first term is
perhaps the least obvious; it corresponds to a two-form gauge field By,ny with self-
dual three-form field strength H = dB, transforming trivially under the USp(4)
R-symmetry. The second term describes five Lorentz scalars transforming in the
vector representation 5 of USp(4) = SO(5) which we describe as an antisymmetric
bispinor ®** satisfying the tracelessness condition M,z®** = 0. Furthermore, we
impose the symplectic reality condition

(DY) = Doy = Moy Mps D . (5.23)

Finally, the last term in (5.22]) corresponds to the fermionic part of the tensor
multiplet consisting of a positive chirality Lorentz spinor ¥ transforming in the
4 spinor representation of USp(4) and satisfying the same symplectic Majorana
condition as the supercharges

(UY)* = M3 B °. (5.24)

The above realization of the tensor multiplet was first constructed in [63] using a
superfield formalism.

We are now ready to consider the dynamics of the free tensor multiplet. In doing
so we will transition to the general case of an arbitrary manifold Mg. As mentioned
above, we thus refer to the free theory of the fields described above as the tensor
multiplet of (2,0) theory. In order to ensure that the theory depends only on the
conformal structure of Mgz we must, according to the discussion in the previous
subsection, impose invariance under simultaneous Weyl rescalings of the metric and
corresponding rescalings of the fields.

Throughout, we will consider a description using only the three form tensor field
H which is then taken to satisfy the equations of motion

dH =0 , H=xcH, (5.25)

which are manifestly conformally covariant. The self-duality of H makes a La-
grangian description of the three-form complicated since the candidate for La-
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grangian density H A x¢ H is identically vanishing. We will therefore only consider
the three-form at the level of equations of motion%.
The massless scalar field satisfies the conformal Klein-Gordon equation

GMNY V@ 4 RO =0, (5.26)
which is covariant in d = 6 provided the conformal transformation ®*% — e27®8
and ¢ = —%. Finally, the fermionic spinor U* satisfies the ordinary Dirac equation

MV, 0 =0, (5.27)

which is conformally covariant for spinors scaling with conformal weight ¥* —
290, Unlike the three-form H the remaining fields of the tensor multiplet admit
Lagrangian descriptions: Both (5.26) and (5.27) follow from conformally invariant
action functionals.

We can now return to the question of supersymmetry in curved geometries.
Since we consider the theory at the level of equations of motion, supersymmetry
amounts to the closure of the set of solutions to (5.20)), (5:26) and (5.27) under the

supersymmetry transformations

SHyune = 3V (ValnpEY) (5.28)
507 = 2@“55}—%@5@9 (5.29)
ST = %HWPPMNPSQ+21'1\4ﬁﬁM<1>aﬁng7 (5.30)

+%Mﬁ,yq>aﬁrM@Mgv : (5.31)

where the fermionic parameter £¢ is a symplectic Majorana spinor of negative chi-
ralityﬁ in the 4 of USp(4). The variations satisfy the same equations of motion as the
original fields up to terms proportional to the differential operator Vo — éT mINVy
acting on £¢. Thus, supersymmetry imposes a condition on the geometry of Mg: It
must admit non-trivial solutions to the conformal Killing spinor equation

~ 1 ~
Vu&E* — ngvaNea =0. (5.32)

A special case is manifolds Mg admitting covariantly constant spinors VuE® = 0.
Finally, we note that the supersymmetry variations satisfy the correct conformal
rescaling properties and that (5.32) is covariant provided the rescaling of the super-
symmetry parameter according to £ — e 398 @, ensuring consistent superconformal
symmetry.

8There exist alternative constructions introducing an auxiliary scalar field which allows a La-
grangian description reproducing the correct equations of motion for H [641[65], or considering an
action which does not imply but allow self-duality [66]. We will not further consider either of these
approaches here.

9The negative chirality is also required for the bosonic generator £,Q% to be non-vanishing.
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5.2.3 Origin in String/M-theory

We will now proceed to make good on our promise to provide an overview of the
(2,0) theory in the context of string theory and M-theory. Since this is somewhat
out of the main line of the thesis we will keep the exposition very brief and not
attempt to give a complete account of the developments in the field or the cor-
responding bibliographic references. However, the higher dimensional perspective
provides an important motivation for the study of (2,0) theory for readers who fail
to be sufficiently fascinated by the prospect of studying the highest-dimensional
superconformal theory that exists [29].

Even though the (2, 0) algebra and the tensor multiplet representation were both
previously known, the the discovery of (2, 0) theory (in the sense it is most commonly
used) and its appearance in string theory was made in [67], based on results by
Witten presented at the Strings '95 conference in Los Angeles. The argument is
based on the T-duality of type ITA and type IIB string theory in a space-time of the
form R>! x K3, where K3 is a particular compact four-dimensional hyper-Kahler
manifold. The moduli space of the K3 contains certain singular points, obeying
an ADE classification, where N of its linearly independent two-cycles collapse to
a singularity. At these points the type IIA theory develops an enhanced gauge
symmetry indicated by the appearance of additional massless vector particles (W
bosons) [67H69]. (The symmetry enhancement can be understood in terms of another
string theory duality between the type IIA string on R%! x K3 and heterotic string
on R>! x T [68].) Witten’s realization was that T-duality of type ITA and type IIB
further compactified on a circle predicted the existence of self-dual strings in type
I1B theory compactified on K3, which become tensionless at the singular points of
the K3 moduli space corresponding to the symmetry enhancement.

We will now review the compactification of type IIB theory on K3 and the
emergence of the Ay series of (2,0) theory, which in particular includes the self-dual
six-dimensional strings featuring in the previous paragraph. The first step is to
employ the description of K3 close to the Ay singularity as a N 4+ 1 multi-centered
Taub-NUT spacd! TNy, [T0H72] with metric

ds® = Udy;dz'da? + U (dp + 0;da’)? (5.33)
where
1 &R
U=— 5.34
AP >3

and dU = xsdf. This space has a compact direction ¢ whose radius vanishes at
the centers located at the points 7; in the three remaining coordinate directions
7= (2!, 2% 2®) parametrizing R3.

10We will return to discuss the single-centered Taub-NUT space in more detail below in a different
application.
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We can construct N linearly independent two-cycles as the surfaces I ;41 x S,
where [; ;11 is the line connecting the center locations 7; and 71, which have the
topology of a sphere due to the pinching of the cylindrical region at the centers. The
intersection matrix of the two-cycles is given by the Cartan matrix of Ay [73], which
implies that they can be associated with the simple roots of the Lie algebra. The
singularity where the two-cycles collapse is then obtained when all centers coincide
and the approach to the singular point of the K3 is described by 4N parameters.
Furthermore, for each center in (5.33]) there exists a unique anti-self-dual two-form
Q; localized near 7;, which can be viewed as the connections of certain complex line
bundles over TNy, [74] generalizing the construction for the single-centered case
previously described in e.g. [72].

Having a convenient description of the two-cycles in terms of the Taub-NUT ge-
ometry we can construct the Ay (2,0) theory by considering the four-form potential
C, of type IIB string theory sourced by the D3-brane. The coupling is self-dual in
the sense that C) has self-dual five-form field strength and couples both electrically
and magnetically to the D3-brane. In the compactification on K3 the D3-brane may
wrap any of the N two-cycles, which from the uncompactified dimensions R>! is per-
ceived as a string propagating in six dimensions. Furthermore, the corresponding
C, gauge field is decomposed according to

C4 - Z BZ A Qi,iJrl 5 (535)

where €Q; ;11 is the linear combination of two-forms supported near the two-sphere
connecting 7; and 7;,1. The two-forms B; appearing in the decomposition has self-
dual three-form field strength H = dB and couples to the string in R>! both elec-
trically and magnetically. Thus, the string is indeed self-dual, as indicated above, in
the sense that its electric and magnetic charges under B are equal. Finally, the RR
two-form gauge potential gives rise to N moduli, making a total of 5N real moduli
of the (2,0) theory which correspond to the vacuum expectation values of 5N real
scalars. Together with the B gauge fields they fall into /N massless tensor multiplet
representations of the (2,0) algebra.

The tension of the strings are proportional to the area of the two-cycles in K3
wrapped by the D3-brane, which implies that close to the singularity the string, and
consequently the (2,0) theory, decouples from gravity. To make contact with [67]
we consider a further compactification to R*! x S! x K3, in which case the tensor
multiplets describe N massless vector bosons (a result which is obtained for the
generalized case of a circle fibration in PAPER IV and summarized below). The
self-dual strings wrapping the S! on the other hand describe vector particles with
mass proportional to the string tension (see also [75]). The five-dimensional theory
is thus SU(V + 1) supersymmetric Yang-Mills theory spontaneously broken by the
moduli to U(1)". The tensor multiplets consequently correspond to the Cartan
subalgebra of SU(N + 1) while the strings related to the linearly independent two-
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cycles correspond to the simple roots. (Strings not wrapping the S describe the
magnetic strings dual to the gauge particles.) At the origin of moduli space all
strings become tensionless and the SU(N 4 1) symmetry is restored, corresponding
to the gauge symmetry enhancement of the type IIA theory. The above argument
can be generalized to the D- and E- series of singularities and (2,0) theory.

Next, we will briefly describe the construction of the Ay series of (2,0) theory
in M-theory (which when compactified on a circle gives the type IIA construction
T-dual to the type IIB construction described above) containing extended M2- and
M>5-branes. Considering first a single M5-brane in R!%! one finds that its presence
breaks the Lorentz group SO(10,1) — SO(5,1) x SO(5), half of the 32 supersym-
metry generators and certain gauge symmetries of the M-theory three-form. The
world-volume theory of the M5-brane, describing the dynamics of the Goldstone
modes corresponding to the broken symmetries, is described by the (2,0) tensor
multiplet [76,[77] which is invariant under the 16 unbroken supersymmetries.

To obtain the Ay type (2,0) theory we consider instead a configuration N + 1
parallel M5-branes, and M2-branes stretching between them [7§]. The dynamics of
each of the M5-branes is described by a tensor multiplet, but the sum (associated
to the center of mass motion) decouples from the theory giving N tensor multiplets
corresponding to the Cartan generators of Ay. From the world-volume perspective
the M2-branes stretching between two adjacent M5-branes appear as self-dual strings
coupling to the two-forms of the corresponding tensor multiplets. The moduli of the
theory are the vacuum expectation values of the 5N scalar fields parametrizing the
(relative) position in the transverse directions of the M5-branes. The tension of the
strings is proportional to the distance between the two branes, implying that close to
the origin of moduli space, where the branes coincide, the strings decouple from the
gravity bulk modes resulting in a purely six-dimensional theory without gravity on
the world-volume of the stack. The compactification to five dimensions is analogous
to the one described above in the type IIB case, justifying the identification of
the N self-dual strings with the simple root generators of Ay and reproducing the
symmetry enhancement to SU(N + 1) gauge theory when the M5-branes coinciddY.

Before closing the present subsection we need to make a few remarks concerning
the (2,0) theory constructed in string and M-theory. Above we have associated the
self-dual strings with the N simple roots of the Ay algebra. The remaining positive
roots are obtained by linear combinations corresponding in the type IIB case to
wrapping the D3-brane on two-spheres connecting any two centers of the T'Ny
space and in the M-theory construction to M2-branes stretching between any two
Mb5-branes. (Negative roots are obtained by reversing the string orientation.) In
the compactification to five dimensions this produces the remaining massive vector
multiplets of spontaneously broken SU(N) Yang-Mills theory. The Ay construction
in M-theory can be extended to the Dy series of (2,0) theory by introducing an

"1 The center of mass tensor multiplet corresponds to the Cartan generator of the abelian factor
in UWN +1)2SUN+1) x U1).
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orientifold plane [73] in the constructions above, while the (2,0) theory correspond-
ing to the three exceptional simply laced algebras have no known simple geometric
M-theory interpretation.

Finally, the self-dual string appearing above deserves a few further comments.
In particular, we can now reconnect to the general form of the (2,0) supersymmetry
algebra in (L.I8). While we saw that the tensor multiplet had vanishing central
charges, the presence of the central charge Z]?f allows the construction of represen-
tations including an extended one-dimensional object [79,80]. This agrees with the
general result [81] that a p-dimensional extended object gives rise to a p-form central
charge in the supersymmetry algebr.

5.2.4 Dimensional reduction to d =5 and d =4

As we saw in the previous subsection the compactification of the six-dimensional
model on R*! x S1 provides crucial insight into the (2,0) theory. In fact, it is fair
to say that the full six-dimensional formulation of the interacting (2,0) theories,
which in particular possesses no weak coupling limit due to the self-dual coupling
of the string, remains elusive. (The exception is the free tensor multiplet described
above.) Much of the progress towards an understanding of the theory was therefore
initially obtained by considering the compactification to the maximally supersym-
metric Yang-Mills theory in five dimensions. The perturbative low-energy theory
described by the vector multiplets obtained from the tensor multiplets and strings
wrapping the S! is complemented by the unwrapped strings and Kaluza-Klein modes
of the massless tensor multiplets and strings. This suggests that (2, 0) theories should
be interpreted as the UV completion of the (power-counting non-renormalizable)
N = 4 Yang-Mills theory in five dimensions including both perturbative and soli-
tonic (non-perturbative) degrees of freedom.

Recent work suggests that the connection between maximally supersymmetric
Yang-Mills theory and (2,0) theory is in fact even stronger: In [82] a non-abelian
generalization of the tensor multiplet is constructed and its dynamics is found to be
essentially five-dimensional. The reduction to five dimensions is further investigated
in [83] where the Kaluza-Klein modes of the self-dual string (whether it is wrapping
the S! or not) are found to correspond to non-perturbative states of the d = 5 Yang-
Mills theory. This indicates that (2,0) theory and Yang-Mills theory are equivalent
(see also [84]), rather than the former being the UV completion of the latter, since
no additional high energy modes need to be introduced into the SYM theory (which
in turn suggests that it is a well-defined quantum theory despite its being power-
counting non-renormalizable).

Finally, we can now elucidate the connection between the (2, 0) theory and NV = 4
Yang-Mills theory in d = 4 by considering a further compactification to R*! x T2 [67,

2Consequently, from (BI8) we also expect the appearance of a three-dimensional extended
object in (2,0) theory. Such an object can indeed be constructed [62] but will not be consider here.
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75,85]. The low-energy gauge theory on R*! obtained has maximal supersymmetry
and depends on the complex coupling constant 7, which is the modular parameter of
the torus 7?2, through the Yang-Mills action discussed in previous chapters. Thus, S-
duality of the A" = 4 theory is manifest in the description as dimensionally reduced
(2,0) theory due to the SL(2,Z) reparametrization invariance of 72. In particular,
electrically and magnetically charged particles correspond to self-dual strings in
d = 6 wrapping the two distinct one-cycles of T2, and the Z, symmetry exchanging
the cycles corresponds to electric-magnetic duality.

5.3 Dimensional reduction on circle fibrations

In this section we will proceed to review the topic of PAPER IV: The dimensional
reduction of (2,0) theory on the spatial S* fibre of a manifold Mg which is a U(1)-
fibration over some arbitrary base manifold M; (which is in general a curved space-
time). The geometry of such a situation was described in section I3l Full details
on the decomposition of the connections needed to define a derivative V,, which is
covariant with respect to both general coordinate transformations and local Lorentz
transformations on M; are computed from the metric (5.13]) and given in PAPER IV.
Furthermore, the Riemann tensor is decomposed in the reduction implying in par-
ticular that the curvature scalar R appearing in the equation of motion for ®*%
becomes

. 1 1
R=R- Zﬂf,wfﬂ" —2-V,Vir (5.36)

where R is the curvature scalar of the metric g, on Ms.

In order to derive the low-energy effective theory on M5 obtained in the reduction
explicitly, we first restrict our attention to the free tensor multiplet which possesses
a classical description in terms of equations of motion reviewed in the previous
section. We will then generalize the abelian gauge theory obtained to a non-abelian
Yang-Mills theory in order to produce a candidate for the reduction of interacting
(2,0) theory. In particular, we will verify that the correct symmetries expected from
superconformal invariance in six dimensions are reproduced.

5.3.1 The tensor multiplet

The tensor multiplet and its dynamics were discussed in section [5.2.2for an arbitrary
manifold M. For Mg = R*' x S! with a product metric it is well-known [67,[75]
that reduction on the S* produces (maximally) supersymmetric Maxwell theory in
five dimensions, whose R-symmetry group is USp(4) just as for the original theory.
The fields of the dimensionally reduced theory furnish the massless N' = 4 vector
multiplet consisting of a gauge field A, with field strength F},,, five scalars ¢
satisfying ¢(*%) = 0, M,5¢* = 0 and (¢*°)* = @5, and four fermionic spinors ¥*

transforming in the 4 of USp(4) and satisfying the five-dimensional analogue of the
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symplectic Majorana condition (5.24]). The gauge coupling, furthermore, is given by
g = /T and is a constant on M5 = R*! due to the direct product structure of the
metric.

The generalization to an arbitrary circle fibration Mg implies that the Maxwell
theory on Ms; receives certain modifications. The dimensional reduction in the
general case is described in detail in PAPER IV and will not be repeated in its
entirety herd!. Instead, in this subsection and the next, we aim at providing a
summary of the resulting theory, which in particular has the same (dynamical) field
content (A,, ¢*? 1) as the ordinary Maxwell theory.

In the most general metric (B.13]) compatible with a circle fibration, the radius
r(x) is generically a function on Mj; and the non-dynamical U(1) gauge field 6,
(corresponding to the connection of the bundle Mg as explained in section E.1.3)
is non-vanishing. The dimensional reduction of the scalar and spinor fields of the
tensor multiplet is relatively straightforward and produces the corresponding fields
% and ¥® on Ms. With an appropriate rescaling to obtain canonically normalized
fields in five dimensions their dynamics are governed by the action functionals

1 11
Sp = / /=g (—;vu%ﬁvwaﬁ — 5 R6asd™ + K(g,1, H)cbamaﬁ) (5.37)
and ) .
S= [ Eov=g (G0 - g Fdae) . 6
Here, we have introduced the quantity

1 31 1 )
K(g,r,0)= EVMTVMT — SEVMV“T + 2—07“.7:,“,]:“ , (5.39)

containing information about the geometry of the manifold Mjg.

The dimensional reduction of the self-dual three-form H requires a slightly more
detailed treatment, especially in view of the developments considered in the last
section of this chapter. It can be decomposed according to

H=FE+FAdp (5.40)

where (in the low energy effective theory) E and F are respectively a three-form
and a two-form on Mj5. The self-duality of H implies that E can be eliminated and
the dimensionally reduced theory on M; expressed in terms of F. From the tensor
field dynamics it follows that F satisfies dF' = 0, allowing the (local) interpretation
as the field strength of a gauge field F' = dA, and the equation of motion obtained
as the stationary point of the action

1
Sp:/(—;F/\*gFJFHAFAF) . (5.41)

BIn particular, the decomposition of Lorentz spinors and the truncation of the Kaluza-Klein
modes obtained in the reduction are discussed.
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Summarizing the implications of the above results we find that for a generic
fibration the coupling strength (which is still given by the square root of the fibre
radius) is no longer a constant but a function on Ms5. Furthermore, the gradient of
r(x) appears in the quadratic potential terms in (5.37) and (5.38)) together with a
coupling to the gauge field 6, through the gauge invariant curvature F of the U(1)
bundle Mg. The gauge field action is modified by the appearance of a topological
term [ AF AF (generalizing the familiar -term of SYM theory in four dimensions
discussed in previous chapters). The consequences of the presence of this term is
discussed in [61] (see also [86]) and will be considered in more detail below.

5.3.2 Superconformal symmetry

Before proceeding to consider a non-abelian generalization of the results obtained
in the previous subsection, we will review the manifestation of the superconformal
symmetry of the (2,0) theory in the dimensionally reduced abelian gauge theory
on Ms. The fact that the theory of the (2,0) tensor multiplet depends only on the
conformal structure on Mg gives rise to a generalized conformal symmetry in five
dimensions as follows"J: According to (B.I3) a Weyl rescaling of the metric Gy
induces rescalings not only of the metric g,, but also of the fibre radius r(z)

G = € G , T e T, (5.42)

The simultaneous rescaling of the tensor multiplet fields gives the corresponding
transformations of the fields on Mj (taking the rescaling mentioned above into ac-
count)

PP 5 TP — 2 (5.43)

It is easy to verify that the action functionals (5.37) and (538) are invariant under
such a generalized conformal transformatio, which thus constitutes a symmetry
of the theory on M;. We note that in particular, this symmetry implies a rescaling
of the coupling strength parameter of the Maxwell theory; a rather peculiar feature.

Since it is a consequence of the six-dimensional theory being defined only in terms
of the conformal class of the metric Gy, the generalized conformal symmetry
persists for arbitrary circle fibrations Mg — M;5. However, the same is not true
for supersymmetry. More specifically, we saw in section that supersymmetry
required the existence of non-trivial conformal Killing spinors on Mjg satisfying the
condition (5.32)). For the circle fibration reduction, this condition can be formulated
as a condition on the geometry of Ms in terms of the supersymmetry parameter ¢

1Ordinary (supersymmetric) Maxwell theory in five dimensional Minkowski space is not con-
formally invariant due to the dimensionality of the coupling constant.
15The Maxwell action (G.41)) is of course manifestly invariant.
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on Mjs, by requiring the existence of non-trivial solutions to
i
8

The supersymmetry transformation of the dynamical fields of the Maxwell theory
on Mj5 are then obtained by dimensional reduction of the corresponding transforma-

tions (5.28)), (5:29) and (530) of the tensor multiplet on Mg:

11 1
Ve = 5=V e + or PP p0e® + et (5.44)

_ 1 _
5¢°f = oploghl ST e (5.45)
0F,, = =2V, g™ + i;V”m/Ja%,,peo‘ — QiFV[H'rlpa%]ga
_ 3 _ 1 _
+rFuwae” + §T'F[upwa%]pga o erpawa’mvmga (5.46)

1 UV _ & . (0%
Sy = §FMM €% + 2iMp, V , P yte
1 (67 Q, 174
+ 2i= Mgy BN ryte? — r Mg, ¢®P F e’ . (5.47)

Indeed, the complete Maxwell action is invariant under this supersymmetry trans-
formation provided that £* satisfies (5.44). Finally, we note that for the case of a
direct product metric we have d,r = 0 and 6, = 0, implying the vanishing of all
the geometric terms in both the action and supersymmetry variations as required
to reproduce the ordinary Maxwell theory for Mg = R*! x S*.

5.3.3 Non-abelian generalization

The (2,0) theory for the simply laced groups of the ADE classification cannot be
described in terms of classical field theory, rendering a direct generalization of the
procedure outlined above for the free tensor multiplet theory inaccessible. However,
it is known that (2,0) theory associated to a group G upon reduction on the S* fibre
of Mg — Mj5 should be described by gauge fields with gauge group G on M; [61].
We expect the non-abelian theory to couple to the background U(1) gauge field
6, (through the field strength F,,) and to exhibit the same generalized conformal
invariance that was found for the free tensor multiplet above. Finally, when Mg
admits conformal Killing spinors (or equivalently M; admits non-trivial solutions
to (5.44)) the theory should be supersymmetric. In fact, in the case of R>! x S1
the long-distance physics on Ms is described by N = 4 supersymmetric Yang-Mills
theory [6775].

In order to arrive at a candidate for the reduction of interacting (2,0) theory,
starting from the Maxwell theory on My described above, we must first generalize
the fields of the vector multiplet to (Af, 28 12 transforming in the adjoint repre-
sentation of the Lie algebra g of the gauge group G. In other words, we promote A
to the connection of a principal G-bundle over M5 (of which F' is the curvature) and
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the remaining fields to sections of associated adjoint bundles. We also introduce the
gauge covariant derivative D,,, acting on a field = in the adjoint representation in
the usual way
—_ —_ b=
D,Z" =V, 2" + f" A =" (5.48)

Replacing all derivatives V,, with D, and taking the trace in the action functionals
we achieve gauge covariance on Mj. If we are to reproduce the ordinary Yang-Mills
theory we must also include the Yukawa and ¢* interaction terms

1 _
Symo = .o / dxv/=g (2;fab0MmMm<z>3%Zwé
1 g
P Mo M, My My 6376062 ) 7 (5.49)

and modify the supersymmetry variation of the fermionic field with the usual non-
linear term
(0P )ym = ... + QfabcMﬁﬂ/M&)\(b?ﬁ(bZ&g)\, (5.50)

where the ellipsis denotes the gauge covariantized quantities derived for the tensor
multiplet.

Since the additional terms contain no derivatives the theory trivially exhibits the
same generalized conformal invariance as in the abelian case. Supersymmetry of the
model is less trivial, but by a straightforward calculation it is possible to verify. It
should be emphasized that the theory described by (5.49) and (550)) is not obtained
by direct derivation; it is simply the minimal generalization required to produce
all the known properties of interacting (2,0) theory reduced on a circle fibration.
However, it appears difficult to construct a competing candidate due to the strong
restrictions imposed by the generalized conformal symmetry and supersymmetry
(given the existence of non-trivial parameters ).

5.4 Singular fibrations

Having considered the case of a general circle fibration in the previous section it is
interesting to extend the scope to include manifolds Mg whose description as an S*
fibred over My becomes singular over some hypersurface W in M5. The appropriate
way to understand this situation is to consider an action of U(1) on M. When
the action is free the manifold Mg can be described as a circle fibration over the
base manifold M5 = Mg/U(1), but generically this description breaks down on the
hypersurfaces W in My where the action is non-free. We will consider the special
case of a codimension four hypersurface W defined as the fixed point locus of the
U(1) action. More specifically, we will consider the free (2,0) tensor multiplet on
Mg = RY x TN, where T'N is the four-dimensional (single center) Taub-NUT
space introduced above. In this case, as we shall see explicitly below, we have
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W = RY x {0} and the quotient Mj is in fact a smooth manifold@, even though
the description of Mg as a U(1) fibration is only valid over M5\ W.

5.4.1 WZW model on the singularity

In [61] Witten considers (among other things) the low energy effective theory on My
for the case when the free U(1) action on the space normal to W can be described
by the natural action on C2. (In particular, this is the case for Mz = RY! x T'N.)
The obstruction to extending the bundle over all of M5 can be measured by non-
triviality of the first Chern class of the bundle over M;\ W, which can in turn be
viewed as a singularity along W of the curvature F of the bundle. Such a singularity

is described by dF = cdy, where dyy, defined by

ow AN w :/ w (5.51)
Ms W

for an arbitrary test-form w € Q*(Mj), is the Poincaré dual of W.

In this situation the singularity induces an anomalous transformation of the
topological term in the gauge theory on M;s. This is most easily seen by rewriting
the topological term as [ F A CS(A) and noting that CS(A) is gauge invariant
only up to an exact form. The equivalence of the two forms can be understood by
considering a manifold M bounded by M;. The variation of [ u F N F A F localizes
on the boundary and agrees with the one obtained from the variation of the two
five-dimensional expressions, neither of which are strictly speaking well-defined.

Consequently, a modification of the low energy theory is required in order to
cancel the anomaly. Since the description obtained in the previous section remains
valid away from the singular locus the modification must be localized on W. In [61] it
is argued that the correct modification is obtained by introducing additional degrees
of freedom along W, more specifically a holomorphic WZW model [87,[88].

We can elucidate the appearance of the WZW model by considering the equation
of motion for the gauge field F),, given for M5;\W by

1

—d(—*gF)Jr]:/\F:O (5.52)
r

obtained from the variation of (5.4I). The fact that dF is non-trivial along W

prevents the extension of these equations to all of M5. In fact, from the relationship

dF = cow we can deduce the modification required to extend the gauge theory over

all of M5, namely

—d(l*gF)jLJ-“/\F:(SW/\J. (5.53)
r

16The argument for smoothness can be found in [61].
"The proportionality constant ¢ depends on the precise definition of Chern classes employed.
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The current one-form J (inducing a current on W through the pull-back with the
inclusion map) is thus given by

dJ = —cFy . (5.54)

Thus, J indeed represent additional degrees of freedom (since it is only its derivative
that is determined in terms of the gauge field strength) and anomaly cancellation
requires it to the be the current of a gauged (holomorphic) WZW model. The
relation (5.54]) provides the WZW equations of motion for J [88].

5.4.2 The Taub-NUT example

We will now conclude this section, and the introductory part of the thesis, by ex-
amining an example of a singular fibration in more detail. We recall from [5.2.3] the
definition of the Taub-NUT spaces and restrict considerations to the single center
case

ds® = Udyda'da? + U™ (dg + 6;dx")? (5.55)
with . .
==+ — 5.56

dU = xsF and notational conventions according to section At the origin of
R? the radius, which is given by r = U~'/2 (c.f. the general expression in (5.13)), of
the circle parametrized by ¢ Vanishe, indicating the breakdown of the description
of the space TN as an S! fibred over R3. Alternatively, to make contact with the
introduction to the present section, the situation can be described as the U(1) action
on T'N having a fix-point at the origin # = 0 of R3.

We then consider Mg = R"! x TN and take the U(1) to act trivially on the first
factor so that W = RY! x {0}. The coordinates on Ms are z# = (0, x*), where o°
are light-cone coordinates on R"!. Away from W we identify the U(1) connection 6,
with the T'N connection. Using the explicit form of U we compute the obstruction
to extending the bundle over the singularity to be

dF = —4xby, . (5.57)

Furthermore, the decomposition (5.40) of the three-form of the tensor multiplet
breaks down when the fibre radius vanishes, eliminating the coordinate . This can
be viewed as the explanation for the appearance of the current term in the equations
of motion.

Finally, we will illustrate the appearance of the WZW model by considering a
particular solution to the six-dimensional equations of motion for the TN geometry.

BWith the form of the Taub-NUT metric we currently employ the periodicity of the S! coordi-
nate is 47 in contrast to the previous parts of the present chapter.
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This solution is obtained from the unique anti-self-dual harmonic two-form (men-
tioned above in the context of the multi-center Taub-NUT spaces) 2, on TN which
takes the form [74] Q = dA with

A= %U_l(dap + O;dz’) . (5.58)
From €2 we get a closed self-dual three-form field strength H = f(c7)dot AQ on M
for some holomorphic function f(o™). Note that this solution is well-defined on Mg
since € is regular at the singular point of T'N; in fact it is localized near the origin.
Away from W the decomposition (£.40) is still valid and can be used to extract the
field strength, whose only non-vanishing component is

)\2

F’i = — CT+ T TE———— T 5.99
Inserting this particular solution and the explicit form of F into (5.53]) we obtain
the current

J=—4nf(ocT)do" . (5.60)

Indeed, J contains only left-moving modes as required if it is to correspond to a
WZW model and cancel the anomalous transformation of the topological term in
the action. Further details on this construction are presented in PAPER V where we
also consider the possibility of finding a generalization of the solution (5.59) to the
gauge field equations of motion.
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