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Ny serie nr 3363
ISSN 0346-718X

Department of Signals and Systems
Chalmers University of Technology
SE–412 96 Göteborg
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Abstract

Hybrid electric vehicles (HEVs), compared to conventional vehicles, comple-
ment the traditional combustion engine with one, or several electric motors
and an energy buffer, typically a battery and/or an ultracapacitor. This
gives the vehicle an additional degree of freedom that allows for a more
efficient operation, by e.g. recuperating braking energy, or operating the
engine at higher efficiency.

In order to be cost effective, the HEV may need to include a down-
sized engine and a carefully selected energy buffer. The optimal size of the
powertrain components depends on the powertrain configuration, ability to
draw electric energy from the grid, charging infrastructure, drive patterns,
varying fuel, electricity and energy buffer prices and on how well adapted
is the buffer energy management to driving conditions.

This thesis provides two main contributions for optimal dimensioning of
HEV powertrains while optimally controlling the energy use of the buffer on
prescribed routes. The first contribution is described by a methodology and
a tool for potential assessment of HEV powertrains. The tool minimizes the
need for interaction from the user by automizing the processes of powertrain
simplification and optimization. The HEV powertrain models are simplified
by removing unnecessary dynamics in order to speed up computation time
and allow Dynamic Programming to be used to optimize the energy man-
agement. The tool makes it possible to work with non-transparent models,
e.g. models which are compiled, or hidden for intellectual property reasons.

The second contribution describes modeling steps to reformulate the
powertrain dimensioning and control problem as a convex optimization
problem. The method considers quadratic losses for the powertrain com-
ponents and the resulting problem is a semidefinite convex program. The
optimization is time efficient with computation time that does not increase
exponentially with the number of states. This makes it possible to include
more accurate models in the optimization, e.g. powertrain components with
thermal properties.

Keywords: Hybrid electric vehicle, plug-in/slide-in HEV, powertrain siz-
ing, power management, Dynamic Programming, convex optimization.
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Introductory part





Chapter 1

Introduction

This chapter gives an overview of electric and hybrid electric vehicles, it in-
troduces the powertrain dimensioning and control problem, and emphasizes
the main contributions of this thesis.

1.1 A brief history of electrified vehicles

The first appearance of electric vehicles (EVs) dates back to the early 1830.
These EVs were not commercial vehicles as they used non-rechargeable
batteries. It will take an additional half a century before batteries are
developed sufficiently to be used in commercial vehicles [1]. That period,
from about 1895 to 1905, is also the EVs’ golden age of dominance in the
market when they outsold all other types of cars in USA [2, 3]. This is
the period when pneumatic tires were being introduced, although some
early commercial EVs still had wheels with wooden spokes and solid rubber
tires (Figure 1.1). In about the same period, hybrid EVs (HEVs) were
also introduced. In 1989 Ferdinand Porsche, an employee of the Austrian
company Jacob Lohner & Co, developed a drive system based on fitting an
electric motor to each front wheel, without using a transmission [4]. The
powertrain was a series hybrid, with an engine-generator unit providing
electricity to drive the wheel motors (Figure 1.2).

The reasons for the success of EVs were some features that are still
advantageous over petroleum powered vehicles. EVs are silent, clean, free of
vibrations, do not consume energy while being stopped, do not produce dirt
and odor, and are easier to control as gear shifting may not be required. The
disadvantages of the EVs are basically the disadvantages of the batteries,
i.e. high initial cost or short range, reaction to heat and cold, long charging
time, short calendar life, etc.

During the 20th century petroleum powered vehicles showed absolute

1



Chapter 1. Introduction

Figure 1.1: William Morrison Electric Wagon, 1892 [3].

Figure 1.2: The first HEV by Dr. Ferdinand Porsche [4].
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1.2. HEV powertrain topologies

dominance over the EVs. The reasons are easily understood when the spe-
cific energy of petroleum fuel is compared to that of batteries. For exam-
ple, the specific energy of diesel, i.e. energy stored per kilogram, is about
12 600 Wh/kg, while the highest reported specific energy of Lithium-air bat-
teries is about 360 Wh/kg [5, 6]. Moreover, the diesel is much cheaper with
0.15e/kWh, compared to the optimistic price of about 180e/kWh for en-
ergy optimized batteries projected by the United States Advanced Battery
Consortium [7].

The electrification of vehicles has increased again in the 21st century
motivated by the air pollution, global warming and rapid depletion of the
Earth’s petroleum resources. In order to develop efficient and cost effec-
tive powertrain technology, HEVs are being reintroduced as a short-term
solution. HEVs have the potential to decrease fuel consumption and emis-
sions, without a serious impact on vehicle’s performance. Moreover, with
a carefully dimensioned vehicle powertrain, e.g. downsized engine and rel-
atively small battery, it is possible to make the cost of HEVs comparable
with convectional vehicles in the same performance category.

1.2 HEV powertrain topologies

Similarly as any vehicle powertrain, HEVs’ powertrains are required to 1)
deliver sufficient power to meet the demands of vehicle performance; 2)
support driving a given range without the need for refueling/recharging; 3)
be energy efficient; 4) emit few environmental pollutants, etc. The difference
with conventional vehicles is that HEVs have one or two additional degrees
of freedom in achieving these requirements, because besides the internal
combustion engine (ICE), HEVs utilize an energy buffer, typically a battery
and/or an ultracapacitor, and one or more electric machines (EMs).

Depending on the division of power between the sources, HEVs can be
commonly classified in three different topologies: series, parallel and series-
parallel, depicted in Figure 1.3. The powertrain topologies mainly differ in
the available degree of freedom in choosing the ICE operating point, but
their capability to improve energy consumption can be generally described
by:

• A possibility to recover braking energy by using the EMs as generators
and storing the energy in the buffer;

• An ability to shut down the ICE during idling and low load demands;

• A possibility to run the ICE at more efficient load conditions while
storing the excess energy in the buffer.

3



Chapter 1. Introduction

Clutch possibilities 

Transmission 

EM ICE Fuel tank 

Buffer 

(a) Parallel HEV powertrain.

EGU 

EM 

GEN ICE Fuel tank 

Buffer 

(b) Series HEV powertrain.

Clutch 

Transmission 

EM1 ICE Fuel tank 

Buffer 
EM2 

(c) Series-parallel (combined) HEV powertrain.

Figure 1.3: HEV powertrain topologies.

In the parallel topology, the ICE and EM are mounted on the same shaft
which is mechanically linked to the wheels. The parallel HEVs considered in
this thesis utilize the EM as in Figure 1.3(a), delivering power to the wheels
via a transmission unit. In general, the EM can be also placed directly at
the wheels and eventually, but not very common, at the rear axle. There is

4



1.2. HEV powertrain topologies

also a possibility for including a clutch between the ICE and EM in addition
to the clutch at the transmission. In Paper 1 an HEV is considered devoid
of a clutch between the ICE and EM. This is typical for mild parallel HEVs
where the EM is smaller and is not designed to drive the vehicle alone, but
it is mainly used for starting (cranking) the ICE, or assisting with extra
power. The disadvantage of this powertrain is that the EM will always
need to rotate the ICE, even when the ICE is off, resulting in power losses.
The parallel HEV considered in Paper 2 includes a clutch between the ICE
and EM, giving a possibility to mechanically decouple the ICE, when the
EM alone drives the vehicle.

The transmission used in this thesis consists of fixed gear steps, giving
a limited freedom in choosing the ICE speed, depending on the number of
gears. Other configurations with continuous variable transmission are also
possible. With the gear ratio determined, the ICE torque can be freely
chosen as the EM can give the remaining torque to satisfy the demanded
power. Examples of commercial HEVs with a parallel powertrain are Honda
Civic [8], Honda Insight [8], Volvo 7900 Hybrid Bus [9].

In the series topology, the ICE does not have a mechanical connection
with the wheels, but it is coupled to a generator (GEN), as in Figure 1.3(b).
Instead, the wheels are driven by an EM without the need for transmission.
The ICE and GEN in this case are typically considered as one unit, i.e.
engine-generator unit (EGU). The generator is in fact an EM that can
be also used in motoring mode for starting up (cranking) the ICE before
fuel is injected. The series powertrain offers a possibility to freely choose
either the ICE speed, or the ICE torque, regardless of the vehicle speed.
Generally, the torque-speed combination is chosen to optimize the EGU
efficiency for a given demanded power. However, because of the losses in the
two energy conversion stages, from petroleum to electric and from electric to
mechanical, the series powertrain is generally disadvantageous with respect
to fuel economy. This topology is competitive in driving scenarios with
many start-stops and low power demands and therefore, it is mainly used
in hybrid city buses. One example is the Orion city bus [10]. Another usage
of this topology has been found in range extended EVs, where the range
extender is an EGU with a significantly downsized and light weight ICE.
These vehicles are hybrids, but are mainly intended to be used as electric
vehicles during typical daily trips of less than 50 km. The responsibility of
the range extender is to provide the additional millage on longer and not so
common trips. An example of a range extended EV in a series topology is
the Audi A1 e-tron [11], where the range extender is built upon a Wankel
engine.

The series-parallel (combined) powertrain is a combination of the previ-
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ous two. This powertrain allows the ICE to be decoupled from the wheels,
as with the series powertrain, but it also allows for a mechanical link be-
tween the ICE and the wheels, as with the parallel powertrain. An example
is the Toyota Prius powertrain [12] that uses planetary gear as a power split
device, which offers possibility to freely choose both the engine speed and
engine torque. The combined powertrain used in Paper 1 does not include
a planetary gear, but it is constructed by extending a parallel powertrain
with an EM mounted on the rear axle, as in Figure 1.3(c).

Other types of combined HEV powertrains which are not covered in this
thesis are the two mode hybrid and the four quadrant transducer. The two
mode hybrid [13] uses several planetary gears and clutches to achieve two
modes of operation, a continuous variable transmission, and transmission
with fixed gears. The use of the fixed gears in this topology reduces motor
losses by decreasing the total amount of energy transmitted through the
electrical path. This is particularly beneficial for vehicles with strong towing
requirements and it is therefore mainly used in trucks and SUVs. Some
examples are the Chevrolet’s Tahoe, Silverado and Sierra hybrids [14].

The four quadrant transducer [15] is an electric machine consisting of two
combined radial flux machines, one double rotor machine and one conven-
tional machine (stator). This powertrain replaces the mechanical transmis-
sion with a magnetic path, thus providing smooth operation. As of March
2012, this topology has not yet been employed in commercial vehicles.

1.3 Plug-in HEV

Plug-in HEVs (PHEVs) are HEVs with an additional charging connector
that allows them to draw electric energy from the grid. A distinction will be
made here between personal passenger vehicles and PHEVs used in public
transport. Personal PHEVs are designed to be charged with low power, e.g.
a standard household electric power, and for longer periods. These PHEVs
are mainly meant to be used as EVs and are typically charged overnight at
home, or at parking locations at work, street, or commercial places.

The PHEVs considered in public transport are designed to charge with
power as high as 250 kW and with charging times as short as 10 s. The
PHEVs considered in this thesis, i.e. in Paper 2, 5 and 4, are city buses.
Depending on the charging infrastructure, the PHEV bus may charge at the
terminals, at charging stations placed on bus stops, or while driving along
sections of the bus line. The charging solutions are generally classified in two
groups: 1) conductive charging or wire coupling and 2) inductive charging
or wireless coupling. The Autotram project [16], for example, considers a
PHEV bus that charges from fast-charge docking stations while standing
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still at stops along the bus line. The PHEV bus considered in [17] and [18]
can charge with 250 kW for about 5 to 10 min while standing still at the
terminals. In [19] the PHEV, a dual-mode trolley bus, can draw electricity
from overhead wires, while driving along sections of an existing tram line.
An example of using inductive chargers has been considered in the KAIST
project [20], where the PHEV is charged while driving over underground
cables that have been buried along sections of the bus line.

The cost effectiveness of these PHEVs depends strongly on the charg-
ing infrastructure, and in the optimal case, the PHEV powertrain should
be designed together with the charging infrastructure. Optimization meth-
ods for dimensioning a PHEV bus have been presented in [21], where the
considered charging infrastructure has a possibility for installing charging
stations on different stops along the bus line.

1.4 Dimensioning an HEV powertrain

In order to be cost effective, the HEV is preferred to restore most of the
braking energy, drive as long as possible on electric power and operate the
ICE at more efficient load conditions. To achieve these goals, the HEV may
need to include a downsized ICE and a carefully selected energy buffer that
not only improves the system efficiency, but also does not significantly de-
grade vehicle performance, while keeping the price under reasonable limits.
However, dimensioning the HEV powertrain is a difficult problem, because
it depends not only on the powertrain configuration, but also on varying
factors such as fuel, electricity and components prices. Ultracapacitors are
an example of components with rapidly dropping prices. Maxwell Tech-
nologies1, one of the leaders in the ultracapacitor industry, reported that
the production cost for one of their mainstay products, a 3000 F cell, has
been reduced by more than 10 times from the late 1990s to the beginning
of 2009 [22].

It is even more challenging to size the powertrain of PHEV city buses, as
buses may also have tight daily schedules with short charging intervals, or
the charging infrastructure might be sparsely distributed. This puts hard
constraints on the sizing of the energy buffer, i.e. determining power rating
and energy capacity, and it may require using the buffer under high duty
cycles, thus increasing its operating temperature and possible degrading its
performance. To prevent overheating, the energy buffer should be managed
properly, and/or the cooling system should be dimensioned at the same
time when sizing the buffer.

1http://www.maxwell.com
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Moreover, the energy efficiency of the powertrain also depends on how
well adapted the energy management strategy is to the typical driving cycles
of the vehicle [23]. The energy management strategy decides the operating
point of the ICE and thereby when and at which rate the energy buffer is to
be discharged. When optimizing the HEV based on a dynamic model of the
powertrain, a badly designed energy management may lead to a non-optimal
size of the powertrain components [24]. Hence, to overcome this problem,
both the size of the powertrain components and the energy management
need to be optimized simultaneously.

There are two main approaches to the problem of optimal sizing and
control of HEVs. The first approach relies on heuristic algorithms [25,
26, 27, 28, 29, 30, 31, 32], while the second approach uses optimal control
methods which give opportunity to evaluate various configurations on the
basis of their optimal performance, when simulated along one or several
drive cycles (e.g. speed vs. time profiles).

From the optimal control methods, Dynamic Programming (DP) [33]
is the most commonly used [34, 35, 36, 37, 38, 39, 40, 41]. The main ad-
vantage with DP is the capability to use nonlinear, non-convex models of
the components consisting of continuous and integer (mixed integer) opti-
mization variables. Another important advantage is that the computation
time increases linearly with the drive cycle length. However, DP has two
important limitations when sizing powertrain components. The most se-
rious limitation is that the computation time increases exponentially [33]
with the number of state variables. As a consequence, the powertrain model
is typically limited to only one or possibly two continuous state variables
[34, 35, 36, 37, 38, 39, 40, 41]. More than three state variables would be
highly impractical requiring a dedicated optimization code and a computer
cluster. Moreover, since DP operates by recursively solving a smaller sub-
problem for each time step, the second limitation of DP is that it is not
possible to directly include the component sizing into the optimization. In-
stead, DP must be run in several loops to obtain the optimal control over
a grid of component sizes.

Another approach, proposed by [42], uses convex optimization for opti-
mal control of HEVs. In this study the powertrain components of a series
HEV powertrain are expressed with linear models and the optimization
problem is a linear program. The problem of component sizing will then
require running the algorithm in several loops for each fixed size of the
components. The computation time is not a burden in this case, as con-
vex problems are usually solved in seconds. However, linear models do not
represent well the powertrain components which are better approximated
with quadratic losses. Moreover, the linear model does not capture one
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important limitation of the ICE, the low efficiency during idling.

1.5 Need for a novel systematic optimization

With the term optimization of an HEV powertrain this thesis distinguishes
two problems, a problem of performance assessment of a powertrain with
fixed components, and a problem of component sizing. In theory, the latter
can be solved by iteratively solving the former over a grid of component
sizes. Some tools that rely on this principle use detailed dynamic vehicle
models (further explained in Section 2.2) and are typically not based on
optimal vehicle performance. These tools are mainly used for modeling
and simulation of HEVs with a limited support for evaluation of design
parameters. Some examples are VEHLIB [43], AMESim, Dymola, JANUS
[44], SIMPLEV [45], ADVISOR [46], [47], QSS-TB [48], HYSDEL [49],
CAPSim [50], ADAMS/Car, CARSim and others [51, 52, 53, 54].

Other tools are based on optimal vehicle performance [55, 56, 48, 57, 58],
where energy management is optimized by Dynamic Programming (DP). A
limitation of these tools is that computation time increases exponentially
with the number of state variables. Hence, to shorten the time, simpli-
fied quasi-static vehicle models are used (further explained in Section 2.4).
However, even with simplified models, the problem of powertrain sizing will
require iteratively running DP over a grid of component sizes, which again,
will need long computation time.

This thesis investigates how to overcome several major difficulties in op-
timizing HEV powertrains based on optimal vehicle performance. In the
general case this optimization problem is a non-convex, mixed integer prob-
lem, and therefore, DP is the algorithm traditionally used for optimization.
Because DP uses a simplified powertrain model, this thesis investigates how
to automize the process of model simplification and optimization with min-
imized need of interaction from the user. Moreover, to avoid the limita-
tions of DP and thereby to allow simultaneous optimization of parameters
deciding the component sizes (e.g. engine, battery, ultracapacitor, elec-
tric machine, etc.), this thesis investigates what approximations are needed
to formulate the powertrain sizing and the corresponding optimal control
problem as a convex optimization problem. The approximations need to
be a fairly accurate representation of actual component data and should
be at least as accurate as those already verified in literature. For example,
the losses of the battery and the electric machine are typically considered
quadratic, while the losses of the engine are affine on torque (but preferably
quadratic), with speed dependent parameters [59, 60].

Finally, the optimization should overcome another limitation of DP, by
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allowing more than two continuous states for describing the powertrain com-
ponents. For example, the electrical components, such as the electric ma-
chine or the energy buffer, may be operated under high duty cycles and
it is therefore reasonable to consider additional thermal states that will be
optimally controlled in order to prevent preheating of the components.

1.6 Contribution of the thesis

This thesis contributes with methodologies for automatic and time efficient
optimization of HEV powertrains. The main contributions are:

• A methodology for automatic simplification of HEV powertrain mod-
els with minimized need of interaction from the user. The simplified
models are obtained in a form of static maps, which then allow Dy-
namic Programming to be used to optimize the energy management.
The only requirement on the dynamic model is to provide access to
some general variables and that it has a power split that can be fully
controlled. This makes it possible to work with non-transparent mod-
els, e.g. models which are compiled, or hidden of intellectual property
reasons. The methodology is developed and implemented in a tool
that is useful for assessing the potential of an HEV powertrain. This
contribution is detailed in Paper 1;

• A novel modeling approach that allows for a simultaneous powertrain
dimensioning and HEV energy management by solving a semidefinite
[61] convex problem. The method considers quadratic losses for the
powertrain components and due to the short computation time it al-
lows for optimal control of thermally constrained components. Convex
modeling steps for dimensioning batteries with constant open circuit
voltage have been described in Paper 2; dimensioning of ultracapaci-
tors and batteries with linear voltage-state of charge dependency has
been described in Paper 3; convex sizing of engine-generator unit and
thermally constrained energy buffer is described in Paper 4; and a
method for deciding integer control variables using convex optimiza-
tion techniques is presented in Paper 5.
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Chapter 2

Problem formulation and
modeling details

This chapter formulates the powertrain sizing problem and gives a back-
ground on driving cycle and vehicle models. Most of the chapter repeats
material from the articles, but explains modeling details in more depth and
with more discussions.

2.1 Optimization problem

Without going into mathematical details, which will be described in the rest
of this chapter, this section formulates the objective and briefly describes
the constraints the optimization is subject to.

The studied sizing problem is formulated to simultaneously minimize
an operational cost for driving the vehicle along a given cycle, and a com-
ponent cost for the powertrain components that ought to be sized. The
operational cost, considered in this thesis, includes cost for consumed fuel
and electricity along the driven cycle, but in a general case, this cost may
also include a cost for polluting the environment, or other costs penaliz-
ing specific operational modes of the powertrain (this is briefly discussed
in Paper 1). The component cost is considered to include cost for the en-
ergy buffer, electric machine (EM), internal combustion engine (ICE), and
engine-generator unit (EGU).

The optimization is subject to constraints that will be detailed in the
rest of this chapter. Some constraints originate from the driven cycle (de-
manded speed and power as a function of time), others from the powertrain
components and the power capabilities of the charging infrastructure. The
constraints for components consist of physical limits, constraints imposed
to prolong their calendar life, state equality constraints depicting power-

11



Chapter 2. Problem formulation and modeling details

train dynamics, and desired initial and final state constraints. Finally, the
optimization problem can be summarized as:

Minimize:

• Operational and component cost.

Subject to (at each point of time):

• Driving cycle constraints;

• Charging infrastructure constraints;

• Powertrain components constraints;

• States equality constraints;

• Initial and final state constraints.

2.2 Dynamic Vehicle Model

The dynamic vehicle model is a simplified representation of a real vehicle,
which when simulated will produce output, e.g. fuel consumption, which
accurately depicts the output of the real vehicle driven under same condi-
tions. With the term dynamic model, this thesis will refer to the model
of the vehicle, including a powertrain model, and a controller, including a
driver model.

The vehicle simulation starts with the driver who attempts to follow
a certain driving cycle represented by demanded speed vdem(t) and slope
αdem(t) as a function of time. In order to achieve the demanded velocity,
the driver presses the gas pedal to accelerate the vehicle until its velocity is
equal to the demanded velocity. This is called a forward simulation model.
The model is a nonlinear hybrid-state system [62] that can be expressed as

ẋc(t) = fc(x(t), uc(t)), x+
d (t) = fd(x(t), u(t))

yc(t) = gc(x(t), uc(t)), y+
d (t) = gd(x(t), u(t))

u(t) = fctrl(x(t), y(t), vdem(t), αdem(t))

(2.1)

with states x(t), inputs u(t) and outputs y(t) given as

x(t) =

[
xc(t)
xd(t)

]
, y(t) =

[
yc(t)
yd(t)

]
, u(t) =

[
uc(t)
ud(t)

]
(2.2)

where xc(t), uc(t) and yc(t) are continuous states, inputs and outputs, re-
spectively. The signals with index d take discrete values and change at
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specific times. That is, e.g. fd(x(t), u(t)) is constant (equal to xd(t)) up to
some time t̃ at which it jumps to a new value, i.e. x+

d (t̃) = fd(x(t̃), u(t̃)). Af-
ter that fd remains constant to the next jump in value. A PHEV model may
have many continuous states, e.g. vehicle velocity, state of charge (SOC)
of the energy buffer, and thermal states of the components. An example
of a discrete state is the transmission gear, a continuous output is the fuel
consumption, while a control signal is the power required by the energy
buffer.

A dynamic vehicle model has been considered only in Paper 1, where
disturbances to the continuous states have also been included. The rest of
the papers use a simplified quasi-static vehicle model, described in details
in Section 2.4.

2.3 Driving cycle and charging infrastruc-

ture model

The driving cycle model is described by demanded velocity vdem(t) and road
slope αdem(t) as functions of time. An example of a driving cycle, originating
from a bus line in Gothenburg, is illustrated in Figure 2.1. The bus line
also illustrates a charging infrastructure with three charging opportunities,
where the bus may charge while standing still at both ends, and while
driving at about the middle of the bus line. The charging could be either
inductive from underground cables, or conductive from docking stations or
overhead wires.

The PHEVs considered in this thesis are city buses which typically
charge for short time intervals. Hence, it is reasonable to assume that
the bus will charge mainly with high power at which constant average effi-
ciency can be considered for both conductive and inductive chargers. Differ-
ent chargers along the bus line may have different efficiencies and different
power levels, which could be modeled by piecewise constant functions ηc(t)
and Pcmax(t), respectively. These functions have non-zero values only in
time intervals where charging opportunities exist (shaded in Figure 2.1).

The charging power Pc(t) the PHEV takes from the grid is considered an
optimization (or decision) variable (optimization variables will be marked
in bold), which is constrained by

Pc(t) ∈ [0, Pcmax(t)]. (2.3)

This gives an opportunity for the optimization to decide the amount of
charging energy that will be taken from the grid. For example, instead of
charging with maximum power, it may be found optimal to have smaller
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Figure 2.1: Bus line model described by demanded velocity and road gra-
dient. The bus line has three charging opportunities, shaded in the figure.
The bus can charge 4 min while standing still at each end, and 2 min at
about the middle of the bus line, while driving along a tram line.

energy buffer that can be fully charged with less power. This outcome
has been observed in Paper 4, indicating that charging stations could be
downsized.

2.4 Quasi-static powertrain model

The quasi-static powertrain model is a backward simulation model of the
HEV powertrain. From the demanded vehicle velocity and road gradient,
the torque at the wheels is decided which will give the needed amount of fuel
without necessitating a driver. In this process, the ICE and EM dynamics
are omitted, the vehicle velocity is removed from the state vector, and only
some slow dynamics are kept, e.g. the SOC of the energy buffer. Therefore,
this model is referred to as quasi-static, and due to the low number of
continuous states, it is favored because it exploits smaller simulation and
optimization time. This level of details is often used when deciding control
strategies, or comparing different vehicle concepts [36, 63, 64, 65].

In the rest of the thesis the HEV powertrain used in optimization is
described by a quasi-static model. The vehicle is considered a point mass,
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for which the longitudinal demanded force can be computed as

Fdem(·) =

(
Jv + r2

fgJp(·)
R2
w

+m(·)
)
v̇dem(t)

+
1

2
ρairAfcdv

2
dem(t) +m(·)g (cr cosαdem(t) + sinαdem(t)) .

(2.4)

The symbol · denotes a compact notation for a function of decision variables,
Af is vehicle frontal area, cd is aerodynamic drag coefficient, cr is rolling
resistance coefficient, ρair is air density, g is gravitational acceleration, Rw

is wheel radius, rfg is ratio of the final (differential) gear and Jv is rotational
inertia of the wheels including the axles and the differential. The vehicle
mass m(·) and the rotational inertia of the powertrain components Jp(·)
may vary for different powertrain topologies and will be described in Section
2.4.1-2.4.3.

The losses of the power electronics are neglected, for simplicity, as they
are typically much lower than the losses of the other powertrain components.

2.4.1 Parallel powertrain

The power balance equations for the parallel powertrain (illustrated in Fig-
ure 1.3(a)) can be described by

Fdem(·)vdem(t) =

(τEM (t) + τICE(t))
vdem(t)

Rw

(ηγ(γ(t))ηfg)
signFdem(·) − Pbrk(t)

(2.5)

τEM (t)
vdem(t)

Rw

+BEM(·) = Pb(t) + Pc(t)ηc(t)− Paux (2.6)

where Pbrk(t) ≥ 0 is braking power dissipated at the wheel brakes, τEM (t)
and BEM(·) are torque and power loses of the EM, τICE(t) is torque of the
ICE, Pb(t) is power of the energy buffer, ηγ(γ(t)) is efficiency of transmission
gear γ(t) and ηfg is efficiency of the final gear. For simplicity, the power
used by auxiliary devices Paux is assumed constant.

The rotational inertia of the powertrain components is described as

Jp(·) = (JEM + c(t)JICE) r2
γ(γ(t)) + Jγ(γ(t)) (2.7)

where JEM , JICE and Jγ(γ(t)) are rotational inertias of the EM, ICE and
transmission gear, rγ(γ(t)) is gear ratio and c(t) is a binary signal denot-
ing the state of the clutch between the ICE and EM. The clutch near the
transmission is considered as a transmission gear with zero ratio.

The vehicle mass is described as

m(·) = mv +mEM +mICE + nbcmbc (2.8)
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where mv is the vehicle mass without the weight of the EM, ICE and energy
buffer, mbc is the mass of a buffer cell, nbc is the number of cells and mEM

and mICE are the masses of the EM and ICE.

2.4.2 Series powertrain

The power balance equations for the series powertrain (illustrated in Figure
1.3(b)) can be described by

Fdem(·)vdem(t) = τEM (t)
vdem(t)

Rw

η
signFdem(·)
fg − Pbrk(t) (2.9)

τEM (t)
vdem(t)

Rw

+BEM(·) = Pb(t) + Pc(t)ηc(t) + PEGU (t)− Paux (2.10)

where PEGU (t) is electric power delivered by the EGU and the rest of the
variables are as described in Section 2.4.1.

Because the EGU is not mechanically connected to the wheels, it can
be assumed that while turned on the EGU is operated in a narrow speed
range and with small variations in speed. Therefore, the EGU inertia can
be neglected and inertia of the powertrain components is simply the EM
inertia, i.e.

Jp(·) = JEM . (2.11)

The EGU losses may not be negligible during cranking, when the generator
is used to start up the engine. A possible way to include these loses in
the model has been described in Paper 2, where the cranking losses are
considered to account with equivalent electric energy taken from the energy
buffer.

The vehicle mass is described as

m(·) = mv +mEM +mEGU + nbcmbc (2.12)

where mEGU is the mass of the EGU.

2.4.3 Series-parallel powertrain

The series-parallel powertrain can be described by combining the models of
the parallel and the series powertrain. A model of this powertrain has been
described in Paper 1, but in this section a slightly different model is given
where the powertrain operation in series or parallel mode can be explicitly
distinguished by the state of the clutch near the transmission. When the
clutch is open, i.e. c(t) = 0, this powertrain operates as a series powertrain,
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and the ICE and EM1 can be represented as an EGU. When the clutch is
closed, i.e. c(t) = 1, the powertrain operates as a parallel powertrain. The
power balance equations can then be described by

Fdem(·)vdem(t) = τEM2(t)
vdem(t)

Rw

η
signFdem(·)
fg2 − Pbrk(t)

+ c(t) (τEM1(t) + τICE(t))
vdem(t)

Rw

(ηγ(γ(t))ηfg1)signFdem(·)
(2.13)

c(t)

(
τEM1(t)

vdem(t)

Rw

+BEM1(·)
)

+ τEM2(t)
vdem(t)

Rw

+BEM2(·)

= Pb(t) + Pc(t)ηc(t) + (1− c(t))PEGU (t)− Paux.
(2.14)

where ηfg1 and ηfg2 denote the efficiencies of the final gears on the front
and rear wheels axles, respectively. This way of modeling gives a closer
connection to the series and parallel powertrain used in convex optimization
in Paper 2.

When the clutch is closed the EM1 and ICE speed is determined by the
wheels speed and the decision variables for these components are the torques
τEM1(t) and τICE(t). When the clutch is open, the EM1 and ICE speed
is independent of the wheels speed and decision variable is the generated
electric power PEGU (t).

The inertia of the powertrain components can be computed as

Jp(·) = c(t) (JEM1 + JICE) r2
γ(γ(t)) + Jγ(γ(t)) + JEM2 (2.15)

with JEM1, JEM2 and JICE denoting the inertia of the EM1, EM2 and ICE,
respectively.

The vehicle mass is described as

m(·) = mv +mEM1 +mEM2 +mICE + nbcmbc (2.16)

with mEM1, mEM2 and mICE denoting the mass of the EM1, EM2 and ICE,
respectively.

2.4.4 Internal combustion engine (ICE)

The ICE is modeled with static losses BICE(·) which are typically given
in a torque-speed map (for illustrative purposes, the left plot in Figure 2.2
depicts the ICE efficiency). The fuel power consumed by the ICE is then
described by

Pf (·) = ωICE(·)τICE(t) +BICE(·) (2.17)
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Figure 2.2: Left plot: static efficiency map of the ICE. Right plot: power
losses of the original ICE model and approximation with quadratic losses
for several ICE speeds.

where ωICE(·) and τICE(t) are the ICE speed and torque, respectively. The
ICE speed is directly related to the demanded vehicle speed by

ωICE(·) = vdem(t)
rγ(γ(t))rfg

Rw

(2.18)

where it has been considered a transmission between the ICE and the
wheels.

Both the ICE speed and torque are limited by

ωICE(·) ∈ [0, ωICEmax] (2.19)

τICE(t) ∈ [0, τICEmax(ωICE(·))] (2.20)

considering that no mechanical power is generated when the ICE is idling
or off.

The losses are commonly approximated by affine or quadratic relations,
also known as Willans lines [66, 67]. The approximation is a fairly accurate
representation of actual engine data and has been verified on many different
types of engines, from conventional spark ignition to compression ignition
direct injection [59, 60]. An example of approximation with quadratic losses

BICE(·) = c0(ωICE(·))τ 2
ICE(t) + c1(ωICE(·))τICE(t) + c2(ωICE(·))eon(t)

(2.21)

is given in the right plot of Figure 2.2. The coefficients cj(ωICE(·)), j =
0, 1, 2, are found by least squares for a number of grid points of ωICE(·). For
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Figure 2.3: Left plot: static efficiency map of the EM. Right plot: power
losses of the original EM model and approximation with quadratic losses
for several EM speeds.

speed values not belonging to the grid nodes, the coefficients are obtained by
linear interpolation. The approximated model requires an additional binary
control signals eon(t) that is needed to remove the idling losses c2(ωICE(·))
when the engine is off.

To prevent frequent engine turn-ons that may result from the optimal
control due to the lack of dynamics in the ICE model, it can be considered
that during cranking (each time the ICE is turned on with the help of the
EM), a certain amount of electric energy is consumed from the buffer. This
is further described in Paper 2.

2.4.5 Electric machine (EM)

The EM is modeled with static losses BEM(·) that relate the electrical power

PEMel(·) = ωEM(·)τEM (t) +BEM(·) (2.22)

to the mechanical power ωEM(·)τEM (t). The EM speed ωEM(·) and torque
τEM (t) are limited by

ωEM(t) ∈ [0, ωEMmax] (2.23)

τEM (t) ∈ [τEMmin(ωEM(t)), τEMmax(ωEM(t))] (2.24)

where ωEM(t) is uniquely determined from the vehicle speed

ωEM(t) = vdem(t)
rγ(γ(t))rfg

Rw

. (2.25)
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Figure 2.4: Efficiency, left plot, and power losses, right plot, of the EGU.
Quadratic approximation of the power losses gives good fit within the
shaded region.

Similarly as with the ICE, the EM losses can be approximated as quadratic

BEM(·) = b0(ωEM(·))τ 2
EM (t) + b1(ωEM(·))τEM (t) + b2(ωEM(·)) (2.26)

with speed dependent coefficients bj(ωICE(·)), j = 0, 1, 2. An example of
original and approximated EM model is given in Figure 2.3.

2.4.6 Engine-generator unit (EGU)

The EGU model can be described by combining the models of the ICE and
EM, with static losses described by a torque-speed map. However, because
the EGU is not mechanically connected to the wheels, its speed can be
freely chosen to minimize the EGU losses for a required generator power
PEGU (t). Then, the consumed fuel power by the EGU can be described as

Pf (·) = PEGU (t) +BEGU(·) (2.27)

where the losses BEGU(·) are given by a one-dimensional static map, or by
a comprehensive mathematical model

BEGU(·) = Pf (·)
(

1− η1

(
1− e−β1(Pf (·)−Pidle)

)
− η2e

−β2(Pf (·)−P ∗
f )2
)

(2.28)

that captures the essential EGU characteristics and compares reasonably
well to manufacturer data [68]. Due to internal friction, the efficiency ap-
proaches zero at power lower than Pidle. Then, as Pf (·) increases, the ef-
ficiency increases with rate β1 to a value close to η1. The maximum EGU
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Figure 2.5: Equivalent battery circuit. The model of the battery cell is
illustrated in the left side. The battery pack (right side) consists of parallel
strings, with each string containing equal number of identical cells connected
in series.

efficiency is about η1 + η2 centered on the fuel power P ∗f with highest effi-
ciency. The parameter β2 determines the bulginess of the efficiency peak.
Low β2 value gives flatter curve around P ∗f , while higher β2 gives a promi-
nent peak.

In this thesis the losses are approximated as quadratic

BEGU(·) = a0P
2
EGU (t) + a1PEGU (t) + a2eon(t) (2.29)

which give good fit for high generator power, see Figure 2.4. The approxi-
mation can be justified because the EGU will be mainly operated with high
power, where the efficiency is high. Further discussion on this topic can be
found in Paper 2.

2.4.7 Battery

The battery pack consists of identical cells equally divided in parallel strings,
with the strings consisting of cells connected in series (Figure 2.5). Using
a cell model with simple resistive circuit, as illustrated in Figure 2.5, the
pack power can be computed as

Pb(t) =
(
ubc(·)ibc(t)−Rbc i

2
bc(t)

)
nbc. (2.30)

In this equation nbc is the total number of cells in the pack, and ubc(·),
ibc(t) and Rbc are the open circuit voltage, current and resistance of each
cell. Then, the power of each cell Pb(t)/nbc is identical and does not depend
on the configuration of cells (series/parallel), but rather on the total number
of cells in the pack. Therefore, in this thesis the problem of battery sizing
focuses only on determining the total number of cells in the pack.
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Figure 2.6: Model of the battery open circuit voltage and linear voltage-SOC
approximation. Good fit is expected in the allowed SOC range represented
by the shaded region.

In the optimization problem nbc has a real value that indicates the total
pack capacity. It can be expected that rounding this variable to the nearest
integer gives small error if results point to large number of cells. This will
generally be the case if the cells are chosen small.

From (2.30) the cell current can be described as

ibc(·) =
1

2Rbc


ubc(·)−

√
u2
bc(·)−

4RbcPb(t)

nbc


 (2.31)

which can then be used in the battery dynamics equation

˙socb(t) = − 1

Qbc

ibc(·). (2.32)

Here socb(t) denotes the battery state of charge (SOC) and Qbc is the cell
capacity in [Ah]. It is considered that the cell current is positive when
discharging the battery and negative otherwise. Both, the SOC and the cell
current are limited by

socb(t) ∈ [socbmin, socbmax] (2.33)

ibc(·) ∈ [ibcmin, ibcmax] (2.34)

where (2.33) is imposed to extend the battery cycle and calendar life. In
HEVs the allowed SOC range is typically less than 20 %, and it can be
extended to about 60 % in PHEVs [69].

Additional possible constraints are starting at desired SOC value, pre-
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2.4. Quasi-static powertrain model

serving charge sustain operation, or limiting the Ah-throughput of the cell

socb(t0) = socb0 (2.35)

socb(t0) = socb(tf ) (2.36)
∫ tf

t0

|ibc(·)|dt ≤ QAh (2.37)

with t0 and tf denoting the initial and final time of the driven cycle. The Ah-
throughput QAh associated to the driven cycle is obtained by multiplying
the length of the cycle with the maximum allowed Ah-throughput QAhmax in
the entire battery cell life of Lbc years, normalized per kilometer. Denoting
by d the average distance traveled by the vehicle in one year, QAh can be
computed as

QAh =

∫ tf
t0
vdem(t)dt

Lbcd
QAhmax. (2.38)

The cell open circuit voltage is a nonlinear function of SOC, as in Figure
2.6. For certain battery types, used in Paper 2 and 5, approximation can
be used with constant voltage within the allowed SOC range. For battery
types as in Figure 2.6, a better approximation is an affine function

ubc(·) = d0socb(t) + d1 (2.39)

that gives good fit within the allowed SOC range. This is further discussed
in Paper 3 and 4.

2.4.8 Ultracapacitor

Similar to the battery, the ultracapacitor pack consists of identical cells
connected in parallel and series configuration. Likewise, the cell current is
limited by

iuc(·) =
1

2Ruc


uuc(t)−

√
u2
uc(t)−

4RucPu(t)

nuc


 ∈ [iucmin, iucmax] (2.40)

where Pu(t) is the pack power, nuc is the total number of cells in the pack,
and iuc(·), uuc(t) and Ruc are the current, open circuit voltage and inner
resistance of each cell, respectively. The cell dynamics are described by the
open circuit voltage

u̇uc(t) = − 1

Cuc
iuc(·) (2.41)
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with Cuc denoting the cell capacity in [F]. The cell constraints may include
an upper limit on the cell voltage uucmax, a constraint for starting at desired
SOC value and preserving charge sustain operation, yielding

uuc(t) ∈ [0, 1]uucmax (2.42)

uuc(t0) = uucmaxsocu0 (2.43)

uuc(tf ) = uuc(t0). (2.44)

The SOC of the ultracapacitor is here found as socu = uuc(t)/uucmax.

The essential difference between ultracapacitors and batteries is that
ultracapacitors have higher power density, lower energy density, and can
be utilized in the entire SOC range without a significant impact on the
calendar life. Therefore, ultracapacitors can be operated at a low SOC
where the maximum cell power is not at the maximum cell current iucmax,
but at a lower current for which it holds

∂Pu(t)

∂iuc(·)
= 0⇒ iuc(·) =

uuc(t)

2Ruc

⇒ Pumax
nuc

=
u2
uc(t)

4Ruc

. (2.45)

The cell power bounds can then be summarized as

Pu(t)

nuc
≥ uuc(t)iucmin −Ruci

2
ucmin (2.46)

Pu(t)

nuc
≤
{
uuc(t)iucmax −Ruci

2
ucmax, uuc(t) > 2Ruciucmax

u2
uc(t)/(4Ruc), otherwise.

(2.47)

An illustration of cell power bounds is depicted in Figure 2.7.

It is important to note that in HEV applications it is not common to
operate ultracapacitors close to the peak power. This has been observed in
Paper 3 and 4. Namely, in HEV applications ultracapacitors are sized by the
energy storage requirement because of the relatively low energy density and
the high power density [69, 70]. Hence, their optimal size is typically large
enough to easily handle high power demands. Moreover, when operated at
peak power, e.g. close to u2

uc(t)/(4Ruc), the efficiency is very low, i.e. close
to 50 %. A more appropriate power is

Pu(t)

nuc
=

{
ηuc(1− ηuc)u

2
uc(t)
Ruc

, Pu(t) ≥ 0

−1−ηuc
η2
uc

u2
uc(t)
Ruc

, otherwise
(2.48)

at which the efficiency is ηuc. Figure 2.7 illustrates a region with efficiency
greater than or equal to 85 %.
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Figure 2.7: Bounds on the ultracapacitor cell power. In the shaded region
the efficiency is above 85 %.

2.5 Thermal states

It has been shown in the previous section that the studied powertrain com-
ponents have physical limits. The battery, for example, can be operated
up to a certain maximum charging and discharging current, while the EM
has limits on its motoring and generating torque. However, operating the
components close to their physical limits cannot be maintained for longer
time periods, without a risk of overheating and thereby damaging the com-
ponents.

A simple way to prevent overheating of a vehicle component k, is to put
an upper bound on its temperature Tk(t) ≤ Tkmax. Evidently, this requires
that the vehicle component k, and perhaps some other components j, j 6= k,
include temperature states Tk(t) and Tj(t), respectively. Then the change
in temperature of the component k can be described by e.g. first order
dynamics

CTkṪk(t) =
∑

j

Tj(t)− Tk(t)

RTj

+Bk(u(t))− Pkcool(u(t)) (2.49)

which depends on the component’s thermal capacitance CTk and the ther-
mal resistance RTj of the medium between component k and the other com-
ponents j (including the environment, i.e. ambient temperature). Moreover,
the temperature increases with losses Bk(u(t)) and may decrease with forced
cooling Pkcool(u(t)), both function of some control signals u(t).
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Chapter 2. Problem formulation and modeling details

An example of dimensioning a powertrain component under thermal
constraints has been investigated in Paper 4.

2.6 Scaled ICE, EM and EGU models

Dimensioning powertrain components generally requires repeating the op-
timization with a set of component choices. (Exceptions are energy buffers
where cells are clearly defined.) This is because powertrain components such
as ICE, EM and EGU may differ significantly for different sizes. For exam-
ple, the efficiency map of a two cylinder ICE is generally different than the
efficiency map of a bigger ICE with four cylinders [67]. Yet, a common ques-
tion in designing a cost effective HEV is to find the cost benefit from slightly
changing the size of a component. A possible way to handle this without
repeating the optimization too many times (if e.g. convex optimization is
used), is to create few groups of significantly different component sizes, and
to assume that the small variation of the component size within each of the
groups does not change the efficiency map of the component. In each of
these groups a typical component is chosen that is used as a baseline for
comparing scaled components within the same group.

An example of baseline components, ICE, EM and EGU, are given in
the left plots of Figure 2.8. It is assumed, for simplicity, that the torque
and power losses of ICEs and EMs with different sizes, scale linearly with
the torque and losses of the baseline components, while the speed range
does not change [71]. Similarly, the generator power and the losses of EGUs
with different sizes scale linearly with the generator power and losses of
the baseline EGU. The torque/power of the scaled components can then be
written as

τICE(t) = sICEτICEb(t), BICE(·) = sICEBICEb(·) (2.50)

τEM (t) = sEMτEMb(t), BEM(·) = sEMBEMb(·) (2.51)

PEGU (t) = sEGUPEGUb(t), BEGU(·) = sEGUBEGUb(·) (2.52)

where sICE, sEM and sEGU are decision variables denoting component
sizes. The symbol b in the subscript stands for the baseline components.
An example of scaled components is illustrated in the right plots of Figure
2.8.

The components mass and inertia can be also assumed to scale lin-
early, while the cost can be represented by an affine relation that gives
a possibility to assign an initial cost for installing a component regard-
less of its size. Then, the mass, inertia and cost of a scaled component
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(b) EM.
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Figure 2.8: Dimensioning the powertrain components. The left plots show
the baseline components. Components with different sizes may have torque
or power bounds within the shaded region. The right plots show examples
of scaled components with maximum allowed size.
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j ∈ {ICE,EM,EGU} is

mj = sjmjb (2.53)

Jj = sjJjb (2.54)

Cj = Cj0 + sjCjb (2.55)

where Cj0 is initial cost for component j. An example of optimal sizing
of an EGU in a PHEV bus is given in Paper 4, while sizing of ICE and
EM using convex optimization has been performed in a recently submitted
article [72].
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Chapter 3

Optimization methods

This chapter gives an overview of the optimization methods used in the
papers for solving the problem formulated in Section 2.1. A special attention
is given to convex optimization, because this method has been used in all
the papers, except Paper 1. The typical convex modeling steps used in
Paper 2-5 are here explained through a simple example of battery sizing
of a series HEV powertrain. A detailed explanation is given on why the
remodeled convex problem points to the same solution of the original non-
convex problem.

3.1 Optimization problem, revisited

The optimization objective, recall Section 2.1, is minimizing operational and
components’ cost for an HEV driven along a known driving cycle. If the
vehicle has a plug-in connecter, then except fuel cost, the operational cost
may also include a cost for consumed electricity on the driven cycle. The
components’ cost, e.g. for a vehicle based on a series powertrain topology,
may include a cost for a battery, EGU and EM. The costs are expressed in
a single objective

∫ tf

t0

(wfPf (·) + wcPc(t)) dt+ wbcnbc + wEGUsEGU + wEMsEM (3.1)

using coefficients wf , wc in [currency/kWh], for fuel and electricity, respec-
tively, and wj in [currency], with j standing for a battery cell, EGU, and
EM, respectively. The optimization is subject to constraints, discussed in
Chapter 2, invoked by the driving cycle and the powertrain model. Decision
variables are marked in bold in Chapter 2.

The coefficients wj, j ∈ {bc, EGU,EM} in (3.1) can be obtained from
known components’ prices Cj [currency], by considering that the payment
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for a component j is divided in equal amounts over a period of yj years
with pj percent yearly interest rate. Then, the equivalent components’ cost
related to the driven cycle is obtained by multiplying the length of the
cycle with the components’ price per kilometer, obtained by dividing with
the average distance traveled by the vehicle in the component’s life length
of Lj years. If the vehicle travels in average d kilometers in one year, this
yields

wj = Cj

(
1 + pj

yj + 1

2

) ∫ tf
t0
vdem(t)dt

Ljd
, j ∈ {bc, EGU,EM}. (3.2)

3.2 Dynamic Programming

A possible approach for solving the powertrain dimensioning and control
problem is by using Dynamic Programming (DP). DP is a well-known op-
timal control method that is widely used for HEV powertrain assessment
and sizing, with high amount of academic literature and dedicated solvers
to speed up computation time [73, 74, 75]. The algorithm uses Bellman’s
principle of optimality [33] to solve the problem via backwards recursion
handling nonlinearities and constraints in a straightforward way. DP is ca-
pable of solving non-convex, mixed-integer problems, but its computation
time, even when using dedicated solvers, increases exponentially with the
number of state variables.

DP has been used in Paper 1 for assessment of HEV powertrains with
fixed powertrain components, while for the powertrain sizing problem, in
Paper 2 and 5, DP has been used as a benchmark to compare the solution
from convex optimization of powertrain models with low complexity.

3.3 Convex optimization

This section gives a brief overview on convex optimization, used for solving
the powertrain sizing and control problem in Paper 2-5. The notation is
adopted from [61] with dom f meaning domain of f and R denoting the set
of real numbers.

3.3.1 Convex sets, functions and problems

Definition 1. A set C ⊆ Rn is convex if the line segment between any two
points x,y ∈ C lies in C, i.e. θx+ (1− θ)y ∈ C for any θ with 0 ≤ θ ≤ 1.
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Figure 3.1: Convex functions.

Definition 2. A function f : Rn → R is convex if dom f is a convex set
and f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) for all x,y ∈ dom f and any
θ with 0 ≤ θ ≤ 1.

The function f is said to be concave if −f is convex. Some examples of
convex functions are given in Figure 3.1.

Definition 3. The problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

x ∈ X

is convex if X ⊆ Rn is convex set, fi(x), i = 0, ...,m are convex and
hj(x), j = 1, ..., p are affine in the decision variables x.

3.3.2 Elementary convex functions

This thesis uses the methodology of disciplined convex programming [61],
where convexity of complex functions is verified using operations that pre-
serve convexity of elementary convex functions. The elementary convex
(concave) functions, that have been used in Paper 2-5, are described by the
following remarks that can be obtained directly from Definition 2.

Remark 1. An affine function f(x) = qx+ r is both convex and concave.

Remark 2. A quadratic function f(x) = px2 + qx + r with dom f ⊆ R is
convex if p ≥ 0.
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Remark 3. A quadratic-over-linear function f(x,y) = x2/y with dom f =
{(x,y) ∈ R2 |y > 0} is convex.

Remark 4. A function f(x,y) =
√
xy (a geometric mean of two elements)

with dom f = {(x,y) ∈ R2 |x ≥ 0,y ≥ 0} is concave.

Remark 5. A product f(x,y) = xy is generally not a convex function.

3.3.3 Operations that preserve convexity

The following theorems, which proof can be found in [61], describe some of
the operations that preserve convexity of sets and functions.

Theorem 1. An intersection S =
⋂Si, of convex sets Si, is a convex set.

Theorem 2. A nonnegative weighted sum f =
∑
wifi with wi ≥ 0, of

convex functions fi, is a convex function.

This property can be extended to infinite sums and integrals. For exam-
ple if f(x, y) is convex in x for each y ∈ A, then g(x) =

∫
Aw(y)f(x, y)dy

is convex in x if w(y) ≥ 0.

Theorem 3. A pointwise maximum f(x) = max{f1(x), ..., fm(x)}, of con-
vex functions fi(x), i = 1, ...,m, is a convex function.

Similarly, a pointwise minimum f(x) = min{f1(x), ..., fm(x)}, of con-
cave functions fi(x), i = 1, ...,m, is a concave function.

3.3.4 Heuristic decisions

A limitation of convex optimization is that integer decision variables are
not allowed as the set of integer numbers is not convex. The powertrain
sizing and control problem includes a binary variable for controlling the ICE
on/off state and an integer variable for controlling transmission gear at the
parallel and combined powertrains. The approach taken in this thesis is to
decide the integer variables by heuristics, and to remodel (or approximate)
the remaining problem as a convex sub-problem.

In this case, the heuristics serves two purposes: it removes the need for
solving a mixed integer problem; and at the same time it allows for a flexible
approach to model the performance of the gearshift strategy which makes
it possible to incorporate both physical constraints and limitations imposed
by drivability considerations.

Heuristic decisions based on demanded power and speed have been pro-
posed in Paper 2, where it has been shown that although the convex model-
ing approximations have small influence on the optimal result, the influence
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from gear heuristics is more visible and deserves further attention. A more
detailed study on the sensitivity of the ICE on/off heuristics has been con-
sidered in Paper 5, where it has been observed that the error due to on/off
heuristics at series powertrains is below 1 %, even for a simple heuristic rule
that turns the ICE on for power demands exceeding a certain threshold.

In order to further improve the heuristics a new strategy has been pro-
posed in Paper 5, which practically reaches the global optimum of the
mixed-integer problem (error below 0.03 %). Additional studies are needed
to extend the method to gear selection heuristics.

3.3.5 Convex optimization method

After the integer variables are decided by heuristics, the remaining prob-
lem can be modeled as a convex sub-problem. The modeling steps include
approximations with quadratic power losses, relaxations of equalities to in-
equalities, introduction of new decision variables, change of variables, etc.
Details on the modeling steps for a reformulation of the original problem into
a convex sub-problem can be found in Paper 2-5. The convex sub-problem
can then be solved using generally available solvers, such as SeDuMi [76],
or SDPT3 [77].

The engine on/off and gear heuristics (see Paper 2 and 5) may require
the convex sub-problem to be solved in several nested loops. Then, the
steps taken to solve the problem of powertrain sizing can be summarized as
follows:

1. Define desired vehicle performance by deciding the driving cycle.

2. Define a charging infrastructure by deciding on charging stations, their
distribution on the driving cycle and charging interval per station.

3. Loop 1: Decide the engine on/off state eon(t) using heuristics.

4. Loop 2 (for parallel and combined powertrains only): Decide trans-
mission gear γ(t) using heuristics.

5. In each iteration of the nested loops solve a convex sub-problem.

3.4 Convex modeling example

This section gives an example of optimal powertrain sizing and control of
an HEV using convex optimization. The powertrain is in a series topol-
ogy and it is assumed, for simplicity, that the only sizing component is an
ultracapacitor.
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The engine on/off control is decided prior to the optimization using
heuristics that turn the engine on if the power of the vehicle without the
weight of the ultracapacitor, Fdem(nuc = 0, t)vdem(t), exceeds a threshold
P ∗on. This yields

eon(t) =

{
1, Fdem(0, t)vdem(t) > P ∗on

0, otherwise.
(3.3)

The optimal power threshold P ∗on is found by iteratively solving an opti-
mization sub-problem (the problem in which eon(t) is predefined) for several
values of Pon within the power range of the vehicle.

3.4.1 Non-convex sub-problem

The sub-problem minimizes fuel consumption and ultracapacitor cost sub-
ject to the powertrain constraints described in Section 2.4. It can be sum-
marized as

minimize

wf

∫ tf

t0

(PEGU (t) +BEGU(·)) dt+ wucnuc (3.4)

∀t ∈ [t0, tf ], subject to

Fdem(nuc, t)vdem(t) = τEM (t)
vdem(t)

Rw

− Pbrk(t) (3.5)

τEM (t)
vdem(t)

Rw

+BEM(·) = Pu(t) + PEGU (t)− Paux (3.6)

u̇uc(t) = − 1

Cuc
iuc(·) (3.7)

uuc(t) ∈ [0, 1]uucmax (3.8)

iuc(·) ∈ [iucmin, iucmax] (3.9)

PEGU (t) ∈ [0, eon(t)PEGUmax] (3.10)

τEM (t) ∈ [τEMmin(ωEM(t)), τEMmax(ωEM(t))] (3.11)

Pbrk(t) ≥ 0 (3.12)

nuc ≥ 0 (3.13)

with optimization variables PEGU (t), Pu(t), Pbrk(t), τEM (t), uuc(t) and
nuc. Recall from (2.4) and (2.12) that the demanded force Fdem(nuc, t) is
affine in nuc, the ultracapacitor cell current is given as

iuc(·) =
1

2Ruc


uuc(t)−

√
u2
uc(t)−

4RucPu(t)

nuc


 (3.14)
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and the EM and EGU losses are approximated by quadratic functions in
(2.26) and (2.29).

Even with approximations of the power losses and with eon(t) predefined,
the optimization sub-problem is not convex. This is because the function
(3.14) is not convex and the constraints (3.6) and (3.7) bind nonlinear func-
tions with equality.

3.4.2 Convex modeling steps

The optimization sub-problem can be reformulated as convex without any
further approximations. The function (3.14) used in (3.7) and (3.9) can be
remodeled as convex by introducing a variable change, where instead of the
cell open circuit voltage, the optimization variable is the pack energy

Eu(t) =
Cucu

2
uc(t)

2
nuc ⇒ Ėu(t) = Cucnucuuc(t)u̇uc(t). (3.15)

Then, a new optimization variable is introduced that depicts pack losses

Bu(t) = Ruci
2
uc(·)nuc (3.16)

which can be also written as

Bu(t) =
Eu(t)

RucCuc
− Pu(t)− 1

RucCuc

√
Eu(t) (Eu(t)− 2RcuCucPu(t))

(3.17)

after using (3.14) and (3.15) in (3.16). The reason for introducing the new
variable Bu(t) is to easily explain the remaining convexifying steps. This
procedure has been also used in Paper 4, while in Paper 3 convex modeling
steps are shown without the need for Bu(t).

The right side of (3.17) is convex because it is a weighted sum (see
Theorem 2) of affine functions Eu(t)/(RucCuc) and Pu(t), and a geometric
mean (see Remark 4) of nonnegative affine functions Eu(t) and Eu(t) −
2RcuCucPu(t). The nonnegativeness of the latter comes directly from (2.45).
The last step that will make the constraint (3.17) convex is to relax the
equality with ≥. Then, by moving Bu(t) on the right side of (3.17) a
constraint is obtained in the general convex form

0 ≥ −Bu(t) +
Eu(t)

RucCuc
− Pu(t)− 1

RucCuc

√
Eu(t) (Eu(t)− 2RcuCucPu(t)).

(3.18)

The relaxation changes the optimization problem as it allows for higher
power losses than those corresponding to the used ultracapacitor power.
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However, at the optimum (3.18) will be satisfied with equality, because
there is no incentive for higher losses. Therefore, the solution of the re-
laxed problem will be optimal to the non-relaxed problem as well. Assume
the contrary, if we suppose that for an optimal solution (3.18) holds with
inequality, then the solution must have included some unnecessary losses.
This means that it is possible to construct other state/control trajectory for
which (3.18) will hold with equality and where these unnecessary losses will
not be present. However, due to the fewer losses, there will be less need for
using the EGU in delivering the power demand, and the total optimization
cost will be lower. This means that the solution where (3.18) holds with
inequality could not have been optimal. This technique of relaxing equality
constraints to inequalities where the optimum gives equality has been ex-
tensively used in Paper 2-5. However, relaxing equality constraints cannot
be used for all problems. For example, if the problem includes a constraint
that does not allow usage of the buffer at cold start of the vehicle under
low ambient temperature, then there could be an incentive for higher losses
where (3.18) will hold with inequality. These losses could still give lower
optimization cost than the realistic cost where (3.18) holds with equality.

After applying the variable change (3.14) in (3.15), the constraints (3.7)
and (3.8) will change to

Ėu(t) = −(Pu(t) +Bu(t)) (3.19)

Eu(t) ∈ [0,
Cucu

2
ucmax

2
nuc] (3.20)

while the constraints on the cell current (3.9) can be written as constraints
on the pack power (see also (2.46) and (2.47))

Pu(t) ≥ iucmin

√
2Eu(t)nuc

Cuc
−Ruci

2
ucminnuc (3.21)

Pu(t) ≤ min



iucmax

√
2Eu(t)nuc

Cuc
−Bu(t),

Eu(t)

2RucCuc



 . (3.22)

The pointwise minimum of concave functions in (3.22) is concave by The-
orem 3. This constraint can be also written as two inequality constraints,
where Pu(t) is less than or equal to the two terms in the min function. A
more detailed derivation of (3.22) can be found in Paper 3.

Finally, the problem can be simplified by taking the braking power out
of the optimization. The constraint (3.5) can be written as

τEM (t) ≥ RwFdem(nuc, t) (3.23)
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or it can even be combined with the torque bound (3.11) giving the following
constraints

τEM (t) ≥ max {RwFdem(nuc, t), τEMmin(ωEM(t))} (3.24)

τEM (t) ≤ τEMmax(ωEM(t)). (3.25)

Excluding the braking power does not change the optimal result, since at
the optimum (3.24) will hold with equality, except during braking when
the vehicle cannot recuperate all the braking energy. Then, the remaining
energy is dissipated at the friction brakes and the optimal braking power
can be obtained after the optimization has finished from

P ∗
brk(t) = τ ∗

EM (t)
vdem(t)

Rw

− Fdem(n∗
uc, t)vdem(t) (3.26)

with ∗ indicating the optimum value.

3.4.3 Convex sub-problem

The convex sub-problem, summarized from the previous section, can be
written in discrete time as

minimize

wf

N−1∑

0

(PEGU (k) +BEGU(·)) + wucnuc (3.27)

∀k ∈ {0, ..., N − 1}, subject to

τEM (k)
vdem(k)

Rw

+BEM(·) = Pu(k) + PEGU (k)− Paux (3.28)

Eu(k + 1) = Eu(k)− h(Pu(k) +Bu(k)) (3.29)

Eu(k) ∈ [0,
Cucu

2
ucmax

2
nuc] (3.30)

Pu(k) ≥ iucmin

√
2Eu(k)nuc

Cuc
−Ruci

2
ucminnuc (3.31)

Pu(k) ≤ min



iucmax

√
2Eu(k)nuc

Cuc
−Bu(k),

Eu(k)

2RucCuc



 (3.32)

PEGU (k) ∈ [0, eon(k)PEGUmax] (3.33)

τEM (k) ≥ max {RwFdem(nuc, k), τEMmin(ωEM(k))} (3.34)

τEM (k) ≤ τEMmax(ωEM(k)) (3.35)

nuc ≥ 0 (3.36)
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with optimization variables PEGU (k), Pu(k), Bu(k), τEM (k), Eu(k) and
nuc. The derivative (3.19) has been replaced with a first order forward
Euler discretization with a sampling time h, giving N time samples for the
chosen driving cycle. Before passing the problem to the solver (or first to
the parser, see Paper 2 for details), the variables are scaled. For exam-
ple, in the convex problem above the optimization variables can be scaled
as PEGU (k) = MP P̃EGU (k), Pu(k) = MP P̃u(k), Bu(k) = MP B̃u(k),
τEM (k) = MT τ̃EM (k), Eu(k) = MEẼu(k) and nuc = MN ñuc, where the
scaling parameters MP , MT , ME and MN are expected magnitudes that can
be estimated from the power demanded by the driving cycle, the physical
limits of the components, or by engineering conjecture.

3.5 Other optimal control techniques

Except DP and convex optimization, this thesis also uses another opti-
mal control strategy based on moving the state equality constraints to the
objective function of the optimization problem. The new extended ob-
jective, i.e. the Hamiltonian [78, 79], then includes weighted system dy-
namics, where the weighting factors are the Lagrange multipliers [80, 81]
obtained directly from the Pontryagin’s maximum principle [82]. This is
a well-known strategy that has been extensively used for real-time control
of HEVs [23, 65, 83, 84, 85, 86], but in this thesis, the Pontryagin’s maxi-
mum principle has been used for improving the ICE on/off heuristics. The
strategy is detailed in Paper 5 and requires a convex problem to be solved
iteratively, while using the Hamiltonian to obtain an information on the
possible improvement in cost from flipping the value of the engine on/off
signal at certain time instances.
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Chapter 4

Summary of included papers

This chapter provides a brief summary of the papers that constitute the
base for this thesis. Full versions of the papers are included in Part II. The
papers have been reformatted to increase readability and to comply with
the layout of the rest of the thesis.

Paper 1

N. Murgovski, J. Sjöberg, J. Fredriksson, A methodology and
a tool for evaluating hybrid electric powertrain configurations,
Int. J. Electric and Hybrid Vehicles, vol. 3, no. 3, p. 219-245,
2011.

Paper 1 describes a methodology for automatic optimization of hybrid
electric powertrains. The methodology is developed and implemented in a
tool, and the paper is written in the form of describing the tool. The tool
can be used to estimate the potential of an HEV powertrain configuration
without developing a real-time control algorithm. Inputs, such as dynamic
vehicle model, driving cycle and optimization criterion, are given by the user
and the tool first produces a simplified powertrain model in a form of static
maps. The tool produces these maps automatically by performing a series
of simulations of the dynamic model at gridded values of the input signals
until steady state has been reached. Hence, the production of the maps
includes long simulation and special measures are taken to not exaggerate
this time. The optimization is based on Dynamic Programming [33], which
is used to find an optimal power split that minimizes the chosen criterion.

The tool integrates the model simplification and optimization with a
minimized need for interaction from the user. The user does not need to
understand details of the model. Instead, parameter values for the algo-
rithms are set automatically, although an experienced user can change some
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of the parameters. The only requirement on the model is to provide access
to some general variables and that it has a power split that can be fully
controlled. This makes it possible to work with non-transparent models,
e.g. models which are compiled, or hidden of intellectual property reasons.

Except describing the tool, the paper also describes solutions to a num-
ber of problems related to the goals, which are 1) automize the process as
much as possible so that the need of user choices is reduced, and 2) limit
the computational burden in the optimization. The solutions to these prob-
lems include a strategy to obtain maps for non-transparent vehicle models,
automatic decision of the grid points for the maps, assessing the quality of
the approximate maps, and a way to obtain map values although the model
is not in equilibrium with regard to some states.

The paper presents two examples of powertrain evaluation, in terms of
fuel consumption, for a parallel and a series-parallel powertrain.

Paper 2

N. Murgovski, L. Johannesson, J. Sjöberg, B. Egardt, Com-
ponent sizing of a plug-in hybrid electric powertrain via convex
optimization, J. Mechatronics, vol. 22, no. 1, p. 106-120, 2012.

The methodology described in Paper 1 is useful for assessment of a fixed
powertrain, but it has a limited use for dimensioning HEV powertrains. This
is because the optimization needs to be repeated many times for different
component sizes, and this may require very long computation time.

In order to lower the computational burden, Paper 2 presents a novel
convex modeling approach which allows the problem of simultaneous op-
timization of battery size and energy management of a PHEV powertrain
to be formulated as a semidefinite convex problem. This convex problem
can then be efficiently solved for a global optimum using generally available
solvers, SeDuMi [76], SDPT3 [77].

The studied powertrain belongs to a city bus, with either a series or
a parallel topology, which is driven along a perfectly known bus line with
a fixed charging infrastructure. In the optimization approach the power
characteristics of the engine, the engine-generator unit and the electric ma-
chines are approximated by a convex second order polynomial, and the
convex battery model assumes quadratic losses. The only heuristic choice
in the optimization is the gear selection and the engine on/off operation
which are tuned in an outer optimization loop.

The convexifying approximations are validated by comparing with re-
sults obtained by Dynamic Programming when using the original nonlinear,
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non-convex, mixed-integer models. The comparison clearly shows the im-
portance of the gear and engine on/off decisions, and it also shows that the
convex optimization and Dynamic Programming point toward similar bat-
tery size and operating cost when the same gear and engine on/off heuristics
are used.

Two examples illustrate the methodology of the optimal PHEV battery
design for a bus line with fixed charging infrastructure. The first example in-
vestigates if the convex problem results in a similar battery design compared
to the non-convex mixed integer problem solved by Dynamic Programming.
The results indicate that both optimization problems point toward a simi-
lar solution. The second example studies a PHEV city bus equipped with a
dual battery comprised of both energy optimized cells and power optimized
cells; a problem that can be solved in minutes with the convex optimiza-
tion approach, but would require a significant computational effort with
the Dynamic Programming approach. Besides demonstrating the utility of
the convex modeling approach the example clearly shows the sensitivity of
battery sizing with respect to battery prices and charging power.

Paper 3

N. Murgovski, L. Johannesson, J. Sjöberg, Convex modeling of
energy buffers in power control applications, Submitted to the
IFAC Workshop on Engine and Powertrain Control, Simulation
and Modeling (ECOSM), Rueil-Malmaison, France.

Convex modeling steps for sizing batteries while optimally controlling
an HEV have been proposed in Paper 2, where it has been shown that the
error due to the convexifying approximations is small as long as the battery
open circuit voltage is nearly constant within the operating State of Charge
(SOC) interval. Due to this limitation the presented strategy is suitable
only for certain battery types and not for ultracapacitors.

This paper is an extension of Paper 2 and shows modeling steps to allow
for simultaneous sizing of ultracapacitors while optimally controlling HEVs
via convex optimization techniques. Moreover, the proposed method also
allows for sizing of batteries with nearly linear voltage-SOC dependency.

The convex modeling steps are described through a problem of optimal
buffer sizing and control of a hybrid electric vehicle. The studied vehicle is
a city bus driven along a perfectly known bus line, with an energy buffer
that could be either a battery, or an ultracapacitor. Both the ultracapacitor
and the battery are modeled with quadratic losses and the resulting convex
problem is a semidefinite program [61].
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The paper also shows modeling steps for alternative convex models where
power losses and power limits of the energy buffer are approximated. By
this, the computation time is decreased by up to 50 %, i.e. the computation
time of the battery sizing problem is decreased from about 15 s to about
7.5 s in average, without an optimization error.

Paper 4

N. Murgovski, L. Johannesson, A. Grauers, J. Sjöberg, Dimen-
sioning and control of a thermally constrained double buffer
plug-in HEV powertrain, Submitted to the 51st IEEE Confer-
ence on Decision and Control, Maui, Hawaii.

This paper describes modeling steps to enable fast dimensioning of pow-
ertrain components while optimally controlling a plug-in hybrid electric bus
with a series powertrain topology. The components to be sized are engine-
generator unit, and a double energy buffer consisting of a battery with
nearly linear voltage-SOC dependency and a thermally constrained ultra-
capacitor. The model dynamics are described with three continuous states,
two for the battery and ultracapacitor SOC and one for the ultracapaci-
tor temperature. The powertrain components are modeled with quadratic
losses and the resulting convex problem is a semidefinite program [61].

The paper also gives an example showing how the optimal sizes of the
components are affected for two different charging scenarios. In the first
scenario the bus can charge with 200 kW for a couple of seconds while
standing still at bus stops, and in the second scenario the bus can charge
for a couple of minutes before starting the route. The charger power in the
second scenario is left for the optimization to find it.

Paper 5

N. Murgovski, L. Johannesson, J. Sjöberg, Engine on/off con-
trol for dimensioning hybrid electric powertrains via convex op-
timization, Submitted to the IEEE Transactions on Vehicular
Technology.

This paper proposes a novel heuristic strategy that decides the engine
on/off control for PHEV powertrains. The method allows the problem to be
solved using convex optimization techniques, where a solution near global
optimum is obtained in a relatively short computation time, which may oth-
erwise need very long time when solved by algorithms guaranteeing global
optimum, such as Dynamic Programming.
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The method is based on the Pontryagin’s maximum principle [82] and
requires the convex problem to be solved iteratively, while using the Hamil-
tonian [78, 79] to obtain an information on the possible improvement in cost
from flipping the value of the engine on/off signal at certain time instances.
The studied vehicle is a PHEV bus with a series topology which is driven
along a perfectly known bus line with a fixed charging infrastructure. The
bus can charge its battery ether at standstill, or while driving along a tram
line.

The paper illustrates several examples where the problem of battery
sizing, investigated for four different bus lines and two different battery
types, is solved in less than 15 min. The results are validated with Dynamic
Programming showing an error of less than 0.35 %. The problem of optimal
control for a powertrain with a fixed battery is solved for 176 different
battery sizes, each lasting less than 5 min, and each with an error of less
than 0.03 %.
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Chapter 5

Concluding remarks and future
work

This chapter points out the strengths and weaknesses of the proposed method-
ology and discusses future challenges.

5.1 Dynamic Programming or convex opti-

mization

This thesis uses both DP and convex optimization for dimensioning HEV
powertrains, so this section discusses when is one algorithm more suitable
than the other.

The main reason for using convex optimization is the relatively short
computation time with regard to the number of states. Moreover, generic
solvers and parsers exist, [76, 77, 87, 88], which allow the problems to be
written in a very readable and easily extendable form. There is also vast
amount of literature on both convex optimization and on techniques to
distribute the optimization over several computers [89]. The drawback of
using convex optimization is that it requires model approximations and
heuristic decisions for the integer variables. Nevertheless, in Paper 2 it is
shown that the error due to convexifying approximations is small. Moreover,
in Paper 5 a method is proposed for improving engine on/off heuristics,
which shows that global optimum can be reached for HEVs with a series
powertrain topology. However, further studies are needed for improving the
gear heuristics.

For problems with one continuous state DP may be the most attractive
choice. Some of the reasons are that the problems can be non-convex,
nonlinear, mixed-integer; DP problems can be easily parallelized on multiple
processors; stochastic information can be easily included, but at the expense
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of increasing the size of dynamic states [90]. Furthermore, DP is widely used
for HEV powertrain assessment and sizing, with high amount of academic
literature and dedicated solvers to speed up computation time [73, 74, 75].
Yet, even for one-state problems, some possibilities that are straightforward
in the convex optimization, will significantly decrease the performance of
DP. For example, having free final SOC in DP, but still maintaining charge
sustain operation, will require running DP iteratively for each gridded SOC
as a final state value. Moreover, the constraint on the Ah-throughput of
the battery (2.37) will require an additional state in DP.

Perhaps the ultimate solution, as discussed in Paper 5, is a synergy
between DP and convex optimization, where DP will be used for optimizing
the integer variables and convex optimization for the continuous variables.

5.2 Future studies

It is shown in this thesis that the problem of optimal dimensioning of HEV
powertrains can be remodeled to a large extend as a convex problem. The
convexifying steps have been performed on both series and parallel power-
trains, but still heuristics are needed for the integer variables, such as gear
and engine on/off. Hence, improving the heuristics is the major issue that
requires further investigations. A promising method is presented in Paper
5 applied to engine on/off control, which shows that the global optimum
can be reached by solving a convex problem in several iterations. Further
studies are needed for a theoretical foundation to find for which problems
the algorithm will converge and for which it may not. Investigations are
also needed for extending the strategy to improve gear heuristics.

The convex modeling steps can be extended to other types of hybrid
vehicles where the energy storage is e.g. a fuel cell or a flywheel. It is also
interesting to investigate is it possible to use convex optimization for HEVs
with planetary gears or continuous variable transmission. Future studies
may also focus on simultaneous sizing and control of the cooling system for
many vehicle components, including the passenger compartment.

The methods developed in this thesis have been applied on several exam-
ples that illustrate how the methods work and what are their capabilities.
However, to take a reliable decision on designing an HEV the methods need
to be applied on more practical examples. For powertrain dimensioning
problems in public transportation, there is a need for including realistic and
well projected prices for charging stations, fuel, electricity and powertrain
components. The short computation time of convex optimization, and the
possibility to distribute the optimization on several computers, may allow
optimization of charging infrastructure in an entire city and simultaneous
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component sizing of several buses driven on several bus lines. For private
vehicles, improvements are needed in obtaining well representative driving
and charging patterns and a possibility to include performance requirements
in the optimization.
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