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Abstract—Optimal trellis-coded modulation (TCM) schemes
are obtained by jointly designing the convolutional encoder
and the binary labeling of the constellation. Unfortunately this
approach is infeasible for large encoder memories or constellation
sizes. Traditional TCM designs circumvent this problem by using
a labeling that follows the set-partitioning principle and by
performing an exhaustive search over the encoders. Therefore,
traditional TCM schemes are not necessarily optimal. In this
paper, we study binary labelings for TCM and show how they
can be grouped into classes, which considerably reduces the
search space in a joint design. For the particular case of 8-ary
modulation the search space for the labelings is reduced from 8!

to 240. Using this classification, we formally prove that for any
channel it is always possible to design a TCM system based on
the binary-reflected Gray code with identical performance to the
one proposed by Ungerboeck in 1982. Moreover, the classification
is used to tabulate asymptotically optimal TCM schemes.

I. INTRODUCTION

Trellis-coded modulation (TCM) systems are commonly
constructed by coupling a convolutional encoder and a con-
stellation labeled using the set-partitioning (SP) principle.
TCM was introduced in [1], quickly adopted in the modem
standards in the early 90s, and it is a well studied topic,
cf. [2], [3, Ch. 18]. As an alternative to TCM, bit-interleaved
coded modulation (BICM) [4], [5] was introduced in 1992.
BICM is usually referred to as a pragmatic approach for coded
modulation and is well suited for fading channels.
In this paper we study binary labelings for TCM. Of

particular interest are the binary reflected Gray code (BRGC)
[6] and the natural binary code (NBC) [7]. The BRGC is often
used in BICM designs because it maximizes the BICM mutual
information for medium and high signal-to-noise ratios [5,
Sec. III] and the NBC is often used in TCM designs because
it follows the SP principle when it is used with constellations
having certain symmetries, cf. [1, Fig. 4], [8, Fig. 3].
The performance of BICM for the additive white Gaussian

noise (AWGN) channel can be improved if the interleaver
is removed [9], a configuration that was later called “BICM
with trivial interleavers” (BICM-T) in [10]. BICM-T was
recognized as a TCM transmitter used with a BICM receiver
and it was shown to perform asymptotically as well as TCM if
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Fig. 1. Three equivalent TCM transmitters: (a) convolutional encoder with
generators G = [13, 4] and an SP mapper [1]; (c) convolutional encoder with
generators G = [13, 17] and a BRGC mapper [10]. The system in (b) shows
how a transformation (binary addition) can be included in the mapper (to go
from (b) to (a)) or in the code (to go from (b) to (c)).

the convolutional encoder is properly selected [10, Table III]
and the BRGC is used. The transmitters in [1, Table I] and
[10, Table III] for the 8-state (memory ν = 3) convolutional
encoder1 are shown in Fig. 1 (a) and Fig. 1 (c), respectively.
The authors in [10] failed to note that in fact the optimal

BICM-T configuration is equivalent to the one proposed by
Ungerboeck 30 years earlier. For a 4-ary pulse amplitude mod-
ulation (PAM) constellation (shown in Fig. 1), Ungerboeck’s
SP mapper (which is in this case equivalent to the NBC) can be
generated using the BRGC mapper plus one binary addition
(transform) applied to its inputs, as shown in Fig. 1(b). If
the transform is included in the mapper, the configuration
in Fig. 1(a) is obtained, while if it is included in the code,
the configuration in Fig. 1(c) is obtained. This equivalence
also applies to convolutional encoders with larger number
of memories2 and simply reveals that a TCM transmitter

1Throughout this paper, all polynomial generators are given in octal form.
2For some particular values of ν this equivalence is not seen in the

tables, because [10, Table III] lists the convolutional encoders in lexicographic
order, and for some values of ν, there are multiple encoders with identical
performance.



based on a BRGC mapper will have identical performance
to Ungerboeck’s TCM if the encoder is properly modified.
The previous discussion raises the question about the use

of non-SP labelings for TCM. This problem has indeed been
studied in the literature, see for example [11, Sec. 13.2.1,
Problem 13–11], [3, Example 18.2] or the so-called pragmatic
TCM [12, Ch. 8], [13]. In [9], a binary labeling for BICM-
T was heuristically proposed for MPAM constellations for
M = 4, 8, 16. Traditional TCM designs either optimize the
convolutional encoder for a constellation using an SP labeling,
cf. [1], [8], or simply connect a convolutional encoder designed
for binary transmission with an ad-hoc binary labeling (Gray
in [14] and non-Gray in [13]). TCM designs based on SP
are considered heuristic [15, pp. 525, 531], and thus, they do
not necessarily lead to an optimal design [11, p. 680]. Indeed,
Ungerboeck’s TCM design is based on heuristic rules that aim
to increase the Euclidean distance (ED) when compared with
uncoded transmission with the same spectral efficiency. This
discussion raises another question, namely, the optimal joint
design of the convolutional encoder and the labeling.
To the best of our knowledge there are no works formally

addressing the joint design of the convolutional encoder and
the labeling of a TCM system. In this paper we study this
problem and formally prove that for any channel, binary
labelings can be grouped into different classes that will result
in equivalent TCM transmitters. The classes are closely related
to the Hadamard classes introduced in [16] in the context of
vector quantization. The proposed classification allows us to
formally prove that in any TCM system the NBC labeling can
be replaced by many other labelings (including the BRGC),
provided that the convolutional encoder is properly modified.

II. PRELIMINARIES

A. Notation Convention

Throughout this paper, scalars are denoted by italic letters x,
row vectors are denoted by boldface letters x = [x1, . . . , xN ],
and matrices by capital boldface letters X . Sets are denoted
using calligraphic letters C and the binary set is defined as
B ! {0, 1}. Binary addition is denoted by a ⊕ b. We use
Rm to denote the set of all reduced column echelon binary
matrices of size M × m (see Section III) and Tm to denote
the set of all invertible m × m binary matrices.

B. System Model

We consider the TCM encoder shown in Fig. 2 where a
feedforward convolutional encoder of rate R = k/m is serially
connected to a mapper ΦL where the index L emphasizes the
dependency of the mapper on the labeling (defined later). At
each discrete time instant n, the information bits i1,n, . . . , ik,n

are fed to the convolutional encoder, which is fully determined
by k shift registers and the way the input sequences are
connected (through the registers) to its outputs. We denote
the length of the pth shift register by νp, with p = 1, . . . , k,
the overall constraint length (or memory of the convolutional
encoder) by ν =

∑k
p=1 νp, and the number of states by 2ν .

i1,n

ik,n

u1,n

um,n

Conv.
Encoder

TCM Encoder

··
·

··
·

ΦL

xn

Fig. 2. Generic TCM encoder under consideration: A feedforward convolu-
tional encoder of rate R = k/m with 2ν states serially concatenated with a
memoryless mapper ΦL .

The connection between the input and output bits is defined by
the binary representation of the convolutional encoder matrix
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where g
(l)
p ! [g(l)

p,1, . . . , g
(l)
p,νp+1]

T ∈ Bνp+1 is a column
vector representing the connection between the pth input
sequence and the lth output sequence with l = 1, . . . , m. The
coefficients g(l)

p,1, . . . , g
(l)
p,νp+1 are associated to the input bits

ip,n, . . . , ip,n−νp
, respectively, and G ∈ B(ν+k)×m. Through-

out this paper we will show the vectors g
(l)
p defining G either

in binary or octal notation. When shown in octal notation, g(l)
p,1

will always represent the most significant bit (cf. Fig. 1).
The convolutional encoder matrix (1) allows us to express

the output of the convolutional encoder at time n, which we
denote by un = [u1,n, . . . , um,n], as a function of (ν + k)
information bits, i.e.,

un = jnG (2)

where jn ! [i(1)n , . . . , i(k)
n ] with i(p)

n ! [ip,n, . . . , ip,n−νp
] are

the information bits, and the matrix multiplication is in GF(2).
The coded bits un are mapped to N -dimensional real

constellation symbols using the mapper ΦL : Bm → X where
X ⊂ RN is the constellation used for transmission, with
|X | = M = 2m. We use xn ∈ X to denote the transmitted
symbols at time n and we use the matrix S = [sT

1 , . . . , sT
M ]T

with sq ∈ RN and q = 1, . . . , M to denote the ordered
constellation points.
The binary labeling of the qth symbol in S is denoted by

cq = [cq,1, . . . , cq,m] ∈ Bm, where cq,l is the bit associated
to the lth input of the mapper in Fig. 2. The labeling matrix
is defined as L = [cT

1 , . . . , cT
M ]T, where cq in L corresponds

to the binary labeling of the symbol sq in S. The resulting
spectral efficiency of the system is k [bit/symbol].

C. Binary Labelings for TCM
The NBC of order m is defined as Nm ! [nT

1 , . . . , nT
M ]T,

where nq = [nq,1, . . . , nq,m] ∈ Bm is the base-2 representa-
tion of the integer q−1, where nq,m is the least significant bit.
The BRGC of order m is defined as Bm ! [bT

1 , . . . , bT

M ]T,
where bq = [bq,1, . . . , bq,m] ∈ Bm. The bits of the BRGC
can be generated from the NBC as bq,1 = nq,1 and bq,l =
nq,l−1 ⊕ nq,l for l = 2, . . . , m.



Example 1: The NBC and BRGC of order m = 3 are

N 3 =





0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


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T

, B3 =





0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0





T

. (3)

Alternatively, we have that nq,l = bq,1 ⊕ . . .⊕ bq,l−1 ⊕ bq,l

for l = 1, . . . , m, or, in matrix notation, Bm = NmT and
Nm = BmT−1, where
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
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0 0 1 . . . 1 1
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0 0 0 . . . 0 1
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. (4)

D. System Optimization and Search Problems

For a given constellation S and a given ν, a TCM encoder
is fully defined by the convolutional encoder matrixG and the
labeling of the constellation L. In this paper, a TCM encoder is
defined by the pairΘ = [G, L]. For given integers k,m, and ν,
we define the convolutional encoder universe as the set Gk,m,ν

of all (ν +k)×m binary matrices G.3 In [1], [8] Ungerboeck
optimized TCM codes in terms of the minimum ED over all
possible convolutional codes for well-structured one- and two-
dimensional constellations and a labelingL that follows the SP
principle, e.g., the NBC. On the other hand, in [10, Sec. IV-C]
BICM-T systems over all G ∈ G1,2,ν (R = 1/2 and 4PAM)
and L = B2 were optimized. We are also interested in the
labeling universe, defined for a given integer m as the set Lm

of all M ×m binary matrices whose M rows are all distinct.
To the best of our knowledge, there are no works addressing

the problem of designing a TCM encoder by exhaustively
searching over the labeling universe and the convolutional en-
coder universe. In this paper, we show how a joint optimization
over all G ∈ Gk,m,ν and L ∈ Lm can be restricted, without
loss of generality, to a joint optimization over all G ∈ Gk,m,ν

and over a subset of Lm.

III. EQUIVALENT LABELINGS FOR TCM ENCODERS

The output of a given TCM encoder Θ = [G, L] at time n
depends on (ν+k) information bits. Using (2), the transmitted
symbol at time n can then be expressed as xn = ΦL(un) =
ΦL(jnG).
Definition 1: Two TCM encoders Θ = [G, L] and Θ̃ =

[G̃, L̃] are said to be equivalent if they give the same output
symbol for the same information bit sequence, i.e., if they
fulfill ΦL(jG) = Φ

L̃
(jG̃) for any j ∈ Bν+k.

Remark 1: For any channel, equivalent TCM encoders have
the same bit error rate and frame error rate (FER).
Lemma 1: ΦL(c) = Φ

L̃
(cT ) where L̃ = LT , for any two

mappers ΦL and Φ
L̃
that use the same constellation S, any

T ∈ Tm, and any c ∈ Bm.

3Note that whenever G is given in its binary form, ν1, . . . , νk are also
needed to interpret G correctly according to (1).

Proof: Let vq ! [0, . . . , 0, 1, 0, . . . , 0] be a vector of
length M , where the one is in position q. Thus cq = vqL
for q = 1, . . . , M . The mapping ΦL satisfies by definition
ΦL(cq) = sq or, making the dependency on L explicit,

ΦL(c) = sq, if c = vqL (5)

for any c ∈ Bm. Similarly, for any c ∈ Bm,

Φ
L̃
(cT ) = sq, if cT = vqL̃

= sq, if c = vqL (6)

where the last step follows because L = L̃T−1. Since the
right-hand sides of (5) and (6) are equal, Φ

L̃
(cT ) = ΦL(c)

for all c ∈ Bm.
Theorem 1: For any G ∈ Gk,m,ν , L ∈ Lm, and T ∈ Tm,

the two TCM encoders Θ = [G, L] and Θ̃ = [G̃, L̃] are
equivalent, where L̃ = LT and G̃ = GT .

Proof: For any j ∈ Bν+k, Φ
L̃
(jG̃) = Φ

L̃
(jGT ) =

ΦL(jG), where the last equality follows by Lemma 1. The
theorem now follows using Definition 1.
Theorem 1 tells us that an exhaustive search over Gk,m,ν

and Lm will include many pairs of equivalent TCM encoders.
Therefore, an optimal TCM encoder with given parameters
can be found by searching over a subset of Gk,m,ν and the
whole set Lm or vice versa. In this paper, we choose the latter
approach, searching over a subset of Lm.
A reduced column echelon matrix4 is, in the context of

binary labelings, defined as a binary labeling matrix in which
(i) the first “1” in any column is in a row where all other
elements are “0” and (ii) the number of leading zeros decreases
in every column. The matrix N 3 in Example 1 (or more
generally Nm) is an example of a reduced column echelon
matrix. On the other hand, Bm is not a reduced column
echelon matrix. The following theorem, adapted from [17,
p. 187, Corollary 1] to the concept of reduced column echelon
matrices, shows an important matrix factorization which will
be used in Example 2 and Theorem 3.
Theorem 2: Any binary labeling L ∈ Lm can be uniquely

factorized as

L = LRT (7)

where T ∈ Tm and LR ∈ Rm.
Theorem 2 shows that all binary matrices L can be uniquely

generated by finding all the invertible matrices T (the set Tm)
and all the different reduced column echelon matrices LR (the
set Rm). In particular, we have [16, eq. (18)] MT ! |Tm| =
∏m

k=1(M − 2k−1) and |Lm| = M ! = MRMT, where MR !

|Rm|. In Table I, the values for MR and MT for 1 ≤ m ≤ 6
are shown. In view of Theorem 1 and Table I, for a joint
design and 8-ary constellations (m = 3), the total number of
different binary labelings that must be tested is reduced from
8! = 40320 to 240.
A modified Hadamard class is defined as the set of matrices

L that can be generated via (7) using the same reduced column
4The only difference between a reduced column echelon matrix and the

commonly used reduced row echelon matrix [17, pp. 183–184] is a transpose.



TABLE I
NUMBER OF CLASSES (MR = |Rm|) AND THEIR CARDINALITY

(MT = |Tm|) FOR DIFFERENT VALUES OF m.

m 1 2 3 4 5 6

MR 2 4 240 1.0378 · 10
9

2.6315 · 10
28

6.2943 · 10
78

MT 1 6 168 20160 9.9994 · 10
6

2.0159 · 10
10

M ! 2 24 40320 2.0923 · 10
13

2.6313 · 10
35

1.2689 · 10
89

echelon matrixLR. Note that these modified Hadamard classes
are narrower than the regular Hadamard classes defined in
[16], each including M reduced column echelon matrices.
There are thus MR modified Hadamard classes, each with
cardinality MT.
The problem of finding the set Rm of reduced column ech-

elon matrices for a givenm can be solved by using a modified
version of the full linear search algorithm introduced in [16,
Sec. VIII]. Such an algorithm would generate one member of
each modified Hadamard class, the one that corresponds to a
reduced column echelon matrix LR.
Example 2: For m = 2, where MR = 4, we have

R2 =

{

[

0 0 1 1
0 1 0 1

]T

,

[

0 0 1 1
1 0 0 1

]T

,

[

0 1 0 1
1 0 0 1

]T

,

[

0 1 1 0
1 0 1 0

]T
}

(8)

where the first element in R2 is the NBC (cf. Section II-C).
The MT = 6 binary invertible matrices for m = 2 are

T2 =

{[

0 1
1 0

]

,

[

0 1
1 1

]

,

[

1 0
0 1

]

,

[

1 0
1 1

]

,

[

1 1
0 1

]

,

[

1 1
1 0

]}

. (9)

Using Theorem 2, all the 24 binary labelings in L2 (cf. Table I)
can be generated by multiplying the matrices in R2 and in T2.
As a consequence of Theorems 1 and 2, the two TCM

encoders [G, L] and [GT−1, LR] are equivalent for any
G ∈ Gk,m,ν and L ∈ Lm, where LR and T are given by
the factorization (7). In other words, all nonequivalent TCM
encoders can be generated using one member of each modified
Hadamard class only, and thus, a joint optimization over all
G ∈ Gk,m,ν and L ∈ Lm can be reduced to an optimization
over allG ∈ Gk,m,ν and L ∈ Rm with no loss in performance.
This means that the search space is reduced by a factor of
MT = M !/MR.

A. NBC and BRGC
Another way of interpreting the result in Theorem 1 is that

for any TCM encoder Θ̃ = [G̃, L̃], a new equivalent TCM
encoder can be generated using a convolutional encoder G =
G̃T−1 and a labeling L = L̃T−1 that belongs to the same
modified Hadamard class as the original labeling L̃. One direct
consequence of this result is that any TCM encoder using the
NBC labeling can be constructed using the BRGC and an
appropriately selected encoder.
Example 3: For the two TCM encoders in Fig. 1, the NBC

and BRGC labelings are related via B2 = N2T , i.e.,
[

0 0 1 1
0 1 1 0

]T

=

[

0 0 1 1
0 1 0 1

]T [

1 1
0 1

]

. (10)

Thus, the BRGC and the NBC of order m = 2 belong to the
same modified Hadamard class, and convolutional encoders
can be chosen to make the two resulting TCM encoders equiv-
alent. This was illustrated in Fig. 1, where the transform block
corresponds to the transform matrix T = [[1, 1]T, [0, 1]T]T =
T−1. Since N2 = B2T

−1, the TCM encoders [G[13,17], B2]
and [G[13,4], N2] are equivalent, where

G[13,4] =

[

1 0 1 1
0 1 0 0

]T

= G[13,17]T
−1 =

[

1 0 1 1
1 1 1 1

]T [

1 1
0 1

]

.

The above relation between the NBC and the BRGC is
generalized to an arbitrary order m in the following theorem.
Theorem 3: The BRGC and the NBC of any order m

belong to the same modified Hadamard class.
Proof: The BRGC and NBC are related via Bm =

NmT , with T given by (4). The theorem now follows from
Theorem 2 and the definition of a modified Hadamard class.

Theorem 3 can be understood as follows. Any TCM en-
coder using the NBC Nm and a convolutional encoder G
is equivalent to a TCM encoder using the BRGC Bm and a
convolutional encoder GT with T given by (4).

IV. APPLICATION: ASYMPTOTICALLY OPTIMAL TCM
In this section we show how the classification introduced

in this paper can be used to find asymptotically optimal TCM
encoders in terms of FER. We use a union bound on the FER
that is a straightforward generalization of the bound presented
in [18] for convolutional codes. For the AWGN channel, and
a block length of K symbols, we obtain

FER ≤
∑

d∈D

KAdQ

(

√

d2
Es

2N0

)

. (11)

In (11), Es is the average symbol energy, N0/2 is the variance
of the noise, Ad is the distance multiplicity of the TCM sys-
tem, which gives the average number of pairs of sequences at
ED d [19, eq. (6.9)] and D is the set of all EDs {d1, d2, d3, . . .}
(di < di+1) between any two sequences5 of the TCM system,
where d1 is the minimum ED.
We call the infinite set of pairs (d, Ad) the distance spectrum

(DS) of a given TCM encoder Θ = [G, L], where d ∈ D. An
optimal DS TCM (ODSTCM) encoder is defined in the same
way optimum distance spectrum convolutional encoders are
defined in [20]. This means that to minimize the FER, the
DS (d, Ad) must be sequentially optimized, i.e., first d1 is
maximized, then Ad1

is minimized, then d2 maximized, etc.
We performed a search over G ∈ Gk,m,ν and L ∈ Lm

for k = 1 and 4PAM (m = 2 and sq = (2q − 5)/
√

5). The
results are shown in Table II, where the ODSTCM encoders
are shown as [·, ·]∗. For 4PAM, the possible squared EDs can
be expressed as d2

l = d2
1 + 0.8(l − 1) for l = 2, 3, . . . In

this table, we also list the encoders proposed by Ungerboeck

5Since TCM systems are in general not linear, Ad should be calculated
without making the assumption that the all-zero sequence was transmitted [2,
p. 101] [11, Problem 13–11].



TABLE II
UNGERBOECK AND ODSTCM ENCODERS: 4PAM, NBC, AND k = 1.

ν d2
1

G Ad1
, Ad2

, Ad3
, Ad4

, Ad5

1 4.00
– –

[3, 1]∗ 0.50, 0.50, 0.50, 0.50, 0.50

2 7.20
[5, 2]U 1.00, 1.25, 1.75, 2.56, 3.81
[7, 2]∗ 0.50, 1.25, 1.63, 2.56, 3.78

3 8.00
[13, 4]U 0.25, 1.00, 1.56, 2.75, 3.14
[13, 4]∗ 0.25, 1.00, 1.56, 2.75, 3.14

4 8.80
[23, 4]U 0.63, 0.50, 2.00, 2.02, 2.03
[23, 10]∗ 0.13, 0.50, 1.88, 2.39, 3.72

5 10.40
[45, 10]U 1.13, 1.52, 2.59, 3.58, 5.29
[55, 4]∗ 0.75, 2.13, 2.14, 4.47, 5.45

6 11.20
[103, 24]U 2.34, 0.00, 2.82, 0.00, 7.60
[107, 32]∗ 0.13, 1.44, 1.41, 1.73, 4.58

7 12.80
[235, 126]U 2.19, 0.00, 3.05, 0.00, 10.09
[313, 126]∗ 1.46, 0.00, 4.77, 0.00, 15.42

8 13.60
[515, 362]U 0.53, 1.89, 1.66, 3.81, 6.03
[677, 362]∗ 0.36, 1.06, 1.47, 3.44, 5.25

in [8, Table I] (shown as [·, ·]U). The search was performed
numerically considering 5 terms in the spectrum6. Although
no gains in terms of minimum ED were obtained, the DS of
the ODSTCM encoders is better than those in [8, Table I].
Also, the NBC was among the optimal labelings found for all
values of ν and is therefore the chosen labeling (first one in
lexicographical order) in Table II. This is however not the case
for other combinations of m, k, and ν, which are not shown
here due to space limitations. Fig. 3 shows that the new TCM
schemes have better FER performance not only asymptotically
but also for realistic signal-to-noise ratios.

V. CONCLUSIONS
We analyzed the problem of jointly designing the convolu-

tional encoder and the labeling of a TCM scheme, by grouping
the labelings into classes. Theoretically, this contributes to
a better understanding of the interplay between code and
labeling in TCM systems. Practically, it enables more powerful
optimization methods for TCM schemes. As a proof of con-
cept, TCM schemes were found that improve on Ungerboeck’s
celebrated designs by up to 0.3 dB.
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