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Abstract: Today’s assembly systems are adapting to the increased mass customisation. This means shorter cycle times, more variants 
and a more complex environment for the operators. An industrial case study has been performed in order to describe relations 
between complexity, quality and cognitive automation. This article use quantitative methods to describe the complex environment. 
This is done in order to create a better understanding for the importance of using cognitive automation as an enabler in order to 
create a more competitive assembly system for the future. 
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1. Introduction 
The future holds a more customized market. Complexity 

related to the increased number of product variants induced by 
mass customization has huge effects on the final mixed model 
assembly lines in modern factories. This leads to more unique 
products and a more complex work environment for the 
operator who will assemble the products, case studies show that 
90 % of final assembly tasks are still performed by humans [1]. 
One definition of complexity is by Weaver [2] whom defines 
complexity as the degree of difficulty to predict the system 
properties, given the properties of the systems parts. Schleich 
means that a driver for assembly system complexity is the high 
variety of products and parts [3]. Similar ideas can be found by 
Urbanic et al. which, presents a model of complexity were 
quantity, diversity and content of information is direct 
associated with complexity [4]. The focus in this paper is the 
complexity related to mass customization i.e. caused by an 
increase of number of products and parts to assemble 
(increased amount of information). To meet requirements from 
mass customization, many assembly systems are using a mixed-
model assembly approach as an enabler for the high variety of 
products. Although mixed model assembly is an enabler for high 
variety, such systems tend to get very complex as variety 
increase [5]. An important aspect of complexity is the “perceived 
complexity”. From an operator point of view this is a subjective 
factor such as competence and information [6]. Cognitive help 
tools are seen to reduce the perceived complexity by supporting 
competence and information.  

The increased task complexity in assembly needs to be 
handled otherwise the quality of the product and productivity in 
the system could be affected. In order to maintain high quality 
and reduce the complexity, one solution could be to consider 
cognitive automation for the operator e.g. technical support to 
know how and what to assemble and to be in situation control. 
An industrial case study has been executed in order to 
investigate the effects cognitive automation have on quality, in 
terms of assembly errors, in a complex final assembly context. 

The aim of this paper is to:  
Investigate if cognitive automation can be used to increase 
quality in a complex final assembly context.  

An industrial case study has been executed to test if there is 
a relation between cognitive automation, quality and 
quantitative (objective) station complexity. 

 
2. Case company 

Volvo Car Corporation manufacturers around 400 000 cars 
per year. The two main assembly plants are located in Gent, 
Belgium and in Torslanda, Sweden. In the Torslanda plant five 
models; V70, XC70, S80, XC90 and V60 are produced with a total 
volume of 136 323 cars for the year 2010. The five models are 
based on three different platforms. 

One serial flow mixed-model assembly line is used for all 
five models in the final assembly plant. The assembly line is 
divided into different line segments, which can have buffers in 
between. A driven conveyor line continuously paces a majority 
of the assembly line segments. The assembly is characterized by 
short cycles at each station and a high division of work. The 
current tact time (September, 2011) is about 66 seconds but can 
vary between the different line segments. To some extent 
subassembly lines are also used at different parts of the line. At 
the sub-assemblies other tact times may be used. 

 
2.1 Selected area 

In order test the aim of the paper, an area of interest was 
selected. The area is one of the most complex in the final 
assembly with a very high product variety and a large number of 
parts. The chosen area consists of a total number of sixteen 
stations were seven have been studied within this project (the 
grey operators in figure 1 represents the chosen stations). The 
chosen stations are a part of the pre-assembly area for the 
preparation line of engines. In the line the engines are 
customised with correct driveshaft, cables etc. The engines 
assembled are used in all models and variants on the main 
assembly line. There are three areas for the pre-assembly of the 
engines and this is the second area, Power Pack 2 (PP2). 

 
Figure 1. Selected area, total number of stations and selected stations 
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The layout of the pre-assembly area is organized as a serial 
flow assembly line without buffers between the stations. A 
driven assembly line conveyor paces the line. The assembly line 
is characterised by short tact times, currently 63,2 seconds, and 
a high number of different product variants and a large number 
of different parts. There is one operator working at each station. 
Both sides of the line are used resulting in that two stations can 
use the same line range but on different side of the assembly 
object. Some stations utilize both side of the line, which for 
instance can be due to large size components. 

The work organization is designed so that one team is 
responsible for 6-8 stations. There is one team leader within 
each team. The operators rotate between the stations in the 
team. For the stations chosen in this study a total number of 
two teams are involved as seen in figure 1. All of the 
investigated stations are considered to be complex due to the 
large number of variants and parts. 

 
3. Quantitative methods used 

Three different measurements have been used to verify the 
hypothesis of this paper namely; operator choice complexity, 
assembly errors (quality) and cognitive automation. How these 
measurements have been gathered is explained in the following 
sections. Data have been gathered in the final assembly plant at 
Volvo Cars in Torslanda, Sweden during the summer and 
autumn of 2011. 

 
3.1 Operator Choice Complexity 

The complexity in mixed-model assembly caused by the 
high levels of variety is by Hu et al. called “Operator Choice 
Complexity” (OCC), which concerns all choices that the assembly 
operator can make and the risk for error associated with these 
choices [5]. The measurement of complexity at each station that 
is used for comparison in this paper is the operator choice 
complexity proposed by Hu et al. [5] and Zhu et al. [7]. The 
model can be used to calculate a complexity measure for mixed-
model assembly lines.  

The complexity model is based on entropy function. A 
definition of the operator choice complexity that is induced by 
product variety is given as follows: Complexity is the average 
uncertainty in a random process i of handling product variety, 
which can be described by entropy function Hi in the following 
form: 
 Hi (Pi1, Pi2, ..., PiMi) = -C�Mi 

j=1PijlogPij                (Eq 1) 
where Pij is the occurrence probability of a state j in the random 
process i, j � [1 Mi], C is a constant depending on the base of 
the logarithm function chosen. If log2 is selected, C = 1 and the 
unit of complexity is bit [5]. 

Equation 1 is used to calculate the operator choice 
complexity for each of the seven selected stations. Input to the 
equation is the number of variants that occurs at each station 
and the demand for each variant based on 3835 cars produced 
during one week. The probability P is calculated for each variant 
j and for each station i and the total operator choice complexity 
is calculated with the entropy equation 1. The result for each 
station i is presents in figure 2.  The unit scale in the figure is bit. 

Figure 2. Operation choice complexity result in the chosen stations 
 
Other complexity parameters such as number of tools, parts 

and tasks to perform have been gathered, seen in table 1. These 
parameters is used as a complement to the OCC measure. The 
parameters have either been collected through direct 
observations at the assembly line or the balancing and 
sequencing system used at Volvo Car Corporation. 

 
Table 2. Complexity parameters related to each station 

Station number 30 8 9 10 11 13 23 

Number of Parts* 15 23 20 14 18 15 12 

Number of Tools 2 3 3 4 5 3 2 

Number of Tasks** 14 22 26 17 15 25 17 

* Sequenced parts seen as one
** Mean value of two products
 
3.2 Assembly errors 

Assembly errors are discovered at control stations or 
directly by the operators at the assembly stations. All errors are 
reported by team leaders or by responsible quality personnel. 
The errors are connected to the product architecture. This 
means that even if a problem is discovered downstream from 
where it actually occurred it can be traced back to station, 
responsible team and individual operator causing the error.  

Errors reported to the internal quality system have been 
extracted for a time period of 16 weeks from the system and 
sorted by station. The results are presented in table 2. The 
errors have been cleared from errors caused by material and 
parts defects i.e. only assembly errors are included. The errors 
found had the following characteristics: 

 
Table 3. Type and number of errors 

Error type Number of errors Percentage 

Not Connected 106 30% 

Incorrectly fitted 83 24% 

Missing 51 14% 

Not tightened 38 11% 

Total 278 79 % 

Assembly errors are categorized in eleven categories, were 
the top four categories accounts for (278) 79% of the total 
number (353) of errors. These categories are associated with 
errors were parts not have been connected properly, incorrectly 
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assembled or that the parts are missing or not tightened 
correctly. Other quite common errors are that parts are loose or 
that e.g. plastic covers have not been dismantled.  

 
3.3 Cognitive Automation 

In order to measure the cognitive level of the station a 
components of a method called DYNAMO++ was used. The 
DYNAMO++ method [8] and a concept model [9] for task 
allocation were developed during 2007-2009. The main aim is to 
evaluate and analyse changes in an assembly system due to 
triggers for change i.e. the company’s internal or external 
demands and Levels of Automation (LoA). The LoA analysis is 
done at working place level [10] i.e. on task, in stations [11, 12] 
and from an operator’s perspective. 

The measurement parameters used for task allocation is a 
seven by seven matrix [8], seen in figure 3, further developed 
from Frohm’s taxonomy [13].  

Figure 3.  LoA matrix [14] 
 
The LoA measure was made from direct observations and 

from standardised assembly instructions. An advantage of the 
use of two sources of information is that the standardised 
assembly instruction does not always correspond with the 
reality, which we wish to capture. Two models were assessed for 
each station, the most common model (C) regarding demand 
and the heaviest model (H) to produce regarding time. The 
distributions of the tasks for the two models are presented in 
the matrix illustrated in figure 4.  

Results show that 62 percent (H) and 64 percent (C) were 
made with LoA level= (1;1) i.e. by hand and with own 
experience. The fact that so many tasks are done without 
cognitive support could have an impact on quality. Further, 25 
percent (H) and 24 percent (C) is done with LoAcog =5 (often Pick-
By-Light or indicators of what bit to use for the pneumatic 
screwdrivers). These are examples of tools, which are used to 
guide the operator to make a correct action and avoid errors. 
Examples of the different cognitive support tools (levels of 
cognitive automation) used at the stations 

The parts are presented to the operators in the material 
facade in bulk packages or by sequence racks (which could be 
seen as cognitive automation because they are sorted i.e. 
LoAcog=2=working order). Many different sizes of the bulk 
packages are used in the façade. Poka-yoke solutions such as 

Pick-By-Light systems, illustrated in figure 5, are used for some 
parts but not all, see table 3. 

 

 
Figure 4. Illustration of Levels of Automation (LoA) measured at all the seven 
stations 

 
Figure 5. Pick-By-Light, an example of cognitive automation, LoAcog=5 

 
Operators are supported in their work by screens, which 

show current model and variant and status of required 
tightening operations. The operators are also provided with 
feedback from the Pick-By-Lights and haptic feedback from 
some of the tools used. Operator instruction sheets are available 
at every team area gathered in binders. Both manual tools and 
automated tools are used in the assembly work. 

 
 Table 4. Nr of tools and cognitive support used at the stations 

Station 30 8 9 10 11 13 23 

Number of Tools 2 3 3 4 5 3 2 

Number of PBL 7 15 13 0 6 3 5 

Sequenced articles 0 0 0 1 1 1 1 
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4. Relations between the three areas 
In order to answer the hypotheses an investigation 

between four relations (illustrated in figure 6) has been done 
and is discussed in following sections. 

 
Figure 6. Overview of the three investigated areas  
 
4.1 Relation 1; between operator choice complexity and 
assembly errors 

The first relation between the operator choice complexity 
and the assembly errors is illustrated in figure 7. As seen there is 
a relation between the lowest complexity and the lowest 
number of assembly errors (Station 13) and vice versa (Station 
23). Station 11 differs the most from the pattern that the 
assembly errors follows the measure of OCC. Therefore these 
three stations have been further compared in the other 
relations. 

 
Figure 7. Relation between operator choice complexity and assembly errors 
 
4.2 Relation 2; between assembly errors and cognitive (and 
physical) automation 

The station that sticks out is station 11, if assembly errors 
had a correlation with OCC the anticipated number errors found 
would have been approximately the half, why is it so high? 

Due to the fact that over 60 percent of the tasks are done 
with own experience and that “incorrectly fitted” and “not 
connected” has the highest assembly errors in the further 
investigated stations (11,13 and 23), a summary of the assembly 
errors is shown in table 4, could be an indicator that there is a 
need for more cognitive support within these stations. 
Station 11  

A total of 241 assembly errors were found during the 
investigated time period. 181 assembly errors were excluded 
due to that these errors were associated with errors from a 
supplier and not the assembly operation. Leaving the total 
number of errors for the investigated time period to 60 errors. 
63% (38) of the errors were classified as “not connected” and 
one single part and task accounted for 38 % (23) of the total 

errors. The LoA of this specific task was (1, 1)1. Meaning that the 
operation was performed without any support. 
Station 23 

A total of 91 assembly errors were found during the 
investigated time period. 60% (54) of the errors were classified 
as “incorrectly fitted”. One single part and task accounted for 51 
% (47) of the total errors. The part was either placed in wrong 
position or missed. The LoA of this specific task was (1,1). 
Meaning that the operation was performed without any 
support. 
Station 13 

A total of 10 assembly errors were found during the 
investigated time period. They were all classified as “not 
connected”. The low error rate at this station could be explained 
by that most operations at the station were associated with a 
high LoA. Part assurance was made with a hand scanner and 
tightening operations were counted by the system to match the 
number of tasks supposed to be performed. 

 
Table 5. Summary of errors at station 11, 23 and 33 
Error Code Nr. of errors 

(station 11) 
Nr. of errors 
(station 13) 

Nr. of errors 
(station 23) 

Total nr 
of errors 

Incorrectly 
fitted  

4 - 54 58 

Not 
Connected  

38 10 5 53 

Not 
Tightened  

2 - 19 21 

Missing 14 - 5 19 
Total 60 10 91 161 
 
4.3 Relation 3; between operator choice complexity and 
cognitive automation 

The choice complexity is directly influenced by the choices 
and variance of solutions. An increased number of models, 
parts, tools etc. will result in an increase of choice complexity. 
Table 5 shows the number of variants and the demand of the 
most common variants. The choice complexity measure cannot 
directly be reduced by cognitive automation. However, 
introducing cognitive automation can reduce the perceived 
complexity caused by the increased choice complexity. 

 
Table 6. Complexity elements 

Objective 
Complexity 
Elements 

Station 11 Station 13 Station 23 

OCC 3,9 3,8 4,5 
Number of 
tools  

5 3 2

Number of 
variants  

31 27 51 

Demand for 
each variant 

8 variants 
accounted for 

77 percent 

9 variants 
accounted for 

78 percent 

6 variants 
accounted for 

51 percent 
 

At the investigated stations decision support is given by 
Pick-By-Light and process support is given by monitors and tools 
associated with tightening operations. Tightening tasks are easy 

                                                            
1 Not observed during the LoA assessment assessed afterwards 
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to control and restrict while assembly operation, which is done 
without any use of a tool, are very hard to monitor and control. 
Many manual tasks on the stations were to connect electrical 
connections. However neither decision nor process support was 
given when performing contact operations. The information 
regarding these operations was to be found in binders at the 
stations. If the contact operations are missed or badly 
performed the error is not acknowledged until on later control 
stations while tightening operations are controlled within the 
station boundaries by a control system connected to the tools. 

 
4.4 Relation 4; is there a relation between cognitive automation, 
quality and quantitative (objective) station complexity? 

Earlier empirical results [15] show that in general, system 
complexity, does affect performance negatively and that 
training and that man/machine interface plays important roles 
in minimizing the negative effect of system complexity on 
performance.  

Results from previous sections show that relations could be 
made between quality, complexity and cognitive automation. 
Believes are that cognitive automation can be used as a mean to 
reduce the negative effects of choice complexity in terms of 
quality. 

 
5. Conclusion 

This paper shows that it is possible to use quantitative 
measures in order to show relation between station complexity, 
quality and cognitive automation. These methods could be 
further used in order to improve both the resource efficiency 
and resource allocation in order to get an effective assembly 
system. Then, the operators’ competence and experience 
should also be taken into consideration, which is not fully 
covered by using the three methods. 

The main conclusion is that there is evidence that cognitive 
support is needed in final assembly to minimize the negative 
effects of complexity. 
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