1. Introduction & research objectives

- Large interest in using bioethanol as transportation fuel
- Biobutanol as an alternative to bioethanol?
- Life cycle assessment (LCA) to determine the environmental performance of high-gravity technology for
 - Yeast-based ethanol production
 - Research steps to make butanol conceivable as a biofuel in addition to ethanol
- Simulation to accurately take into account scale up effects, at the process level and at the life cycle level
- Carbon accounting and (indirect) land use effects due to the production of 2nd generation biofuels

2. What is Life Cycle Assessment?

<table>
<thead>
<tr>
<th>Goal and scope definition</th>
<th>Inventory analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpretation</td>
<td>Direct applications:</td>
</tr>
<tr>
<td></td>
<td>• Product development and improvement</td>
</tr>
<tr>
<td></td>
<td>• Process development</td>
</tr>
<tr>
<td></td>
<td>• Strategic planning</td>
</tr>
<tr>
<td></td>
<td>• Public policy making</td>
</tr>
<tr>
<td></td>
<td>• Marketing</td>
</tr>
<tr>
<td></td>
<td>• Other</td>
</tr>
<tr>
<td>Other aspects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technical</td>
</tr>
<tr>
<td></td>
<td>• Economic</td>
</tr>
<tr>
<td></td>
<td>• Market</td>
</tr>
<tr>
<td></td>
<td>• Social, etc.</td>
</tr>
</tbody>
</table>

3. Biofuel production system

- Biomass & LCA
 - Energy
 - Carbon accounting
 - Land use and land use change
 - Resource extraction
 - Transport
 - Emissions

- Production of biofuel
 - Biowaste
 - Pretreatment
 - Detoxification
 - Hydrolysis
 - Enzyme production
 - Hexose fermentation
 - Pentose fermentation
 - Purification
 - Biofuel
 - Transport
 - Emissions

4. Issues raised by the case

1. Biofuels and LCA

- Land use and indirect land use effects
- Carbon accounting

2. Technology development, scale and LCA

- Development "stages" with respect to system boundaries and scale
 - Process step → Scale-up of equipment
 - Process complex → Optimization
 - Value chain → Inclusion of the upstream and downstream processes
- Time and scale in technology LCA
 - The relevant state is problem- and technology-dependent
 - Some methodological implications
 - Shifting time frame → Technical development, affects performance data, perhaps functional unit
 - Change in background system related to time and scale of technology penetration
 - Feedstock availability and production of by-products

3. Simulation and LCA

- Simulation for calculating mass and energy flows, designing equipment, coping with the nonlinear nature of processes and quantifying uncertainty
- Methodological frameworks using simulation and LCA
 - Life cycle model for predicting economic cost, product and environmental performance
 - LCA and process simulation under uncertainty

4. Use of the analysis results

- Suggest research steps for improvement/optimization of the fermentation process and the value chain
- Decision support on how to proceed with development

5. Potential contributions

- Method for using LCA during the development of a technology
- Incorporation of scale effects at the process and life cycle level
- Incorporation of carbon accounting and land use (change) impact in the LCA of biofuels
- LCA of high gravity fermentation for biofuels production

References