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Dynamic response reconstruction using passive components

Thesis for the degree of Doctor of Philosophy in Solid and Structural Mechanics
ANDERS T. JOHANSSON

Department of Applied Mechanics

Chalmers University of Technology

ABSTRACT

In many testing applications within the field of structural dynamics, such as noise and
vibration harshness, rattle and squeak, or durability testing in the automotive and truck
industries, large hydraulic or electromagnetic actuators are used to excite the tested
structure. Such actuators are mounted in the laboratory in a fixed configuration referred
to here as a test rig.

A frequent method for calculating the input to such test rigs is to replicate a certain
reference signal, for instance dynamic responses from driving tests, to ensure that the
test case is physically motivated. Versions of the Time Waveform Replication (TWR)
method are often used to this end, iteratively calculating an input sequence used to
excite a system such that its response replicates a desired reference. The TWR algorithm
essentially estimates the unknown input by pseudo-inversion of the frequency domain
transfer function.

In most situations, TWR will ensure a test output which is close to the reference
signal; however, if there are eigenmodes of the test specimen in the desired frequency
range of the test which are uncontrollable, it can be shown that the required input force
and/or the error between test output and desired reference will be large. Such problems
remain even when reference-contributing modes are but marginally controllable. In a test
rig such as described above, this controllability shortcoming may be impossible to prevent
in the usual manner, i.e. through changing the input configuration. This can cause poor
reference replication whereby the validity of the test may be put into question.

For such specific cases, where the possibilities of changing the input configuration is
slim and controllability is lacking, a different approach is required. This thesis presents
such an approach. It introduces the concept of passive control to the problem of response
reconstruction: By attaching a modifying component to the tested structure, designed
specifically to improve response reconstruction, the controllability of the system can
improve.

Two methods for designing such passive components are described. The first uses a high-
quality finite element model of the tested structure and parameterized passive component,
performing synthetic TWR experiments to evaluate its rig control properties. The second
uses instead an experimentally derived model of the tested structure, which is coupled
to the analytical model of the passive component through an experimental/analytical
substructuring technique.

Keywords: experimental methods, Time Waveform Replication, response reconstruction,
drive signal identification, passive control, model calibration, model updating, substruc-
turing, controllability
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Part I
Extended Summary

1 Introduction and motivation

An important aspect of laboratory testing within the field of structural dynamics is input
control. When assessing structural integrity under dynamic loads, dynamic fatigue, rattle
and squeak, or structure-borne vibrations, how to make sure that the load- and vibration
levels are comparable to the ones which the tested product will experience in the span of
its lifetime? For a long time, one of the testing engineer’s most trusted tools has been to
use measurements from older product life history, or early-version products submitted to
working conditions, as a reference signal for dynamic testing, replicated by use of linear
iterations in the frequency domain. This method is known as Time Waveform Replication.

One of the first examples of the Time Waveform Replication (TWR) algorithm applied
to structural dynamics testing was presented by Cryer et. al. [9]. The paper describes an
attempt at replicating measured wheel accelerations by inverting the frequency domain
transfer function from vertical load input at the wheel thread to acceleration output at
the wheel spindle. While this direct method proved unsuccessful, it was found that by
approaching the solution iteratively (compensating for modeling errors and nonlinearities),
good agreement between measured output and desired response could be achieved.

Such early efforts have been followed by many others, to the point that TWR has been
included in the US military testing standard [87] as well as commercial testing software,
e.g. [37]. While initially being used on systems with (next to) collocated sensors and
actuators, developments to account for more sensors than actuators [12, 50] have enticed
study of which sensor outputs to replicate in order to achieve the best correlation with an
end goal [96], in the specific study cited induced fatigue damage.

These developments combine to imply another question of importance: If the input of
the TWR algorithm is not collocated with the output to be tracked, the set of controllable
and that of observable modes of the test specimen may differ. Furthermore, if all load
transfer paths that were activated during the acquisition of the reference signal cannot be
replicated in the testing facilities, one might face the situation that there is an observable
contribution to the reference signal which is uncontrollable from the test rig input. This
may lead to unrealistic loading and poor tracking. Such controllability shortcomings have
been reported in literature in the case of component testing, where the intuitive solution
to alter the input configuration was utilized to somewhat counter the effects [11].

But what if that is not possible? Many test rigs are composed of large shakers,
frequently hydraulic, rigidly mounted to ground. If controllability should be lacking in
such a test setup, the approach to alter the input configuration is not applicable. So
what to do then? This thesis aims at investigating an approach using passive control
components, inspired by the use of semi-passive control in energy-optimal control of
multi-body systems [81].

Paper B - D use a Finite Element (FE) model to design such a passive control
component. In Paper B and Paper C, the methodology of passive control component



design based on high-fidelity FE models is developed in the context of optimization.
Paper B describes a two-step gradient-based optimization procedure to design the
passive component. This approach is however cumbersome and likely hard to implement
on larger-scale problems, wherefore an approach using a global search method (Genetic
Algorithms) was argued in Paper C. In Paper D, the method was validated using
laboratory testing of a simple structure. For the implementation of such an approach, it
is vital that the FE model used for the design of the passive control component is of high
quality. To this end, model calibration, previously known as model updating, is needed.
This is the subject of Paper A. An alternative approach to passive control components
design, sidestepping the need for a validated FE model by use of substructure synthesis,
was developed in Paper E.

2 Models in structural dynamics

System descriptions in structural dynamics can be separated into external and internal
descriptions. In an internal description, the dynamics of the system is described by some
internal states, whereas an external description offers information on the input- output
relation without internal variables, (c.f. [5, 46]). Moreover, an internal description is
typically realization-dependent. The principal difference between internal and external
descriptions is shown schematically in figures 2.1 and 2.2, where the former shows an
external and the latter an internal model structure. This chapter deals exclusively with
linear models.

2.1 External description

For a typical structural dynamics system modeled in continuous time, which is passive
and time-invariant, an external description in the time domain is given by the convolution
relation: -
yt) = [ slt-rurr (2.1
— 00
Assuming that the impulse response g(t) is an analytical function, the system can
equivalently be described in terms of the Markov parameters of the system, defined in the
continuous-time case as the coefficients of a Taylor expansion of g(t) [5, 46].

In practice, real dynamic systems are often sampled at discrete time instances because
of the need for digital signal processing. A similar expression as (2.1) holds for discrete
time, but replacing the convolution integral by a convolution sum. In discrete time, the
argument ¢ is often used as the integer sample number rather than time, such that sampled
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Figure 2.1: External model structure. The dynamics of the system is represented by a
"black box” - here exemplified by a frequency-domain transfer function.



time instants ts relate to ¢ by the sampling interval A; as t; = A;t. For discrete external
models, the Markov parameters are defined by the shift operator applied to g such that
gr = g(t — k). Markov parameters of casual discrete-time systems are often structured in
a specific block matrix form which is constant along the anti-diagonals known as a Hankel
matrix, H cf. [5, 46]:

[ & g 8k 8k+1 1
22 g3 o 8Bk+1 Bk+2
H=| ' ' ' (2:2)
gk 8k+1 0 82k-1 8ok
rk+1 8k+2 82k g2k+1

Note that g is not included; thus, an outer description of a causal discrete-time system
is given by the instantaneous action defined by gy and the dynamic action defined by H
[5]. Descriptions of this type are important for the realization problem, discussed in the
next section.
By applying Laplace transform to equation (2.1), the convolution expression reduces
to multiplication [5, 85]:
Y(s) = G(s)U(s) (2.3)

Where G(s) is the Laplace transform of the impulse response g(t), known as the transfer
function of the system. In structural dynamics, systems are often subject to periodic
excitation, u(t) = U(w)e™?. Evaluating the transfer function over the imaginary axis,
that is, by letting the complex argument s of (2.3) satisfy s = iw, where w € R, the
Frequency Response Function (FRF) matrix is acquired!:

Y (w) = G(w)U(w) (2.4)

Here, the imaginary unit ¢ = /—1 has been dropped in the argument for convenient
notation. The relation is also shown in figure 2.1. It represents the value of a system
output by a stationary harmonic unit excitation at a given input and frequency:

_ Yw)
Ug(w)

Gjr(w) (2.5)
In other words: The response of the system at output £ to harmonic excitation at input j
with frequency w is a harmonic function with the same frequency, whose magnitude has
been amplified by a factor |G, (iw)| and phase shifted by ZGjx(iw) (cf. [85]). Similar
relations hold for discrete-time systems, using instead discrete Laplace/Fourier transforms.

Structural dynamics testing for identification of models results in outer models of the
structure, most frequently FRF matrices. Depending on whether the output consists
of accelerations, velocities or displacements, the FRF matrix is alternatively termed
accelerance, mobility or receptance matrix, respectively. Modal testing is thoroughly
described in textbooks, e.g. by Ewins [21].

'n which case the Laplace transform can be viewed as the real-valued Fourier transform [22].



2.2 Internal description

Internal is an epithet assigned to models in which the time evolution of the dynamical
system is described by a differential equation on some internal state, along with algebraic
equations to map the state to the model output. In structural dynamics, many compu-
tational models are derived using first principles, such as Newton’s laws, and a proper
discretization of the problem, resulting in the second-order equation:

M4(t) + V4a(t) + Kq(t) = £(t) (2.6)

Here, M is the mass matrix, V is the viscous damping matrix and K is the stiffness
matrix, while the vectors q(¢) and f(¢) are the displacement and force vectors, respectively
(cf. [27]). A dot denotes differentiation with respect to time. Thus, the internal state of
this model is the displacement of the system. In many cases, the calculated displacements
are also the sought-after output of the system; the implicit output equation is then
y(t) = Iq(t), where I is the appropriately sized identity matrix.

The second order problem of equation (2.6) can be rewritten into a linear first-order
form. Such models are popular in several engineering fields and are referred to as
state-space models, depicted as in figure 2.2 (see further [64], [85]):

e
—~

~
~—

I

Ax(t) +Bu(t) (2.7)
y(t) = Cx(t) + Du(t) ’
Here, A, B, C and D are known as the state-, input-, output- and direct throughput
matrix, respectively. x(t) is the state vector, u(t) the input vector and y(¢) the output
vector. Furthermore, the first equation of (2.7) is sometimes called the state equation,
making the second the output equation. Assuming that M is invertible, a way to transfer
the second-order equation (2.6) to a first-order state equation form is to define the matrices

as [64]:
0 ~I 0
A== MK M-V ] B= [ M-! ]Pi (2:8)

Where P; is the distribution matrix for input, that is, £(¢) = P;u(t).

A

Figure 2.2: Internal model structure. The dynamics of the system is represented by the
evolution of the internal state, governed by some differential equation. An internal model
is here exemplified by a first-order state space model.



The dynamic stiffness matriz Z(w) of a system is established assuming periodicity,
such that the time dependence of the system response can be reduced to a harmonic
multiplier:

Z(w)Q(w)e™! = (—w*M + iwV + K) Q(w)e™" = F(w)e™" (2.9)

From equation (2.9), it is evident that the inverse of the dynamic stiffness matrix is
equivalent to the frequency response according to the definition in equation (2.4) when
the system output is the displacement vector Q(w) and its input the force vector F(w).
This serves to illustrate that an external description is easily calculated from an internal.

The reverse however is not true. The problem of developing an inner model from
an outer is referred to as the realization problem [5]. FRF and Markov parameter
representations are the inputs to modal parameter estimation techniques [6, 45, 38] and
system identification procedures [57, 62] for developing internal models.

The popular modal parameter estimation technique known as the Eigensystem Re-
alization Algorithm (ERA) [38] identifies a state-space system with zero throughput
from the Hankel matrix (2.2) by use of singular value decomposition, from which modal
parameters are extracted and presented to the user. The system identification methods
known as state-space subspace system identification (4sid) techniques also use the Markov
parameters [57]. E.g. in [62], two frequency domain versions of 4sid are described, the
first of which utilize a similar singular value decomposition of a Hankel matrix as ERA,
acquired from Inverse Discrete Fourier Transform (IDFT), for estimation of A and C in
(2.7), but identifying B and D from a linear least squares problem in a second step.

System identification results in a model of the form in (2.7). In this thesis, frequency-
domain state-space subspace system identification, by the n4sid function in matlab, is
used to estimate modal parameters from the eigensolution of the identified A matrix in
paper A and paper D. Assume that a state-space realization {A, B, C,D} has been
found. Its frequency-domain transfer function is then:

Gw)=C((iw)I-A) 'B+D (2.10)

Letting T be an invertible matrix of the appropriate size, it is easy to verify that the
system {T~'AT, T~ !B, CT,D} will have the same transfer function; hence, internal
models are not unique: Any transformation of this kind, known as a similarity transform,
will yield the same outer model and thus the same input-output relation, but another set
of system matrices as above, and a different state vector, £ = T~ 'x. The most widely
used similarity transform is perhaps the diagonalizing transform, which transforms the
system such that the internal description consists of system eigenvalues and generalized
eigenvectors. Such a transformation is hence also used in ERA [38].



2.3 Parametric model calibration

Model validation and model calibration? is important whenever results from computational
models are used for design. Aspects of model calibration is the topic of paper A, and
model calibration and validation is applied in paper D. An overview of some of the
aspects of validation and calibration is given here. See also [23, 61].

There is a subtle difference between modal parameter estimation/system identification
and parametric model calibration: In identification, an internal model with low rank to
define the input-output relation defined by a test is sought, whereas in a corresponding
parametric model calibration, a parameterized high-order model is calibrated such that
its input-output relation matches the measured in the desired frequency domain. Hence,
identification techniques may be used to characterize the measurements, so that the
compared quantities are eigenvalues and/or eigenvectors instead.

The calibration and validation process is begun by acquisition of a set of reference
test data from a series of vibrational tests in laboratory, typically consisting of either
frequency response functions or eigenvalues and eigenvectors. Parts of this reference data
set is then compared to results from a corresponding calculation on the computational
model to be validated; if the discrepancy is low enough, the model is said to have been
validated with respect to measured data. If not, the parametric model (2.11) needs to be
calibrated with respect to the measured data.

M(p)d(t) + V(p)a(t) + K(p)a(t) = £(t) (2.11)

Here, p € P refers to the parameters describing the model and their admissible set,
respectively. Thus, a key feature in model validation and calibration is the metric
used for comparing measured and analytical results. This metric may differ between
the validation and calibration stages. Given a vectorial quantity of comparison Aq,
defined as the difference between analytical and experimental quantities such that Av =
VEEM — Vmeasured, validation with respect to symmetrical deviations of the metric can
be expressed as:

—0<Av<o (2.12)

Where ¢ is some tolerance level vector. Similarly, parametric model calibration can be
described mathematically as the optimization problem:

* = argmin |Av 2.13
p* = argmin v (213)
Conventionally, the norm || - || used is the sum of squares, but that is not a prerequisite

unless using a dedicated optimization method. In this thesis, the term error metric is
used for Av, whether used for calibration or validation.

The choice of parametrization is also crucial in parametric model calibration. The
topic is discussed in the influential book by Friswell and Mottershead [23], describing in

2also known as model updating - a term lately used more frequently to describe the process in which
models are updated as a result of new specifications in the product development process, as opposed to
the calibration of model parameters to ensure correlation with performed dynamic tests. In this thesis, it
is however used as a synonym to model calibration. The terms will be used interchangeably.



particular the Best Subspace Method by Lallement and Piranda [53]. Another example of
parameter discrimination techniques is the Orthogonality Co-linearity Index by Linderholt
and Abrahamsson [56, 55]. Using experience from a number of experiments, Mottershead et
al. [65] furthermore argued that finite element models are most prone to errors in structural
joints and that distances and angles of such joints are most suitable as parameters for
calibration. Friswell, Mottershead and Ahmadian [24] also argue geometrical parameters
over stiffness and mass parameters.

Several comparative studies have been published advocating one error metric over
another for use in model calibration, e.g. [30, 52]. Friswell and Mottershead [23] describe
many of the error metrics still considered in the field. Historically, the question of which
type of data to use in model calibration has been subject to much debate: Many papers
have been written advocating the use of modal data in the calibration procedure, such as
[1, 20, 29, 80, 52, 92]; as much has been written on using FRF data more or less directly
[7, 31, 36, 35, 51, 54]. Some also advocate the use of transmission zeros, or antiresonances,
along with eigenfrequencies [10, 44, 66].

Recent applications of model calibration reported in literature include calibration
of models for the ARES I-X pathfinder vehicle, using principal component analysis of
FRF's to construct an error metric and including also analysis of variance (ANOVA)
considerations [34], and the Berke arch dam, using eigenvalues extracted from operational
modal analysis [82].

3 Time Waveform Replication

The Time Waveform Replication algorithm is an iterative method to calculate the input
needed to track a desired output. It works on frequency domain data. In control terms,
it can be described as a linear Iterative Learning Control (ILC) algorithm. In the PhD
thesis by Dijkstra [17], it is proposed that ILC can be interpreted as both a feed-forward
and a feedback algorithm; the process of ILC is a block-feedback process, while the signal
from the off-line feedback is implemented as feed-forward, that is, during each iteration,
there is no feedback control. In algebraic terms, the algorithm reads:

Upi1(wi) = Un(wi) + QG (wi) (R(wr) — Y (w)) (3.1)

Here, R(wy) is the frequency domain reference signal, the discrete fourier transform of a
measured time-domain reference signal r(¢y). Likewise, Y, (wg) is the frequency domain
response to load U, (wy). Hence Y, (wx) is acquired by transforming U, (w) to the
time domain by the inverse discrete Fourier transform and a digital-to-analog converter
(DAC), and applying the resulting continuous-time signal to the test specimen through
the shakers while recording samples of the output from the test specimen in y(t), which
is then transformed to the frequency domain. Q is a safety factor matrix to prevent
overcompensation and ensure convergence. Finally, G*(wy) is the pseudoinverse of the
estimated transfer function, acquired by structural dynamic identification testing, cf.
section 2.1.



Figure 3.1: Example of TWR application in industry. Durability testing of truck cab at
Volvo Group Trucks Technology testing facilities.

3.1

TWR in industry

As previously stated, the TWR algorithm (or augmentations of it) is frequently used in
industry to estimate the required input for tracking of a desired output sequence. Its most
frequent users are found in the road vehicle industries; in the Gothenburg area, these
are represented by companies such as the Volvo Group. Volvo Group Trucks Technology
perform durability tests on trucks and truck components, see figure 3.1; their procedure
for such tests is:

An instrumented vehicle is driven several laps at the test track at Hallered. Several
test drivers may be employed to account for differences in drive styles.

An experienced test engineer inspects the time-domain data collected and selects
parts of the recorded time history to be replicated in the test rig based on severity.
This data set is used for reference in the test.

A transfer function for the rig and test specimen setup is acquired through random
excitation at the expected input levels of the test. Transfer functions at several load
levels might be used and compared.

An estimate of the inverse transfer function is calculated by SVD-based pseudo-
inversion of the identified transfer function.

TWR iterations to replicate the reference signal are commenced, using commercial
software from rig manufacturer. During iterations, weighting functions of different
frequency bands as well as different channels may be set. These can be varied during
the test.

The iterations proceed until the test engineer is content that the reference is
replicated satisfactorily.



e Actual durability test is run, where the calculated input signal is applied to the
test specimen numerous times. Fatigue life predictions are based on the number of
iterations until failure, mapped by the relation to test track laps. This is in turn
related to an expected life length under ordinary working conditions.

3.2 Contraction mapping and convergence

Assume that there are i inputs, j outputs and k frequency points of a given TWR test
procedure. Let the input function w,,, consisting of the input U, (wy) at every frequency
point wy of the algorithm in equation (3.1), be defined as an element of the general
complex input space C** such that:

T
wn= [ U)o UTG) ] 652)
Define the elements of the complex output space C7* similarly:
T
yn=[ Yo(wi) - Yo(we) -] (3.3)

It is obvious that the linear relation (2.4) is defined by letting G' be an element of C7#*k,
Furthermore, G will then be a block diagonal matrix. Hence, this enlarged definition
ensures that all linear systems are represented by linear maps C** — C7*¥. The definition
also allows for certain properties associated with nonlinear systems, notably coupling
between different frequencies, to be allowed in the context of linear mappings.

To asses the algorithmic convergence in a noise-free setting, define the unknown real
system as the possibly nonlinear mapping G from the input space to the output space:

G:C* - ci* (3.4)

Let QG™ be a linear mapping from from C’* to C**. The TWR algorithm described in
equation (3.1) can then be written as:

Upt1 = Up + QG (r —yp) (3.5)
n = Guy, (3.6)

Where 7,y, € C’F Vn and u,, € C** ¥n. Thus, the evolution of the input sequence can be
written as:

Uns1 = QG r + (I — QGTG)u, (3.7
By defining the mappings 7" and T as:
T:C* =C* cu=Tr=2-QG Gz (3.8)
T:C* 5C*% :u=Tr=QG r+ Tz
It is evident that the input evolution of equation (3.7) can be written as u,11 = Tun By

Banach’s fixed point theorem [15, 93], T has a unique fixed point uso such that te = Tteo
if it is a contraction, i.e. if:

[Tz —Ty| <c|z—yl| , 0<c<1 Va,yecC®* (3.10)



Which, by the definitions of equations (3.8) and (3.9), can be rewritten as:

1T = Tyl = |QG*r + Tz — (QG*r + Ty)| =
[Tz —Ty| < cllz -yl (3.11)

For a general nonlinear system G, this is as far as the contraction mapping approach will
take us. Equation (3.11) defines the condition for T' to be a contraction, ensuring global
convergence of the TWR algorithm. Assuming however that we are in a linear range, so
that the mapping G can be assumed linear in the generalized sense discussed above, T’
will also be a linear mapping. We may then use the result:

[Tz —Tyl| = Tz = )| <[ Tz -yl (3.12)
And hence, T is a contraction if | T < 1, that is, if:
I = 111 - QGG < 1 (3.13)

Essentially, this means that the TWR algorithm converges, for linear systems, if G+
is an adequate approximation of the inverse of G. Furthermore, it shows that a poor
inverse model can be compensated to some extent by a small ). This is in line with the
experiences from using the algorithm, e.g. [9].

If T, and thereby T, is a contraction, it defines a linear convergence, as from (3.11),
we have that (see further [93]):

CTL
[ttoe — unl| < 17_C||TU0 — uo| (3.14)

Where ug is the starting point of the iterations and u is the fixed point. Furthermore, if
T is a contraction, we have from (3.7) and the definition of a fixed point, i.e. Tuoo = Uso
that:

Uso = QGTT + Uoo — QG T Gus
= QGTr — QG TGus =0 (3.15)

If we define the output corresponding to the input-space fixed point as Yo, = Guso from
equation (3.6), we furthermore have that:

QG (r —ys) =0 (3.16)

This final result holds as long as u. is a fixed point of 7', that is, without the assumption
that T is a global contraction. It assures that in the absence of noise, the projection of
the output error by QG* will be minimized. Such convergence also motivates the use
of TWR iterations in virtual testing, as discussed in [58]. Further convergence studies,
including noise etc., can be found in the PhD theses by Markusson [60] and de Cuyper
[12].
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3.3 Drive signal generation methods

The TWR method is historically the most widely used drive signal generation method
in dynamic testing. In recent years, a lot of contributions to the drive signal generation
problem have been reported in literature. Plummer [73] gives a good overview in a paper
on control applications for structural dynamics testing. The objectives of research in
drive signal generation have been to decrease time until convergence while increasing or
maintaining tracking accuracy. To this end, a research group in Belgium proposed an
augmentation of the TWR algorithm to encompass online feedback. In [14], the concept
is discussed and evaluated on a single input single output (SISO) test rig, while in e g [4,
90, 91] multiple input multiple output (MIMO) applications are concerned. It is argued
that while the design of a robust MIMO feedback controller (e g using p-synthesis) is
difficult, adopting a decoupling transformation can simplify the controller design while
still improving both convergence rate and accuracy. This decoupling process was the
focus of some research in turn [89].

Similarly, decoupling was also concerned by Koch et al. in the design of a four poster
electrodynamic direct body excitation rig [48, 49, 50]. In ordinarily TWR-~controlled test
rigs, typically using hydraulic actuators, it is sufficient to control each actuator by an off-
the shelf controller such as a PID; the TWR iterations will ensure convergence even though
this might be sub-optimal [74, 73]. The need for online MIMO control in the work by Koch
et al., in place of the more conventional decentralized (PID) control, was due to inherent
instability and strong inter-actuator coupling in the electrodynamic actuators, used in
place of conventional hydraulic actuators. However, the TWR algorithm is conventionally
applied to the closed-loop system, while in the work by the Belgian group referred to
above, TWR was applied to the open-loop system (in turn consisting of closed control
loops over each actuator, equipped with industrial standard controllers) and enhanced by
feedback in an outer loop. Plummer [73] refers to the latter as ”closing-the-loop on the
remote parameters”.

In an earlier paper, Plummer [74] noted that due to the iterative nature of drive
signal generation common in industry, non-optimal closed-loop control is often tolerated,
and proceeded to argue that the iterative approach is sometimes not applicable, notably
when the specimen is severely damaged by the first iteration, e g in earthquake testing.
Therefore, a modal control algorithm, essentially decoupling the dynamics to diagonal
modal form, is implemented for a shaker table and shows improved tracking.

It should be noted that in controlling a shaker table, the structure is essentially rigid
with unknown unbalance and, possibly, dynamic disturbance due to the test piece resting
on top of it. Since several shakers are connected through the table top, it is harder than
controlling individual shakers, but likely not as hard as controlling an unknown, fully
dynamical, MIMO structure. Thus, the intended application should be kept in mind when
considering and comparing different control strategies.

In place of a decoupling procedure, Gizatullin and Edge [28] used an augmented decen-
tralized adaptive minimal control synthesis (MCS) with four adaptive gains, augmented
by an inverse model feed-forward term and a PID controller to control a shaker table.
This type of adaptive control is referred to by Plummer [73] as direct, as the controller
gains are adapted directly. The other type of adaptive control applies a filter to the
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reference/command signal, and is known as Adaptive Inverse Control (AIC) [73, 95]. Shen
et al. [83] combined both approaches for a shaker table controller, using adaptive MCS
and AIC with an autoregressive moving average model with exogeneous inputs (ARMAX)
structure. In a related study, Shen et al. [84] used instead a simpler finite impulse response
(FIR) pre-filter AIC to adapt an off-line identified feed-forward inverse model to specimen
damage for earthquake testing. A decentralized FIR filter AIC approach has also been
commercialized for MIMO test rigs, with in addition information passed between shakers
[88]. See also results in [67].

The involved shaker-table controllers of the preceding paragraph share the appealing
property that, if an iterative approach is necessary, next iteration input can be calculated
on-line. For (hydraulic) test rigs, Raath [75] suggested a time-domain iteration procedure
based on system identification of an auto-regressive model with exogenous inputs, which
was reset into discrete-time state-space form, to be able to calculate next iteration input
online (with delay) by implicit inversion. The method was evaluated on a collocated
hydraulic four-poster test rig setup for a pickup truck. Using state-space subspace system
identification and Stable Dynamic Inversion (see [25, 26]) was applied with some success
to a SISO tracking problem by DeCuyper and Verhaegen [13]. It was also augmented to
include feedback as in [14].

3.4 TWR and input estimation

The drive signal generation methods can be coarsely distinguished into groups by the
load identification, or input estimation, method mimicked: The classical TWR approach
uses frequency domain inversion [50], while in the time-domain approaches adaptive
filters [88], and state-space model inversion [75, 13] is used, respectively, whereas the
modal control [74] is related to modal load identification. In studies by Allen and Carne
[2, 3] and Nordstréom and Nordberg [71], different load identification procedures are
compared. The first study relates two similar time-domain methods, essentially filter
approaches with delay calculated by pseudo-inverting a Toeplitz matrix representation
of truncated Markov parameters, derived in a setting similar to the Stable Dynamic
Inversion approach [13] and named Inverse Structural Filter (ISF), to a modal and a
frequency domain inversion load identification technique. The second relates ISF, a
modal, a wavelet and a least-squares approach. Allen and Carne found that the original
ISF is highly sensitive to the choice of delay, and therefore proposed an augmentation
allowing multiple delays by enriching a state space representation in a manner similar
to the ”inverting the input-output map” system inversion approach [26], yielding results
comparable with frequency-domain inversion. Nordstrom and Nordberg found that ISF
and the least-squares approach dubbed Dynamic Programming were good. In a follow-up
study [72], the non-minimum phase problem reported for ISF was addressed by allowing
individual time delays for each measurement channel. See also [68, 69].

Nordstrom went on working on the least squares approach, eventually devising an
independently time-discretized general minimization formulation allowing nonlinear model
structures, solved in a Lagrangian setting by Newton iterations [70] (implemented by
Ronasi et al. [79] as well). Such a general optimization framework was also presented by
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Markusson et al. [59] in an article on Iterative Learning Control. As described previously,
TWR is a linear form of ILC; Markusson et al. thus show that it can be viewed as a
special case of Newton iteration. This was also recognized by Hay and Roberts [33, 76],
who used this generalization to device an augmentation of the classical TWR, approach
for nonlinear applications, specifically for test rig tracking. ILC for nonlinear test rig
tracking has also been studied by Smolders et al. [86].

It is important to note that drive signal generation methods share traits with input
estimation techniques, as the purpose of TWR is typically interpreted to be the accurate
reproduction of the loads, or inputs, which excited the system during the reference
measurement. This paradigm was shifted, at least for squeak and rattle (S&R), by a
number of papers advocating the use of direct body excitation over classical forcing at the
wheelbase during S&R analysis, primarily due to the relative silence of electromagnetic
shakers compared to electrohydraulic shakers [8, 48, 49, 50]. Such an approach implicitly
targets some objective, to which the outputs to be tracked must be sensitive, rather than
the accurate estimation of some unknown input. A somewhat similar philosophy for
durability testing can be traced in the paper by Xu et al. [96], where the induced fatigue
damage from tests in which the drive signal has been calculated based on different outputs
is compared in terms of damage induced, by the Palmgren-Miner linear fatigue criterion.
Such a comparison could however likely be fit in to the input estimation framework as
well.

The TWR approach in itself can actually be seen as a step towards indirect reproduction
of the component’s working conditions; another testing paradigm of vehicle testing insists
the input to be road surface roughness data [18, 19, 47, 77, 78, 94], controlling the shaker
input according to some statistical model of roughness and travel speed. As the measured
reference signal is bound to contain vibratory components caused by engine and wind
loading, the input pattern of a TWR run is likely to differ from such an approach.

4 Passive control

Passive vibration control is well known in the field of structural dynamics, where the term
is commonly applied to the problem of reducing unwanted vibration through structural
modification [63]. The most commonly encountered passive vibration control component
is perhaps the tuned mass damper (also known as a dynamic absorber or vibration
neutralizer), which essentially enforces a vibrational node at a desired frequency and point
of a given structure, thereby reducing vibration levels (¢f. [16]).

The approach pursued in this thesis shares many traits with such systems; however,
instead of reducing unwanted vibrations, the goal is here to allow the system to accurately
track a reference signal which was previously unattainable due to vibrational nodes at
the input position of the system. In essence, the end result sought is hence the antithesis
of that of classical vibration control; we aim to move vibrational nodes away from an
excitation point of a given structure.

In this sense, the passive control of this thesis is more closely related to semi-passively
actuated multibody systems. In a manner similar to that presented here, Berbyuk [81]
showed that a combination of active control and passive (spring) and/or semi-passive
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P.C.

Figure 4.1: FExample of passive control concept: Linear system on state-space form
modified by a passive control component. By adjusting the system boundaries, such a
passive component can be viewed as a structural modification.

elements required lower actuation energy compared to using only active control approaches
only for energy-optimal control problems such as bipedal locomotion systems.

The main theme of the work presented in this thesis concerns the design of passive
control components to improve tracking properties in dynamic test rigs lacking control-
lability whose input configurations cannot be altered. A conceptual explanation of the
idea is given in figure 4.1 for a linear system. As is seen, the introduction of the passive
system will alter the transfer function from the active input to the output; hence, it may
be viewed as a structural modification. It is intuitively obvious that such an approach
will affect the controllability properties of the system.

When using this perspective, it is important to remember that the structure under study
is, in fact, still the same; only its boundary conditions have been altered. Furthermore;
the situation we attempt to remedy using such passive components is such that the
reference signal contains contributions from modes which are uncontrollable in the test rig.
That the reference signal contains such contributions is an indication that the boundary
conditions of the rig were off from the start, or that all load paths of the real world have
not been accounted for in the laboratory. This is a very likely scenario; any vehicle driven
on test track would experience vibrations due to engine and wind loading as well as road
excitation. A classical four-poster test (e.g. [90]), with vertical loading at each wheel of a
car, could certainly be inadequate in case, say, engine loading contributed significantly to
the measured target response at the test track.

4.1 Controllability-lacking test rigs

An important contribution towards the understanding of the effects of controllability
shortcomings in dynamic test rigs is given in the appendix of paper C. The main result
shows that under certain conditions, it is impossible to minimize the output error of a
controllability-lacking test rig, and under other, the input levels required to minimize the
output error will be large. Furthermore, while not mutually exclusive, at least one of the
conditions will be met if the reference signal contains contributions from well-separated
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modes that are uncontrollable in the test rig.

The results in paper C are derived assuming that the direct throughput of the tested
system is zero. For structural dynamics models, this is true when displacement and
velocity outputs are considered, but not necessarily so for acceleration outputs. As the
sensors used in structural dynamics testing often measure acceleration, a version of the
proof for acceleration output is given here.

Begin with a general linear time-invariant state-space model with velocity output, and
hence zero direct throughput, ¢ e:

x(t) = Ax(t) + Bu(t) (4.1)
yv(t) = Cyx(t) '
As {A,B, C,,0} is linear and time-invariant by assumption, a model with acceleration
output can be acquired since ya(t) = yv(t) = CyXx(¢) and x(t) is related to x(¢) and u(¢)
by the state equation in (4.1) as:

x(t) = Ax(t) + Bu(t) (4.2)
va(t) = CvAx(t) + CyBu(t) '

Let us assume that the eigenvalues of A are separated and let ® and A be the
eigensolution to A, satisfying A® = ®A, where ® is the matrix whose columns are the
eigenvectors and A is a diagonal matrix of eigenvalues; let x(¢t) = ®n(¢). This similarity

transform yields:
i(t) = An(t) + @~ 'Bu(t)

ya(t) = CvA®n(t) + C,Bu(t) (4.3)
By applying the Laplace transform and noting that A® = ®A, this becomes:
sH(s) = AH(s) + & 'BU(s) (4.4)

Y.(s) = Cy®AH(s) + C,BU(s)

Since the left eigenvector matrix is the inverse of the right, such that ® ' = W | where
() denotes Hermitian transpose, the transfer function G(s) is:

Ya(s) = G(s)U(s) = Cy (@A (sT—A) "o 4 I) BU(s) (4.5)

By the assumption that the eigenvalues are separated, the first term of the transfer
function can be rewritten as:

N

[ G ]| 2 B | =3 M CwylB  (40)
. . i=1 v

The PBH eigenvector test for controllability [46] states that if 2B # 0 for all 4, the
system is state controllable, and conversely, if some state satisfies the corresponding
equality, the system is not state controllable. (C¢; # 0 is the test for state observability.)
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This definition additionally makes it possible to identify the uncontrollable state(s).
Consider a case where a reference signal R(s) has been retrieved by applying the unknown
input signal fJ(s) to the acceleration-output system {A, B, C, A, Cvf’)}, which is to be
replicated by the system {A,B,CyA,CyB}. The only difference between these systems
is hence B contra B, corresponding to a change of input configuration. By (4.5) and (4.6),
we have that:

Cv¢ip{'BU(s) + C,BU(s) (4.7)

-
A0, BU(s) + C,BU(s) (48)

N
R(s) = Z
1;1
Y(s)=>

Ai
Ai
A

S

And the error function in the Laplace domain can be defined as:

E(s) =R(s) = Y(s)

écvm (2 w800 - ) -

+ C,BU(s) — C,BU(s) (4.9)

Since ¥ is a 1 x N vector, B an N x n;, array and U(s) an nj, x 1 vector, the terms
YIBU(s) and 7 BU(s) are scalar quantities. Let a;(s) = $7BU(s) and b;(s) =
¥HBU(s). Furthermore, denote the output eigenvectors ¢c; = Cy@;. The error in (4.9)
can then be simplified to:

N
5) = Z¢Ci i (ai(ESi;'bi(s)) + C,BU(s) — C,BU(s) (4.10)

Assume now, without lack of generality, that one state is uncontrollable in the system
{A,B,C,A,C,B}. By the PBH eigenvector test for controllability, this corresponds to
a situation where ¥ B = 0, and hence by (s) = 0. Furthermore, note that BU(s) and
BU(s) are vectors in CV. Since ® is an invertible matrix, its N columns @; are linearly
independent, and thus form a basis of CV (over the field of complex numbers). Expressing
BU(s) and BU(s) in this basis yields:

N

BU(s) = Z ci(s)i (4.11)
7,;1

BU(s) = Y _ di(s)¢i (4.12)
i=1

However, regardless of input U(s) the condition ¢y?BU(s) = 0 holds for all s as /B = 0.
Furthermore, ¥ ¢; = 0x;, where dy; equals one if k = i and zero otherwise. Thus, we can
write the PBH condition above in the eigenvector basis as:

0 =9 BU(s) Zd (s)9il i = Zd )i = di(s) (4.13)
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Thus, the error of equation (4.10) can be written as:

N
E(s) =Y ¢ci (W +eils) — di(s)) +den (Akak(s) + ck(s)> (4.14)

ik _)\z’ S—)\k

Denote the space spanned by {@c;}izr with S, such that S = span{@c;}izr C CV. Its
orthogonal complement is S*. The uncontrollable state can then be decomposed such
that:!

€
bor = dli + OCn (4.15)
Where ¢gk € S and ¢g: € S+. Since the first term is in the space spanned by {ocitizr,

it can be written as a linear combination of these vectors, and the error can be rewritten
again as:

B =3 b (ML e - i) + (08 + 02 ) (22 + ante))

i#£k )\k
N (M) ) (Ava(s)
_;qﬁ& ( s +ci(s) —di(s) + oy ( s Ay —i—ck(s)))

& <’\s’“i’“§? + ck(s)> = Es(s) + Bg. (s) (4.16)

Clearly, the two error terms belong in the respective spaces indicated. By looking at the
square of the complex modulus of the error function and using the fact that vectors in S
and S+ are orthogonal by definition, it is found that:

= |Es(s)]” + E{ (s)Es (s) + EGL (5)Es(s) + [Eg1 (s)

[E(s)]* = [Es(s) + Eg(s)]?
= [Es(s)]” + [Ess(s)]” > [Es ()] (4.17)
Posing a lower bound on the error function whenever the output eigenvector of the
uncontrollable state is linearly independent from the others. This is at least the case for
the JimBeam example studied in this thesis, verified by the results in paper C-E.

If the vectors {¢ci}izr are linearly dependent, the decomposition of ¢2, is not
unique. This is the case whenever the number of outputs is less than the number of
controllable states, or when one or more state is unobservable. Let therefore {e;} € S
be an orthonormal basis of S, such that ¢¢c; = Zj Bije; and ¢2, = > . v;e;. Clearly,
these decompositions are unique. Recall also from (4.12) and (4.13) that  ,,; dcid;(s) =

CyBU(s). Expressing this in the basis {e;} instead, so that CvBU(s) = 3_; e;d;(s),

!Note that the implication of the result in (4.13), used to set up (4.14), is that CyBU(s) € S. Hence,
only elements in S can be excited in the test rig.
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where azj(s) = evaBU(s) by the projection formula, the error in S can be written as:
Ai(ai(s) — bi(s))
15 () (B2
ik j v

X (22 b)) e + €uBU)
:zj: <#Zkﬁij <W + Ci(8)>

+d;(s) + ():akii) + ck(s)) )ej (4.18)

Since the basis vectors are orthogonal, they are linearly independent. For (4.18) to be
zero it is therefore necessary that the following holds for all j:

> B ),:ﬁl()\ => By (A (il ci(8>) + 7 (ikak)(\i) +Ck(8)) (4.19)

S
i#k i#k

Now, all dependance on the control force is on the left hand side; since b;(s) = ¥ ZBU(s)
and d;(s) = evaBU(s):

> B )\S{Z()\ Zﬁzg szBU( ) + e C,BU(s)

i#k i#k
Z 513 + eHC BU(s) (4.20)
i#£k

S—

On the right hand side of (4.19), let f(s) = >, Bij ()\ al(s) +ei(s )) + v;ck(s). Then:

1942 28 57, Xt el | BUC
i#k
< Zﬂu «/)HB+eHC B| |[U(s)|
i#k
(4.21)
HOERE="
= < [U(s)| (4.22)

’Zi;ék Bij ﬁ’l/)LHB + evaB‘

For a lightly damped mechanical system, when s = jw is close to the pole A\, the second
numerator term of (4.22) will become very large. Since no term inverse-proportional to
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s — Ak exists in the denominator, the control force will have to be large as well in order to
remove Eg(s) and hence minimize E(s). This is also confirmed in the numerical results
of paper B-C.

4.2 Cost functions

In this thesis, passive control components are designed in an optimization framework. In
essence, this framework consists of a model M, of the controllability-lacking structure,
a parameterized model of the intended passive component M,(6,) depending on some
parameters 6,, a (possibly) parameterized process G(M;, M,,0.) for coupling the two
models such that M;,(6,,0.) = G (M, M,(0,),60.) and a cost function J (M, (0,,6.)).
The final component of the framework is a solver for the problem:

{gpl’%i?ee J (Mp(6y,6c)) (4.23)
From paper B through paper E, an evolution of modeling, coupling and solution
methods for the optimization problem of passive components design is described and
motivated. The cost functions used however subtly change as well.

A first effort, which ended up as a preliminary step in the elaborate optimization solver
for passive components design described in paper B, used a continuous controllability
metric by Hamdan and Nayfeh [32] in maximizing the controllability of the least control-
lable mode. While making the system controllable, it did not yield a system optimal for
tracking a desired reference signal (which can be seen when comparing the cost function
contour plots of paper B), so it was discarded with the gradient-based optimization
method in favor of off-the-shelf global search methods in paper C-D.

The remaining cost functions all consist of some scalar quantity of the output error and
the input force calculated from the coupled model M, (6, 6.). Thus, these cost functions
consist of two terms with different units; in paper B, they are weighted together as the
classical optimization approach pursued in that paper warrants a scalar cost function.
Later, a Pareto-optimality approach was used. This allows the practicing engineer to
make the engineering judgement of the relative importance once results are known rather
than in advance, which is likely to appeal. In paper B-D the quantities compared are the
norms of frequency domain signals, i.e. ||E|| and ||U||, where the first term is the output
error; the 2-norm was used for this term. For the second, input term, the maximum, or
oo-norm was used as a measure of the highest force levels was sought.

In paper E, this is pursued in a more direct manner, by calculating the inverse Fourier
transform of the input signal, so that the measure is actually the expected highest force
level, ||F~1(U)||o. Moreover, the output error term is modified slightly to allow it to
be interpreted as the RMS value of the error in the time domain through Parceval’s
theorem. While the second change is likely cosmetic, the first one represents a change
with respect to previous papers. The motivation for the change was that it is better to
use whichever criterion is limiting for the force in the calculations in order to be able
to make useful predictions, and that the largest value in the frequency domain does not
necessarily correlate to the time domain. The approach is however not applicable (at
least not in the same straightforward manner) for the approach where a validated Finite
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Element model is used to set up the model My, as in paper B-D, since in these papers
the frequency resolution was decreased in the calculations as compared to the testing for
computational efficiency.

To conclude this section: Ultimately, the choice of exact cost function formulation in
designing a passive component for improved tracking in a given test rig should be governed
by the aim of the experiment to be performed. Since the work of this thesis has been
aimed at developing a method for designing such passive components only (the testing
has focused on recreating a given output only, not on investigating, say, fatigue properties
of some test specimen), the exact formulation of cost functions has been deliberately
vague. Using some measure of the input magnitude ||U|| to complement a measure of the
output error |E|| is however likely to be fruitful, as the results of paper B and paper E
suggest the existence of regions in the parameter spaces where high input is required to
little effect in ||E||.

5 Summaries of appended papers

In paper A, Comparison of several error metrics for FE model updating, error metrics
used for model updating, or calibration, are compared using a simple spring-mass struc-
ture from the literature as benchmark. The error metrics are compared with respect to
three equally weighted criteria: 1) The smoothness and convexity of the associated cost
function, evaluated by ocular inspection of cost function plots. 2) The identifiability of
the parameter space, evaluated by the condition number of an approximate Hessian. 3)
The performance of the error metrics in the presence of noise, evaluated by the inverse of
the Fisher information matrix through the Cramer-Rao lower bound.

In paper B, Increased controllability in component testing using structural modifica-
tions, the concept of using passive components for improving the tracking abilities of
dynamic test rigs is introduced and a method for designing such passive components in
an optimization framework is developed. The method relies on a Finite Element model of
the tested system. The design problem is solved in two steps: In the first step, the passive
component is designed in such a way that the controllability of the least controllable
mode is maximized. In the second, the actual reference signal to be tracked is used, and
virtual experiments are conducted to set up a cost function consisting of the calculated
output tracking error and the input levels. The method is verified on a simple numerical
example.

In paper C, A method for improving test rig performance using passive components, the
passive components approach is investigated further, and the design method of paper
B is discarded in favor of off-the-shelf Genetic Algorithms applied to a multi-objective
formulation of the second step cost function of paper B in order for a more straightfor-
ward application of the methodology. A more elaborate numerical example is used to
further verify the passive components approach. Included as an appendix to the paper is
a theoretical motivation for the passive components approach, which shows that if states
that are not controllable in the test rig contribute to the reference signal, the required
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input signal may be large and/or the output error not fully removed.

In Paper D, Application of passive components for improved tracking in controllability-
lacking test rigs, the methodology of paper C is verified in an experimental study of
a simple structure consisting of three plates joint by bolts. A validated Finite Element
model of the structure is acquired through model calibration using techniques discussed
in paper A. A phenomenological approach to the modeling of joints is used for the
parametrization. The validated model is used for designing a passive component, which is
manufactured and attached to the structure. The experimental results presented show
that the output error has decreased by 50% by the use of the passive control system.

In Paper E, An experimental approach to improve controllability in test rigs using
passive components, an approach for designing passive components without having to
resort to a Finite Element model is introduced. It relies on system identification to model
the system under study experimentally and couples it to a passive component model using
experimental-analytical dynamic substructuring. While in the experimental validation
performed in the paper measurements from the test rig setup alone is shown to be sufficient
for accurate-enough identification of the experimental system model, it is acknowledged
that in most cases, additional modal testing could be needed. The parametrization in
this paper differs from that of paper B-D in that the attachment point of the passive
component can only be chosen at a pre-defined subset of measured candidate positions.

6 Concluding remarks and future work

This thesis is concerned with such dynamic testing as aims at the accurate reproduction
of a pre-defined reference signal. It has been shown that when there are well-separated
modes included in such reference signals which the test rig is not able to reproduce, i.e.
when there is a lack of controllability in the test setup, the control force required for
tracking and/or the tracking error will be large.

A concept of passive control to improve the tracking properties of dynamic test rigs
suffering from lack of controllability for which the input configuration cannot be altered
has been developed. Two distinct methods, one relying on high quality Finite Element
modeling and the other on experimental modeling of the structure to be tested, have
been developed. The validity of the concept, and the two methods, has been verified in
small-scale tests.

Furthermore, techniques for automated model updating, or calibration, have been
investigated. A methodology for comparing different updating formulations has been
introduced and model updating has been successfully applied to a real structure.

Regarding the concept of passive control, a theoretical framework for its implementation
has been developed. A lot of work still needs to be done before the methodology can
be said to be fruitful, most notably tests on real-life structures such as a road vehicle.
The use of reduction methods in the design method by Finite Element models should be
thoroughly investigated, and further investigations into the effects on end goals, such as
fatigue life predictions, should be performed.
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