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Abstract 

A semi-analytical model is proposed to investigate the screening efficiency of trenches to 

moving-load induced ground vibrations. The ground is modeled as a fully saturated poroelastic 

half-space governed by Biot’s dynamic poroelastic theory. The trenches are obtained by placing 

three rectangular elastic layers with appropriate width upon the poroelastic half-space. By 

Helmholtz decomposition, the displacement fields of the elastic layers are decomposed into three 

scalar potentials. Analytical solutions are obtained based on Fourier transform and Fourier series in 

the transformed domain. The time-domain results are obtained by the fast Fourier transform (FFT). 

The different performances of trenches on a saturated poroelastic half-space and a single-phase 

elastic half-space to the moving load-induced ground vibration are identified. It is found that the 

discrepancy of the screening efficiencies between the two models becomes significant when the 

load speed approaches the Rayleigh wave speed of the ground surface. Also, some parametric 

studies for the screening efficiency of the trench on the poroelastic half-space are presented.  

1. Introduction

Vibrations induced by railway traffic, machine operations, or pile driving are a major concern for 

civil engineers as it can cause annoyance to residents or even damage to adjacent structures. Wave 



barriers are needed in some cases to prevent or reduce the adverse effects of ground vibrations to 

the concerned structure. 

     Many investigations concerning vibration isolations have been conducted by different kinds 

of methods. To name a few, Segol et al. [1] used the finite element method (FEM) and a 

two-dimensional slab-type model for studying vibration screening by open trenches and in-filled 

trenches in layered soils. Haupt [2] employed FEM in investigating the use of solid obstacles of 

different shapes for passive, as well as active, isolation. Takemiya [3] and With et al. [4] 

investigated the isolation efficiency of countermeasures along a railway line to the train-induced 

ground vibrations by FEM as well as field tests. Yang and Hung [4] presented a parametric study of 

wave barriers for the train-induced ground vibrations and the effects of parameters such as the 

dimensions of the open and filled trenches and modulus of the in-filled material on the screening 

efficiency were investigated. Hung et al. [6] studied the effectiveness of different vibration 

countermeasures, including open trenches, in-filled trenches, and wave impeding blocks to the 

train-induced ground vibration with a 2.5D finite/infinite element approach. Using the boundary 

element method (BEM), Emad and Manolis [7], Beskos et al. [8], Dasgupta et al. [9], Ahmad and 

Al-Hussaini [10] and Klein et al. [11] investigated the isolation efficiency of countermeasures to 

incident waves or harmonic point loads. Some experimental work has also been conducted, such as 

Woods [12], who performed an experimental investigation on the effectiveness of open trenches in 

reducing the amplitude of vertical ground vibrations, a scale experiment in water by Liao and 

Sangrey [13], and an open trench experiment by Klein et al. [11]. Analytical treatments of the 

vibration isolation problems have also been provided. Aviles and Sanchez-Sesma [14] and 

Boroomand and Kaynia [15, 16] developed analytical models to study the amplitude reduction 



behind a row of circular solid piles in an elastic half-space when subjected to incident waves. Based 

on their studies, Cai et al. [17] and Xu et al. [18] studied a row of rigid piles as countermeasures in a 

saturated poroelastic soil medium for reducing the ground vibration to incident waves or a moving 

point load, and it was found that the isolation performance of a pile barrier in a poroelastic soil was 

better than that in an elastic soil medium. Karlström and Boström [19] proposed an analytical 

approach to investigate the screening effectiveness of open trenches on a layered elastic half-space 

to the train-induced ground vibrations at both sub- and super-critical train speeds. 

   In the work mentioned above, the ground is often simplified as a single-phase elastic medium, 

and the effects of underground water are neglected. Under some circumstances, the coupling effects 

between the soil skeleton and underground water can affect the wave propagation significantly in 

the saturated soil medium. Existing studies (Cai et al. [17], Xu et al. [18]) show that the screening 

effect of piles in a saturated poroelastic soil medium is quite different from those in a single-phase 

elastic soil medium in some cases. Thus, the saturated poroelastic soil model can be essential in the 

investigation of ground vibration reduction by countermeasures. On the other hand, an open trench 

is known as an efficient and economic countermeasure to reduce the high-frequency ground 

vibration components and is widely used in the engineering field. The isolation performance of 

open trenches on a saturated poroelastic half-space to moving-load induced ground vibrations has 

not been studied yet. Thus, it is of significance to investigate the screening effectiveness of trenches 

more exactly by a saturated poroelastic soil model, including the coupling effect between the soil 

skeleton and the water. 

     In this paper, an analytical model is proposed to investigate the screening efficiency of open 

trenches to the ground vibration generated by a moving rectangular load. The ground is modeled as 



a fully saturated poroelastic half-space, taking into account the coupling between the soil skeleton 

and the fluid. Analytical solutions are obtained based on Fourier transforms and Fourier series. The 

main contribution of this paper is to identify the different performances of trenches on a poroelastic 

half-space and an elastic half-space to moving loads with various load speeds. Furthermore, the 

effects of the coupling between the soil skeleton and the fluid on the screening efficiency of the 

trench are further investigated. Finally, the effects of the distance between the trench and the 

moving-load on the screening efficiency are analyzed.  

2. Governing equations and solutions 

The geometrical details of the trench model are shown in Fig. 1. The ground is modeled as a fully 

saturated poroelastic half-space. The trenches are obtained by placing three rectangular elastic 

layers with appropriate widths on the poroelastic half-space. The widths of the outer layers are 

chosen large enough so as to approximate a half-infinite layer. The moving load is represented by a 

moving rectangular load. The trenches are placed symmetrically at both sides of the moving load. 

For simplicity the bottom of the trenches are assumed to coincide with the top of the poroelastic 

half-space. The present procedure can probably be generalized to the case with poroelastic top 

layers so that the trenches are situated in poroelastic half-space. Generalizations to a layered 

half-space are straightforward, see Karlström and Boström [20].  

2.1 Governing equations and solutions for the elastic layers 

The Lamé equations for the elastic layers are given as: 

          ( 2 ) ( ) ( )j j j j j ju u uj     (1) 

where j , j are the Lamé constants and j  is the density of the elastic layers. The gradient 



operator is defined as { , , }x y z . The displacement vector ju  is defined as { , , }j j j ju v wu  

for the x, y and z direction, where ej  represents the middle embankment layer and ,j b b  

denotes the banks outside. The traction on a plane with the normal direction ke (k=x, y, z) can be 

obtained by 

           ( e ) 2 ( )k
j j k j j k j j kσ e u u e u  (2) 

The interface between the elastic layers and the poroelastic half-space is assumed to be perfectly 

bonded, and then the displacement and traction vectors are continuous. At 0z  this gives: 

                      e e

1 2b

,
,

y a
b y b

u
u

u
 (3) 

                     

( )z

( ) ( )z z

e e

1 2b

e 1 2

,

,
0  and ,

y a

b y b
a y b y b

e

e e

σ

σ σ  (4) 

where u , ( )zeσ are the displacement and traction vector of the saturated poroelastic half-space. The 

boundary conditions on the sides of the embankment layer ( ey a ) are designed in a special way 

in order to enable the series expansion of the displacement fields according to Karlström and 

Boström [18]: 

                               e e e e0 , 0 , 0y yv u w d z     (5) 

This boundary condition is obtained by choosing ev  to be zero, which is artificial, and 

combining the shear stresses condition on the sides of the embankment layers. This is equivalent to:  

                               e e e e0 , 0 , 0x y z yv d z  (6) 

It was stated in Karlström and Boström [19] that the artificial boundary condition e 0v  gives a 

good approximation to the natural boundary condition e 0y  when the wavelength is much 

larger than the thickness of the elastic layer, and only vertical loads are applied. That the depth of 



the trenches are less than the wavelength may seem to indicate that they have a small effect on the 

reduction of vibrations, but as our numerical examples will show the trenches have noticeable 

effects.  

     The boundary conditions on the top of the embankment ( ez d ) can be expressed as 

                    e

, ,
=

0 else where,zz
Q x Vt a y b

 (7) 

  e = 0yz               (8) 

                                        e = 0xz                          (9) 

where Q is the amplitude of the load pressure, V is the load speed, a andb are half the load width 

and length, respectively. For the banks (b+, b-), the traction on the top of the elastic layers vanishes: 

 1 2b
0, .z b y beσ  (10) 

Similar boundary conditions are also used at the sides of the banks: 

 bb b b
0, 0, 0 0y yv u w d z  (11) 

   By decomposing the displacement fields of the embankment (j=e) and banks ( bj ) in three 

scalar potentials, analytical solutions to the equations of motion (1) can be obtained by 

 SH SV( ) ( ),j j z j z ju e e  (12) 

where j , SHj and SVj are potentials for longitudinal, horizontal transverse and vertical 

transverse waves, respectively, which satisfy scalar wave equations. 

     Fourier transforms are applied with respect to t and x. The Fourier transform pair for the time 

t is defined as 

                               i( ) ( ) etf f tf f( )        (13) 

              -i1( ) ( )e d .
2π

tf t f i( )e d-i tf t)e di  (14) 



The Fourier transform pair for the space coordinate x is defined as 

          -i( ) ( )e d ,qxg q g x x  (15) 

             i1( ) ( ) e d
2π

qxg x g q q  (16) 

The doubled transformed fields (with respect to the time t and the space coordinate x) are denoted 

by a hat. 

 As the boundaries on the vertical sides of the embankment layers and the banks are designed in 

a special way, the displacement fields in the finite domain can be developed by adopting Fourier 

series expansions. According to Karlström and Boström [19], the scalar potentials in the layers j=e 

and b  can be given as follows. 
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Here the coefficients j
nmD  and j

nmE  are unknown amplitudes in the embankment layer j=e and in 

the banks j b , where n=1, 2 and 3 give the amplitudes for the P, SH and SV waves, respectively. 

Furthermore, P 1/ 2(( 2 ) / )j j j jc is the pressure wave velocity and S 1/ 2( / )j j jc  is the 

shear wave velocity. The wave numbers are P P/j jk c  and S S/j jk c . Corresponding wave 

numbers in the z direction are P P2 2 2 1/ 2( )jm j jmh k q p  and S S2 2 2 1/ 2( )jm j jmh k q p , where the roots 

are defined so that PIm 0jmh and SIm 0jmh . The trigonometric arguments ( )jT y and jmp  depend 

on the region and are given in Table 1.  

     The constants j
nmD  and j

nmE  are to be determined for each domain through the boundary 



conditions. Due to the symmetry of the displacement field eu  about 0y , the constants are equal 

in the left and right banks and only one of the banks needs to be considered (the right bank in this 

case). Making use of Eq. (12), the displacements of the embankment and banks can be obtained as 
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The displacement coefficients j
nm , j

nm , j
nm  and j

nmk  can be found in Table 2. 

     Substituting Eq. (20)-(22) into Eq. (2), the stresses in the embankment layer and the banks are 

expressed as: 
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Here some more coefficients are introduced: 
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2.2 Coupling between the saturated poroelastic half-space and the elastic layer. 

Biot’s theory is employed for the saturated poroelastic half-space. Neglecting the apparent mass 

density, the linearized dynamic equations of motion for a fully saturated poroelastic solid are given 

by Biot [21] as: 

2
, , , f( ) ,i jj j ji j ji i iu M u Mw u w ,i iffff (32)

f
, , f 1

d

,j ji j ji i i i
gMu Mw u m w w

k
f ,i i i1
g wf

i ii1
g

k
u m w1 i1 (33)

where ui, wi (i = x, y, z) are the solid displacement components and fluid displacement related to the 

solid displacement along the x, y, z directions; dots on ui and wi indicate differentials with respect to 

time t; λ and μ are Lamé constants of the poroelastic half-space; α and M are Biot’s parameters 

accounting for compressibility of the two-phased material; f s(1 )n n , where f  and s  

are the mass densities of the fluid and solid and n  is the porosity; f
1m

n
. dk  denotes the 

coefficient of permeability, and the parameter b is introduced and defined as f

d

gb
k

. The 

constitutive relations can be expressed as: 



 , ,( ) ,ij ij i j j i iju u p  (34) 

 f ,p M M  (35) 

where  

 , ,i iw  (36) 

and ,i iu  is the solid strain; ij  is the total stress component of the bulk material; fp is the 

pore water pressure.  

     The governing equations for the poroelastic half-space can be solved by triple Fourier 

transform with respect to x, y and t. The Fourier transform pair for the space coordinate y is defined 

as 

 -i( ) ( )e d ,pyg p g y y  (37) 

 i1( ) ( )e d .
2π

pyg y g p p  (38) 

The governing equations are solved in the transformed domain. Cai et al. [22] give the specific steps 

of the solution process. The solutions can be expressed as  

 1 2- -ˆ e e ,z zp A B  (39) 

 31 22 2 2 2
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1 1 2 2ˆ e e e .zz z
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The stresses in the poroelastic half-space can be obtained with Eqs. (39)-(42) and (34) as: 
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In Eqs. (39)-(45), A, B, C and D are constants to be determined and the other coefficients can be 

found in the Appendix.  

     At the interface between the saturated poroelastic half-space and the finite ground layers, the 

Fourier transform is applied with respect to y to the interface conditions (Eq. (4)), and the following 

equations are obtained:  
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where ( , ) ( )a b
jmf p  and ( , ) ( )a b

jmg p  are defined as  

 ( , ) i( ) cos( ( ))e d ,
ba b py

jm jm ja
f p p T y y  (49) 

 ( , ) i( ) sin( ( ))e d .
ba b py

jm jm ja
g p p T y y  (50) 

An additional equation can be obtained by assuming the drainage condition at the interface to be 

fully permeable, and this gives: 

 0,A B  (51) 

The unknowns A, B, C and D in the poroelastic half-space that depend on the continuous Fourier 

variable p can be solved and expressed in terms of j
nmD  and j

nmE (independent of p) by use of Eqs. 

(46)-(48) and (51). 

     The constants j
nmD  and j

nmE  remain to be solved. They can be solved by adopting the 



remaining boundary conditions in the embankment and in the right bank. Employing an inverse 

Fourier series with respect to y to the displacement boundary condition Eq. (3) over the width of the 

embankment, three equations are obtained for each mode m, denoted with m :  
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As the series solution in the embankment layer is orthogonal over the width 2 ea , each mode of the 

series gives a separate equation. Here m  is the Neumann factor, defined as 0 1 and 2m  

for 1m . A similar inverse Fourier series is employed to the displacement interface condition in 

the right bank bj ( Eq. (3)). Another set of equations is obtained as: 
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A similar inverse Fourier series is applied over the width 2 ea  on the conditions for the tractions at 



the top surface of the embankment (Eq. (7-9)). This gives the following equations: 
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 e eˆ ( ) 0, 1,2...,yz m d m  (61) 

 e eˆ ( ) 0, 0,1...,xz m d m  (62) 

a and b are the half width and length of the rectangular load, respectively. 

The last set of equations is obtained from the traction-free surface of the right bank (Eq. (10)): 

         'ˆ ( ) 0, 0,1,...,' bzzb m
d m                             (63) 

 'ˆ ( ) 0, 1,2,...,' byzb m
d m  (64) 

 'ˆ ( ) 0, 0,1,....' bxzb m
d m  (65) 

   The obtained equations, (52-54) and (57)-(65), are finally used to obtain the solution for the 

constants j
nmD  and j

nmE . Then, by substituting j
nmD  and j

nmE  into Eqs.(46)-(48), the coefficients 

A, B, C and D in the poroelastic half-space can be obtained. In this way, the dynamic responses to 

the moving load are determined at all positions. 

3. Illustrations and results of analyses 

3.1 Validation of the methodology 

The parameters for the elastic layers are listed in Table 3, which are selected corresponding to those 

used in Karlström and Boström [19]. A saturated poroelastic half-space is specified by the 

parameters in Table 4 referring to Theodorakopoulos [23]. The parameters are chosen according to 

Tables 3-4 if not otherwise stated in the figures. The amplitude of the load pressure is chosen as 25 



kN/m2. The value of b2 is chosen as 50 m by a trial calculation for satisfactory precision, and the 

number of terms (m) are chosen linearly proportional to the widths (in meters) of the rectangular 

layers by the constant of proportionality 0.75 according to Karlström and Boström [19]. The 

computing time is within hours for one curve. The case of an ideal elastic half-space soil medium 

can be simulated by choosing negligibly small values for the poroelastic parameters ( f , 1m , M , 

f

d

g
k

 and ). 

     To validate the accuracy of the current method, results obtained from the presented 

methodology are compared with those available in Dasgupta et al. [9]. In their work, the screening 

effects of a single open trench to a foundation generated by a harmonic point load with excitation 

frequency 50 Hz were studied, neglecting the mass of the foundation. By replacing the foundation 

with an equivalent rectangular pressure, the same problem is investigated by the present 

methodology. The poroelastic half-space is degenerated into an elastic half-space and the same 

parameters are chosen as those used in Dasgupta et al. [9]. The normalized vertical displacements, 

defined as the ratio of the displacement in the presence of the trench over that without trench, are 

presented in Fig. 2. It can be seen that the general trend of the two results are in good agreement, 

but also some discrepancy can be observed at the edge of the trench, this may be due to the effect of 

the artificial boundary condition ( e 0v ) used in the present model for the load excitation 

frequency 50 Hz. It is also of interest to note that the ground frequency components generated by a 

moving constant load usually lie in a lower frequency range, below 20 Hz.     

3.2 Screening efficiency of trenches 

     In Fig.3, the ground surface velocity responses are presented against x both in front of and 

outside the trench for load speeds 20 m/s and 60 m/s. Two distances from the load are selected and 



shown in the figure as y=5 m in front of the trench and y=10 m outside the trench. It can be seen at 

y=5 m that no screening effect can be observed, and the velocity responses for the trench model are 

even larger than that for the model without trench. At y=10 m outside the trench, some screening 

can be observed for the load speed 20 m/s and the velocity responses are quite small at this load 

speed. But as the load speed exceeds the critical speed, in this case to 60 m/s, the maximum velocity 

responses become much larger and fluctuate fiercely along the x axis. The critical speed herein is 

defined as the Rayleigh wave speed of the ground surface, about 56 m/s. The screening 

effectiveness of the trench becomes more significant as the load speed increases. 

   In Fig. 4, the excessive pore water pressures in the ground are presented at the depth 1 m 

under the ground water table. It can be observed that the maximum positive pore water pressure 

increases both at y=5 m and y=10 m after the installation of the trench. This means that the open 

trench aggravate the pore water pressure response in the saturated soil medium in front of and 

outside the trench. The cause of this phenomenon may due to that the waves propagating in the top 

elastic layer scatter at the sides and bottom of the trenches, which leads to an increase of the portion 

of energy passing beneath the trench. Thus, the excessive pore water pressure responses under the 

trench increase. It is also of interest to note that the amplitude of the negative pore water pressure 

for the trench model is much larger than that for the model without trench. The increase of the 

negative pore water pressure will result in an increase of the effective stresses in the saturated soil 

medium after the moving load passed by.  

     In the following paragraph, the screening effect of the open trench will be evaluated using the 

reduction of vibration level in terms of decibels, i.e., 

Reduction of vibration level Ar [dB]=-20log(P1/P2), 



where P1 is the computed maximum velocity responses at a certain place in presence of trenches 

and P2 is the reference maximum velocity responses at the same place obtained from an associated 

analysis without trench.  

     In Fig. 5, the reduction of vibration levels against y are presented for both sub- and 

supercritical load speed. A high amplification of the vibration can be observed at the edge in front of 

the trench and small reduction effectiveness can be observed in an area in front of the trench. This 

phenomenon is due to the constructive or destructive interference between the propagating waves 

and the reflected waves from the trench edge. For the load speed 20 m/s, as shown in Fig. 5(a), the 

reduction of vibration level at the edge outside the trench can reach the value 6 dB, but as the 

distance increases, the screening effectiveness decreases. At the distance y=20 m, almost no 

isolation effect can be observed. For the supercritical load speed 60 m/s, as shown in Fig. 5(b), the 

screening efficiency of the trench has increased. At the edge outside the trench, the reduction of 

vibration levels can reach 10 dB. The reduction of vibration levels also decreases with increasing 

distance for this load speed; but a reduction of vibration level 2.5 dB is still obtained at y=30 m. A 

similar phenomenon that the screening effects decrease with increase of y is also found in With et al. 

[4] and validated by field measurement results. The results for the trench on the single-phase elastic 

half-space are presented in Fig. 5 for comparison. It is clearly visualized from Fig. 5 that, for the 

load speed 20m/s, the screening effectiveness of the trench on the poroelastic half-space is close to 

that of the trench on the elastic half-space; but for the load speed 60 m/s, the discrepancy of the 

screening efficiency between the two models is significant. The reduction of vibration levels of the 

trench on the elastic half-space is about 1 dB smaller than that of the trench on the poroelastic 

half-space. 



3.3 Parametric study: Influence of load speed, soil permeability and the distance of trenches to load  

     In order to represent the reduction effect over an area behind the trench, an average reduction 

level rA  over a distance T behind the trench is computed by:  

1

1
r r

1 ,
b T

b
A A dy

T
 

where T is chosen as 20 m. In Fig. 6, the average reduction of velocity level is presented against the 

dimensionless load speed c0, which is defined as V/cs, where cs is the shear wave velocity of the 

half-space. It can be observed that the average reduction of velocity level is about 1.5 dB at c0=0.4 

and has a slight increase as the dimensionless load speed increases from 0.4 to 0.7. On the other 

hand, a rapid increase of the reduction level can be observed as the load speed increases from 0.8 to 

1.0; this means that the open trench becomes more efficient in mitigating the ground vibrations as 

the load speed approaches or exceeds the critical speed. Further increase of the load speed leads to a 

small increase of the average reduction level. It can also be clearly observed that the discrepancy of 

the screening efficiency between the trenches on the poroelastic half-space and elastic half-space 

becomes more significant as the load speed increases; the discrepancy between the two models is 

about 1dB for load speeds near and above the critical wave speed. Thus, the use of the single-phase 

elastic soil model will underestimate the screening efficiency of the trench significantly when the 

load speed approaches or exceeds the critical speed.   

     In Fig. 7, the effects of the permeability coefficients kd of the saturated poroelastic half-space 

on the reduction velocity level are studied at the load speed 60m/s. Four values of kd are shown. It is 

noted in Fig. 7 that the permeability of the soil has a small effect on the reduction velocity level, 

and the reduction velocity level decreases as kd increases for various distances behind the trench. 

This phenomenon is due to the fact that, as the permeability coefficients kd increases, the coupling 



effect between the soil skeleton and fluid becomes weaker. Thus, attenuation effects of the saturated 

soil medium to the waves reduce, which leads to a reduction of the screening effect of the trench.  

     In Fig. 8, the effects of L on the screening efficiency of the trench are investigated. L is 

defined as the distance of the trench from the load center. The geometry of the trench is kept 

unchanged for various L. It is observed that the screening effectiveness of the trench is much 

improved as L increases, especially at the area near behind the trenches. That is to say, the same 

trench located farther from the load, the better isolation effects can be achieved at the place behind 

the trench. The same phenomenon is also observed by Yang and Hung [5]. Meanwhile, the vibration 

amplification effect in front of the trenches becomes weak as L increases. 

     To further explore the effect of L on the trench’s screening efficiency, the average reduction 

level for different L is presented in Fig. 9. The average reduction level is calculated within the area 

20 m behind the trench. It can be seen that, as L increases from 6 m to 16 m, the average reduction 

velocity level increases from 3.2 dB to 12 dB for the trench on the poroelastic half-space. Thus, in 

order to obtain a better screening effect and less detrimental amplification in front of the trench, the 

trenches are suggested to be installed as close as possible to the concerned structure. In addition, it 

is noted that the average reduction velocity level of the trench on the elastic half-space is about 1dB 

smaller than that of the trench on the poroelastic half-space for various L.  

4. Conclusions 

In this paper, an analytical model is proposed to investigate the screening efficiency of trenches to 

moving-load induced ground vibrations. A fully saturated poroelastic half-space soil model is 

utilized and Biot’s fully dynamic poroelastic theory is applied to characterize the saturated 



poroelastic half-space, considering the coupling effect between the soil skeleton and the fluid. The 

screening effects of open trenches to ground surface vibration velocities and excessive pore water 

pressures in the saturated soil medium are investigated. The different performances of the trenches 

on the single-phase elastic half-space and the poroelastic half-space are especially identified. 

Furthermore, the effects of the distance between the trench and the load on the screening efficiency 

are analyzed.  

The main conclusions of this study are summarized below: 

1. Amplifications of the ground surface vibrations can be observed in front of the trenches, while

apparent screening effects can be obtained outside the trench; the screening effect of the trench

to the ground surface vibrations improves as the load speed increases. The installation of the

trench aggravates the excesses pore water pressure responses in the underlying saturated soil

medium both before and behind the trench, especially the negative pore water pressure

responses after the load has passed by.

2. The discrepancy between the screening efficiency of trench on a poroelastic soil and that of

trench on an elastic soil model becomes apparent as the load speed increases. The use of the

single-phase elastic soil model will underestimate the screening efficiency of the trench

significantly when the load speed approaches or exceeds the critical speed. The permeability

coefficient of the saturated soil medium has an apparent effect on the trench’s screening

efficiency when the load speed is high.

3. The distance between the trench and the moving load is an important factor for the trench design.

The screening effectiveness behind the trench can be much improved when the distance of the

trench from the moving load increases. Meanwhile, the detrimental amplification of vibrations



in front of the trench can be alleviated if the distance of the trench from the moving load 

increases. 

Acknowledgement 

This work is part of the activities of the Center of Excellence CHARMEC (CHAlmers Railway 

MEChanics, www.charmec.chalmers.se). Zhigang Cao’s one-year visit to Chalmers University of 

Technology as a joint-trained PhD student was supported by the China Scholarship Council and the 

National Natural Science Foundation of China (51025827).  

Appendix  

 2 2 2 , 1,2i iq p L i  (A.1) 

 2 2 2
3 /q p S  (A.2) 

 
2 2

1 1 2 1 1 22 2
1 2

4 4
,

2 2
L L  (A.3) 

 2 2
f( )S  (A.4) 

 
2 2 2 2

1 f
1

( 2 )( i ) 2
( 2 )

M m b M M
M

 (A.5) 

 
2 2 2 4

1 f
2

( i )
( 2 )

m b
M

 (A.6) 

 
2 2

f
2

f

1,2
( )
i

i
ML i

M
 (A.7) 

 2 2

( ) 1,2i
i

i

a i
S L

 (A.8) 

 2 2
f 1/( i )m b  (A.9) 

 2 2(2 ) 1,2i i i ig a q L i  (A.10) 



 2 2
3 1 1 1 4 2 2 22 , 2g a g a  (A.11) 

References 

[1] G. Segol, P.C.Y. Lee, J.F. Abel, Amplitude reduction of surface waves by trenches, Journal of 

Engineering Mechanics Division 104(3) (1978) 621-641. 

[2] W.A. Haupt, Isolation of vibration by concrete core walls. Proceedings of the 9th International 

Conference on Soil Mechanics and Foundation Engineering, Vol. 2, Japanese Society of Soil 

Mechanics and Foundation Engineering, Tokyo, Japan, 1977, pp. 251-256. 

[3] H. Takemiya, Field vibration mitigation by honeycomb WIB for pile foundations of a high- 

speed train viaduct, Soil Dynamics and Earthquake Engineering 24 (2004) 69-87. 

[4] C. With, M. Bahrekazemi, A. Bodare, Wave barrier of lime-cement columns against 

train-induced ground-borne vibrations, Soil Dynamics and Earthquake Engineering 29 (2009) 

1027-1033. 

[5] Y. YANG, H. HUNG, A parametric study of wave barriers for reduction of train-induced 

vibrations, International Journal For Numerical and Analytical Methods in Geomechanics 40 

(1997) 3729-3747. 

[6] H.H. Hung, Y. B. Yang, D.W. Chang, Wave Barriers for reduction of train-induced vibrations in 

soils, Journal of Geotechnical and Geoenvironmental Engineering 130(12) (2004) 1283-1291. 

[7] K. Emad, G.D. Manolis, Shallow trenches and propagation of surface waves, Journal of 

Engineering Mechanics 111(2) (1985) 279-282. 

[8] D.E. Beskos, B. Dasgupta, I.G. Vardoulakis, Vibration isolation using open or filled trenches. 

Part1: 2-D homogeneous soil, Computational Mechanics 1(1986) 43-63. 



[9] B. Dasgupta, D.E. Beskos, I.G. Vardoulakis, Vibration isolation using open or filled trenches. 

Part2: 3-D homogeneous soil, Computational Mechanics 6(1990) 129-142. 

[10] S. Ahmad, T.M. Al-Hussauni, Simplified design for vibration screening by open and in-filled 

trenches, Journal of Geotechnical Engineering 177(1) (1991) 67-88. 

[11] R. Klein, H. Antes, D. Le Houedec, Efficient 3D modeling of vibration isolation by open 

trenches, Computer & Structures 64(1997) 809-17. 

[12] R.D. Woods, Screening of surface waves in soils, Journal of Engineering Mechanics Division 

94(SM4) (1968) 951-979. 

[13] S. Liao, D.A. Sangrey, Use of piles as isolation barriers, Proceeding ASCE Journal of 

Geotechnical Engineering Division 104(GT9) (1978) 1139-1152. 

[14] J. Avilés, F.J. Sánchez-Sesma. Foundation isolation from vibration using piles as barriers, 

Journal of Engineering Mechanics 114(11) (1988) 1854–1870. 

[15] B. Boroomand, A.M. Kaynia, Stiffness and damping of closely spaced pile groups, First 

International Conference on Soil Dynamics and Earthquake Engineering, V. Karlsruhe, 

Germany, 1991a, pp. 490–501. 

[16] B. Boroomand, A.M. Kaynia, Vibration isolation by an array of piles, First International 

Conference on Soil Dynamics and Earthquake Engineering, V. Karlsruhe, Germany, 1991b, pp. 

683–691. 

[17] Y.Q. Cai, G.Y. Ding, C.J. Xu, J. Wang, Vertical amplitude reduction of Rayleigh waves by a 

row of piles in a poroelastic half-space, International Journal For Numerical and Analytical 

Methods in Geomechanics 33 (2009) 1799–1821. 

[18] B. Xu, J.F. Lu, J.H. Wang, Numerical analysis of isolation of the vibration due to moving loads 



using pile rows embedded in a poroelastic half space, Journal of Sound and Vibration 319 

(2009) 940-962. 

[19] A. Karlström, A. Boström, Efficiency of trenches along railways for trains moving at sub- or 

supersonic speeds, Soil Dynamics and Earthquake Engineering 27(2007) 625-641. 

[20] A. Karlström, A. Boström, An analytical model for train-induced ground vibrations from 

railways, Journal of Sound and Vibration 292 (2006) 221-241. 

[21] M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. Part I: 

low-frequency range; Part II: high-frequency range, Journal of Acoustic Society of America 28 

(1956) 168-191. 

[22] Y. Cai, Z. Cao, H. Sun, C. Xu, Dynamic Response of pavements on poroelastic half-space soil 

medium to a moving traffic load, Computers and Geotechnics 36 (2009) 52-60. 

[23] D.D. Theodorakopoulos, Dynamic analysis of a poroelastic half-plane soil medium under 

moving loads, Soil dynamics and Earthquake Engineering 23 (2003) 521-533. 

 

 

 

 

 

  
 



List of Figures 

Figure 1: Details of the theoretical model 

Figure 2: Comparison with existing work 

Figure 3: The ground surface velocity responses for two load speeds: (a) V=20m/s,          
(b) V=60m/s 

Figure 4: The excess pore water pressure responses for two load speeds: (a) V=20m/s,          
(b) V=60m/s 

Figure 5: The reduction velocity level against y for two load speeds: (a)20m/s, (b)60m/s 

Figure 6: The average reduction of velocity level against the load speed 

Figure 7: The reduction velocity level against y for different kd at load speed 60m/s 

Figure 8: The reduction velocity level against y for different L at load speed 60m/s 

Figure 9: The average reduction of velocity level for different L at load speed 60m/s 

 



Fig.1
Click here to download high resolution image



Fi
g.

2
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fig.3
Click here to download high resolution image



Fig.4
Click here to download high resolution image



Fig.5
Click here to download high resolution image



Fi
g.

6
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
g.

7
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
g.

8
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
g.

9
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Table 1.Wave number in y direction and trigonometric arguments used 

in the embankment layer j= e and banks j bb . 

j e b- b+

jmp
e

πm
a 1 2

πm
b b2b2 2 1

πm
b b1b1

( )jT y  y y+b1 y-b1

Tab.1



 
 

Table 2.  Displacement coefficients 

n = 1 2 3 

j
nm  iq jmp  iq S

jmh  

j
nm  - jmp  - iq - S

jm jmp h  

j
nm  P

jmh  0 -( 2
jmp +q2) 

j
nmk  P

jmh  S
jmh  S

jmh  

 
  

 

Tab.2



 
 

Table 3. Parameters for the embankment and banks ( e,bj e,b ) 

Lamé constant, jj                        7 28.7 10 N/m7 210 N/m7  
Shear modulus, jj                      6 26.48 10  N/m610  N/m6  
Mass density, jj                         1800 kg/m3             
Hysteretic damping ratio, jj                   0.13  
Half load width a                           1 m 
Half load length b                           1 m 

ae                                    7 m 
de                                    3 m 
b1                                    9 m 
b2                                                      50 m 
L                                     8 m          

 
  

  

 

Tab.3



Table 4. Parameters for fully water-saturated poroelastic soil medium 

Shear modulus, 6 26.0 10 N/m

Poisson’s ratio, 0.35 
Water density, f 1000 kg/m3 
Solid density, s 1816 kg/m3 
Porosity, n 0.4 
Coefficient of material damping, D 0.05 
Permeability coefficient, dk -510  m/s       
The parameter for the compressibility of the soil particle, 0.97 
The parameter for the compressibility of the fluid, M 8 27.2 10  N/m

Tab.4


