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Performance Analysis of 3-Dimensional Turbo
Codes

Eirik Rosnes,Senior Member, IEEE,and Alexandre Graell i Amat,Senior Member, IEEE

Abstract—In this work, we consider the minimum distance
properties and convergence thresholds of3-dimensional turbo
codes (3D-TCs), recently introduced by Berrou et al.. Here, we
consider binary 3D-TCs while the original work of Berrou et al.
considered double-binary codes. In the first part of the paper,
the minimum distance properties are analyzed from an ensemble
perspective, both in the finite-length regime and in the asymp-
totic case of large block lengths. In particular, we analyze the
asymptotic weight distribution of 3D-TCs and show numerically
that their typical minimum distance dmin may, depending on
the specific parameters, asymptotically grow linearly with the
block length, i.e., the3D-TC ensemble is asymptotically good for
some parameters. In the second part of the paper, we derive
some useful upper bounds on thedmin when using quadratic
permutation polynomial (QPP) interleavers with a quadratic
inverse. Furthermore, we give examples of interleaver lengths
where an upper bound appears to be tight. The best codes (in
terms of estimated dmin) obtained by randomly searching for
good pairs of QPPs for use in the3D-TC are compared to
a probabilistic lower bound on the dmin when selecting codes
from the 3D-TC ensemble uniformly at random. This comparison
shows that the use of designed QPP interleavers can improve the
dmin significantly. For instance, we have found a(6144, 2040)
3D-TC with an estimated dmin of 147, while the probabilistic
lower bound is 69. Higher rates are obtained by puncturing
nonsystematic bits, and optimized periodic puncturing patterns
for rates 1/2, 2/3, and 4/5 are found by computer search.
Finally, we give iterative decoding thresholds, computed from
an extrinsic information transfer chart analysis, and present
simulation results on the additive white Gaussian noise channel
to compare the error rate performance to that of conventional
turbo codes.

Index Terms—Asymptotic minimum distance analysis, distance
bounds, EXIT charts, hybrid concatenated codes, QPP inter-
leavers, spectral shape function, turbo codes, uniform interleaver.

I. I NTRODUCTION

Turbo codes have gained considerable attention since their
introduction by Berrouet al. in 1993 [1] due to their near-
capacity performance and low decoding complexity. The con-
ventional turbo code is a parallel concatenation of two identi-
cal recursive systematic convolutional encoders separated by a
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pseudo-random interleaver. Most conventional turbo codes us-
ing 8-state constituent encoders suffer from a flattening around
a frame error rate (FER) of10−5 due to a poor minimum
distancedmin. To improve the performance in the error floor
region, one could either design a better interleaver, use more
powerful constituent encoders, or increase the dimension, i.e.,
the number of constituent encoders. The latter alternative was
recently pursued in [2, 3], where a powerful coding scheme
nicknamed3-dimensional turbo code (3D-TC) and inspired
by the proposals in [4, 5], was introduced. The coding scheme
consists of a conventional turbo encoder and apatch. In more
detail, a fractionλ of the parity bits from the turbo encoder
are post-encoded by a third rate-1 encoder. The value ofλ
can be used to trade-off performance in the waterfall region
with performance in the error floor region. As shown in [2, 3],
this coding scheme is able to provide very low error rates for
a wide range of block lengths and code rates at the expense
of a small increase in decoding complexity with respect to
conventional turbo codes.

It is known that conventional turbo codes and single serially
concatenated convolutional codes are asymptotically bad, in
the sense that their typicaldmin asymptotically does not
grow linearly with the block length [6, 7]. As an alternative,
multiple serially concatenated codes, such as repeat multiple-
accumulate (RMA) codes, can be used, since they yield a
betterdmin. In [8], it was shown that there exists a sequence of
RMA codes with minimum distance converging in the limit of
infinitely many accumulators to the Gilbert-Varshamov bound
(GVB). The stronger result that the typicaldmin converges
to the GVB was recently proved in [9]. Also, in [10], it
was conjectured by Pfister that thedmin of RMA codes
asymptotically grows linearly with the block length, and that
the growth rate is given by the threshold where the asymptotic
spectral shape function [11] becomes positive. Klieweret al.
and Ravazzi and Fagnani showed independently in [9, 12] that
RMA code ensembles with two or more accumulators are
indeed asymptotically good (their typicaldmin asymptotically
grows linearly with the block length). A formal proof was
given in [9], and a method for the calculation of a lower bound
on the asymptotic growth rate coefficient was given in [12].
The analysis was later extended in [13, 14] to low-rate hybrid
concatenated codes, i.e., mixed parallel and serial structures
combining the features of the two concatenations.

In the first part of this paper, following these works, we ana-
lyze the minimum distance properties of3D-TCs. We perform
an asymptoticdmin analysis of3D-TCs by using a numerical
procedure to estimate their asymptotic spectral shape function.
The numerical procedure is based on the approach in [15]
to compute asymptotic input-output weight distributions of
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convolutional encoders. It is shown numerically that for certain
parameters, thedmin of 3D-TCs asymptotically grows linearly
with the block length. We also perform a finite-length analysis
of the dmin of 3D-TCs using a probabilistic lower bound,
outlined in [8], on thedmin.

Interleavers for conventional turbo codes have been exten-
sively investigated. The dithered relative prime (DRP) inter-
leavers [16, 17] and the almost regular permutation (ARP) in-
terleavers [18] are considered among the best ones, since they
provide relatively highdmin. Recently, Sun and Takeshita [19]
suggested the use of permutation polynomial (PP) based inter-
leavers over integer rings. In particular, quadratic polynomials
were emphasized. In contrast to DRP and ARP interleavers, PP
interleavers are fully algebraic, allowing a theoretical analysis
of their performance. In [20], thedmin of conventional binary
turbo codes with quadratic permutation polynomial (QPP)
interleavers was considered in detail, and large tables of
optimum (in terms ofdmin and its corresponding multiplicity)
QPPs for conventional turbo codes with8-state and16-state
constituent encoders were presented. In the most recent work
[21], Takeshita considered the use of higher degree PPs with
great success.

A suitable property for designed interleavers is the
contention-freeproperty, i.e., to avoid memory contentions in
parallelized decoding [18, 22, 23]. While ARP and some mod-
ified DRP interleavers [22] are contention-free, they are not
maximum contention-free, i.e., every factor of the interleaver
length is not a possible degree of parallel processing of the
decoder. On the other hand, in [24] it was shown that all PPs
generate maximum contention-free interleavers. Thus, these
interleavers are very interesting from an implementation point
of view. Furthermore, QPP interleavers are almost as good as
DRP interleavers for a large number of short-to-medium block
lengths in terms of decoding convergence and performance in
the error floor region [19–21,24].

In the second part of this work, we analyze minimum dis-
tance properties of3D-TCs with dedicated QPP interleavers.
In particular, we present several upper bounds on thedmin of
binary 3D-TCs when using QPP interleavers with a quadratic
inverse that do not depend on the permutation and the encoder
in the patch, as long as the encoder maps the all-zero sequence
to the all-zero sequence. Furthermore, we present some results
from a random search for good pairs of QPPs for use in the
binary 3D-TC. It is shown that the use of designed QPPs
yields a very highdmin, improving significantly compared to
the probabilistic lower bound on thedmin.

The remainder of this paper is organized as follows. The
encoder structure and design guidelines for3D-TCs are de-
scribed in Section II. Section III describes a probabilistic lower
bound on thedmin of a code ensemble and its application to
3D-TCs. The asymptotic spectral shape function is introduced
in Section IV along with a numerical procedure to estimate it.
Furthermore, we show numerically that the3D-TC ensemble
is asymptotically good for certain parameters. The minimum
distance properties of3D-TCs with dedicated QPP interleavers
are addressed in Sections V and VI. In particular, Section V
describes QPPs and some of their properties, and in Sec-
tion VI, an upper bound on thedmin with QPP interleavers
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Fig. 1. 3D turbo encoder. A fractionλ of the parity bits from both constituent
encodersCa andCb are grouped by a parallel/serial multiplexer, permuted
by interleaverΠc, and encoded by the rate-1 post-encoderCc.

with a quadratic inverse for a conventional turbo code is
presented, along with upper bounds on thedmin of 3D-TCs
with QPP interleavers with a quadratic inverse and with any
patch. Convergence properties are studied in Section VII,
where an extrinsic information transfer (EXIT) chart analysis
is performed. In Section VIII, the results of a random search
for good pairs of QPPs for use in the3D-TC are presented
and compared to the finite-length results from Section III.
Also, optimized puncturing patterns for rates1/2, 2/3, and
4/5 are established by computer search. Finally, simulation
results on the additive white Gaussian noise (AWGN) channel
are presented to compare the error rate performance to that
of conventional turbo codes. Conclusions and a discussion of
future work are given in Section IX.

II. CODING SCHEME

A block diagram of the3D-TC is depicted in Fig. 1. The
information data sequenceu of length K bits is encoded
by a binary conventional turbo encoder. By a conventional
turbo encoder we mean the parallel concatenation of two
identical rate-1 recursive convolutional encoders, denoted by
Ca andCb, respectively. HereCa andCb are 8-state recursive
convolutional encoders with generator polynomialg(D) =
(1 + D + D3)/(1 + D2 + D3), i.e., the 8-state constituent
encoder specified in the 3GPP/UMTS standard [25]. The
code sequences ofCa and Cb are denoted byxa and xb,
respectively. We also denote byxTC the codeword obtained
by alternating bits fromxa andxb. A fractionλ (0 ≤ λ ≤ 1),
called thepermeability rate, of the parity bits fromx

TC are
permuted by interleaverΠc (of length Nc = 2λK), and
encoded by an encoder of unity rateCc, called thepatch
or the post-encoder[3]. This can be properly represented
by a puncturing patternp applied tox

TC (see Fig. 1) of
period Np containingλNp ones (where a one means that
the bit is not punctured). The fraction1 − λ of parity bits
which are not encoded byCc is sent directly to the channel.
Equivalently, this can be represented by a puncturing pattern
p̄, the complement ofp. We denote byxc the code sequence
of Cc. Also, we denote byxch

a andxch
b the sub-codewordsof

xa andxb, respectively, sent directly to the channel, and by
x
ch the codeword obtained by alternating bits fromxch

a and
x
ch
b . Likewise, we denote byxp

a and x
p
b the sub-codewords

of xa and xb, respectively, encoded byCc, and byxp the
codeword obtained by alternating bits fromxp

a andxp
b. Finally,

the information sequence and the code sequencesx
ch andxc



3

are multiplexed to form the code sequencex, of lengthN bits,
transmitted to the channel. Note that the overall nominal code
rate of the3D-TC is R = K/N = 1/3, the same as for the
conventional turbo code without the patch. Higher code rates
can be obtained either by puncturingxch or by puncturing
the output of the patch,xc. In this paper, we consider the
following puncturing strategy. First, puncturexch. Then, if
further puncturing is required, puncturexc.

In [3], regular puncturing patterns of period2/λ were
considered forp. For instance, ifλ = 1/4, every fourth
bit from each of the encoders of the outer turbo code are
encoded by encoderCc. The remaining bits are sent directly
to the channel, and it follows thatp = [11000000] and
p̄ = [00111111]. In this paper, we consider both regular and
random patterns forp.

The 3D-TC can be decoded using the turbo principle. The
decoder consists of three soft-input soft-output decodersC−1

a ,
C−1

b , andC−1
c corresponding to the three constituent encoders

Ca, Cb, and Cc, respectively. A decoding iteration consists
of a single activation ofC−1

c , C−1
a , andC−1

b , in this order.
This process continues iteratively until the maximum number
of iterations is reached or an early stopping rule criterionis
fulfilled.

A. Design Guidelines

In [3], some guidelines for choosing the permeability rate
λ were given. In general, choosing a large value forλ will
increase the minimum distance. However, the performance in
the waterfall region will degrade with increasing values ofλ.
Thus, there is trade-off between performance in the waterfall
and error floor regions.

According to [3], the choice of the post-encoder is crucial
for the code performance. In general, the post-decoder must
be simple and be able to handle soft-input and produce soft-
output information. Furthermore, the post-decoder must not
exhibit too mucherror amplification(see [3] for details), since
this will result in a high loss in convergence. In this paper,
we consider the encoder with generator polynomialg(D) =
1/(1 +D2) for Cc [3].

III. W EIGHT ENUMERATORS AND FINITE-LENGTH

M INIMUM DISTANCE ANALYSIS

In this section, we analyze the minimum distance properties
of 3D-TCs. In particular, we consider the ensemble of codes
in the form of Fig. 1 obtained by considering all possible
permutations forΠ and Πc through theuniform interleaver
approach [26].

Let AC
w,h denote the input-output weight enumerator

(IOWE) of a codeC, i.e., the number of code sequences
of weight h corresponding to input sequences of weightw.
Also, let AC

h =
∑

w AC
w,h be the weight enumerator (WE) of

the codeC, i.e., the number of code sequences of weighth.
Denote byqa andqb the weights of code sequencesxa andxb,
respectively, and byq its sum,q = qa + qb (i.e., the weight
of x

TC). We also denote byna, nb, and n the weights of
code sequencesxp

a , xp
b, andxp, respectively (n = na + nb).

Likewise, we denote byma, mb, andm the weights of code

sequencesxch
a , xch

b , andx
ch, respectively (m = ma + mb).

Note thatq = n+m.

A. IOWE of3D-TCs With Random Puncturing Patternp

We assume a random puncturing pattern forp. The punc-
turing patterns are sampled uniformly at random among all
those with ⌊δN⌋ ones, whereδ is the fraction of bits that
survive after puncturing. The average IOWE of the ensemble
of punctured codesCpunct, with input weightw and output
weighth′ is given by [12]

Ā
Cpunct

w,h′ =

N
∑

h=h′

AC
w,h

(

h
h′

)(

N−h
⌊δN⌋−h′

)

(

N
⌊δN⌋

) (1)

whereh is the output weight before puncturing.
Using the concept of uniform interleaver [26] and (1) the

ensemble-average IOWE of the3D-TC ensemble, denoted by
C, can be computed as

ĀC
w,h =

∑

q,qa,n

ACa
w,qaA

Cb

w,q−qa
(

K
w

) ·

(

q
n

)(

2K−q
2λK−n

)

(

2K
2λK

) ·
ACc

n,h−w−q+n
(

2λK
n

) .

(2)

B. IOWE of3D-TCs With Regular Puncturing Patternp

Here, we assume the use of regular (i.e., nonrandom)
puncturing patterns forp. In this case, the ensemble-average
IOWE of the3D-TC ensemble can be written as

ĀC
w,h =

∑

m,ma,n,na

ACa

w,(ma,na)
ACb

w,(m−ma,n−na)
(

K
w

) ·
ACc

n,h−w−m
(

2λK
n

)

(3)
where ACx

w,(mx,nx)
, x = a, b, is the number of codewords

of constituent encoderCx with input weightw, and output
weightsmx andnx corresponding to the sub-codewords sent
directly to the channel and to encoderCc, respectively. We
remark that the two enumerators in (2) and (3) are not the
same, since the first is averaged over puncturing patterns, while
the second is for a given puncturing pattern. Thus, there is a
slight abuse of notation.

C. Finite-Length Minimum Distance Analysis

The ensemble-average WĒAC
h can be used to bound the

minimum distancedmin of the code ensembleC in the
finite-length regime. In particular, the probability that acode
randomly chosen from the ensemble has minimum distance
dmin < d is upper-bounded by [8]

Pr(dmin < d) ≤

d−1
∑

h=1

ĀC
h. (4)

The upper bound in (4) can be used to obtain a probabilistic
lower bound on the minimum distance of a code ensemble. For
a fixed value ofǫ, whereǫ is any positive value between0
and1, we define the probabilistic lower bound with probability
ǫ, denoted bydmin,LB,ǫ, to be the largest integerd such that
the right-hand side of (4) is at mostǫ. This guarantees that
Pr(dmin ≥ d) ≥ 1− ǫ.
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Fig. 2. Probabilistic lower bound on the minimum distance of3D-TC
ensembles,R = 1/3, for several values ofλ using regular and random
puncturing patterns, whenǫ = 0.5.
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Fig. 3. Probabilistic lower bound on the minimum distance of3D-TC
ensembles,R = 1/2, for several values ofλ using regular puncturing patterns,
when ǫ = 0.1 and0.5.

In Fig. 2, we plot the probabilistic lower bound from (4),
dmin,LB,0.5, for 3D-TC ensembles,R = 1/3, with regular
puncturing patternsp and for several values ofλ as a function
of the block lengthN . We assumedǫ = 0.5, which implies
that Pr(dmin ≥ d) ≥ 0.5, i.e., we expect that at least half
of the codes inC have admin at least equal to the value
predicted by the curves. For comparison purposes, the GVB
is also displayed in the figure. For values ofλ down to 1/4,
the growth rate of thedmin appears to be linear with the
block length, while for smaller values ofλ little growth is
observed. The achievable minimum distances are quite high,
especially for high values ofλ. For instance, the bound for
the 3D-TC ensemble withλ = 1 is dmin ≈ 215 for a
block length ofN = 1950 bits. Reducingλ, significantly
reduces the growth rate. For instance, forλ = 1/2, the
probabilistic lower bound givesdmin ≈ 92 for the same block
length. For higher rates, the curves get closer to the GVB. In
Fig. 2, we also plot the probabilistic lower bound from (4)
for R = 1/3 3D-TC ensembles withλ = 1/2 and1/4 using
random puncturing patternsp. Compared to regular puncturing
patterns, the growth rate of thedmin is slightly smaller. Thus,
regular puncturing patterns seem to be a good choice forp.

In Fig. 3, we plot the probabilistic lower bound from (4) for
R = 1/2 3D-TC ensembles using regular puncturing patterns
p for several values ofλ and the code block lengths used for

the QPP interleavers in Section VIII. In the figure, we plot the
bound forǫ = 0.5 and 0.1, i.e., 50% and 90% of the codes
have minimum distance at least equal to the value predicted
by the curves, respectively. In all cases, a linear-like growth
rate is observed.

IV. A SYMPTOTIC M INIMUM DISTANCE ANALYSIS

In this section, we analyze the asymptotic behavior of the
WE of 3D-TC ensembles to show that their typicaldmin grows
linearly with the block length for some parameters. To this
end, we consider the behavior of theasymptotic spectral shape
functionof the code ensemble, defined as [11]

r(ρ) = lim sup
N−→∞

1

N
lnA

C

⌊ρN⌋ (5)

wheresup(·) denotes the supremum of its argument,ρ = h
N

is the normalized output weight, andN is the block length.

From (5), we can writeA
C

h ∼ eNr(ρ) when N −→ ∞.
Therefore, if there exists some abscissaρ0 > 0 such that
supρ≤ρ∗ r(ρ) < 0 ∀ρ∗ < ρ0, andr(ρ) > 0 for someρ > ρ0,
then it can be shown, with high probability, that thedmin

of most codes in the ensemble grows linearly with the block
lengthN , with growth rate coefficient of at leastρ0 [9, 12]. On
the other hand, ifr(ρ) is strictly zero in the range(0, ρ0), then
we cannot conclude directly whetherdmin grows linearly with
block length or not. In [9], it was shown that the asymptotic
spectral shape function of RMA codes exhibits this behavior,
i.e., it is zero in the range(0, ρ0) and positive for someρ > ρ0.
However, by combining the asymptotic spectral shapes with
the use of bounding techniques, Ravazzi and Fagnani were
able to prove in [9, Theorem 6] that the minimum distance of
RMA codes indeed grows linearly with the block length with
growth rate coefficient of at leastρ0.

We remark that in the rest of the paper, with a slight
abuse of language, we sometimes refer toρ0 as the exact
value of the asymptotic growth rate coefficient. However, we
emphasize that, strictly speaking,ρ0 is only a lower bound on
the asymptotic growth rate coefficient.

A. Asymptotic Spectral Shape Function of3D-TCs

For analysis purposes, we assume a random puncturing
patternp. LetC be an(N,K) code. We define the asymptotic
behavior of the IOWE forC as the function

aC(α, β) = lim sup
N−→∞

1

N
lnA⌊αK⌋,⌊βN⌋ (6)

whereα = w/K and β = h/N are the normalized input
weight and the normalized output weight, respectively. Using
(2), (6), and Stirling’s approximation for binomial coefficients
(

n
k

)

∼ enH(k/n) for n → ∞ and k/n constant, whereH(·)
is the binary entropy function with natural logarithms, the
asymptotic spectral shape function of the (unpunctured)3D-
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Fig. 4. Asymptotic spectral shape function for3D-TCs,λ = 1, and several
code rates.

TC ensembleC can be written as

r(ρ) =
1

3
sup

0≤ω,ι,ιa,µ≤1

{

aCa(ω, ιa) + aCb(ω, 2ι− ιa)

+ 2ιH

(

λµ

ι

)

+ 2(1− ι)H

(

λ(1 − µ)

1− ι

)

+ 2λaCc

(

µ,
3ρ− (ω + 2(ι− λµ))

2λ

)

−H(ω)− 2H(λ)− 2λH(µ)
}

(7)

whereω = w/K, ιa = qa/K, ι = q/2K, andµ = n/Nc =
n/2λK. For higher rates, i.e., when puncturing is applied to
x
ch or to xc, a similar expression is obtained with some extra

terms. Note that in (7) we did not include the constraints on the
relationship of the variables involved in the optimization. The
constraints on the involved variables can be derived by looking
at the arguments of the involved binary entropy functions in
(7). In general, the argument of the binary entropy function
should be between0 and1.

The asymptotic IOWE of the inner codeCc is equal to the
asymptotic IOWE of an accumulate code [15] and can be given
in closed form as

aCc(α, β) = (1− β)H

(

α

2(1− β)

)

+ βH

(

α

2β

)

.

On the other hand, a closed-form expression for the asymptotic
IOWE of the 8-state convolutional encoder is not known.
However, in [15], Sasonet al.provided a numerical method for
computing the asymptotic IOWE of convolutional encoders.
Here, we use the numerical procedure proposed in [15] to
compute the asymptotic IOWEsaCa(ω, ιa) andaCb(ω, 2ι−ιa)
in (7) to numerically compute the asymptotic spectral shape
function.

The numerical evaluation of the asymptotic spectral shape
function is displayed in Fig. 4 for3D-TCs,λ = 1, and several
code rates, and in Fig. 5 forR = 1/3 3D-TCs and several
values ofλ. The behavior of the asymptotic spectral shape
function is similar to the one of RMA codes [9], i.e., it is zero
in the range(0, ρ0) and strictly positive for someρ > ρ0.
Note that since closed-form expressions foraCa(ω, ιa) and
aCb(ω, 2ι − ιa) are not known, we cannot provide a formal
proof that 3D-TCs are asymptotically good. However, the
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Fig. 5. Asymptotic spectral shape function forR = 1/3 3D-TCs and several
values ofλ.

TABLE I
ESTIMATED GROWTH RATE COEFFICIENTρ0 OF 3D-TCS.

R = 1/3 R = 1/2 R = 2/3 R = 4/5

λ = 1 0.102 0.077 0.052 0.030
λ = 1/2 0.029 0.031 0.023 0.015
λ = 1/3 0.008 0.010 0.008 0.006
λ = 1/4 0.001 0.002 0.001 0.001

numerical evaluation of the asymptotic spectral shape function,
together with extensive numerical experiments that show that
Pr(dmin < ⌊ρ0N⌋) −→ 0 asN gets large, suggest that3D-
TCs for the parameters in Figs. 4 and 5 (forλ down to1/4)
are indeed asymptotically good. Furthermore, the results are in
agreement with the finite-length analysis. On the other hand,
for λ = 1/8, the asymptotic spectral shape function is strictly
positive, meaning that thedmin does not grow linearly with
the block length.

The estimated growth rate coefficientρ0 of 3D-TCs is
reported in Table I for several code rates and values of the
parameterλ. As expected, for a fixed code rate, the growth
rate coefficient increases asλ increases.

Notice that the growth rate coefficient forR = 1/2 is higher
than forR = 1/3 for all values ofλ, except forλ = 1. An
heuristic explanation is that forλ = 1/2 and lower, to achieve
R = 1/2, only parity bits sent directly to the channel are
punctured. The minimum weight of the parity bits sent directly
to channel will not grow linearly with the block length, since
this would imply that the minimum distance of a conventional
turbo code would grow linearly with the block length, which is
not the case [6]. Thus, we would expect that there is not much
difference in the growth rate betweenR = 1/3 andR = 1/2
for λ ≤ 1/2, and the values forR = 1/2 can even be higher,
since the rate is higher.

B. Threshold Under Maximum-Likelihood (ML) Decoding

The asymptotic spectral shape function of a code ensemble
can also be used to derive a threshold under ML decoding.
An upper bound on the ML decoding threshold of a code
ensemble, due to Divsalar [27], is given by
(

Eb

N0

)

ML,threshold

≤
1

R
· max
0≤ρ≤1

[

(1− e−2r(ρ))(1 − ρ)

2ρ

]

(8)

where R is the code rate,r(ρ) is the asymptotic spectral
shape function,Eb/N0 denotes the signal-to-noise ratio, and
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TABLE II
UPPER BOUNDS ON THEML DECODING THRESHOLD OF3D-TCS BASED

ON DIVSALAR ’ S BOUND IN [27].

R = 1/3 R = 1/2 R = 2/3 R = 4/5

Capacity -0.495 dB 0.187 dB 1.059 dB 2.040 dB
λ = 1 -0.440 dB 0.319 dB 1.325 dB 2.475 dB
λ = 1/2 -0.352 dB 0.400 dB 1.358 dB 2.485 dB
λ = 1/3 -0.272 dB 0.514 dB 1.452 dB 2.509 dB
λ = 1/4 -0.211 dB 0.605 dB 1.668 dB 2.553 dB

(Eb/N0)ML,threshold is the ML decoding threshold. We com-
puted the upper bound on the ML decoding threshold in (8)
numerically for3D-TC ensembles for several values ofλ and
code rates. The results are given in Table II. For comparison
purposes, we also report in the table the binary-input AWGN
Shannon limit. Forλ = 1 andR = 1/3, the ML decoding
threshold is very close to the capacity limit, while the gap
to capacity generally increases with the code rate. Also, note
that similarly to the growth rate coefficient, the upper bounds
on the ML decoding threshold decrease as the value ofλ
increases. In Section VII, we will compare these upper bounds
on the ML decoding threshold to iterative decoding thresholds
computed from an EXIT chart analysis.

V. QPPS OVER INTEGERRINGS

In the previous sections we analyzed the minimum distance
properties of3D-TC ensembles (generated by varyingΠ and
Πc over all possible permutations) and showed numerically
that their dmin grows linearly with block length for certain
values of λ. In the following, we consider the minimum
distance properties of3D-TCs with designed interleavers. In
particular, we consider QPP interleavers. In this section,we
establish notation and restate the criterion for existenceof
QPPs over integer rings. The interested reader is referred
to [19, 28] for further details.

Definition 1: Given an integerM ≥ 2, a polynomial
f(x) = f1x + f2x

2 (mod M), where f1 and f2 are non-
negative integers, is said to be a QPP over the ring of integers
ZM whenf(x) permutes{0, 1, 2, . . . ,M − 1}.

In this paper, let the set of primes beP = {2, 3, 5, 7, . . .}.
Then an integerM can be factored asM =

∏

p∈P pnM,p ,
wherenM,p ≥ 1 for a finite number ofp’s and nM,p = 0
otherwise. For example, ifM = 3888 = 24 × 35 we have
n3888,2 = 4 and n3888,3 = 5. For a quadratic polynomial
f(x) = f1x + f2x

2 (mod M), we will abuse the previous
notation by writingf2 =

∏

p∈P pnF,p , i.e., the exponents of
the prime factors off2 will be written asnF,p instead of
the more cumbersomenf2,p because we are interested in the
factorization off2.

Let us denotea divides b by a|b and bya ∤ b otherwise.
The greatest common divisor ofa and b is denoted by
gcd(a, b) and the least common multiple ofa andb is denoted
by lcm(a, b). The necessary and sufficient condition for a
quadratic polynomialf(x) to be a PP is given below.

Proposition 1 ([19, 28]): Let M =
∏

p∈P pnM,p . The nec-
essary and sufficient condition for a quadratic polynomial
f(x) = f1x + f2x

2 (mod M) to be a PP can be divided
into two cases.

1) Either2 ∤ M or 4|M (i.e., nM,2 6= 1)
gcd(f1,M) = 1 and f2 =

∏

p∈P pnF,p , nF,p ≥ 1, ∀p
such thatnM,p ≥ 1.

2) 2|M and4 ∤ M (i.e., nM,2 = 1)
f1 + f2 is odd, gcd(f1,

M
2 ) = 1, and f2 =

∏

p∈P pnF,p , nF,p ≥ 1, ∀p such that p 6= 2 and
nM,p ≥ 1.

For example, ifM = 256, then we determine from case 1)
of Proposition 1 thatf1 ∈ {1, 3, 5, . . . , 255} (set of numbers
relatively prime toM ) and f2 ∈ {2, 4, 6, . . . , 254} (set of
numbers that contain 2 as a factor). This gives us128×127 =
16256 possible pairs of coefficientsf1 andf2 that makef(x)
a PP.

Finally, we remark that some QPPs have a quadratic inverse,
i.e., the inverse permutation can also be generated by a QPP.
We will not state the exact conditions here, but refer the
interested reader to [28] for further details.

A. Quasi-Cyclic Property of3D-TCs Using QPPs

Assume tailbiting termination of the upper and lower con-
stituent encoders and of the encoder in the patch of the3D-TC.
Furthermore,1/λ is assumed to be a divisor ofK, the length
of the interleaverΠ, and the puncturing patternp is assumed
to be regular, i.e.,p = [1100 · · ·00].

Lemma 1:The3D-TC is quasi-cyclic with periodp, where

p = l · lcm(K/ gcd(2f2,K), 1/λ,K/ gcd(2f̃2, Nc)),

f(x) = f1x + f2x
2 (mod K) and f̃(x) = f̃1x + f̃2x

2

(mod Nc) generate the turbo code interleaver and the per-
mutation in the patch, respectively, andNc is the input length
to the patch, as defined in Section II. Furthermore,l is the
smallest positive integer solution to the quadratic congruence

2λp̃((f1 − 1)l+ f2p̃l
2) ≡ 0 (mod Nc) (9)

wherep̃ = p/l.
Proof: Let u denote an input sequence to a3D-TC, let i,

0 ≤ i < K, denote an arbitrary position inu, and let−→u denote
a quasi-cyclic shift of periodp of u. Now, the positioni + p
(mod K) in −→

u is interleaved tof(i+p) = f(i)+f(p)+2f2ip
(mod K). Furthermore, to make the difference between the
interleaved positionsf(i + p) and f(i) independent ofi, or
equivalently,xb(

−→
u ) a quasi-cyclic shift ofxb(u), we require

that 2f2p ≡ 0 (mod K), i.e., p = l · K/ gcd(2f2,K), for
some positive integerl. Also, to makexp(−→u ) a quasi-cyclic
shift of x

p(u), both 2λ(f(p) − p) ≡ 0 (mod Nc) (which
gives (9)) and(1/λ)|p must hold. Finally, to makexc(

−→
u )

a quasi-cyclic shift ofxc(u), 2λp needs to be a multiple of
Nc/ gcd(2f̃2, Nc), or equivalently,p needs to be a multiple of
K/ gcd(2f̃2, Nc), sincexp(−→u ) is a quasi-cyclic shift ofxp(u)
of period2λp, and the result follows.

Without the patch, the conventional binary turbo code is
quasi-cyclic with periodK/ gcd(2f2,K). We remark that a
similar result will hold for3D double-binary turbo codes [3]
with symbol interleavingbased on QPPs.
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VI. U PPER BOUNDS ONdmin WITH QPPS WITH A

QUADRATIC INVERSE

In this section, we present upper bounds ondmin with QPPs
with a quadratic inverse.

First, we state a general result from [29] on the minimum
distance of a conventional binary turbo code with QPP in-
terleavers. We assume tailbiting termination of the upper and
lower constituent encoders.

Theorem 1 ([29]): The minimum distance of a conven-
tional binary turbo code (of nominal rate1/3) using primitive
feedback and monic feedforward polynomials of degreeν
and QPPs with a quadratic inverse, is upper-bounded by
2(2ν+1 + 9).

We remark that Theorem 1 applies for all interleaver lengths
K and is achievable for a range ofK-values [29]. The bound
of Theorem 1 is due to an input-weight6 codeword containing
3 input-weight2 fundamental paths, or error events, in both the
upper and lower constituent codewords. Also, the upper bound
of Theorem 1 can be shown to hold with dual termination
[30] as well, i.e., the upper and lower constituent encodersare
forced to begin and end in the zero state, whenK ≥ 2ν+3−7
[29].

A. Upper Bounds ondmin With QPPs With a Quadratic
Inverse for the3D-TC With Any Patch

In this subsection, we consider the binary3D-TC of Fig. 1
with any given patch and such that4|(1/λ)|K and with regular
puncturing patternp = [1100 · · ·00]. Note that it may be
possible to derive bounds for other values ofλ using a similar
procedure as the one outlined below. Also, we remark that the
bounds here can be generalized to3D-TCs with lower and
upper constituent encoders other than the8-state constituent
encoder with feedforward polynomial1+D+D3 and feedback
polynomial 1 + D2 + D3. However, in this work, we will
constrain the analysis to this8-state encoder and to the case
when 4|(1/λ)|K. On the other hand, we do not consider a
specific encoder forCc. In fact, in the analysis below, the
only condition we require is that the encoder of the patch
maps the all-zero sequence to the all-zero sequence. Also,
we assume tailbiting termination of the upper and lower
constituent encoders. Note that the termination method of the
encoder in the patch is not an issue here.

The upper bounds in this section are based on certain critical
codewords that always occur for some specific lengths for any
QPP interleaver (with a quadratic inverse) for the conventional
binary turbo code. To find these critical codewords, we have
used the following strategy.

• First select a particular interleaver lengthK and perform
a random search for good pairs of QPPs using the triple
impulse method [17] to estimate thedmin of the 3D-TC.

• Low-weight codewords identified by the triple impulse
method are added to a list of codewords. Within this list
of codewords, there are often codewords that give an all-
zero input sequence into the patch, and it is sometimes
possible to identify among these codewords certain types
of codewords that occur repeatedly.

This is how we have found the critical codewords depicted in
Figs. 10, 11, and 12 in Appendices A and B. These critical
codewords give the following two theorems, wheref(x) =
f1x+f2x

2 (mod K) is the QPP that generates the interleaver
of the outer turbo code andg(x) = g1x + g2x

2 (mod K) is
its inverse.

Theorem 2:The minimum distance of a binary3D-TC with
feedforward polynomial1+D+D3 and feedback polynomial
1 + D2 + D3 for the upper and lower constituent encoders
and with QPP interleavers with a quadratic inverse, is upper-
bounded by67 when 1) the interleaver lengthK satisfies the
conditions

nK,p ≤

{

7, if p = 2

1, otherwise,
(10)

2) the encoder in the patch maps the all-zero sequence to the
all-zero sequence, and 3)4|(1/λ)|K.

Proof: See Appendix A.
For example,K = 1504 and 640 satisfy the inequality in

(10), since1504 = 25 × 47 and640 = 27 × 5.
Theorem 3:The minimum distance of a binary3D-TC with

feedforward polynomial1+D+D3 and feedback polynomial
1 + D2 + D3 for the upper and lower constituent encoders
and with QPP interleavers with a quadratic inverse, is upper-
bounded by27 (resp.54) when 1)2g2 ≡ 0 (mod K) (resp.
4g2 ≡ 0 (mod K)), 2) the encoder in the patch maps the
all-zero sequence to the all-zero sequence, and 3)4|(1/λ)|K.

Proof: See Appendix B.
We remark that Theorem 3 can be formulated with the

conditions2f2 ≡ 0 (mod K) and4f2 ≡ 0 (mod K) instead
of the conditions2g2 ≡ 0 (mod K) and 4g2 ≡ 0 (mod K)
due to symmetry. Note that the condition2g2 ≡ 0 (mod K)
is equivalent to the fact that the QPPg(x) = g1x + g2x

2

(mod K) is indeed a linear PP, i.e., the same permutation is
generated by a linear PP.

Lemma 2: If K > 32, then the upper bound on thedmin of
67 in Theorem 2 holds with dual termination as well.

Proof: See Appendix C.
We remark that a lower bound onK can be derived, in

a similar fashion, to make the upper bounds on thedmin in
Theorem 3 hold with dual termination as well. We omit the
details for brevity.

Finally, note that in principle it is possible to derive bounds
for other values ofλ and when puncturing is applied using the
procedure above, both for binary and double-binary codes.

VII. EXIT CHART ANALYSIS

In this section, we estimate the convergence thresholds of
3D-TCs through an EXIT chart analysis [31] on the AWGN
channel using regular puncturing patternsp. Also, higher code
rates are obtained by randomly puncturing nonsystematic bits
according to the puncturing strategy in Section II.

The EXIT charts of two3D-TCs, with parametersλ = 1/2,
R = 1/3, andλ = 1/4, R = 2/3, at anEb/N0 of γ = 0.55
dB andγ = 1.72 dB, respectively, are depicted in Fig. 6. The
solid curves are the EXIT curves of the outer turbo code, while
the dashed curves are the EXIT curves of the inner encoder. In
both cases a tunnel between the two EXIT curves is observed,
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Fig. 6. EXIT charts ofλ = 1/2, R = 1/3, 3D-TC (γ = 0.55 dB) and of
λ = 1/4, R = 2/3, 3D-TC (γ = 1.72 dB). The dashed curves are the EXIT
curves of the inner encoder, while the solid curves are the EXIT curves of
the outer turbo code.

TABLE III
CONVERGENCETHRESHOLDS OF3D-TCS.
R = 1/3 R = 1/2 R = 2/3 R = 4/5

λ = 1 1.26 dB 2.00 dB 2.99 dB 4.14 dB
λ = 1/2 0.52 dB 1.24 dB 2.23 dB 3.39 dB
λ = 1/3 0.30 dB 1.00 dB 1.88 dB 3.00 dB
λ = 1/4 0.20 dB 0.85 dB 1.68 dB 2.79 dB
λ = 0 -0.05 dB 0.62 dB 1.53 dB 2.46 dB

meaning that convergence is possible at thisEb/N0. Note that
both EXIT functions of the inner code and the outer turbo
code depend on theEb/N0. For each pair of curves, a vertical
step between the lower curve (i.e., the EXIT curve of the turbo
code) and the upper curve (i.e., the EXIT curve of the inner
code) represents a single activation of decoderC−1

c , while a
horizontal step between the upper curve and the lower curve
represents an unspecified number of activations of decoders
C−1

a andC−1
b until nothing more can be gained. Forλ = 1/2,

R = 1/3, the tunnel between the two curves opens atγ = 0.52
dB, predicting a convergence threshold around this value. For
λ = 1/4, R = 2/3, the tunnel opens atγ = 1.68 dB. The
convergence thresholds of3D-TCs are given in Table III for
several code rates and values ofλ. The convergence thresholds
were computed assuming a block lengthK = 106 bits1. For a
given code rate, the best convergence threshold is achievedby
the fully parallel concatenated code (λ = 0), while increasing
λ leads to poorer thresholds. On the other hand, in terms
of dmin, the behavior is the opposite, i.e., larger minimum
distances are obtained by increasingλ. This suggests that there
is a trade-off between iterative convergence threshold anddmin

growth rate.

1We remark that the thresholds in Table III are slightly different from the
thresholds in Table II in [32]. This is due to the fact that thethresholds in
[32] were computed using a shorter block length.

It is interesting to note that the iterative decoding thresholds
get worse for increasing values ofλ, while the upper bounds
on the ML decoding threshold (see Table II) improve. This
behavior can be explained from the fact that the latter depends
on the code while the former depends also on the decoding
algorithm. The sub-optimality of the iterative decoding algo-
rithm is expected to be higher when the contribution of the
patch is higher (i.e., for increasing values ofλ), which explains
the results in Table III compared to the upper bounds on the
ML decoding threshold in Table II.

VIII. N UMERICAL RESULTS

In this section, we present some numerical results from a
random search for pairs of QPPs withλ = 1/4 and with
regular puncturing patternp = [11000000], which give good
estimated minimum distance for the binary rate-1/3 3D-TC.
As shown above,λ = 1/4 is a good compromise between
minimum distance and convergence threshold. To estimate
the minimum distance, we used the triple impulse method
[17]. Also, to speed up the search, we limited the search
space through the conditions2lf2 6≡ 0 (mod K), l = 2 and
4, whenever appropriate. The rationale behind the condition
16f2 6≡ 0 (mod K) can be found in the proof of Theorem 2
in Appendix A. In the search, all three constituent encoders
were forced to begin and end in the zero state. The results,
for some specific lengths and rates (high rates are obtained
by puncturing nonsystematic bits, as explained in Section II),
are tabulated in Table IV. For each code rate, the minimum
distances of the3D-TCs, estimated using the triple impulse
method, are denoted bŷd(R)

min, whereR is the code rate. For
comparison purposes, we have also tabulated the probabilistic
lower bound on thedmin from (4) with ǫ = 0.5, denoted by
d
(R)
min,LB, using random puncturing patterns.
For rate 1/3, the results are reported in column 7 in

Table IV. TheK-values in bold indicate lengths where the
upper bound in Theorem 2 appears to be tight. In the table,
we also report (in column8) the probabilistic lower bound
on thedmin from (4), and the optimumdmin (in column15)
for a conventional rate-1/3 binary turbo code with a QPP
interleaver, denoted bydTC,(1/3)

min . As expected, the designed
QPP interleavers improve thedmin significantly with respect to
the probabilistic lower bound. Moreover, the3D-TCs achieve
much higher minimum distances than the best conventional
turbo codes. Therefore, they are expected to exhibit much
lower error floors.

The results for rates1/2, 2/3, and 4/5 are tabulated in
columns 9, 11, and 13 in Table IV, respectively. Specific
periodic puncturing patterns have been found by computer
search, following the puncturing strategy in Section II. Inmore
detail, for rates less than2/3, only bits fromx

ch are punctured.
In particular, for rateR = 2/3, all bits fromx

ch are punctured.
For rates larger than2/3, all bits fromx

ch and some bits from
xc are punctured.

In the computer search, both error rate performance in the
error floor region (i.e., the minimum distance) and the waterfall
region have been considered. Performance in the waterfall
region is particularly important for rate4/5, since some
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TABLE IV
RESULTS FROM A RANDOM SEARCH FOR PAIRS OFQPPS WITH λ = 1/4, BOTH WITH A QUADRATIC INVERSE, IN WHICH THE FIRST QPPf(x)

GENERATES THE TURBO CODE INTERLEAVER AND THE SECONDQPPf̃(x) GENERATES THE PERMUTATION IN THE PATCH. HIGHER RATES ARE OBTAINED
BY PUNCTURING THE NONSYSTEMATIC BITS USING OPTIMIZED(BY COMPUTER SEARCH) PERIODIC PUNCTURING PATTERNS.

K f1 f2 Nc f̃1 f̃2 d̂
(1/3)
min d

(1/3)
min,LB d̂

(1/2)
min d

(1/2)
min,LB d̂

(2/3)
min d

(2/3)
min,LB d̂

(4/5)
min d

(4/5)
min,LB d

TC,(1/3)
min

512 175 192 256 15 192 67 33 38 19 17 11 15 7 38 [20]

640 631 40 320 21 180 67 36 41 21 17 12 16 8 39 [29]

768 613 24 384 73 216 79 39 42 24 22 14 17 9 39 [29]

1024 465 224 512 157 160 93 45 54 28 23 17 22 11 45 [20]

1504 299 188 752 147 282 67 57 41 36 17 22 16 15 50 [29]

2048 673 448 1024 71 192 147 69 110 45 64 29 40 19 50 [29]

puncturing patterns show very poor error rate performance.In
fact, some puncturing patterns do not give a distinguishable
waterfall region at all. This is the case for54 of the 70
puncturing patterns of period8 for xc. In more detail, for rate
1/2, we have looked at all15 (

(

6
2

)

) periodic puncturing pat-
terns of period6 for xch

a andxch
b , and all their combinations,

i.e., we have looked at15 × 15 = 225 periodic puncturing
patterns of period12 for x

ch. For rate 2/3, according to
the puncturing strategy above, there is only one puncturing
pattern to check, and finally, for rate4/5, we have looked
at all 70 (

(

8
4

)

) periodic puncturing patterns of period8 for
xc. In the computer search, for each candidate puncturing
pattern, an upper bound on thedmin was computed using
the triple impulse method, which generated an ordered list
(the candidates were ordered according to the computed upper
bound on thedmin) of puncturing patterns. Also, to speed up
the search, candidates where rejected if a codeword of weight
less than somerunning dmin value was found. Finally, an
estimate of thedmin of the best candidates in the ordered
list, in the order of the list, was computed using astronger
version of the triple impulse method. By a stronger version
of the triple impulse method we mean an impulse method
where the impulse ranges have been extended quite a bit. The
actual fine-tuning of the impulse ranges has been done based
on experimental results and running time considerations. For
rate4/5, an initial filtering of the candidate puncturing patterns
based on convergence can also be done.

For comparison purposes, we report, in columns10, 12, and
14 in Table IV, the probabilistic lower bound (withǫ = 0.5) on
the dmin from (4) using random puncturing patterns for rates
1/2, 2/3, and4/5, respectively. Note that the designed QPP
interleavers improve thedmin with respect to the probabilistic
lower bound, even for high rates, except forK = 1504 and
rate2/3. However,K = 1504 is indicated in bold in Table IV,
which means that the upper bound in Theorem 2 applies. Thus,
this is not a good value forK with QPP interleavers, and
should therefore be avoided.

A. Simulation Results

In Fig. 7, we give FER curves on the AWGN channel
of a nominal rate-1/3 binary 3D-TC with K = 1024 and
2048. The turbo code interleavers were generated by the QPPs
f(x) = 465x+224x2 (mod 1024) andf(x) = 673x+448x2
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Fig. 7. Comparison of FER performance of iterative decoding of conventional
turbo codes and binary3D-TCs. The nominal code rate is1/3.

(mod 2048), and the permutations in the patch were gen-
erated by the QPPs̃f(x) = 157x + 160x2 (mod 512) and
f̃(x) = 71x + 192x2 (mod 1024), for K = 1024 and
2048, respectively (see Table IV). In the simulation, we used
λ = 1/4 and a maximum of16 iterations. The actual code
rate is (K − 2ν − ν̃)/3K due to trellis termination, where
ν is the constraint length of the upper and lower constituent
encoders and̃ν is the constraint length of the third encoder in
the patch. Furthermore, to simplify the decoders, the max-log
approximation with scaling of the extrinsic values was used
within the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm. For
comparison purposes, the performance of conventional binary
turbo codes with input lengthK = 1024 and2048, and with
rate(K−2ν)/3K (due to dual termination), is also given in the
figure. The turbo code interleaver forK = 2048 was generated
by the QPPf(x) = 21x + 128x2 (mod 2048), which gives
the optimum (the upper bound in Theorem 1 is achieved)
minimum distance of50 [29], and the same maximum number
of decoding iterations was used. ForK = 1024, the turbo code
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Fig. 8. Comparison of FER performance of iterative decoding of conventional
turbo codes and binary3D-TCs. The nominal code rate is1/2.

interleaver was generated by the QPPf(x) = 245x+ 448x2

(mod 1024), which is admin-optimum QPP interleaver giving
a dmin of 45 [29]. As can be seen from Fig. 7, there is a
performance loss of about 0.3 dB in the waterfall region for the
3D-TC compared to the conventional turbo code. This loss in
performance is consistent with the EXIT chart analysis of the
previous section (see Table III). However, for very low error
rates, the performance of the3D-TC will clearly be superior
to the performance of the conventional turbo code, due to a
much largerdmin.

In Figs. 8 and 9, we give the FER performance of the
3D-TCs from Fig. 7 with different puncturing patterns. For
comparison purposes, the performance of the conventional
binary turbo codes from Fig. 7 with different puncturing
patterns is also plotted. The nominal code rate of the codes
in Fig. 8 is 1/2, while the nominal code rate of the codes in
Fig. 9 is4/5. In both cases, optimized puncturing patterns (the
puncturing patterns used to produce the entries in Table IV)
were used in the simulations of the3D-TCs. Thus, the3D-
TCs in Fig. 8 have estimated minimum distances of54 and
110 for K = 1024 and 2048, respectively. In Fig. 9, the
3D-TCs have estimated minimum distances of22 and40 for
K = 1024 and2048, respectively. Also, for a fair comparison,
the puncturing patterns for the conventional binary turbo codes
were optimized as well, using the same interleavers as for
the rate-1/3 mother codes, which were optimized through a
QPP interleaver search, giving the minimum distance values
in column 15 of Table IV. In fact, the conventional binary
turbo codes in Fig. 8 have minimum distances of24 and
25 for K = 1024 and 2048, respectively. In Fig. 9, the
conventional binary turbo codes have minimum distances of8
and9 for K = 1024 and2048, respectively. From the figures,
we observe no error floor down to a FER of about10−6 for
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3D-TC (K=1024)
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Fig. 9. Comparison of FER performance of iterative decoding of conventional
turbo codes and binary3D-TCs. The nominal code rate is4/5.

the3D-TCs. Also, as expected, there is a loss in performance
in the waterfall region with respect to conventional binary
turbo codes. However, for low error rates, the performance
of the 3D-TCs will clearly be superior to the performance
of the conventional binary turbo codes for both rates. The
conventional turbo code shows a flattening between a FER
of 10−4 − 10−5 and 10−3 − 10−4 for R = 1/2 and 4/5,
respectively, while significantly lower error floors are expected
for the 3D-TC due to its better minimum distance.

IX. CONCLUSION AND FUTURE WORK

In this work, we presented a finite-length and an asymptotic
minimum distance analysis of3D-TCs with binary constituent
encoders. By using a numerical procedure, recently proposed
by Sasonet al., to compute the asymptotic IOWE of con-
volutional encoders, we numerically evaluated the asymptotic
spectral shape function of3D-TCs and showed (numerically)
that for certain parameters, the3D-TC ensemble is asymp-
totically good, in the sense that its typical minimum distance
asymptotically grows linearly with the block length. The re-
sults were supported by the finite-length analysis. Higher rates
obtained through random puncturing were also considered.
In the second part of the paper, designed QPP interleavers
were considered. In particular, we derived some useful upper
bounds on thedmin when using this type of interleaver with
a quadratic inverse. A random search for pairs of QPPs for
use in the3D-TC was performed, and the best codes (in
terms of estimated minimum distance) were compared to a
probabilistic lower bound on thedmin. Higher rates were
obtained through specific optimized (by computer search)
periodic puncturing patterns. This comparison showed thatthe
use of designed QPP interleavers can improve the minimum
distance significantly. Finally, an EXIT chart analysis was
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Fig. 10. An input-weight16 critical codeword with QPP interleavers with
a quadratic inverse for a conventional binary turbo code without the patch.

conducted, iterative decoding thresholds and upper bounds
on the ML decoding threshold were computed, and some
simulation results were presented to compare the error rate
performance of the3D-TC to that of the conventional turbo
code.

An interesting topic for future work is to derive upper
bounds on thedmin for 3D-TCs with QPP interleavers with a
quadratic inverse for other values of the interleaver length K,
i.e., for interleaver lengths that do not satisfy the constraints
of Theorem 2, for instance, whenK is a power of two. Also,
as shown by Theorem 1, there is an upper bound on thedmin

which is independent of the interleaver lengthK when using
QPP interleavers with a quadratic inverse for a conventional
binary turbo code. Can a similar bound be found for3D-TCs?

APPENDIX A
PROOF OFTHEOREM 2

In Fig. 10, an input-weight16 critical codeword is shown
for the conventional binary turbo code. The upper and lower
constituent codewords contain5 fundamental paths each. The
interleaving of the systematic1-positions is indicated by
arrows and the16 first letters of the English alphabet. The
fundamental paths are of the following three types

1) 0
1/11
−−−→ 3

1/10
−−−→ 4

0/00
−−−→ 2

0/00
−−−→ 1

0/01
−−−→ 6

1/11
−−−→ 0

2) 0
1/11
−−−→ 3

0/01
−−−→ 7

1/10
−−−→ 6

0/00
−−−→ 3

0/01
−−−→ 7

0/01
−−−→ 5

0/01
−−−→

4
0/00
−−−→ 2

0/00
−−−→ 1

0/01
−−−→ 6

1/11
−−−→ 0 (11)

3) 0
1/11
−−−→ 3

1/10
−−−→ 4

0/00
−−−→ 2

0/00
−−−→ 1

1/10
−−−→ 5

0/01
−−−→ 4

0/00
−−−→

2
0/00
−−−→ 1

0/01
−−−→ 6

1/11
−−−→ 0

where a state transition from statea to stateb with input label

x and output labelyz is denoted bya
x/yz
−−−→ b. To be more

specific, for the upper constituent codeword, the first (fromthe
left) fundamental path is of type 3), the second is of type 1),
the third is of type 2), the fourth is of type 2), and the fifth
is of type 1). For the lower constituent codeword, the first
fundamental path is of type 1), the second is of type 2), the
third is of type 2), the fourth is of type 1), and the fifth is of
type 3). The overall weight of the codeword is at most64. It
is an upper bound, since some of the fundamental paths may
overlap. To make the structure in Fig. 10 an actual codeword,
the following conditions must hold

a) f(x+ 9) + 1 ≡ f(g(f(x+ 1) + 1) + 8) (mod K)

b) f(x+ 9) + 5 ≡ f(g(f(x+ 1) + 5) + 8) (mod K)
c) f(x+ 4) + 2 ≡ f(g(f(x) + 2) + 4) (mod K)
d) f(x+ 4) + 10 ≡ f(g(f(x) + 10) + 4) (mod K)
e) f(g(f(x+1)+1)−2)+1 ≡ f(g(f(x)+2)−1) (mod K)
f) f(g(f(x + 1) + 1) − 2) + 4 ≡ f(g(f(x + 1) + 5) − 2)

(mod K)
g) f(g(f(x + 1) + 1) − 2) + 9 ≡ f(g(f(x) + 10) − 1)

(mod K)

wherex ∈ ZK is the leftmost systematic1-position in the
upper constituent codeword,g(x) = g1x + g2x

2 (mod K)
is the inverse off(x) = f1x + f2x

2 (mod K), and f(x)
is the QPP that generates the turbo code interleaver. These
congruences reduce to

a) 16f2g2(1 + 2f(x+ 1)) + 16f2g1 ≡ 0 (mod K)
b) 80f2g2(5 + 2f(x+ 1)) + 80f2g1 ≡ 0 (mod K)
c) 32f2g2(1 + f(x)) + 16f2g1 ≡ 0 (mod K)
d) 160f2g2(5 + f(x)) + 80f2g1 ≡ 0 (mod K)
e) 4f2g2(−1 + 2f1 + 2f2 + 4f2x) ≡ 0 (mod K)
f) 32f2g2(3 + f(x+ 1)) + 16f2g1 ≡ 0 (mod K)
g) 16f2g1 + 4f2g2(49 + 2(4f(x) − f1 − f2 − 2f2x)) ≡ 0

(mod K)

If 27 ∤ K, then these congruences reduce further to

a) 16f2 ≡ 0 (mod K)
b) 80f2 ≡ 0 (mod K)
c) 16f2 ≡ 0 (mod K)
d) 80f2 ≡ 0 (mod K)
e) 0 ≡ 0 (mod K)
f) 16f2 ≡ 0 (mod K)
g) 16f2 ≡ 0 (mod K)

since4f2g2 ≡ 0 (mod K) [28, Theorem 3.5] when27 ∤ K,
andg1 is relatively prime withK, since4|K. Now, if 16f2 ≡ 0
(mod K), then all these congruences are satisfied, from which
it follows that nF,2 + 4 ≥ nK,2. Using [28, Theorem 3.6], it
follows that the inequality above is true for all values off2 if

nK,2 ≤

{

4 + max
(⌈

nK,2−2
2

⌉

, 1
)

, if nK,2 > 1

4, if nK,2 = 0, 1

nK,3 ≤

{

max
(⌈

nK,3−1
2

⌉

, 1
)

, if nK,3 > 0

0, if nK,3 = 0

nK,p ≤
⌈nK,p

2

⌉

, if p 6= 2, 3

which reduces to

nK,p ≤

{

7, if p = 2

1, otherwise
(12)

which is one of the conditions stated in the theorem. We
will now look at the first1-position for each of the upper
fundamental paths in Fig. 10. Note that since4|K (the third
assumption in the theorem), we can change the order of
(mod K) and (mod 4), i.e., (x (mod K)) (mod 4) = x
(mod 4) for any integerx. Thus, the 1-positions arex,
g(f(x)+2)−1 ≡ x+2g1−1 (mod 4), g(f(x+1)+1)−2 ≡
x − 1 + g1 + g2 + 2g2f(x + 1) (mod 4), g(f(x + 1) +
5) − 2 ≡ x − 1 + g1 + g2 + 2g2f(x + 1) (mod 4), and
g(f(x) + 10) − 1 ≡ x + 2g1 − 1 (mod 4). With x ≡ 1
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Fig. 11. An input-weight17 critical codeword with QPP interleavers with
a quadratic inverse for a conventional binary turbo code without the patch.

(mod 4), we get the1-positions1 (mod 4), 2g1 (mod 4),
g1 + g2 (mod 4), g1 + g2 (mod 4), and2g1 (mod 4).

For the second component we get the following. The1-
positions aref(x+9) ≡ f(x+1) (mod 4), f(x+4) ≡ f(x)
(mod 4), f(x), f(x + 1), and f(g(f(x + 1) + 1) − 2) ≡
f(x)−f1+f2+1+2f2x (mod 4). With x ≡ 1 (mod 4), we
get the1-positions2f1 (mod 4), f1 + f2 (mod 4), f1 + f2
(mod 4), 2f1 (mod 4), and1 (mod 4).

Note thatg1 + g2 ≡ f1 + f2 (mod 4) and2f1 ≡ 2g1 ≡ 2
(mod 4) when4 | K.

From the fundamental paths in (11), it follows that the input
to the third encoder within the patch is the all-zero sequence
when g1 + g2 ≡ f1 + f2 ≡ 1 (mod 4). Note that the other
case, i.e., wheng1 + g2 ≡ f1 + f2 ≡ 3 (mod 4) (f1 + f2 and
g1 + g2 are odd) doesnot give an all-zero input sequence.

In Fig. 11, an input-weight17 critical codeword is shown
for the conventional binary turbo code. The upper and lower
constituent codewords contain5 fundamental paths each. The
interleaving of the systematic1-positions is indicated by
arrows and the17 first letters of the English alphabet. The
fundamental paths are of the same type as those in Fig. 10.
To be more specific, for the upper constituent codeword, the
first (from the left) fundamental path is of type 3), the second
is of type 2), the third is of type 3), the fourth is of type 1),
and the fifth is of type 2). For the lower constituent codeword,
the first fundamental path is of type 3), the second is of type
2), the third is of type 1), the fourth is of type 3), and the fifth
is of type 2). The overall weight of the codeword is at most
67. To make the structure in Fig. 11 an actual codeword, the
following conditions must hold

a) g(f(x)− 8) + 4 ≡ g(f(x+ 4)− 8) (mod K)
b) g(f(x)− 8) + 1 ≡ g(f(x+ 1)− 8) (mod K)
c) g(f(x)− 8) + 9 ≡ g(f(x+ 9)− 8) (mod K)
d) g(f(x+ 9)− 9)− 8 ≡ g(f(x+ 1)− 9) (mod K)
e) g(f(x + 9) − 9) − 10 ≡ g(f(g(f(x) − 10) − 1) + 1)

(mod K)
f) g(f(x+ 4)− 10) ≡ g(f(x)− 10) + 4 (mod K)
g) f(g(f(x + 1) − 5) − 2) ≡ f(g(f(x) − 10) − 1) + 5

(mod K)
h) g(f(x+ 9)− 5)− 8 ≡ g(f(x+ 1)− 5) (mod K)

wherex ∈ ZK is the leftmost systematic1-position in the
upper constituent codeword. We can show that if16g2 ≡ 0
(mod K) and27 ∤ K, then all these congruences are satisfied
for any x ∈ ZK , and it follows thatnG,2 + 4 ≥ nK,2. Using
[28, Theorem 3.6], we get the same conditions as in (12),

a
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d

e

e

f

fg
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h

h
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Fig. 12. An input-weight9 critical codeword with QPP interleavers with a
quadratic inverse for a conventional binary turbo code without the patch.

which is one of the conditions stated in the theorem.
We will now look at the first1-position for each of the

upper fundamental paths in Fig. 11. Note that since4|K (the
third assumption in the theorem), we can change the order of
(mod K) and (mod 4). Thus, the1-positions arex, g(f(x+
9) − 9) − 10 ≡ x − 1 − g1 + g2 − 2g2f(x + 1) (mod 4),
g(f(x) − 8) ≡ x (mod 4), g(f(x) − 10)− 1 ≡ x − 2g1 − 1
(mod 4), andg(f(x+1)−5)−2 ≡ x−1−g1+g2−2g2f(x+
1) (mod 4). With x ≡ 1 (mod 4), we get the1-positions1
(mod 4), 3g1 + g2 (mod 4), 1 (mod 4), 2g1 (mod 4), and
3g1 + g2 (mod 4).

For the second component we get the following. The1-
positions aref(x + 1) − 9 ≡ f(x + 1) − 1 (mod 4), f(x +
4)−10 ≡ f(x)−2 (mod 4), f(g(f(x)−10)−1) ≡ f(x)−2−
f1+f2−2f2x (mod 4), f(x+9)−9 ≡ f(x+1)−1 (mod 4),
and f(x) − 10 ≡ f(x) − 2 (mod 4). With x ≡ 1 (mod 4),
we get the1-positions2f1−1 (mod 4), f1+f2−2 (mod 4),
2 (mod 4), 2f1 − 1 (mod 4), andf1 + f2 − 2 (mod 4).

From the fundamental paths in (11), it follows that the input
to the third encoder within the patch is the all-zero sequence
when g1 + g2 ≡ f1 + f2 ≡ 3 (mod 4). Note that the other
case, i.e., wheng1 + g2 ≡ f1 + f2 ≡ 1 (mod 4), doesnot
give an all-zero input sequence.

The result of Theorem 2 follows by combining the results
above, i.e., there is an upper bound of64 (resp. 67) when
g1 + g2 ≡ f1 + f2 ≡ 1 (mod 4) (resp.g1 + g2 ≡ f1 + f2 ≡ 3
(mod 4)).

APPENDIX B
PROOF OFTHEOREM 3

In Fig. 12, an input-weight9 critical codeword is shown
for the conventional binary turbo code. The upper and lower
constituent codewords contain3 fundamental paths each. The
interleaving of the systematic1-positions is indicated by
arrows and the9 first letters of the English alphabet. The
fundamental paths are all of type 1), and the overall weight of
the codeword is at most27. To make the structure in Fig. 12
an actual codeword, the following conditions must hold

a) g(f(x)− 5) + 1 ≡ g(f(x+ 1)− 5) (mod K)
b) g(f(x)− 5) + 5 ≡ g(f(x+ 5)− 5) (mod K)
c) g(f(x)− 4) + 1 ≡ g(f(x+ 1)− 4) (mod K)
d) g(f(x)− 4) + 5 ≡ g(f(x+ 5)− 4) (mod K)

wherex ∈ ZK is the leftmost systematic1-position in the
upper constituent codeword. We can show that if2g2 ≡ 0
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(mod K), then all these congruences are satisfied. Further-
more, the input to the third encoder within the patch is the
all-zero sequence. Thus, if2g2 ≡ 0 (mod K), then there is
an upper bound of27 on the minimum distancedmin.

Reasoning in a similar manner with an input-weight18
codeword, we can show that the minimum distancedmin is
upper-bounded by54 if 4g2 ≡ 0 (mod K). The details are
omitted for brevity.

APPENDIX C
PROOF OFLEMMA 2

To prove the lemma, we need the following result.
Lemma 3: If 4|K and x1 ≡ x2 (mod 4), then f(x1) ≡

f(x2) (mod 4) for all x1, x2 ∈ ZK and all QPPsf(x) =
f1x+ f2x

2 (mod K).
Proof: Since4|K, we can change the order of(mod K)

and (mod 4), i.e., (x (mod K)) (mod 4) = x (mod 4) for
any integerx. Thus,

• if x ≡ 0 (mod 4), then f(x) = 4x̃f1 + 16x̃2f2
(mod K) ≡ 0 (mod 4), for some integer̃x.

• If x ≡ 1 (mod 4), thenf(x) = (4x̃+1)f1+(4x̃+1)2f2
(mod K) ≡ f1 + f2 (mod 4), for some integer̃x. Since
f2 is even andf1 is odd (see item 1) of Definition 1),
f(x) (mod 4) is odd.

• If x ≡ 2 (mod 4), thenf(x) = (4x̃+2)f1+(4x̃+2)2f2
(mod K) ≡ 2f1 (mod 4), for some integer̃x. Further-
more, sincef1 is odd (see item 1) of Definition 1),
f(x) ≡ 2 (mod 4).

• If x ≡ 3 (mod 4), thenf(x) = (4x̃+3)f1+(4x̃+3)2f2
(mod K) ≡ 3f1+f2 (mod 4), for some integer̃x. Since
f2 is even andf1 is odd (see item 1) of Definition 1),
f(x) (mod 4) is odd. Also,3f1+f2 6≡ f1+f2 (mod 4),
and the result follows.

The bound in Theorem 2 is based on the upper and lower
constituent codewords in Figs. 10 and 11. For details, see the
proof of Theorem 2 in Appendix A. Now, consider the code-
word in Fig. 10. Letx ∈ ZK denote the leftmost systematic
1-position in the upper constituent codeword. As shown in the
proof of Theorem 2, we requirex ≡ 1 (mod 4). Also, for a
given value ofx such thatx ≡ 1 (mod 4), the fundamental
paths in Fig. 10 may wrap around at the end of trellis. Since
all the systematic1-positions are determined by the value ofx,
there will be exactlyLi−1 values forx that will make theith,
i = 0, . . . , Q− 1, fundamental path wrap around at the end of
the trellis, whereLi is the length of theith fundamental path
andQ is the total number of fundamental paths in the upper
and lower constituent codewords. By repeating the argument,
we get that there will be at mostL−Q values forx that will
make at least one of the fundamental paths wrap around at
the end of the trellis, whereL =

∑Q−1
i=0 Li. Since ifx1 ≡ x2

(mod 4), thenf(x1) ≡ f(x2) (mod 4) for any x1, x2 ∈ ZK

and any QPPf(x) = f1x + f2x
2 (mod K) (see Lemma 3

above), the condition that a fundamental path should not wrap
around at the end of the trellis, will remove at most one more
value of x ≡ 1 (mod 4) than any other value forx. Thus,
we get the conditionK − (L − Q) ≥ 3(Q + 1) + 1, which

simplifies toK ≥ L+2Q+4 = 112, since, for the codeword
in Fig. 10,Q = 10 andL = 88.

Note that the argument above can be repeated for the
codeword in Fig. 11, and we get the numerical value of
K ≥ 120. Thus, if K ≥ max(112, 120) = 120, there will
exist at least one value forx such thatx ≡ 1 (mod 4) and
such that none of the fundamental paths in Figs. 10 and 11 will
wrap around at the end of the trellis. Furthermore, since there
is a finite number of QPPs with a quadratic inverse for each
value ofK in the range[33, 119] and such that4|K and the
conditions in (10) are satisfied, it can be numerically checked
that there will always exist, for any QPPf(x) = f1x+ f2x

2

(mod K) and its inverseg(x) = g1x+g2x
2 (mod K), at least

one value forx such thatx ≡ 1 (mod 4) and such that none of
the fundamental paths in Fig. 10 (whenf1+f2 ≡ g1+g2 ≡ 1
(mod 4)) and in Fig. 11 (whenf1 + f2 ≡ g1 + g2 ≡ 3
(mod 4)) will wrap around at the end of the trellis. Also,
for K = 32, this is not the case, and Lemma 2 is proved.
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