
Chalmers Publication Library

Error probability bounds for decode-and-forward relaying with two correlated
sources

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Global Telecommunications Conference (GLOBECOM 2011), Houston, TX, USA (ISSN:

1930-529X)

Citation for the published paper:
Schwandter, S. ; Farès, H. ; Graell i Amat, A. (2011) "Error probability bounds for decode-
and-forward relaying with two correlated sources". IEEE Global Telecommunications
Conference (GLOBECOM 2011), Houston, TX, USA pp. 1-5.

http://dx.doi.org/10.1109/GLOCOM.2011.6133984

Downloaded from: http://publications.lib.chalmers.se/publication/156928

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/GLOCOM.2011.6133984
http://publications.lib.chalmers.se/publication/156928


Error Probability Bounds for Decode-and-Forward

Relaying with Two Correlated Sources

Stefan Schwandter†, Haı̈fa Farès‡, Alexandre Graell i Amat§, and Gerald Matz†

†Institute for Telecommunications, Vienna University of Technology, Gusshausstrasse 25/389, A-1040 Vienna, Austria
‡Department of Electronics, Institut TELECOM-TELECOM Bretagne, 29238 Brest, France

§Department of Signals and Systems, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Email: {sschwand,gmatz}@nt.tuwien.ac.at, haifa.fares@telecom-bretagne.eu, alexandre.graell@chalmers.se

Abstract—We derive bounds on the error probability of
optimal and sub-optimal detectors in an uncoded decode-and-
forward relay system with two correlated information sources.
This setup is relevant to wireless sensor networks where nearby
sensors collect spatially correlated data. We show that taking
into account the source correlation at the relay and at the
destination leads to significant performance gains. Simulation
results corroborate the tightness of our analytical bounds.

I. INTRODUCTION

We consider a wireless communication system with two

sources that transmit their data to one common destination

with the help of a relay (see Fig. 1). The data of the two

sources is assumed to be correlated, an assumption that

applies, for example, to wireless sensor networks (WSNs) [1],

where nearby sensors measure statistically dependent data and

transmit this data to a common processing node. We further

restrict ourselves to uncoded transmission, which is practically

relevant since power is a scarce resource in inexpensive sensor

nodes and hence a coding/decoding stage may be infeasible.

The relay works in a half-duplex mode and uses the decode-

and-forward (DF) strategy introduced and analyzed in [2].

The relay makes a hard decision on the transmitted data

and forwards it to the destination. Instead of relaying the

information of the individual sources in an alternating way,

network coding [3] is used at the relay to combine the

data of the two sources, thereby increasing the transmission

capacity. The relay network in Fig. 1 was first considered

in [4], where coding strategies were proposed. For the same

relay network, performance bounds for convolutionally coded

DF were derived in [5]. These works assumed that the data

transmitted by the two sources is statistically independent.

Joint detection of correlated sources (for a non-cooperative

system) has been recently addressed in [6].

In this paper, we derive analytical bounds on the error

probability for the relay system shown in Fig. 1. Our work

extends the results in [5] by introducing correlation between

the sources. We consider two types of detectors at the desti-

nation: i) the optimal maximum a posteriori (MAP) decoding
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Fig. 1. Relay network consisting of two correlated sources with a common
destination and one relay.

rule which explicitly takes into account that detection errors

may occur at the relay; ii) a simplified MAP decoder that

works on the assumption that the two-hop source-to-relay-to-

destination channel can be approximated by a virtual single-

hop memoryless channel between the sources and the desti-

nation (this assumption has been previously used e.g. in [7]);

the corresponding receiver will be termed the virtual-channel

MAP (VC-MAP) decoder.

We demonstrate the performance gain that can be obtained

by exploiting the correlation between the sources and we

compare our results to a correlation-aware system without

relay. It turns out that the gain achievable with a relay

decreases with increasing correlation, i.e., for scenarios with

very high correlation the gain is limited. Furthermore, we

show that by tuning a free parameter in the sub-optimal

detector the performance of the optimal detector can be closely

approached. Simulation results confirm the tightness of the

bounds obtained.

II. SYSTEM MODEL

We consider the wireless relay channel with two sources,

one relay and one destination depicted in Fig. 1. In practice,

terminals cannot transmit and receive at the same time and

over the same frequency band and hence we assume that

all transmissions are over orthogonal channels. We restrict

ourselves to uncoded binary transmission and BPSK mod-

ulation. Each source si, i = 1, 2, wants to transmit an

information bit xsi ∈ {0, 1} to the destination (we assume

p(xsi = 0) = p(xsi = 1) = 0.5). The statistical dependence

of the two source bits can be represented by the relation



[6] xs2 = xs1 ⊕ a, where ⊕ is the modulo-2 addition;

here, a ∈ {0, 1} is a random variable that is independent

of xs1 and xs2 and determines the amount of correlation.

We denote by pa ∈ [0.5, 1] the probability that a equals 0
(pa = 0.5 corresponds to the case where xs1 and xs2 are

uncorrelated). Note that p(xs1 , xs2 ) = pa/2 for xs1 = xs2 and

p(xs1 , xs2 ) = (1− pa)/2 for xs1 6= xs2 .

The sources modulate their information bits xsi to BPSK

symbols x̃si ∈ {±1} using the mapping 0 → +1, 1 → −1 and

broadcast these BPSK symbols to the relay and the destination,

which receive the signals

ysir = hsirx̃si + wsir

ysid = hsidx̃si + wsid, i = 1, 2.
(1)

Here wsir and wsid are additive white Gaussian noise (AWGN)

variables with zero-mean and respective variance σ2
sir and

σsid, and hsir and hsid denote the source-to-relay and source-

to-destination channel coefficients, respectively. Two different

channel models are considered: binary-input AWGN (hsir =
hsid = 1) and Rayleigh fading. In the fading case, each coeffi-

cient is a Rayleigh distributed, unit-variance random variable.

The signal-to-noise ratio (SNR) for the source-to-relay and

source-to-destination links are given by γsir = 1/(2σ2
sir) and

γsid = 1/(2σ2
sid

), respectively.

In order to exploit the correlation between the source

symbols, the relay uses both ys1r and ys2r to jointly detect

the source signals. The relay then forwards the modulo-2 sum

xr = x̂s1r ⊕ x̂s2r of the two detected signals x̂s1r and x̂s2r to

the destination, which receives

yrd = hrdx̃r + wrd.

Here, wrd is AWGN with variance σ2
rd and hrd is the relay-

to-destination channel coefficient which in case of a pure

AWGN channel equals 1 and in case of fading has Rayleigh

distribution with variance 1. Correspondingly, the relay-to-

destination SNR equals γrd = 1/(2σ2
rd). Since detection

errors may occur at the relay, xr may be different from

xs1 ⊕xs2 . Based on the noisy observations ys1d, ys2d, and yrd,

the destination attempts to detect xs1 and xs2 . The detected

symbols are denoted by x̂s1 and x̂s2 .

III. BOUNDS ON THE ERROR PROBABILITY

The error event at the destination is defined by

e = {x̂s1 6= xs1 ∨ x̂s2 6= xs2} .

For our analysis, we assume xs1 = 0. This implies no loss of

generality since xs1 has a symmetric distribution.

Defining the error events at the relay,

er1 = {x̂s1r 6= xs1} , er2 = {x̂s2r 6= xs2} ,

and

er = (er1 ∪ er2)� (er1 ∩ er2) ,

the error probability at the destination can be written as

p(e) = p(e|ēr, xs1 =xs2) p(ēr, xs1 =xs2 )

+ p(e|ēr, xs1 6=xs2 ) p(ēr, xs1 6=xs2)

+ p(e|er, xs1 =xs2 ) p(er, xs1 =xs2)

+ p(e|er, xs1 6=xs2 ) p(er, xs1 6=xs2),

(2)

where we distinguish between the four cases where the relay

makes an error and where it does not, and where the source

symbols are identical or not. We write ēr for the complemen-

tary event of er. For example, in the event {ēr, xs1 = xs2}, xr

is equal to 0.

For the detection at the relay we use a MAP detector

that jointly detects xs1 and xs2 by taking into account the

correlation between the sources according to

[x̂s1r, x̂s2r] = argmax
[x′

s1
,x′

s2
]

p(x′
s1 , x

′
s2 |ys1r, ys2r)

= argmax
[x′

s1
,x′

s2
]

p(ys1r|x′
s1)p(ys2r|x

′
s2)p(x

′
s1 , x

′
s2).

Alternatively, we can write the MAP detector using L-values

(log-likelihood ratios) as

[x̂s1r, x̂s2r] = argmax
[x′

s1
,x′

s2
]

{

x̄′
s1Ls1r + x̄′

s2Ls2r + ln p(x′
s1 , x

′
s2)
}

(3)

where x̄ = x⊕ 1 and the L-values are defined as

Ls1r = ln
p(ys1r|xs1r = 0)

p(ys1r|xs1r = 1)
= 4γs1rys1r, Ls2r = 4γs2rys2r.

The relay error probabilities in (2) can be developed as

p(ēr, xs1 =xs2) = p(ēr1 , ēr2 , xs1 =xs2) + p(er1 , er2 , xs1 =xs2)

p(ēr, xs1 6=xs2) = p(ēr1 , ēr2 , xs1 6=xs2) + p(er1 , er2 , xs1 6=xs2)

p(er, xs1 =xs2) = p(ēr1 , er2 , xs1 =xs2) + p(er1 , ēr2 , xs1 =xs2)

p(er, xs1 6=xs2) = p(ēr1 , er2 , xs1 6=xs2) + p(er1 , ēr2 , xs1 6=xs2).

From (3), after some basic calculations, the error probabilities

at the relay for the case xs1 = xs2 and an AWGN channel can

be bounded as

p(ēr1 , er2 , xs1 =xs2 ) ≤
pa
2

erfc

(

4γs2r − La

4
√
γs2r

)

(4)

p(er1 , ēr2 , xs1 =xs2 ) ≤
pa
2

erfc

(

4γs1r − La

4
√
γs1r

)

(5)

p(er1 , er2 , xs1 =xs2 ) ≤
pa
2

erfc
(√

γs1r + γs2r
)

(6)

p(ēr1 , ēr2 , xs1 =xs2 ) ≤ pa, (7)

where

La = ln
p(xs2 6= xs1 )

p(xs2 = xs1 )
= ln

1− pa
pa

.

The bounds for the case xs1 6= xs2 are obtained by replacing

pa by 1− pa and La by −La in (4)–(7).

Similar bounding expressions can be found for a Rayleigh

fading channel. In this case, the SNRs in the expressions are

random variables, and the bounds for the AWGN channel

hold for a certain realization of these random variables. To



obtain the average error probability for the fading channel, it

is necessary to take the expection with respect to the joint

distribution of the SNRs [8]. In the following, due to lack of

space, we restrict the derivations to the AWGN channel.

A. VC-MAP Decoder

The VC-MAP decoder detects the symbols transmitted by

the sources assuming that the observation yrd is the output of

a virtual memoryless channel with input xs12 = xs1 ⊕xs2 and

SNR γ′
rd ≤ γrd. Therefore, the VC-MAP implicitly models

the relay decoding errors via a degraded SNR. Note that the

degraded SNR γ′
rd can be tuned to optimize the VC-MAP

performance. Based on this model, the VC-MAP detector

reads

[x̂s1 , x̂s2 ] = argmax
[x′

s1
,x′

s2
]

p(x′
s1 , x

′
s2 , x

′
s12 |ys1d, ys2d, yrd)

= argmax
[x′

s1
,x′

s2
]

p(ys1d, ys2d, yrd|x′
s1 , x

′
s2 , x

′
s12 ) p(x

′
s1 , x

′
s2 )

= argmax
[x′

s1
,x′

s2
]

{

x̄′
s1Ls1+ x̄′

s2Ls2+ x̄′
s12Lr+ln p(x′

s1 , x
′
s2)
}

,

(8)

where x′
s12 = x′

s1 ⊕x′
s2 , Lsi = 4γsidysid and Lr = 4γ′

rdyrd. In

the second equality we used the fact that p(xs1 , xs2 , xs12 ) =
p(xs1 , xs2 ), since xs12 = xs1 ⊕ xs2 . Given x̃si = ±1, Lsi

has mean ±4γsid and variance 8γsid; given x̃r = ±1, Lr has

mean ±4γ′
rd and variance 8γ′2

rd/γrd. We next bound the four

conditional error probabilities in (2).

Case 1 (ēr, xs1 = xs2 ): This case is equivalent to the

transmission of xs1 , xs2 and xr = 0 over three independent

parallel channels with SNR γs1d, γs2d, and γ′
rd, respectively.

Thus, the probability of error can be upper-bounded as (we

define x
′
s = [x′

s1 , x
′
s2 ])

p(e|ēr, xs1 =xs2) = p(e|xs1 = 0, xs2 = 0, xr = 0)

≤
∑

x
′

s
6=[0,0]

p

(

x̄′
s1Ls1 + x̄′

s2Ls2 + x̄′
s12Lr < ln

p(x′
s)

p(0, 0)

)

=
1

2
erfc

(

4(γs2d + γ′
rd)− La

4
√

γs2d + γ′2
rd/γrd

)

+
1

2
erfc

(

4(γs1d + γ′
rd)− La

4
√

γs1d + γ′2
rd/γrd

)

+
1

2
erfc

(√

γs1d + γs2d
)

. (9)

The last expression is obtained by observing that Ls1 , Ls2

and Lr have positive mean. Therefore, the random vari-

able x̄′
s1Ls1 + x̄′

s2Ls2 + x̄′
s12Lr is Gaussian with mean

4
(

x̄′
s1γs1d + x̄′

s2γs2d + x̄′
s12γ

′
rd

)

and variance 8(x̄′
s1γs1d +

x̄′
s2γs2d + x̄′

s12γ
′2
rd/γrd).

Case 2 (ēr, xs1 6= xs2 ): A bound for the probability

p(e|ēr, xs1 6=xs2) is obtained by replacing La by −La in (9).

Case 3 (er, xs1 = xs2 ): In this case, the relay decodes

one of the sources with error, i.e., xr = 1. The probability

p(e|er, xs1 =xs2) can be upper-bounded as

p(e|er, xs1 =xs2) = p(e|xs1 = 0, xs2 = 0, xr = 1)

≤ 1

2
erfc

(

4(γs2d − γ′
rd)− La

4
√

γs2d + γ′2
rd/γrd

)

+
1

2
erfc

(

4(γs1d − γ′
rd)− La

4
√

γs1d + γ′2
rd/γrd

)

+
1

2
erfc

(√

γs1d + γs2d
)

(10)

The last expression is obtained by observing that Ls1 and Ls2

have positive mean while Lr has negative mean due to the

error event at the relay. Therefore, x̄′
s1Ls1 + x̄′

s2Ls2 + x̄′
s12Lr

is Gaussian with mean 4
(

x̄′
s1γs1d + x̄′

s2γs2d − x̄′
s12γ

′
rd

)

and

variance 8(x̄′
s1γs1d + x̄′

s2γs2d + x̄′
s12γ

′2
rd/γrd).

Case 4 (er, xs1 6= xs2 ): A bound for the probability

p(e|er, xs1 6=xs2) is obtained by replacing La (10) with −La.

Optimization of γ′
rd: The virtual source-to-destination

channel is clearly only an approximation since it subsumes the

channel quality on the source-to-relay and relay-to-destination

links and the detection errors at the relay into an equivalent

Gaussian model characterized by the degraded SNR γ′
rd. The

SNR γ′
rd can be tuned such that the virtual channel approx-

imation best matches the actual two-hop channel involving

the source-to-relay and relay-to-destination links. Such an

optimization of the SNR of the equivalent channel has been

proposed in [5]. We will show via simulations in Section IV

that this optimization is feasible also for the case of correlated

sources and that it allows the VC-MAP detector to closely

approach the performance of the MAP detector. The optimal

γ′
rd can be calculated off-line before deployment.

B. MAP Decoder

In this section, we consider the MAP decoding rule, which

is optimal for the scenario in Fig. 1 and is given by

[x̂s1 , x̂s2 ] = argmax
[x′

s1
,x′

s2
]

p(x′
s1 , x

′
s2 |ys1d, ys2d, yrd)

= argmax
[x′

s1
,x′

s2
]

∑

xr∈{0,1}

p(x′
s1 , x

′
s2 , xr|ys1d, ys2d, yrd).

(11)

Since the evaluation of (11) requires a marginalization with

respect to xr, we resort to a simplified approach that jointly

estimates source and relay symbols. The corresponding (joint)

MAP decoding rule reads

[x̂s1 , x̂s2 , x̂r] = argmax
[x′

s1
,x′

s2
,x′

r
]

p(x′
s1 , x

′
s2 , x

′
r|ys1d, ys2d, yrd)

= argmax
[x′

s1
,x′

s2
,x′

r
]

p(ys1d, ys2d, yrd|x′
s1 , x

′
s2 , x

′
r) p(x

′
s1 , x

′
s2 , x

′
r)

= argmax
[x′

s1
,x′

s2
,x′

r
]

{

x̄′
s1Ls1+ x̄′

s2Ls2+ x̄′
rLr

+ ln p(x′
r|x′

s1 , x
′
s2) + ln p(x′

s1 , x
′
s2)
}

.

Contrary to the VC-MAP rule, the fourth term in the last

expression explicitly takes into account relay errors.



From this decision rule, bounds on the error probability of

the (joint) MAP detector can again be derived based on the

expansion (2) of the total error probability. We follow a similar

procedure as with the VC-MAP decoder and as in [9]. In our

derivations below, we will use the following definitions:

Ls = ln
p(xr = 0|xs1 =xs2)

p(xr = 1|xs1 =xs2)
, Lt = ln

p(xr = 0|xs1 6=xs2 )

p(xr = 1|xs1 6=xs2 )
,

Lu = ln
p(xr = 0|xs1 =xs2)

p(xr = 0|xs1 6=xs2)
, Lv = ln

p(xr = 1|xs1 =xs2)

p(xr = 1|xs1 6=xs2)
,

Lw = ln
p(xr = 0|xs1 =xs2)

p(xr = 1|xs1 6=xs2)
, Lx = ln

p(xr = 0|xs1 6=xs2)

p(xr = 1|xs1 =xs2)
.

Case 1 (ēr, xs1 =xs2 ): In this case, the probability of error

can be upper-bounded as

p(e|ēr, xs1 = xs2)

≤ 1

2
erfc

(

4γs1d+Lu−La

4
√
γs1d

)

+ erfc

(

4γs2d+Lu−La

4
√
γs2d

)

+
1

2
erfc

(

4(γs1d+γrd) + Lw − La

4
√
γs1d+γrd

)

+
1

2
erfc

(

4(γs2d + γrd) + Lw − La

4
√
γs2d+γrd

)

+
1

2
erfc

(√

γs1d+γs2d
)

+
1

2
erfc

(

4(γs1d+γs2d+γrd) + Ls

4
√
γs1d+γs2d+γrd

)

. (12)

Case 2 (ēr, xs1 6= xs2 ): The bound here is obtained by

replacing Lu, Lw, Ls, and −La in (12) with −Lw, −Lv,

−Lt, and La, respectively.

Case 3 (er, xs1 = xs2 ): We have

p(e|er, xs1 = xs2)

≤ 1

2
erfc

(

4γs1d+Lv−La

4
√
γs1d

)

+ erfc

(

4γs2d+Lv−La

4
√
γs2d

)

+
1

2
erfc

(

4(γs1d+γrd)− Lx − La

4
√
γs1d+γrd

)

+
1

2
erfc

(

4(γs2d+γrd)− Lx − La

4
√
γs2d+γrd

)

+
1

2
erfc

(√

γs1d+γs2d
)

+
1

2
erfc

(

4(γs1d+γs2d+γrd)− Ls

4
√
γs1d+γs2d+γrd

)

. (13)

Case 4 (er, xs1 6= xs2 ): The error bound here is obtained

by replacing Lv, Lx, −Ls, and −La in (13) with −Lu, Lv,

Lt, and La, respectively.

IV. NUMERICAL RESULTS

In this section, we illustrate the tightness of the error

probability bounds derived in Sections III-A and III-B by

comparing them to simulation results. We also compare the

performance of the VC-MAP decoder and the MAP decoder.

For simplicity, we assume that the SNRs are symmetric, i.e.,
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Fig. 2. Error probability bounds (lines) and simulations (markers) of a relay
system with two correlated sources for a VC-MAP decoder with AWGN
channels for the cases γ

′

rd
= γrd (solid lines) and γ

′

rd
= γopt (dashed

lines); here, γsr = γrd = 5 dB.

γs1d = γs2d = γsd and γs1r = γs2r = γsr. We also consider

fixed γsr and γrd.

In Fig. 2, we plot the bounds on the error probability for

the VC-MAP decoder for γ′
rd = γrd (solid lines) and for

γ′
rd = γopt (dashed lines) together with the simulation results

(markers), as a function of γsd (in dB), for several degrees

of correlation between the two sources, γsr = γrd = 5 dB,

and AWGN channels. A good match between the simulations

and the bounds is observed. We note that γ′
rd = γrd yields

a significant deviation from the case where the source-to-

relay channels are error-free. However, for optimized γ′
rd

(γ′
rd = γopt), the bounds are much closer to the case of error-

free source-to-relay channels.

Fig. 3 shows the bounds on the error probability (lines),

together with the corresponding simulation results (markers)

as a function of γb
sd, where γb

sd = γsd/R, for the VC-MAP

decoder over a Rayleigh channel for both a non-cooperative

system and a single relay cooperative system. The system rate

equals R = 1 and R = 2/3, respectively, for the case of no

relay (dashed lines) and one relay (solid lines). In the figure,

γ′
rd = γopt and γsr = γrd = 15 dB. While performance is

generally better for more strongly correlated sources, the relay

is less useful in this situation.

Fig. 4 shows the bounds on the error probability (solid

lines) of the (joint) MAP detector, as well as the corre-

sponding simulation results (markers) as a function of γb
sd

for Rayleigh fading. Sizable gains with increasing level of

correlation (increasing pa) are observed over the uncorrelated

case (pa = 0.5). The latter case corresponds to the scenario

where there is no source correlation or where a demodulator

oblivious of existing correlation is used. For example, the gain

for pa = 0.95 is over 5 dB at an error probability of 10−4.



0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

γb
sd

 (dB)

p(
e)

 

 

p
a
=0.95, no relay

p
a
=0.95, 1 relay

p
a
=0.999, no relay

p
a
=0.999, 1 relay

Fig. 3. Error probability bounds (lines) and simulations (markers) of a
relay system with two correlated sources for a VC-MAP decoder in Rayleigh
fading for two cases: non-cooperative system (dashed lines) and single relay
cooperative system (solid lines); here, γsr = γrd = 15 dB.
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Fig. 4. Error probability bounds (lines) and simulations (markers) of a relay
system with two correlated sources for a MAP decoder in Rayleigh fading
for different correlation factors pa; here, γsr = γrd = 15 dB.

Fig. 5 shows the performance improvement that is achieved

by the use of relaying and (joint) MAP detection over a

scenario without cooperation (again for Rayleigh fading). With

pa = 0.95, we observe a gain of about 6 dB at a p(e) of

10−4. However, the gain vanishes for very high correlation

(pa = 0.999). Finally, comparing Fig. 3 with Fig. 5, we

observe that the (lower-complexity) VC-MAP detector with

optimized γ′
rd approaches the performance of the (optimal)

MAP detector very closely.
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Fig. 5. Error probability bounds (lines) and simulations (markers) of a relay
system with two correlated sources for a MAP decoder in Rayleigh fading for
two cases: non-cooperative system (dashed lines) and single relay cooperative
system (solid lines); here, γsr = γrd = 15 dB.

V. CONCLUSIONS

We derived analytical bounds on the error probability of

a decode-and-forward relaying system consisting of two cor-

related sources, one relay, and one destination. We showed

that by taking into account the source correlation via joint

channel detection at the relay and at the destination, noticeable

performance gains can be achieved. We also showed that the

use of a relay results in a performance improvement over a

system without relay, specifically at medium correlation levels.

Future work includes the extension of our results to scenar-

ios with more than two sources, more than one relay, higher-

order modulation, and coded transmissions.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–
422, 2002.

[2] T. Cover and A. E. Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. Inf. Theory, vol. 25, pp. 572–584, Sep. 1979.

[3] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[4] C. Hausl and P. Dupraz, “Joint network-channel coding for the multiple-
access relay channel,” in Proc. IEEE Commun. Society on Sensor and Ad

Hoc Commun. and Networks (SECON), Sep. 2006, pp. 817–822.
[5] A. Graell i Amat and I. Land, “Bounds of the probability of error for

decode-and-forward relaying with two sources,” in Proc. IEEE Symp. on

Turbo Codes & Iterative Information Processing, Sep. 2010, pp. 196–200.
[6] A. Abrardo, G. Ferrari, and M. Martaló, “On non-cooperative block-faded
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