

REAL-TIME RENDERING OF LARGE BUILDING

INFORMATION MODELS

Current state vs. state-of-the-art

MIKAEL JOHANSSON AND MATTIAS ROUPÉ
Chalmers University of Technology, Gothenburg, Sweden

jomi@chalmers.se, roupe@chalmers.se

Abstract. With the use of Building Information Models (BIM), real-
time 3D visualizations have become a natural tool in order to
communicate ideas and share information between all involved parties
in a project. Currently, several different BIM viewers are available for
the purpose of interactive presentations and design reviews. However,
as BIMs become larger and more detailed, it provides a challenge for
available software solutions to manage them interactively. In this
paper we present our findings from analyzing three commonly used
BIM viewers - Tekla BIMSight, Autodesk Navisworks and Solibri
Model Viewer - in terms of real-time rendering performance. In
addition we have developed a prototype BIM viewer to test modern
approaches for efficient real-time rendering. Specifically, we have
implemented the latest version of the Coherent Hierarchical Culling
algorithm. Our results show that existing BIM viewers all share
limitations in their ability to handle large and complex BIMs
interactively. However, for the same test models, our prototype BIM
viewer enables smooth real-time performance with no visual artifacts.
The results from our tests thus shows that the technology to enable
correct real-time rendering of large and complex BIMs is already
accessible, but are currently not utilized by any of the tested BIM
viewers.

Keywords. 3D graphics; BIM; real-time rendering.

1. Introduction

With the creation of Building Information Models (BIM), the content
produced by architects and designers have evolved from traditional 2D
drawings and sketches to parametric, object-oriented 3D-models that can
describe any building or facility in detail. As a natural extension, BIM

2 M. JOHANSSON AND M. ROUPÉ

further simplifies the use of real-time visualizations as a tool to
communicate ideas and share information between all involved parties in a
project. Currently, several different BIM viewers - both commercial and free
- are available for the purpose of interactive presentations and design
reviews. During these sessions it is desirable that the software can provide a
smooth and interactive experience that is trustworthy. In other words, the
system should be able to provide a sufficiently high frame rate without
sacrificing visual correctness. However, based on our own practical
experience with several of the available BIM viewers we have observed that
this is not the case when large and detailed BIMs are used. Although some
of these viewers have functionality to maintain interactive navigation by
guaranteeing a certain frame rate, this is realized by presenting a
visualization that is incorrect. As BIMs tends to become larger and more
detailed as the technology matures, we initiated a more comprehensive study
within this area.

In this paper we present our findings from analyzing three commonly
used BIM viewers - Tekla BIMSight, Autodesk Navisworks and Solibri
Model Viewer - in terms of real-time rendering performance. The focus is
on large and complex BIMs and we have used several different test models
to stress-test the available software solutions. In addition, we have
developed a prototype BIM viewer to use as a reference and to test modern
approaches for real-time rendering of large and complex 3D-models.
Specifically, we have aimed for a solution that can provide both interactivity
and correctness, even for large and detailed BIMs.

The rest of this paper is organized as follows. In the next section we
briefly discuss a number of acceleration techniques for efficient real-time
rendering. Section 3 presents our findings from analysing the existing BIM
viewers in terms of real-time rendering performance. In section 4 we
motivate the choice of acceleration technique for our prototype BIM viewer
and in section 5 we present a performance analysis of it. Finally, section 6
concludes the paper.

2. Acceleration techniques for real-time rendering

An important property for any type of real-time rendering system is its
ability to maintain a sufficiently high frame rate. Although this number is
highly dependent on the type of application, it is generally considered that it
should at least be 20 Hz (Bittner, 2002). Regardless, a too low or fluctuating
frame rate will make navigation and other interaction tasks more challenging
and may also cause participants to lose orientation or even feel sick (Yuan et
al, 1997; Mortensen, 2008). However, depending on the amount of data to
be visualized this is not always an easy task to achieve. Even if the
performance of computers and graphic processing units (GPUs) has

 REAL-TIME RENDERING OF BUILDING INFORMATION MODELS 3

increased tremendously during the last years there is always an upper limit
in the amount of 3D-data that the technology supports out-of-the-box.
Fortunately, a number of acceleration techniques exist that allows us to go
beyond this limitation (Akenine-Möller et al, 2008). These techniques can
basically be assigned into one of the following three categories: GPU-

centric optimizations, Level-of-detail or visibility culling.
GPU-centric optimization refers to several different strategies that are

used in order to maximize the raw processing power of modern GPUs.
Often, the impact on performance can be huge if the 3D-data is arranged and
sorted in an optimal way before sent to the GPU. A typical example is to
arrange the draw-order of objects by material properties. This will minimize
costly state changes, such as switching shaders or textures, and let the GPU
work with as few interrupts as possible. However, although efficient, the
common characteristic of GPU-centric optimizations is that they do not
reduce the amount of data that has to be processed by the GPU. As such, the
approach is not indefinitely scalable.

Compared to GPU-centric optimizations, a more scalable approach is to
consider Level-of-detail (LOD). With LOD, the main idea is to reduce the
complexity of a 3D object representation when the object is far away from
the current viewpoint. In such a situation the object becomes small on screen
and a less detailed representation can be sufficient in order to give the same
visual impression. The simplified version of the object is often created by
reducing the number of triangles, replacing geometric features with textures
or a combination of both. Regardless of simplification strategy the end result
is an object that is less stressful for the GPU to process and therefore the
real-time performance of the visualization is increased.

Finally, visibility culling refers to a category of techniques where the
idea is to improve performance by only sending objects that are potentially
visible to the GPU. Today, most real-time rendering systems implement at
least view frustum culling, where objects are discarded if they are found to
be outside the visible region of space, as defined by the virtual camera.
Although this approach can give a huge performance increase, it does not
take into account a situation when objects in a 3D environment are entirely
behind other opaque objects. In order to reduce workload in such a situation
some form of occlusion culling has to be utilized. With occlusion culling the
idea is to discard objects that are guaranteed to be hidden in the final image.
The technique is considerably harder to implement compared to view
frustum culling, but has the potential to increase performance substantially
for 3D environments with a lot of occlusion. As such, it is a viable
acceleration technique for real-time rendering of building models and will
be further discussed in section 4.

4 M. JOHANSSON AND M. ROUPÉ

3. Performance analysis and comparison of existing BIM viewers

In order to analyze and compare the existing BIM viewers in terms of real-
time rendering performance, four different BIMs were used (Figure 1).
Except for the A model, they all represent planned or existing buildings. The
A model is an initial test model that, although not actually planned or build,
may be considered representative for a student housing building. All four
models were created in Autodesk Revit Architecture 2012 and exported to
the IFC file format (BuildingSMART, 2011). In Table 1, related statistics
for all models are presented.

Figure 1. The four different test models.

TABLE 1. Statistics for the different test models.

Model Type of building Number of objects Number of triangles
A Student housing 5,683 9,559,028
B Apartment building 2,151 1,474,586
C Library / Culture building 6,224 4,102,959

D Student housing 15,861 9,958,143

To measure the actual performance, FRAPS was used (FRAPS, 2011).
FRAPS is a software that “hooks into” the graphics driver in order to
measure frame rate. The frame rate (in frames per second) is then displayed
as a numerical value in the viewport of the currently active viewer.
Unfortunately, FRAPS was unable to work together with the Tekla
BIMSight viewer. For the Tekla BIMSight viewer we instead use a modified
version of the GLIntercept software (GLIntercept, 2011) that allows us to
measure frame rates similar to FRAPS. All the performance tests were

 REAL-TIME RENDERING OF BUILDING INFORMATION MODELS 5

performed on a computer equipped with an Intel i7 2.93 GHz CPU, 4 GB of
RAM and an Nvidia GeForce 460 GTX GPU. The operating system was
Windows 7 x64 and the viewport size was set to 1200 x 800 pixels.

In order to make a fair comparison of the different viewers in terms of
performance, any acceleration technique that results in an incorrect
visualization is turned off. Specifically, both Navisworks and Solibri
implements functionality in order to guarantee interactive frame rates during
navigation. This is achieved by simply stop drawing objects once a certain
rendering time has been reached. Although the rejection of objects appears
to be based on its relative “importance” for the current view (size, type and
distance to viewpoint) the approach does not guarantee a correct
visualization and often results in severe visual “popping” during navigation.
Figure 2 shows an example of this in Navisworks for one of the tested
building models when the desired frame rate has been set to 20 Hz.

Figure 2. Visual artifacts(right) when forcing 20 Hz in Navisworks.

For all of the tests we have focused on the worst case scenario in terms of
rendering performance. For all viewers this means a viewpoint where the
complete building model is visible. In addition we have selected two interior
viewpoints in all of our test models. These viewpoints represent neither the
worst nor the best case in terms of performance, and should just be seen as
typical locations inside each building. However, they do allow for a fair
comparison between the tested viewers. In Figure 3, one of the selected view
points (VP1) is shown for each of the models.

The results from our performance tests are presented in Table 2. Here,
WC represents worst case, VP1 viewpoint one and VP2 viewpoint two for
all of the tested models and viewers. The frame rates presented are
consistent for the different viewpoints and any single spike or drop in frame
rate has been omitted. Among the tested viewers no one except Navisworks
appears to utilize any occlusion culling. However, during our tests it became
clear that the occlusion culling in Navisworks is far from optimal and
actually lowers the frame rate in some of the tested models. We therefore

6 M. JOHANSSON AND M. ROUPÉ

present the performance results from Navisworks in two versions; occlusion
culling activated (OCA), and occlusion culling deactivated (OCD).

Figure 3. Selected viewpoint (VP1) for the different test models.

TABLE 2. Frame rates (in frames per second) for the four tested BIM viewers for models A to
D: worst case (WC), viewpoint 1 (VP1) and viewpoint 2 (VP2).

BIM viewer
A

(WC)

A

(VP1)

A

(VP2)

B

(WC)

B

(VP1)

B

(VP2)

C

(WC)

C

(VP1)

C

(VP2)

D

(WC)

D

(VP1)

D

(VP2)

Tekla

BIMSight
<1 5 3 5 12 7 3 7 10 <1 2 2

Autodesk

Navisworks (OCA)
4 32 23 12 29 30 5 16 23 4 22 16

Autodesk

Navisworks (OCD)
1 5 4 17 27 30 8 17 23 2 4 4

Solibri Model

Viewer
26 59 52 62 80 129 23 43 42 8 11 16

When comparing the results it becomes clear that the Solibri Model Viewer
offers the best performance among the tested BIM viewers. The tests further
reveals a far from optimal implementation of occlusion culling in the
Navisworks viewer, as it actually lowers the frame rate for many of the
models. As far as we can tell, the higher performance of the Solibri Model
Viewer probably comes from GPU-centric optimizations. As none of the
tested viewers (except Navisworks) supports occlusion culling or LOD, the
difference between them can only depend on their ability to utilize the GPU
efficiently.

 REAL-TIME RENDERING OF BUILDING INFORMATION MODELS 7

However, even if the Solibri Model Viewer turned out to offer the best
performance, it was not able to provide sufficiently high frame rates for all
of our test models. Although these models can be considered large and
detailed, they are far from being a worst case scenario, even today. Taking
future directions for the use of BIMs into account it should be safe to
assume even larger models tomorrow. As such, a more performance
efficient solution for real-time rendering of BIMs is required. The next
section addresses the situation further by analyzing potential acceleration
techniques for our prototype BIM viewer.

4. A suitable acceleration technique for BIMs

As discussed previously, there are a number of techniques that can be
utilized in order to accelerate real-time rendering. These have all strengths
and weaknesses and a suitable choice is highly dependent on the type of 3D
environment that it should be applied to. For instance, a vast, open
landscape seen in a flight simulator is very different from a detailed city
environment seen from the ground level when it comes to performance
optimization. For any type of real-time rendering system it is important to
consider GPU-centric optimizations, such as efficient arrangement of draw
order. Still, these techniques are only helpful up to a certain point. Once the
3D environment reaches a certain size in terms of amount of data we need
an additional, more scalable approach. When considering BIMs, it typically
contains a lot of rather small objects, such as furniture, lighting fixtures and
sanitary equipment. When viewed from a distance these objects becomes
very good candidates for LOD. However, even if this is a viable option in
terms of accelerated rendering, it introduces problems in practice as it
requires the existence of simplified 3D-models of all these objects.
Although approaches exist to automate this (Garland and Heckbert, 1997;
Wang et al, 2009), it usually requires at least some user interaction and
supervision in order to guarantee pleasant results for general 3D-models.

Another characteristic of BIMs is that they typically exhibit a lot of
occlusion. For reasons that are obvious, a building is naturally divided into
different zones, rooms and floors. Although some buildings, such as a
concert hall or a library can be very open in their layout, there always exist
areas that are separated, in terms of visibility, from the rest of the building.
Given this, a suitable acceleration technique would therefore be to use any
type of occlusion culling. Within this category several different algorithms
exists that are mainly differentiated by whether they require time-consuming
offline computations or not (Bittner and Wonka, 2003; Cohen-Or et al,
2003). For the purpose of review sessions that require the visualization to be
initiated on-demand, an offline solution is clearly not the most suitable
approach. For our prototype BIM viewer we have therefore chosen to

8 M. JOHANSSON AND M. ROUPÉ

implement what is generally considered current state-of-the-art in terms of
online visibility detection - the latest version of the Coherent Hierarchical
Culling algorithm (Mattausch et al, 2008).

4.1. COHERENT HIERARCHICAL CULLING

Occlusion queries is a feature of modern GPUs that lets any application
query the number of pixels that will end up on screen when rendering a
specific set of geometries. This way, proxy-geometries can be used to test if
any occlusion is present before the actual object is rendered. However, the
use of occlusion queries introduces latency in the system which may lead to
a decrease in performance if used naively. The initial Coherent Hierarchical
Culling algorithm (CHC) (Bittner et al, 2004) makes us of temporal and
spatial coherence in order to reduce this latency. In essence, this is realized
by interleaving the rendering of objects with the issuing of queries while
traversing the 3D scene (organized in a bounding volume hierarchy) in a
front-to-back order. During traversal, queries are only issued for previously
invisible interior nodes and for previously visible leaf nodes of the
hierarchy. Still, for scenes with a low level of occlusion, the initial version
of the algorithm can actually decrease performance (compared to only using
frustum culling). To address this, CHC++, a revised version of the algorithm
was developed (Mattausch et al, 2008). Although the core ideas remain the
same, CHC++ introduces several optimizations which make it perform very
well even in situations with low occlusion. For our prototype BIM viewer
the revised version of the algorithm has been implemented, and in the
following section we present a performance analysis of it when applied to
the different test models.

5. Performance analysis of our prototype BIM viewer

For the performance test of our prototype BIM viewer we have used the
same test models and interior view points as described in section 3. As we
utilize an efficient occlusion culling algorithm the performance is highly
dependent on the view point we chose. For all of the models we therefore
present the lowest frame rates that we have encountered during several
interactive navigation sequences (Table 3). For the most complex model
(D), we provide additional information about the rendering performance in
Figure 4. Here, the frame rates are presented for a pre-defined navigation
sequence when we are following a path around the building while the view
direction is oriented towards the building. As the complete building is
visible throughout the whole navigation sequence, albeit from different
direction, it should be representative as a worst case scenario.

 REAL-TIME RENDERING OF BUILDING INFORMATION MODELS 9

TABLE 3. Frame rates (in frames per second) for our prototype BIM viewer for models A to
D: worst case (WC), viewpoint 1 (VP1) and viewpoint 2 (VP2).

BIM viewer
A

(WC)

A

(VP1)

A

(VP2)

B

(WC)

B

(VP1)

B

(VP2)

C

(WC)

C

(VP1)

C

(VP2)

D

(WC)

D

(VP1)

D

(VP2)

Prototype

BIM viewer
100 800 700 260 500 450 120 285 400 94 550 300

Figure 4. Frame rates (in frames per second) for our prototype BIM viewer for the D model

during the pre-defined navigation sequence.

As seen by the result presented in Table 3 there is a huge difference when
compared to that of the existing BIM viewers. This is especially true for the
interior view points, but also for the worst case scenarios the performance is
impressive. Even for the C model, which doesn’t exhibit as much occlusion,
the speed-up is almost 6 times compared to the Solibri Model Viewer.
Furthermore, the data presented in Figure 4 reveals that, except for a small
drop around frame 3900, the frame rate is above 100 frames per second
throughout the complete navigation sequence. The tests thus confirm our
assumption that an efficient occlusion culling algorithm is a suitable choice
for real-time rendering of BIMs.

6. Conclusions

Regarding existing BIM viewers, our results show that they all share
limitations in their ability to handle large and complex BIMs interactively.
Although both Navisworks and Solibri Model Viewer implements
functionality to maintain real-time performance during navigation, it is
realized through rejection of objects that should, in fact, be visible. As a

10 M. JOHANSSON AND M. ROUPÉ

result, the presented visualization is incorrect and exhibit visual popping.
Without this acceleration technique enabled, Solibri turned out to offer the
best performance. Still, it was not able to provide sufficiently high frame
rates in all of our tests. However, for the same test models, our prototype
BIM viewer enables smooth real-time performance with no visual artifacts.
The results from our tests thus highlight the efficiency of the CHC++
algorithm and show that the technology to enable correct real-time rendering
of large and complex BIMs is already accessible, but are currently not
utilized by any of the tested BIM viewers.

References

Akenine-Möller, T., Haines, E., and Hoffmann, N.: 2008, Real-Time Rendering, 3 ed., AK
Peters, Wellesley, MA.

Bittner, J.: 2002, Hierarchical Techniques for Visibility Computations, Ph.D. thesis, Czech
Technical University in Prague.

Bittner, J. and Wonka, P.: 2003, Visibility in Computer Graphics, Environment and Planning

B: Planning and Design 30, 5, 729–756.
Bittner, J., Wimmer, M., Piringer, H., Purgathofer, W.: 2004, Coherent Hierarchical Culling:

Hardware Occlusion Queries Made Useful. Computer Graphics Forum 23, 3, 615–624.
BuildingSMART: 2011, Model - Industry Foundation Classes (IFC) — buildingSMART,

Available from: <http://buildingsmart.com/standards/buildingsmartstandards/ifc>.
Cohen-Or, D., Chrysanthou, Y. L., Silva, C. T., Durand, F.: 2003, A Survey of Visibility for

Walkthrough Applications, IEEE Transactions on Visualization and Computer Graphics

09, 3, 412–431.
FRAPS: 2011, Fraps: Real-time video capture and benchmarking, Available from:

<http://www.fraps.com/>
Garland, M., Heckbert, P.: 1997, Surface Simplification Using Quadric Error Metrics,

Proceeding of SIGGRAPH’97, 209-216.
GLIntercept: 2011, GLIntercept, Available from: http://code.google.com/p/glintercept/.
Mattausch, O., Bittner, J., Wimmer, M.: 2008, CHC++: Coherent Hierarchical Culling

Revisited, Computer Graphics Forum (Proceedings Eurographics 2008) 27, 2, 221–230.
Mortensen, J., Yu, I., Khanna, P., Tecchia, F., Spanlang, B., Marino, G.: 2008, Real-time

global illumination for VR applications, IEEE Computer Graphics and Applications, 28,
56-64.

Wang, H., Yin, G., Zhang, J., Wang, D., and Wang, J.: 2009, An Efficient Mesh
Simplification Algorithm, In Proceedings of the 2009 Fourth International Conference

on Internet Computing for Science and Engineering (ICICSE '09), IEEE Computer
Society, Washington, DC, USA, 60-63.

Yuan, P., Green, M., Lau, R.: 1997, A Framework of Performance Evaluation of Real-time
Rendering Algorithms in Virtual Reality, ACM Symposium on Virtual Reality Software

and Technology’97, Switzerland.

