
A Motion Capture System Based on Natural
Interaction Devices
Master of Science Thesis in Interaction Design And Technologies

George S. Fahim

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2012

A Motion Capture System
Based on Natural Interaction Devices

George S. Fahim

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2012

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet. The Author warrants that he is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or
a company), acknowledge the third party about this agreement. If the Author has signed a copyright
agreement with a third party regarding the Work, the Author warrants hereby that he has obtained
any necessary permission from this third party to let Chalmers University of Technology and University
of Gothenburg store the Work electronically and make it accessible on the Internet.

A Motion Capture System Based on Natural Interaction Devices

George S. Fahim

© GEORGE S. FAHIM , FEBRUARY 2012.

Examiner: Olof Torgersson

Chalmers University of Technology
Department of Applied Information Technology
SE-41296 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover:
An illustration of the motion capturing process.

Department of Applied Information Technology
Gothenburg, Sweden January 2012

Abstract

Abstract

This thesis investigated the feasibility of building a simple and affordable motion capturing system. A
pre-study was made to understand the potential uses and benefits of Natural Interaction based
devices and accordingly, the Kinect sensor was used as an input device to the system. The
implementation of the system was based on a client/server model. The client implemented in C++,
was responsible for fetching the skeletal tracking data from the Kinect sensor, and the server, which
resided in two different animation programs, implemented in Python and was responsible for making
the skeletal data comprehensible to the animators who are the users of the system. The server
program was extended to allow the capturing, recording, and retargeting of the motion data acquired
through the sensor. The communication between the client and server was based on the Open Sound
Control protocol. Furthermore, the system was tested for both functionality and usability by a sample
from the target users.

Keywords: Motion capture, Kinect, Natural Interaction, 3D Animation, Autodesk Maya, Autodesk
Motionbuilder, C++, Python, OSC

IV

Table of Contents

Table of Contents

List of Abbreviations...VII
1. Introduction..1
2. Methodology...2

2.1 Process overview...2
2.2 Methods used..3

3. Background Research..4
3.1 General Information Gathering...4
3.2 Investigation of similar projects..5
3.3 Literature review...7
3.4 Conceptualizing the idea..8
3.5 Formulating the research problem..9

4. Implementation Alternatives Research ...10
4.1 Further research into MoCap...10
4.2 Possible devices investigation...10
4.3 The OpenNI framework...10
4.4 The Kinect SDK...11
4.5 OpenNI framework versus Kinect SDK..12
4.6 The limitations stated..14

5. User Requirements Elicitation ...15
5.1 Target user definition..15
5.2 Determining user needs..15
5.3 Features and architecture decided ..16

6. Client Module Development..17
7.Networking Module Development..19

7.1 Deciding the networking protocol...19
7.2 The OSC protocol...19
7.3 OSC message syntax and structure...20
7.4 building the OSC messages..20
7.5 receiving the OSC messages..21

8. Server Module Development...23
8.1 The server script..23
8.2 MEL versus Python..24
8.3 Server application in details..24

V

Table of Contents

8.4 The server's GUI..25
8.5 Porting server code to MotionBuilder...26
8.6 MotionBuilder's script limitations...27

9. System Integration Testing...28
10. Testing Usability ..30

10.1 Video tests...30
10.2 Evaluation walkthrough...31

11. Conclusions...33
11.1 Answer to research questions...33

12. Discussion..34
12.1 Evaluation..34
12.2 Comparison with similar projects..34
12.3 Future work...35

References..36

VI

List of Abbreviations

List of Abbreviations

NI : Natural Interaction
NUI : Natural User Interface
3D : Three dimensional
HCD : Human-Centered Design
GUI : Graphical User Interface
SDK : Software Development Kit
RGB-D : Red Green Blue – Depth
MoCap : Motion Capture
OSC : Open Sound Control
IDE : Integrated Development Environment
API : Application programming Interface
BVH : Biovision Hierarchy
ASF : Acclaim Skeleton File
AMC : Acclaim Motion Capture
GPGPU : General Purpose computing on Graphics Processing Units
IR : InfraRed
FPS : Frames Per Second
TCP : Transmission Control Protocol
UDP : User Datagram Protocol
MEL : Maya Embedded Language

VII

1. Introduction

1. Introduction

The main purpose of this thesis project is to explore the potential benefits of Natural
Interaction (NI) in the field of 3D animation. The NI discipline has been growing rapidly in the past few
years, due to the introduction of several devices that incorporated NI in the gaming industry, specially
the Kinect peripheral for the Xbox 360 console. In addition to devices, frameworks have also been
created to assist developers in creating applications that make use of these NI devices in fields other
than gaming.

One of the possible benefits of NI in the field of 3D animation, is using NI devices in motion
capturing solutions. These solutions digitize and record bodily actions and performances into a virtual
3D space in the form of 3D skeletons. The animators can then edit and fine-tune the results and
prepare them for usage in computer games and 3D animation movies.

The device used in this thesis project is the Kinect sensor. It is an NI input device that has
motion sensing capabilities. It is mainly used as a replacement for traditional game controllers as it
allows users to interact with games using their bodily movements and gestures through NUI/NI.

In this study, two frameworks are investigated and compared, the Kinect for Windows SDK and
the OpenNI framework. The chosen framework was used to develop a gesture based motion capture
system. This optical motion capture system takes advantage of the skeletal recognition feature
provided in the Kinect sensor.

The implementation is based on a client/server model. The client communicates with the
Kinect device, fetches the captured skeletal data, processes it, and finally streams it through the OSC
protocol. The client also allows the user to control the performance and functionality of the Kinect
device through a simple graphical user interface.

The server side, is a script that resides inside the 3D animation package (Autodesk Maya and
MotionBuilder). It creates a connection with the client and listens to the incoming stream of
processed data. It also handles the creation of a 3D skeletal system that visually represents the motion
capture data, and finally allows the animator to record the motion capture internally for further
processing and rendering. The animator also controls the functions of the server script through a
graphical user interface.

A detailed description of the motion capture system is documented and its pros and cons.
Also, a comparison is drawn between the developed motion capture system and other existing
solutions.

1

2. Methodology

2. Methodology

2.1 Process overview

This thesis work falls under the “Design and Creation” research category [1] in which both
theory and practice were investigated and researched before designing and implementing the system.
Additionally, a human centered design philosophy was adopted and integrated to ensure the usability
of the system.

To ensure a streamlined workflow, a general structure for the whole process was built and
followed. The structure was mainly based on the ISO 13407 standard “Human-centered design
processes for interactive systems”[2]. This standard offers best practices and guidelines in human-
centered design. It applies to software products, hardware/software systems, websites, and services.
The standard's description can be summarized in the following table[3]:

Four Principles of Human-Centred Design Four Human-Centred Design Activities

active involvement of users understand and specify the context of use

appropriate allocation of function to system and
to user

specify user and organisational requirements

iteration of design solutions produce more than one candidate design solution

multi-disciplinary design evaluate designs against requirements

The ISO 13407 standard requires the planning and specification of a human-centered design
process. To meet this requirement several HCD methods were investigated, but the “Rational Unified
Process iteration cycle”[4] was eventually chosen. This process is iterative in nature which worked
seamlessly with the ISO 13407 standard. The process entails dividing the design and testing tasks into
iterations instead of the traditional waterfall workflow. Per Kroll the author of this process notes that:
"Each iteration also has a well-defined set of objectives and produces a partial working
implementation of the final system. And each successive iteration builds on the work of previous
iterations to evolve and refine the system until the final product is complete. Early iterations
emphasize requirements as well as analysis and design; later iterations emphasize implementation
and testing”[4]. The main principles of the “Rational Unified Process iteration cycle” are:

2

2.1 Process overview

1. Build functional prototypes early.
2. Divide the detailed design, implementation and test phases into iterations.
3. Baseline an executable architecture early on.
4. Adopt an iterative and risk-driven management process.

2.2 Methods used

Pre-study: was the initial step in this project, preliminary information was gathered, both
theoretical and practical. The aim of the pre-study was to build the adequate knowledge needed
before the initiation of the project work. The main activity in the pre-study was reading different
research materials and investigating similar projects and previous endeavors to attain a simple and
affordable motion capturing solution.

Interviews and Brainstorming: semi-structured interviews took place to understand the user
needs. These interviews involved a participant and the interviewer, they discussed the project's scope,
limitations, and expectations. Features were generated and discussed through brainstorming activities
in which both parties participated. Initially, ideas were not filtered or criticized, but after these
sessions, the ideas were evaluated in terms of feasibility and affordance.

Sketching: was the method used to visualize design ideas. In this project sketching was used as
a low fidelity prototyping alternative. User interface and interaction flow were sketched using paper
and pencil to provide a fast way to evaluate and test the designs for major flaws. For this project
sketching was a rapid and reliable alternative to more sophisticated prototyping methods.

Testing: was done at each phase and most of the iterations, for both functionality and usability.
User tests were also scheduled and performed to ensure the user's continuing involvement in the
process. To reach more potential users a video describing the details of the system was distributed
among professional animators, and feedback was given through the internet and social networks.

Evaluation walkthrough: is the process of going step-by-step through a system design and
getting reactions from user representatives [5]. A fast yet reliable alternative of Evaluation
walkthrough was used, the cognitive jogthrough [6]. This method used video recordings of test
sessions instead of filling evaluation sheets.

3

3. Background Research

3. Background Research

3.1 General Information Gathering

The starting point of this project was a basic inquiry about the possibility of using devices with
NI/NUI capabilities, like the Kinect sensor seen in figure 1, in MoCap in the field of 3D animation. To
conceptualize the project's idea, an initial phase of information gathering started. The main aim was
to explore the feasibility of such an idea, what results to expect, and finally the limitations and
potential outcome. The results were really promising, given that this discipline is relatively new, and
open to further contributions.

A generic search using online search engines with keywords like: “Kinect motion capture”,
showed that such an idea is possible, and actually implemented at least once, mainly as a proof of
concept. It also showed that such implementations are personal in nature and lack documentation
and/or source code.

After investigating the feasibility of the idea, a preliminary scope for the project needed to be
defined until a fuller scope definition at a later phase. At this stage the scope was divided into two
sections, one to handle the research aspect and the other to handle the implementation aspect.

The research aspect was aimed to be concerned with studying relevant research material and
similar projects, identifying and comparing different approaches to achieve the aim of the project, and
finally, to draw comparisons and analysis with regard to the implementation.

The implementation aspect was aimed to be concerned with designing and developing the
whole system. Starting from eliciting the user requirements, to dividing the system into modules that
can be developed separately then integrated and tested for both functionality and usability, and
ending with documenting the whole project.

4

Figure 1: The Kinect sensor (courtesy of Microsoft)

3.1 General Information Gathering

The main limitations discovered at this early stage were mainly the lack of precision in the
motion data, the limited number of joints that can be tracked, and the difficulty in calculating the
rotation of the tracked joints. It was very beneficial to know these limitations as early as possible to be
able to understand the scope and expectations of the end results and their outcome.

3.2 Investigation of similar projects

To proceed further with the initial investigation, existing projects implementing a similar idea
were checked. It was extremely hard to find well documented projects not to mention open source
projects. In most of the cases what was found was basically a showcase for integrating Kinect's skeletal
tracking with a 3D authoring tool. These showcases were either videos or short blog posts, and
without source code, helpful information, or even executable files to try them out.

But in some other cases, projects were accompanied by source code or documentation.
Examples of these showcases were: Integrating Kinect with Unity 3D engine (source code available)[7],
Unreal Development Kit (source code available) [8], Daz studio [9], and Motionbuilder[10].

The first project checked that provided even more useful information was Jasper Brekelmans'
personal project: “Brekel Kinect” [10]. It is a piece of software that captures skeleton movement from
Kinect and streams it to Motionbuilder, an animation software. This project is closed source, however,
Brekelmans provided some information about the drivers and frameworks used, which helped moving
the search forward.

Brekel Kinect uses the OpenNI framework and the NITE [11] driver for its implementation, in
addition to the Kinect device of course. There is a base application that saves and exports 3D point
cloud data that can be used as 3D models, textures, and particle systems in 3D authoring packages.
Additionally, the base application can capture and save motion data in the BVH file format. Brekel
Kinect also provides a plug-in written specifically for Motionbuilder so that motion data can be
streamed in realtime from Kinect to Motionbuilder to control a Motionbuilder character.

One of the limitations of Brekel Kinect is that it doesn't support tracking multiple actors while
the Kinect device supports up to two skeletons tracked at the same time. It also inherits the functional
limitations of the Kinect device and the OpenNI framework. However, Brekel Kinect has been used by
many animators and is widely accepted as a great tool that helps in achieving a faster animation
process.

Another slightly different approach towards motion capturing with Kinect was “Radius9
Motion Capture Utility” [12]. It is a side project done at Radius9 consultancy and development
company. This software instead of streaming the motion data to a network address and port, it
exports it to a file on the hard disk. This project lacks documentation and it is provided as an initial

5

3.2 Investigation of similar projects

Beta version, so it may get updated in the future.
“Radius9 Motion Capture Utility“ in its current version works with Kinect and the OpenNI

framework, it provides all the needed drivers in one installer. It allows exporting the motion capture
data in both BVH file format and ASF/AMC file formats, and there is no streaming functionality in this
application. This project didn't provide the ongoing search with useful information, but it was just
another proof of concept on how feasible the idea was and how differently it can be approached.

Commercial products were also included in the research, for example “iPi Desktop Motion
Capture” (DMC) [13] software was checked. It is an offline tracking solution that uses both normal 2D
cameras and the Kinect device. One needs first to record a video then process it using this application.

The introduction of Kinect capturing to this system is relatively new, but it is supported and
well documented. The DMC system is divided into two standalone applications. The first is the “iPi
recorder”, which captures the depth data from the Kinect device and saves it to disk. And the second
application is the “iPi studio”, which processes the depth data offline and allows the export of
processed motion data in various file formats.

This solution uses a modified light-weight version of the original PrimeSense driver. It also uses
a proprietary protocol implementation to ensure faster processing, and as this solution uses the
GPGPU technique it requires a decent graphics card for better performance.

 This solution inherits some of the limitations of the Kinect device, even though it doesn't use
its skeletal tracking feature, and it also needs the floor to be fully visible during the whole recording
session. Another limitation is that it needs the background to be recorded first without the actor for
some seconds first before the capturing happens. On the other hand, since this solution is not
realtime, and can make use of heavy processing and computation, it provides higher quality data and
more precise motion capture. It is a really useful solution even though it is costly and not easy or
straight forward to use.

Another commercial product checked was the Organic Motion solution[14], this is a realtime
solution based on 2D cameras input, this solution targets big studios with space and funds capabilities
that are beyond this project's scope.

However, the company's R&D team is working on integrating Kinect as an input device to their
solution[15]. Kinect in this case provides the solution with depth data while other normal 2D cameras
(as simple as web cameras) provide the system with the missing data occluded from the Kinect field of
view. Thus creating a full 3D real time tracking solution that is based on their proprietary tracking
software and the integrated data from the cameras and the Kinect sensor.

6

3.3 Literature review

3.3 Literature review

Despite the recent history of the Kinect device, a lot of researchers were encouraged to
investigate the different ways of using it, which created a decent amount of research projects and
papers covering a broad spectrum of applications. However, before delving into the the Kinect based
applications, there was a need to understand the Kinect platform itself, and motion capturing
specifications and its process.

In his research about the Kinect platform, Thomas Kühn[16] examined the internal design and
properties of the Kinect device, and how this builds its features. The Kinect device is composed of an
IR projector, an IR camera, and a color camera (see figure 2). The IR projector and camera are used for
depth calculation, this data is then mapped to the color pixels taken from the color camera, so that
each single frame has the 3D coordinates of each pixel. Sending these static frames in a sequence is
called RGB-D stream.

Daniël Lacko et al. discuss in their examination of motion capture and guidance using open
source hardware[17] the properties of markerless motion capture, and how Kinect acts as a candidate
for fields other than console games. They state that the advantages of using IR are in not being visible
to the human eye and the lack of IR in everyday environment which decreases the false positive and
noisy measurements. On the other hand, the disadvantages are in bearing extra cost and complexity,
and the need for the user to stand in front of the sensor without any kind of obstruction.

7

Figure 2: The Kinect internals (courtesy of ifixit.com)

3.3 Literature review

When it comes to Kinect based applications, the initial research initiatives were mainly
concerned with making use of the raw data provided by the device namely the RGB-D stream, starting
from body parts detection and tracking [18], to pose detection [19], and ending with partial skeletal
tracking [20] and human activity detection in unstructured environments [21].

What is common in these research initiatives is that they all try to achieve realtime calculations
but with different implementation methods. Iason Oikonomidis et al. [18] approach hand tracking as
an optimization problem, they make extensive use of optimization algorithms and GPU processing.
They take the depth data, analyze it, segment it, and finally apply it on a virtual hand model at a speed
of 15 FPS. In a similar endeavor, Microsoft Research Cambridge group [19] proposed a different
technique for the detection and recognition of the whole body parts at a frame rate of 200 FPS.

Skeletal tracking was tried even before the introduction of the internal tracking system
available in the official drivers and frameworks. Abhishek Kar [20] introduced a novel algorithm for
upper body skeletal tracking that runs at 10 FPS. It had some limitations and accuracy problems that
were overcome in the algorithms provided in the official frameworks.

After the introduction of official frameworks, drivers, and software development kit, it became
easier for researchers to use Kinect in many more applications, for example Dutta [22] investigated the
possibility of using Kinect in the ergonomics field, he proved that Kinect can be used as a portable 3D
motion capture system for performing ergonomic assessments.

Another field of application is education, several researchers [23][24] worked on evaluating the
use of Kinect for educational purposes. They agreed on the significant number of opportunities that
Kinect opens in the field of education and education technology by the use of interactivity and natural
user interface. The most recent researches involved extending the features of Kinect in Augmented
reality [25], games animations [26], and hardware integration [27].

3.4 Conceptualizing the idea

The information gathered so far were enough to transform the project idea into a concept. The
concept was building a simple and affordable markerless motion capture solution using the data
provided by Kinect namely the skeletal tracking data, then streaming these data into a 3D authoring
package to facilitate the animators tasks related to human or humanoid animations.

8

3.5 Formulating the research problem

3.5 Formulating the research problem

The research problem was centered around answering these questions:
• How one can build a simple and affordable motion capture system?

◦ what are the different approaches to create an optical motion capture system
using NUI based devices? And what is the difference between these
approaches?

◦ How can a Kinect based MoCap be built in the most straightforward way?

9

4. Implementation Alternatives Research

4. Implementation Alternatives Research

4.1 Further research into MoCap

To take the research a step further, a thorough investigation was made, to understand what
motion capture really is.

Motion capture is a process by which analog body movements are recorded and transformed
into the digital world. The main purpose of motion capture is to use the captured movements to drive
a virtual character in a 3D space. This process involves creating a virtual skeletal system that mimics
the human skeleton. The motion data is recorded on the virtual skeleton for further use either in
realtime applications or non realtime ones.

There are two categories of motion capture solutions: optical motion capture, and non-optical
motion capture. The optical capture category is further divided into two divisions: sensor (marker)
based, and markerless optical motion capture. Kinect falls in the latter category, markerless motion
capture, because it doesn't need physical sensors but it relies on processing image and depth streams.

4.2 Possible devices investigation

Even though Kinect was the main candidate device in this project, other alternatives were
explored. PlayStation Eye camera was the least potential candidate. It is a camera with added
capabilities like gesture recognition and head tracking, it also implements depth data. However, it
lacks full skeletal tracking and Microsoft Windows support.

Another sensor checked was the SoftKinetic DepthSense camera, which is strikingly similar to
Kinect in shape and features, however, this one too lacked the skeletal tracking feature. And also, it is
only available as an engineering sample with no widespread usage.

The last sensor checked was the Asus Xtion PRO which is basically identical to the Kinect device
but works only with the OpenNI framework.

4.3 The OpenNI framework

Before the release of any official drivers or frameworks, there were crowd-sourced initiatives
to connect the Kinect to PCs like the OpenKinect project[28]. OpenKinect and similar projects lacked
official support and were considered only as hacks. However, the actual rise of the NI industry started
with the establishment of the OpenNI organization in November 2010.

“The OpenNI organization is an industry-led, not-for-profit organization formed to certify and

10

4.3 The OpenNI framework

promote the compatibility and interoperability of Natural Interaction devices, applications and
middleware. One of the OpenNI organization goals is to accelerate the introduction of Natural
Interaction applications into the marketplace. “[29]

OpenNI is the organization that developed and supports the OpenNI framework. They define it
as:

 “a multi-language, cross-platform framework that defines APIs for
writing applications utilizing Natural Interaction. OpenNI APIs are composed of
a set of interfaces for writing NI applications. The main purpose of OpenNI is to
form a standard API that enables communication with both:

• Vision and audio sensors (the devices that ‘see’ and ‘hear’ the figures
and their surroundings.)

• Vision and audio perception middleware (the software components that
analyze the audio and visual data that is recorded from the scene, and
comprehend it). For example, software that receives visual data, such as an
image, returns the location of the palm of a hand detected within the image.

OpenNI supplies a set of APIs to be implemented by the sensor devices, and a
set of APIs to be implemented by the middleware components. By breaking the
dependency between the sensor and the middleware, OpenNI’s API enables
applications to be written and ported with no additional effort to operate on
top of different middleware modules (“write once, deploy everywhere”).
OpenNI's API also enables middleware developers to write algorithms on top of
raw data formats, regardless of which sensor device has produced them, and
offers sensor manufacturers the capability to build sensors that power any
OpenNI compliant application.

The OpenNI standard API enables natural-interaction application developers to
track real-life (3D) scenes by utilizing data types that are calculated from the
input of a sensor (for example, representation of a full body, representation of a
hand location, an array of the pixels in a depth map and so on). Applications
can be written regardless of the sensor or middleware providers.” [30]

4.4 The Kinect SDK

Kinect SDK on the other hand is developed and supported by Microsoft and is built specifically
for the Kinect sensor. It is defined as: “a starter kit for software developers, to make it easier for them
to create rich experiences using Kinect sensor technology on their system. It is intended for

11

4.4 The Kinect SDK

experimentation and exploration ”[31]. The Kit includes the needed drivers, the APIs, and device
interfaces in one executable file. Programs can be developed in C++, C#, or Visual Basic programming
languages.

The SDK provides the native and managed APIs and the tools that are needed to develop
Kinect enabled applications for Windows only. Developing Kinect enabled applications with this SDK is
essentially the same as developing other Windows applications, except that the SDK provides support
for the features of the Kinect sensor (color images, depth images, audio, skeletal data, etc.).

4.5 OpenNI framework versus Kinect SDK

Before the introduction of the Kinect SDK, Almost all developers interested in developing NI
applications were using the OpenNI framework. However, after the SDK's release developers started
comparing the two approaches trying to find the points of strength and weakness in both. The
comparison provided here was conducted with the aid of several resources, the official
documentation of each API[30][32] and industry driven resources [33][34][35] which are mainly
efforts done by developers trying to figure out the pros and cons in each API.

The first point of comparison is platform dependency. The OpenNI framework is cross
platform, a developer can program his/her work on one platform and it can be easily ported to other
platforms. While the Kinect SDK is built to work on Windows platform only. Its API dependence makes
it not suitable for porting to other platforms. In addition, the OpenNI framework offers native APIs for
both Windows and Linux platforms. A drawback in the OpenNI framework is that it is only tailored to
work on x86 systems, while the Kinect SDK works on both x86 and x64 systems natively.

Another point of comparison is the ease of use. To start developing applications with OpenNI,
one needs three different packages to install. Also, to make it work with the Kinect sensor a license
string needs to be acquired first that define its vendor and properties. Such steps are mandatory to
ensure interoperability of the API and middleware. On the other hand, the Kinect SDK is available
bundled with the needed drivers in one installer file, this diminishes the chances of any conflict while
with the OpenNI framework conflicts can happen. Additionally, the Kinect SDK is simple to start
developing with, as it offers a straightforward way to handle callbacks specially with the managed API.
But since OpenNI is a more generic framework, it requires a higher learning curve. The Kinect SDK also
offers better documentation and more samples to learn from.

 When it comes to the spread of use, the OpenNI framework has a clear edge. The OpenNI
framework was released more than six months before the Kinect SDK. In that period a lot of projects
were developed using OpenNI. The OpenNI framework became an industry standard even before the
release of the Kinect SDK. Its license also allows commercial use, while the Kinect SDK is only in its
beta stage and allows only non-commercial use. In addition to that, the OpenNI framework is

12

4.5 OpenNI framework versus Kinect SDK

extensible since it is an open source project, this gives room for 3rd party extensions and add-ons.
While the Kinect SDK is not extensible and Microsoft supports only the current and existing features.
Another limitation facing the Kinect SDK is that it supports only the Kinect sensor, while the OpenNI
framework supports Kinect and other devices from several vendors.

The technical features of both the OpenNI framework and the Kinect SDK, compared to each
other can be summarized in the following table:

OpenNI Framework Kinect SDK

Supports using several Kinect Devices
simultaneously. Theoretically supports tracking
more than 2 active users at the same time.

Supports using several Kinect Devices
simultaneously (as of Kinect SDK V1-Beta 2).
Supports tracking up to 2 active users at the same
time.

Can be adapted to handle the analysis of scenes
with significant complexity

Tailored for simple scenes, especially indoor
gaming environments

Out of the box support for hand tracking and
gestures handling

Hand tracking and gestures handling have to be
implemented manually

Skeletal tracking needs calibration before
recognition

No calibration needed for skeletal recognition

Joints rotations are calculated but not for all
joints

Joints rotations are not readily available but can
be calculated using more coding

Joints' position is not predicted or estimated Built in joints' position prediction and estimation

Allows access to audio features, but doesn't
support it or support voice recognition

Built in support for the audio features and voice
recognition

Color stream is limited to 800*600 Grants access to full color stream : 1024*768

No support for motor's tilt Support for motor's tilt is available

Even with the comparison results at hand, it was difficult to reach a decision on which

approach to use. But, finally the decision made was to use the Kinect SDK, for several reasons. Firstly,
Using the Kinect SDK seemed to be simpler than the OpenNI framework. Secondly, since the
application to be developed depended mainly on the skeletal tracking feature, the Kinect SDK seemed
to be superior in this aspect, especially with the joint prediction, estimation, and the elimination of
the calibration step. Finally, for the Kinect SDK's support for accessing the motor tilt functionality.

13

4.5 OpenNI framework versus Kinect SDK

Another issue that was considered to be important for the future use of the Kinect sensor was
that using any other API with the Kinect sensor voids the device's warranty. In Microsoft's eyes, any
API other than the Kinect SDK is considered a hack, even the OpenNI framework, which is considered
everywhere else as an industry standard.

It is worth mentioning that a C++ wrapper was recently created to manage working with both
solutions, it is still in its initial development phase, but it can be a promising piece of code [36]. Its
features include:

• Modern C++ wrapper for transparent use of OpenNI and Microsoft Kinect SDK with same API
• Support for multiple devices
• High Performance via multithreading
• Support for all major available functionalities of both Kinect SDK and OpenNI
• Samples for libCinder, OpenFrameworks and GLUT/OpenGL
• C++ exception handling and error logging (file, console, non-verbose)
• Doxygen documentation
• Ongoing development (recording/playback, c3d format for animation software import)

4.6 The limitations stated

From the drawn comparison, it became known that there were limitations facing the
implementation of the motion capturing system using the Kinect sensor. These limitations were:

• The implementation can support bipeds (human or humanoid characters) only .
• The maximum number of actors who can be tracked simultaneously is two.
• The number of joints tracked per actor is fixed at twenty joints.
• Only the joints' positions are calculated, joints' rotations are not calculated.
• The implementation will not support facial recognition or animation.
• Actors fingers can not be tracked.

14

5. User Requirements Elicitation

5. User Requirements Elicitation

Building on the preliminary scope that was shaped earlier, the scope was further defined. The
Kinect SDK was chosen as the API to use. The limitations of the implementation were determined. A
strict yet realistic schedule was put into action. Then the project proceeded to the design and
implementation part of this thesis work, and its initial phase was the elicitation of user requirements.

5.1 Target user definition

A prior step to the requirements elicitation phase was to define the target user of the
proposed system. The target user was defined as follows: “A computer user with knowledge of the 3D
production pipeline in general, and with specific knowledge of the animation phase, specially
character animation. He/she needs to be familiar with Autodesk Maya and/or MotionBuilder and
their components. Basic knowledge of scripting in these environments would be an advantage, but
not a requirement.”

5.2 Determining user needs

After defining the target user, it was important to find actual potential users with such
characteristics, and getting their input/feedback to shape the whole design and implementation
phase. Two initial interviews took place to discuss the product scope and the user's needs and
expectations. These interviews were informal in nature and they ended in being what can be
described more precisely as brainstorming sessions.

In the beginning of the interview the interviewee was presented with the project's idea and
the current limitations. Then a discussion took place regarding what features were desired to be
available in the system. The interviews resulted in eliciting these requirements:

• An automated skeleton creation tool
• Access to the internal functionality available in the Kinect sensor (motor, smoothing algorithm)
• A straightforward way to control the flow of motion data (locally and through a network)
• An automated tool to record and plot the animation on the created skeleton(s)

15

5.3 Features and architecture decided

5.3 Features and architecture decided

The requirements gathered in the previous step were used to build a feature list for the
proposed motion capture system. It was clear by then that there was a need to create two
applications communicating trough the client/server model. One to control the internal functionality
of the Kinect sensor, and the other to use motion capture data inside the 3D packages. The
communication between the two applications should be transparent to the user, but for the
implementation process, it was considered a separate module (Figure 3). Each of the three modules
(client, server, networking) is described in details in the next chapters.

16

Figure 3: Illustration of the system architecture

6. Client Module Development

6. Client Module Development

The client application is the application responsible for the communication with the Kinect
sensor, fetching the skeletal tracking data, and presenting it to the user. Also, the user controls the
functionality of the sensor, and the quality of the tracking using the client application through a GUI.
The client application was written in C++ programming language.

The first step in this phase was to check if there were any helpful libraries that could facilitate
the development of the client application and at the same time work seamlessly with the Kinect SDK.
The Kinect SDK itself provided a sample application that could be used a starting foundation and
further developed as it provided the basic functionality needed for this project. However, there was
another better alternative, a wrapper code built by Stephen Schieberl[37]. This wrapper was written
to work with the Cinder library[38], which is an open source C++ library for creative programming.
Using the Cinder library was not planned in the beginning, however, it acted as great candidate for the
client development, as it provided tools for handling multithreading, eliminating memory leaks, and
OpenGL integration. So, the decision was made to use the Cinder library with the Kinect wrapper
provided by Stephen Schieberl.

 The core functionality was already available in the wrapper code, what needed modification
was:

• removing the audio features,
• adding the events that control the motor,
• adding the access to the internal smoothing algorithm, and
• modifying the GUI: creating the Kinect menu, modifying and rearranging the various

display areas.
 The client was designed to be event based. There were event handlers to handle the initiation
of the device, its shutting down, and its update events. For the application to work, first the device is
initialized and started, the initial tilt angle of the device is stored, and the environment is set up to
start the capturing process.
 In the update event the device is instructed to check if there are skeletons to be tracked, if it is
the case, the skeletal data is drawn to the screen. Also in the update event, the RGB and depth data of
each frame are fetched from the sensor and drawn to the screen. The update event also handles the
changes in any of the attributes controlled by the user, and accordingly change the device or the
application settings to perform the desired action.

In the shutting down event, the capturing is stopped, the used skeleton objects are deleted,
the used buffers are deleted, and finally the sensor itself is shut down and unlocked.

After all the features of the client were implemented, they were tested if they produce the

17

6. Client Module Development

desired actions or not. Bugs were discovered and fixed through several experimental runs and tests. It
was difficult to test the attributes of the smoothing algorithm built in the SDK as the differences were
minimal. However, the prediction and correction properties proved to be working as expected.
Additionally, the features were evaluated against the user requirements to ensure that the application
fulfills all the required tasks demanded by the target users in the previous requirement elicitation
phase.

For the GUI, the user interface was sketched on paper first, and then a low fidelity wireframe
sketch was created to visualize the client's interface as seen in figure 4 and the final look is shown in
figure 5.

18

Figure 4: Client wireframe representation

Figure 5: Client's final user interface

7.Networking Module Development

7.Networking Module Development

The networking module was designed to be the communication link between the server and
the client applications. The sender code was written in C++ and the receiver code was written in
Python. Having a networking module allows the system to be used either locally on one computer
using the loop-back address (the local host) or on two computers connected through a local area
network.

7.1 Deciding the networking protocol

There were several alternatives to choose from regarding which protocol to apply as the
communication protocol. There were the traditional TCP and UDP protocols, and there were other less
popular choices like the OSC protocol[39], which was eventually chosen. The main advantage of the
OSC protocol is the ease and flexibility of implementation. The other more traditional protocols were
more complicated to implement given the limited knowledge of the researcher in socket
programming.

7.2 The OSC protocol

The OSC protocol was developed and continues to be maintained by the Center for New Music
and Audio Technologies, a research center within the University of California, Berkeley[40]. It was
initially created as a networking protocol between electronic musical instruments, but developers in
other disciplines took advantage of its simplicity in their work, and it is now used as a networking
solution in a broader spectrum of uses other than musical instruments. Its features include[41]:

• Open-ended, dynamic, URL-style symbolic naming scheme
• Symbolic and high-resolution numeric argument data
• Pattern matching language to specify multiple recipients of a single message
• High resolution time tags
• "Bundles" of messages whose effects must occur simultaneously
• Query system to dynamically find out the capabilities of an OSC server and get

documentation
The OSC protocol is implemented in a multitude of programming languages in the form of

libraries, the ones used in this project were the C++ library (which was also included in the Cinder
library), and the Python library (the simple OSC implementation). The protocol and its
implementations were fairly straightforward, but the data packets that needed to be transmitted in

19

7.2 The OSC protocol

this project had to follow a specific structure, the OSC specification calls the data packets “messages”
and they are considered the basic unit of transmission.

7.3 OSC message syntax and structure

According to the OSC protocol specification, the application that sends OSC packets is called
OSC Client (or sender application), and the application that receives the OSC packets is called OSC
server (or receiver application), hence came the naming of this project's modules.

At the client side where the messages are formed and sent, OSC packets (messages) must be
built to include three different contents: OSC address pattern, OSC type tag string, and the OSC
argument(s). The OSC address designates the identity of each message, and on the server side there
should be a message handler for each specific address as it will be explained later. The OSC type tag
specifies the data type of the arguments and also the total number of arguments. The third content of
the OSC message, the OSC argument(s) is the actual data sent through this protocol.

7.4 building the OSC messages

In this implementation, the OSC addresses were used to define the actors and their tracked
joints. The system supports two actors each has twenty joints tracked, so the total number of
addresses was 40 addresses. The pattern of the used addresses followed this structure:

“/Device name/Skeleton/Skeleton ID/Joint name”

The “Device name” and “Skeleton” are descriptors for the capturing device and the type of
transmitted data. The “skeleton ID” was used to distinguish between the tracking data of each actor
when there are two actors being captured at the same time. The “Joint name” was filled by the names
of the twenty tracked joints of each skeleton, Joint names are illustrated in figure 6:

20

7.4 building the OSC messages

Examples of OSC addresses used in this implementation would look like this:
"/Kinect/skeleton/0/elbow_right”

"/Kinect/skeleton/1/head”
"/Kinect/skeleton/0/hip_center”
"/Kinect/skeleton/1/foot_left”

This was the first component of the OSC message: the address pattern. The second component
which is the type tag was simply “,fff” in all the messages which means that this message has three
arguments of the type float32 (floating-point numbers). The last component is the arguments
themselves, and they were the positional data of each joint in the 3D space, in the x-axis, y-axis, and z-
axis respectively.

7.5 receiving the OSC messages

The second part of the networking module was the receiver code which was written in Python
as mentioned earlier, as this was the implementation language of the whole server application. This
was one of the great benefits of using the OSC protocol, allowing the sender and receiver to be

21

Figure 6: Conventional joint names

7.5 receiving the OSC messages

written in two different programming languages while attaining a seamless communication.
In the receiver code, an OSC server was declared and initialized. Then callback functions

(message handlers) were created for all the addresses expected to be received. Finally functions for
starting the server and closing it were created. The OSC server was designed to be running on a
separate thread, so starting and closing the threads was also handled in these functions.

The receiver code was tested afterwards, but at this stage message handlers had no functions
allotted to them yet, so instead, message handlers were instructed to acknowledge the reception of
the OSC messages coming from the client application and print it out to the console screen. The
messages sent from the client application were received correctly without any compromises because
of the difference in implementation languages between the sender and the receiver. The next step
was to develop the server application in its entirety.

22

8. Server Module Development

8. Server Module Development

The server module is the core of the whole system. The server application allows the users to
visualize the motion capture data in 3D space. It also allows them to store this data on 3D skeletons as
recorded animations, which is considered the main functionality of the whole system. The users have
control over the capturing process through a simple GUI. The end result of the capturing process at
the server side is an automatically created 3D skeleton(s), recorded on it the motion data and ready to
be used further by animators in their 3D productions. The server application also gives the animators
the possibility of creating 3D characters for the sake of animation retargeting. The server application
was coded in Python programming language.

8.1 The server script

The server module as mentioned in brief earlier in the introduction is actually a script that
resides in a 3D computer graphics software. It utilizes the software's internal and proprietary
commands for the creation of the 3D skeletons, recording animations on them, and retargeting
animations to other skeletons or 3D characters. The 3D software of choice was Autodesk Maya, One of
the most used programs in the field of 3D production both in film and game industries. A screen shot
of Maya running the server is seen in figure 7. Maya provides two development environments for
technical artists and programmers to aid them in their work specially in production automation. It has
its native MEL environment and has recently adopted a Python based environment.

23

Figure 7: Screenshot of Autodesk Maya with the server running

8.2 MEL versus Python

8.2 MEL versus Python

To choose between the two environments, a brief comparison was made to decide which
environment would better suit the server application's needs. The main advantage of using the MEL
environment is that MEL is the native language of Maya and it runs faster than Python in most of the
cases. However, It is limited in its functionality and it was rather difficult to integrate it with the OSC
receiver code. The Python environment, on the other hand, provided the needed flexibility for such
integration. Additionally, Python is an object oriented language, and has a wider base of users
contributing thousands of freely available classes that one could use. But the main advantage of
Python over MEL is the fact that MEL is a proprietary language and can only be used inside Maya, but
Python is a generic language, and many 3D authoring programs nowadays have internal Python
interpreters, which made porting the server script from one program to another possible. So the
decision was made to use Python as the server's implementation language.

8.3 Server application in details

To start implementing the server module, it was beneficial to divide the whole structure into
distinct blocks each performing a specific task. This division helped with having a clear idea of the
implementation progress, and also helped when the server's features were evaluated against the user
requirements.

First there was the receiver code already developed in the networking development phase, it
only needed to be integrated into the Maya python environment. This needed Maya to acknowledge
the external python interpreter, so that importing external modules can be done. When this was done,
the Maya python environment was able to communicate with the client application seamlessly.

Next, the core functionalities of the motion capturing system were developed in accordance
with the blocks decided earlier at this stage. The first core block was to automate the 3D skeletons
creation as required by the users. A procedure was made to create a skeleton with the correct joints
hierarchy and using the Kinect joints naming convention. This procedure could be executed twice if
there are two actors being captured simultaneously. Another procedure was developed to create a
number of dummy locators (NULL objects) with the same naming convention. The reason behind
creating this functionality was to extend the user's possibility of using the motion captured data
beyond the normal skeletal system, for example, using the recorded animations in the simulation of
particle systems. This procedure also can be executed twice to cater for two actors performing
simultaneously.

The second core block was the capturing block, where the previously created skeletons are

24

8.3 Server application in details

used to visualize the streamed data (coming from the Kinect sensor through the client application) in
3D space. In this block the OSC server would be activated to receive the OSC messages, and then the
OSC message arguments are extracted from each message, these arguments as mentioned earlier are
the positional data in 3D space for each joint and each skeleton available. The arguments are then
matched to their corresponding joints, and fed into the joint translation attributes to recreate the
motion inside Maya. As the server gets new messages with new positional data this procedure keeps
updating in realtime. Another task in this block was to code the procedure for the recording of the
animation. This procedure is only activated when the user instructs the server to start recording.
When the procedure is called, the motion data would be written and saved in an external text file.
Each joint and its corresponding position attributes are recorded for each frame to be retrieved later.
When there are two actors, two separate files would be written each having its corresponding data.
All the procedures that are called in realtime were then packed into the message handlers call-back
functions. The final two procedures coded in this block were the ones responsible for closing the
connection with the client, and stopping the animation recording session.

The Third and final core block was the one responsible for applying the recorded animation
data on the 3D skeletons and NULL objects. This included reading the external text files, retrieving the
joint names and positional attributes for each frame, applying these attributes on the corresponding
joints, and finally keyframing (setting key frames on each joint in each frame) all the attributes. This is
a batch process and is not done in realtime, however the result is the exact captured motion in
realtime. By executing this block, the user would get a saved copy of the recorded animation session
that can be further fine-tuned and edited according to the user's preferences.

8.4 The server's GUI

The user controls all the previously mentioned procedures through a simple GUI. The
complexity of the GUI design was actually influenced by the limitations of the tools that Maya
provides for internal GUIs. However, what Maya provided was enough to cover all the design needs of
the server's GUI.

The interaction flow was linear, and the procedures' controls were ordered in the sequence
that the user would trigger them. The user would start at the top to control the networking
configurations, then move down to the skeleton creation controls, then the capturing block controls,
and finally at the bottom of the GUI, the controls for applying the recorded animation would be found.
An illustration of the server's GUI is seen in figure 8:

25

8.4 The server's GUI

After linking the GUI controls to their corresponding procedures, the regular testing sessions
took place, mainly to ensure that all the server's functions were performing correctly. Testing the
external text files for proper data saving and retrieval was crucial, and it took a significant amount of
time to ensure that the data is recorded and retrieved correctly without any compromises to the data
integrity. When the test results were satisfying, a broader type of testing was needed for all the
modules of the system together. This testing phase is discussed in chapter 9.

8.5 Porting server code to MotionBuilder

One last activity, related to the server development phase, was to try the script code in other
3D graphics applications. Autodesk's MotionBuilder was the software chosen, mainly because it has its
internal python interpreter, and also because it is one of the most widely used applications for 3D
animation purposes. It was thought that the porting process would be achieved with minor changes to
the script's code, however, in practice, this was proved to be wrong.

MotionBuilder's Python scripting environment wasn't really written in Python, but it was an
exposed subset of the main C++ SDK written in Python syntax. So the coding paradigm is actually C++
and not Python. Additionally, many of the Python core commands have not been released yet even in

26

Figure 8: Server's GUI inside Maya

8.5 Porting server code to MotionBuilder

version 2012. This unforeseen characteristic of MotionBuilder's Python environment caused major
changes to the originally written code.

Another obstacle faced in the porting process (even after changing the code to work with the
Motionbuilder environment) was that the script was working properly but not updating the viewport
in realtime. Which rendered the script useless as it has to show the results in realtime. This problem
was investigated, and after a significant time of researching the causes of such behavior, it was
discovered that MotionBuilder's viewport works on a separate thread and the rest of the
computations happen on a different thread. To solve this problem, a procedure that works on the
viewport thread was created to force updating the viewport in realtime. After creating this procedure,
the script finally worked as expected. This script and MotionBuilder environment can be seen in figure
9.

8.6 MotionBuilder's script limitations

The main limitation, discovered after the porting process, was that updating the viewport using
the created procedure sacrificed some performance speed. It was not very noticeable, but the system
couldn't work at the optimum 30 FPS. This also caused the implementation to be restricted to only
one actor to avoid further performance degradation.

Another limitation was that a GUI couldn't be implemented as it would stop the viewport from
updating until it is closed, so the scripts only works through the internal script editor only.

27

Figure 9: Server running inside MotionBuilder

9. System Integration Testing

9. System Integration Testing

By that time of the project's progress, each module was created and tested separately both for
functionality and against the user requirements. It was the time then to have a broader scope during
testing. The main aim of the “System Integration Testing” phase was to test the system in its entirety.
Test scenarios were first envisioned to test all the possible cases for using the system. These scenarios
included:

• Changing the default networking configurations in both the client and server, for example
using a different port number.

• Testing and recording animation with only one actor.
• Testing and recording animations of two actors simultaneously.
• Changing the Kinect device settings on the client side and seeing the changes in the server, for

example changing the smoothing algorithm settings or the camera angle.
• Testing the client's application generic settings.
• Testing several placements of the Kinect device and checking how this would affect the

capturing process.
• Testing extreme poses for the Kinect to capture, like fast movements, crawling poses, and full

rotations. Unfortunately, in which the system didn't perform satisfyingly.

The aim of these thorough test scenarios and sessions was to ensure that the whole system
was fully integrated, error free, and ready for real 3D pipeline integration. So the next step was to test
how the solution would behave in real cases of animation workflow. Three different 3D biped models
were imported into Maya and MotionBuilder to apply the motion capture data on them. Even though
the motion data was correctly recorded on the skeletons, they did not behave as expected when they
were bound to the 3D models. The 3D models were driven by the animation correctly, but the mesh
was distorted to the extent that they were unusable. This unforeseen problem was due to the
difference between how the data was recorded on the 3D skeletons and how Maya interpreted it to
drive the characters.

To solve this problem, A new functionality needed to be added to the server script, in which
the skeletons that have animations on them are converted into an intermediary skeletal system
(Human IK) that can be interpreted correctly by Maya. However, this added functionality was coded in
MEL instead of Python because the corresponding commands were lacking in the Python library.
Fortunately, Python provided a way to execute MEL commands within its syntax, which made this
solution feasible. Additionally, this added feature allows animation retargeting, in which one skeleton
controls other 3D skeletons, so that the recorded animation can be applied to a number of characters

28

9. System Integration Testing

in the same scene. An illustration of a 3D model before solving the problem and after introducing the
new feature can be seen in figure 10.

The new feature was added to the script environment, and then tested afterwards with the
three different 3D models. It was later added to the GUI in the “Baking animation” block discussed
earlier. For this feature to be applied correctly, the user needed to select a skeleton first before
executing the command, so a tool tip was added to inform the user of the correct sequence of
applying this command.

Finally, the whole solution was tested again to ensure that nothing went wrong while solving
the aforementioned problem. As a result of these tests, it was sure at that time that the motion
capturing solution was capable of being used in real life scenarios that animators usually face on a
daily basis in their work.

29

Figure 10: Distorted model (left) and after correction (right)

10. Testing Usability

10. Testing Usability

Since the commencement of this project, an HCD philosophy has been adopted, to ensure the
involvement of the user from the early stages of design up till the project's full development. An
integral part of any HCD process is to hold usability test sessions in which representatives of the target
users test the proposed solution and provide their feedback and satisfaction rate. In this project
usability tests were performed using two approaches, video testing, and Evaluation walkthroughs.

10.1 Video tests

In this approach, a video of the system being used was recorded, and distributed among
professional animators accompanied with some questions to generate a fruitful feedback. This
approach is actually an informal and unorthodox way of testing usability, but the aim of this kind of
test was to reach a decent number of target users, and hopefully get some general feedback. The
questions asked were:

• would you use this solution in your work?
• How satisfactory is the solution itself?
• How satisfactory is the quality of the end result that the solution produces?
• What can be improved in this implementation?

The video was seen by more than 250 viewers in 4 weeks [42]. However, only 20+ viewers have
given their feedback either on social network websites or personally. All of those viewers agreed that
they would use the solution when made available, however, there was a concern about the quality of
the output, many mentioned that this solution can be used for animating the secondary characters
but not the main ones. Several viewers were interested in having a solution for facial and finger
tracking, or higher number of joints tracked per character. On the other hand, the solution workflow
and interface gained the satisfaction of all viewers.

It is worth mentioning that several developers and researchers contacted the researcher for a
copy of the source code. This wish will be granted to them when the project is finalized. The whole
solution will be provided with the source code for anyone interested in developing the project
furthermore.

The limitations of the solution were discussed with some of the viewers as well as how this
project can be improved in the future. Some of the demands were unrealistic because of the project's
scope and the restrictions imposed by the framework used. However, some suggestions were adopted
and implemented, and some other demanded features may be developed in the future releases of
this system.

30

10.2 Evaluation walkthrough

10.2 Evaluation walkthrough

Formal testing methods have also taken place in this project. Several 3D animators participated
in “evaluation walkthrough” test sessions. In these sessions, the test users were introduced to the
system, a guided walkthrough was given to them first, and then they were allowed to test the system
on their own. During these session users were observed and the observations were noted down. The
sessions were also recorded using a realtime screen capture software(see figure 11). These videos
were used later for further analysis and comparisons. The users were asked to describe what they
were doing, and if they were able or unable to achieve the correct output at each stage. After the
walkthroughs, concluding discussions usually took place to get further remarks and feedback.

These sessions resulted in more indepth feedback and conclusions. The findings can be
summarized in the following points:

• The system was tested in different lighting conditions, yet the results were not affected by the
ambient light in the room, since the tracking is based on IR lighting projected from the sensor.

• The system would fail if the client started before the initiation of the server. Streaming data

31

Figure 11: Screenshots from the recording of a test session

10.2 Evaluation walkthrough

needs to be received by the message handlers in the server, otherwise Maya would crash. So
the correct sequence concluded was to start the server in Maya or MotionBuilder first then
start the client afterwards.

• Two testers mentioned that the GUI is a bit complicated to comprehend for the general user,
but on the other hand, they also said that they expected a complicated GUI as it is the case
with most of the 3D animation applications and their plug-ins.

• All testers tried extreme and fast movements and poses, and the results were not satisfying to
some extent. They agreed that such solution isn't preferable to be used to animate primary
characters, but would be very usable with secondary characters as they don't need the same
precision or high-resolution quality.

• There was a general concern about the head and chest joints rotations. They were captured
correctly on the skeleton, but in the retargeting step they lost some details.

• One user tried a full 360 degrees rotation, which was not captured at all by the system.
• The same user tried to create a walk cycle animation out of the captured data, and he found

the results very satisfying.
• The solution can keep running without any degradation in the performance for enough time

to capture several takes. The longest take recorded was slightly over a minute long.
• The concluding remarks usually revolved around the restriction and intent of use. The

restrictions discussed were about the system being only capable of tracking human characters
only, and the limited number of joints implemented, and the precision problems. Regarding
the system's usage, there was an agreement that it can benefit freelance animators and small
studios. All the testers commented on how this solution can make life easier, and their
workflow much faster.

32

11. Conclusions

11. Conclusions

This thesis started with definite questions that needed to be answered. And through the
progress of the work the answers started to evolve and mature. This chapter presents the answers to
the research questions, which were:

• How one can build a simple and affordable motion capture system?
◦ what are the different approaches to create an optical motion capture system

using NUI based devices? And what is the difference between these
approaches?

◦ How can a Kinect based MoCap be built in the most straightforward way?

11.1 Answer to research questions

This research project proved that it's feasible to build a simple and affordable MoCap system.
The early chapters of this dissertation discussed the different approaches toward creating such
system. Different NUI devices were investigated and the Kinect sensor was chosen as the most
suitable device to build the system on. Among the researched devices: SoftKinetic DepthSense, Asus
Xtion PRO, and Microsoft Kinect. The Kinect was favored over the other devices because of its wide
spread and availability, and because of its built-in skeletal tracking framework.

Additionally, possible development frameworks and SDKs were investigated and compared,
specifically, the OpenNI framework and the Kinect SDK for Windows. It has been concluded that the
Kinect SDK is easier and more straightforward to use, and also that it provides better motion capturing
capabilities and features. Nonetheless, OpenNI is a strong candidate and would be a better candidate
in other contexts of use.

The latter chapters of this dissertation discussed the practicality and the process of building a
Kinect based MoCap in the most straightforward way. The Kinect SDK provided the foundation of the
work. With the aid of the Cinder library, a simple client application was built using the C++
programming language, and the server was implemented inside Autodesk Maya and Autodesk
MotionBuilder using the Python programming language. The solution provided intuitive ways of
interacting with the system through the use of GUI.

It is believed that this pursued track of design and implementation succeeded in building a
simple and affordable MoCap using the simplest and the most straightforward approaches.

33

12. Discussion

12. Discussion

The aim of this thesis was to investigate the different approaches to build a simple and
affordable MoCap system, then design and build one solution in the most straightforward way. This
was achieved by investigating the previous endeavors and related research material. This was followed
by the actual development of the system. An integral part of this project was to keep the target user
involved in all the decisions made, this was achieved by the early adoption of an iterative HCD process
that helped to design and build a usable solution.

12.1 Evaluation

By analyzing the implementation output and the usability tests results, it can be concluded
that the implemented system can produce satisfactory results in some specific contexts. The results
would be satisfactory to animate secondary characters in a movie or a game. Also, this solution could
be used with primary characters if the primary character's movements are not very extreme, and if no
fingers' tracking is needed. Otherwise, the quality of the output would fail to gain satisfaction or
would need further fine tuning and editing.

With regard to the system's performance, it can be said with certainty that the solution is very
stable and bug-free, but it requires a computer with decent memory and processing speed. The
system expects a specific and ordered sequence of interactions for it to produce the correct results,
otherwise, it would fail to work. The researcher admits that more error and exception handlers may
be needed for giving a more intelligible feedback to the user. Generally speaking, the system runs
within the optimum frame rate of 25-30 FPS. The frame rate slightly drops when the system is tracking
two users simultaneously, but still within the 25-30 FPS range.

A drawback in this implementation is the large number of libraries that the system depends on,
which resulted in a complicated dependency pattern. On the client side, There are the Kinect SDK, the
Cinder library, and the Kinect wrapper. On the server side, one needs both internal and external
python interpreters, the OSC protocol and its implementation, and the simple OSC helper library.
Replicating this complex environment is needed for the system to work on other workstations, or to
be further developed by interested researchers.

12.2 Comparison with similar projects

As it has been mentioned earlier, similar projects were scarce and were lacking either
documentation or source code, or even both. However, this project can be considered a more

34

12.2 Comparison with similar projects

methodological extension to previous endeavors. Although it had the same aim like other projects,
which is building a simple and affordable Mocap system, it followed a more scientific approach
towards achieving this aim. Additionally, this project adopted a more holistic view in solving the
problem at hand, in addition to its human-centered approach.

The closest application that can be compared to this implementation is the ”Brekel Kinect”,
they both stream motion data from the Kinect sensor to 3D animation programs. They both provide
skeleton and character creation tools. And of course, they both provide a recording functionality. The
main difference is that Brekel Kinect only works with MotionBuilder, while this implementation works
with both Maya and Motionbuilder. Also, the two projects use different NI frameworks, and different
streaming protocols. Due to the difference in frameworks, it can be said that the tracking quality in
Brekel Kinect is a little less than the quality of the tracking in this implementation. However, if we
compare only the MotionBuilder implementation and Brekel Kinect, it is evident that Brekel's
implementation is far more robust than the MotionBuilder script developed in this project. It can be
said that the two projects are rather complementary as they serve different bases of users. At the
same time, for Motionbuilder users, it is admitted that Brekel Kinect is superior due to its robustness.

12.3 Future work

This project used the initial version of the Kinect SDK, and during the course of this project,
Microsoft published a newer version stating that it provides enhancements to the skeletal tracking
algorithm. It is believed that testing the new SDK should be the next step, in order to take advantage
of the enhancements. Equally important and to get more user satisfaction, the calculation of joints
rotation will be added to system.

Another possible future enhancement is converting the server script into a Dynamic-Link
Library file (DLL), which can enhance the memory usage and provides an easier way to distribute the
application.

For the MotionBuilder implementation, it seems like using Python is not very effective, if this
part is further developed, then the original C++ SDK will be used instead of the exposed Python SDK.

It will be also interesting to try to implement a facial tracking and motion capturing feature.
However, since this uses a totally different technique and other sets of libraries, it may be more
realistic and efficient to implement it as a separate solution. Most probably, this feature will need the
use of point cloud data and mesh reconstruction libraries, so it will be another journey of
investigation, exploration, and learning!

35

References

References

[1] Oates, B. (2011). Researching information systems and computing. (pp. 108-124). London: SAGE
publications

[2] Jokela, T., Iivari, N., Matero, J., & Karukka, M. (2003). The Standard of User-Centered Design and
the Standard Definition of Usability : Analyzing ISO 13407 against ISO. (S. D. J. Barbosa & C. Gonzalez,
Eds.)Design, 46, 53-60. ACM. Retrieved from http://portal.acm.org/citation.cfm?doid=944519.944525

[3] Ash Consulting. (n.d.). ISO 13407: Human centred design process for interactive systems. Retrieved
February 21, 2012, from http://www.ash-consulting.com/ISO13407.pdf

[4] Kroll, P. (2004, April 16). Transitioning from waterfall to iterative development. Retrieved
February 21, 2012, from http://www.ibm.com/developerworks/rational/library/4243.html

[5] Maguire, M. (2001). Methods to support human-centred design. International Journal of Human-
Computer Studies, 55(4), 587 - 634. doi: 10.1006/ijhc.2001.0503

[6] Rowley , D., & Rhoades, D. (1992). The cognitive jogthrough: a fast-paced user interface evaluation
procedure. In Proceedings of the SIGCHI conference on human factors in computing systems (chi '92),
New York, NY, USA. doi: 10.1145/142750.142869

[7] Interactive Systems & User Experience Lab. (n.d.). Kinect sdk - unity 3d interface plugin. Retrieved
February 21, 2012, from http://www.eecs.ucf.edu/isuelab/unity.php

[8] Onethought99. (Designer). (2011). Kinect / OpenNi to UDK. [Web Video]. Retrieved
February 21, 2012, from http://www.youtube.com/watch?v=JEDRsA0WsJg

[9] Walsh, J. (Designer). (2011). Kinect plugin for daz studio. [Web Video]. Retrieved
February 21, 2012, from http://vimeo.com/20909755

[10] Brekelmans, J. (2011). Brekel Kinect. [Web log message]. Retrieved February 21, 2012, from
http://www.brekel.com/?page_id=155

36

References

[11] PrimeSense. (n.d.). Primesense Natural Interaction. Retrieved February 21, 2012, from
http://www.primesense.com/nite

[12] Radius9. (2011). Radius9 motion capture utility. Retrieved February 21, 2012, from
http://www.radius9.com/downloads_mocap.html

[13] User guide for single kinect sensor configuration. In (2011). IPiSoft. Retrieved February 21, 2012,
from http://www.ipisoft.com/en/wiki/index.php?
title=User_Guide_for_Single_Kinect_Sensor_Configuration

[14] Organic Motion. (n.d.). Technology. Retrieved February 21, 2012, from
http://organicmotion.com/solutions/technology

[15] Organic Motion. (Designer). (2011). Organic motion and kinect integration for real-time
markerless motion capture - r&d preview. [Web Video]. Retrieved February 21, 2012, from
http://www.youtube.com/watch?v=T9Mg7qIZr1I

[16] Kühn, T. (2011). The kinect sensor platform. Advances in Media Technology, 2, 1-4. Retrieved
February 21, 2012, from
http://www.lmt.ei.tum.de/courses/hsmt/proceedings/pdf/ss2011/01Kinect.pdf

[17] Lacko, D., Schrooyen, F., & Beyers, R. (2011). Motion capture and guidance using open source
hardware.PAPERS OF THE E-LAB MASTER’S THESES 2010–2011, 1-7. Retrieved February 21, 2012, from
http://www.artesis.be/iw/elab/MAP/2010-2011/AMBIT-Lacko.pdf

[18] Oikonomidis, I., Kyriazis, N., & Argyros, A. (2011, August). Efficient model-based 3d tracking of
hand articulations using kinect. In Proceedings of the 22nd British machine vision conference, UK.
Retrieved February 21, 2012, from
http://www.ics.forth.gr/~argyros/mypapers/2011_09_bmvc_kinect_hand_tracking.pdf

[19] Shotton J., Fitzgibbon A., Cook M., Sharp T., Finocchio M., Moore R., Kipman A., & Blake A.
(2011, June). Real-time human pose recognition in parts from single depth images. In Proceedings of
CVPR2011, Colorado Springs, USA . Retrieved February 21, 2012, from
http://research.microsoft.com/pubs/145347/BodyPartRecognition.pdf

37

References

[20] Kar, A. (2011). Skeletal tracking using microsoft kinect. Retrieved February 21, 2012, from
http://home.iitk.ac.in/~akar/cs397/Skeletal Tracking Using Microsoft Kinect.pdf

[21] Sung, J., Ponce , C., Selman, B., & Saxena, A. (2011). Human activity detection from RGBD images.
CoRR,abs/1107.0169, Retrieved February 21, 2012, from http://arxiv.org/abs/1107.0169

[22] Dutta, T. (2011). Evaluation of the kinect™ sensor for 3-d kinematic measurement in the
workplace. Applied Ergonomics. doi: 10.1016/j.apergo.2011.09.011

[23] Villaroman, N., Rowe, D., & Swan, B. (2011). Teaching natural user interaction using OpenNI and
the Microsoft Kinect sensor. In Proceedings of the 2011 conference on Information technology
education (SIGITE '11). ACM, New York, NY, USA, 227-232. doi: 10.1145/2047594.2047654

[24] Hsu, H. (2011). The potential of kinect in education. International Journal of Information and
Education Technology, 1(5), 365-370. Retrieved February 21, 2012, from
http://www.ijiet.org/papers/59-R025.pdf

[25] Gimeno, J., Coma, I., & Fernández, M. (2011). Augmented mirror: Interactive augmented reality
system based on kinect. In P. Campos, N. Graham, J. Jorge, N. Nunes & P. Palanque (Eds.), Human-
Computer Interaction – INTERACT 2011 (pp. 483-486). doi:10.1007/978-3-642-23768-3_63

[26] Bleiweiss, A., Eshar, D., Kutliroff, G., Lerner, A., Oshrat, Y., & Yanai, Y. (2010). Enhanced interactive
gaming by blending full-body tracking and gesture animation. In Proceedings of ACM SIGGRAPH ASIA
2010 Sketches (SA '10). ACM, New York, NY, USA, , Article 34 , 2 pages. doi:10.1145/1899950.1899984

[27] Schönauer, C., & Kaufmann, H. (2011). Wide Area Motion Tracking Using Consumer Hardware.
In Proceedings of Workshop on Whole Body Interaction in Games and Entertainment, Advances in
Computer Entertainment Technology (ACE 2011), Lisbon, Portugal. Retrieved February 21, 2012, from
http://lister.cms.livjm.ac.uk/homepage/staff/cmsdengl/WBI2011/documents2011/Wide_Area_Motio
n_Tracking-P5.pdf

[28] Blake , J. (2010, November 15). Openkinect. Retrieved February 21, 2012, from
http://openkinect.org/wiki/Main_Page

38

References

[29] OpenNI. (2010, November). About the OpenNI organization. Retrieved February 21, 2012, from
http://www.openni.org/About.aspx

[30] OpenNI. (n.d.). Programmer Guide. Retrieved February 21, 2012, from
http://openni.org/Documentation/ProgrammerGuide.html

[31] Microsoft. (2011). Microsoft Kinect SDK for developers. Retrieved January 15, 2012, from
http://www.kinectforwindows.org/resources/faq.aspx

[32] Microsoft. (2011, July 22). Programming Guide. Retrieved January 15, 2012, from
http://kinectforwindows.org/documents/ProgrammingGuide_KinectSDK.pdf

[33] Hinchman, W. (2011, June 20). Kinect for Windows SDK beta vs. OpenNI. [Web log message].
Retrieved February 21, 2012, from
http://labs.vectorform.com/2011/06/windows-kinect-sdk-vs-openni-2/

[34] Burnett, D. (2011, June 18). Kinect- Caught between Community & MSFT support.
[Web log message]. Retrieved February 21, 2012, from
http://www.uxmagic.com/blog/post/2011/06/18/Kinect-Caught-between-Community-MSFT-
support.aspx

[35] Brekelmans, J. (2011). Microsoft Kinect SDK vs PrimeSense OpenNI. [Web log message]. Retrieved
February 21, 2012, from http://www.brekel.com/?page_id=671

[36] Schebella, M. (2011, October 3). 2realkinectwrapper. Retrieved February 21, 2012, from
http://www.cadet.at/2011/10/03/2realkinectwrapper/

[37] Schieberl, S. (2011, July 22). Kinect SDK Block for Cinder. [Web log message]. Retrieved February
21, 2012, from http://bantherewind.com/kinect-sdk-block-for-cinder

[38] The Barbarian Group. (n.d.). The library for professional-quality creative coding in C++. Retrieved
February 21, 2012, from http://libcinder.org/

[39] CNMAT. (n.d.). Open sound control. Retrieved February 21, 2012, from
http://opensoundcontrol.org/

39

References

[40] CNMAT. (n.d.). The center for new music and audio technologies. Retrieved February 21, 2012,
from http://cnmat.berkeley.edu/

[41] CNMAT. (n.d.). Introduction to OSC. Retrieved February 21, 2012, from
http://opensoundcontrol.org/introduction-osc

[42] Fahim, G. (Designer). (2011). Mocap Test: Kinect + Maya Using Kinect SDK and Python. [Web
Video]. Retrieved February 21, 2012, from http://youtu.be/EK-niqray10

40

Appendix: Technical Documentation

Appendix: Technical Documentation

Purpose

This document covers the technical aspects of the solution in more details. It aims at making
the whole system more comprehensible and useful to both the system users and interested
developers. It covers the system's software and hardware requirements, it comprehensively describes
the system's technical components, and finally it provides a visual guide for using the system and
some useful links to video demos and the source code.

System Overview

• The proposed system is a markerless motion capturing solution that uses the Kinect sensor as
an input device. It does not require the actors to wear sensor-mounted suits thus allows them
more freedom when performing their actions.

• The output of the capturing process is a 3D skeletal system composed of twenty joints, each
joint represents a body part of the performing actor. The original motion is captured, digitized,
and saved on the joints as key-framed animation.

• The system is composed of one standalone application: the client application and one plug-in:
the server application. The client and server applications are connected through a networking
module. However, the system works both locally and through a Local Area Network (LAN).

• The system supports the recording of the motion of two actors simultaneously. In addition to
the actor(s), the system requires a user who is familiar with 3D character animation workflow
inside Autodesk Maya or Autodesk MotionBuilder.

• The user controls both the client and server applications using a Graphical User Interface (GUI).

System Requirements

1. Hardware requirements
• 32-bit (x86) or 64-bit (x64) processor
• Dual-core 2.66 GHz or faster processor
• Dedicated USB 2.0 bus
• 2 GB RAM
• A Kinect for Xbox 360 peripheral (with special USB/power cabling)
• An Ethernet card

Appendix: Technical Documentation

2. OS and software requirements
• Windows 7 or Windows Embedded Standard 7
• Kinect for Windows SDK (Beta1)
• .NET Framework 4.0
• Microsoft® Visual Studio® 2010 Express
• Cinder for Visual C++ 2010 library
• Kinect SDK Block for Cinder wrapper
• Python 2.7.2
• Python-Simple OSC library
• Autodesk Maya 2012 or Autodesk MotionBuilder 2012

Solution Components

I. The client application:

1. Callback methods (provided by the “Kinect SDK Block for Cinder” wrapper code)

a) draw callback
The method responsible for all OpenGL rendering functions. It draws/redraws the
depth and RGB data that comes from the sensor as textures. When there is a skeleton
to draw, it draws the joints as spheres and calls the drawSegment method.

b) drawSegment callback
A method that is called from the draw callback, it is responsible for connecting the
joints drawn previously by drawing straight lines between each two adjacent joints to
form the whole skeleton shape.

c) prepareSettings callback
The method that prepares the application window, it specifies the width and height of
the window and sets the application framrate.

d) resize callback
This method handles any resizing that happens during the lifetime of the running
application. It is called when the user attempts to resize the window to restore the
display settings.

Appendix: Technical Documentation

e) setup callback
The method that initializes all the parameters that are needed for the application to
work including the device, the skeleton, the GUI, and the networking parameters.

f) shutdown callback
The method that is called when the user closes the application. It stops the Kinect
device and ensures a clean exit.

g) update callback
The method that fetches the realtime updates that come from the Kinect device, it also
updates the application parameters when invoked or changed by the user.

h) sendSkeletons callback
A networking method, responsible for creating OSC messages for all available skeletons
and joints. Once a message is created, it is streamed to the configured IP address and
port number.

2. The client GUI

The client GUI is divided into three main sections:
a) The first area denoted by “1” in the figure below, is for the application settings. It shows

the application frame rate, the depth stream frame rate, the skeleton stream frame
rate, and the video stream frame rate. It also displays the parameters where the user
can toggle the visibility of these streams. Then it lists the networking parameters and
options for having a full screen, taking a screen shot, and exiting the application. The
editable parameters can either be toggled between ON and OFF, or changed using the
text field attached to them.

The client application GUI sections

Appendix: Technical Documentation

b) The second area denoted by “2” in the figure above, is for the display of the device
parameters and settings. The first parameter is a toggle switch for turning capturing ON
or OFF. The second parameter is a control for the tilt motor, it is an integer field that
accepts numbers between -27 and +27, which is the range of the motor's tilt angle. This
area also gives the user the access to the smoothing and prediction algorithms
provided by the framework. The parameters include: smoothing, correction, and
prediction coefficients.

c) The third area denoted by “3” in the figure above, is dedicated for the display of the
RGB-D streams and the skeleton stream.

II. The server application:

1. Callback methods

a) changeIpAndPort callback
The method that updates the networking IP address and port number when triggered
by the user. It is only accessible before a connection is created.

b) changePlayBack callback
The method that changes the timeline length according to the user's preferences. This
method is overridden by an automatically called method that uses the length of the
captured animation as an input.

c) LocCreate callback
The method that automates the creation of NULL objects (Locators). Two sets of
locators can be created, one for each actor, when there are two actors performing
simultaneously.

d) SkCreate callback
The method that automates the creation of 3D skeletons (joints). Two skeletons can be
created, one for each actor, when there are two actors performing simultaneously.

e) jointHandling callback
The OSC message handler method, it changes the attributes of the created locators and
skeletons and update their position in 3D space in realtime in accordance with the
streamed data coming from the Kinect sensor.

Appendix: Technical Documentation

f) startServAndThread callback
The method that initiates the connection with the client, so the server can start
listening to incoming updates.

g) closeAndClean callback
The method that is called to close the connection between the client and the server. It
also closes any open file object.

h) CaptureAnim callback
This method triggers the capture flag, which is used to instruct the solution to save the
streamed data to an external text file to be retrieved later.

i) StopCapture callback
This method turns off the capture flag, so that the solution stops saving the streamed
data to the text file.

j) ApplyTake callback
The methods that retrieves the data previously saved in the text file so that it can be
applied to the skeleton and then key-framed, to save a permanent copy of the
animation.

k) CharacterizeSk callback
This method evaluates and runs the MEL commands for creating Maya's 3D characters,
that are used for animation retargeting

2. The server GUI

Server GUI details

Appendix: Technical Documentation

Operational scenario

Step 1: Launch
Autodesk Maya

Step 2: Launch
the server plug-
in

Step 3: Check
the network
configurations

Step 4: Insert
the number of
actors

Step 5: Press the
create locators
button

Appendix: Technical Documentation

Step 6: Press the
create skeletons
button

Step 7: Press the
start connection
button

Step 8: Launch
the client
application

Step 9: Check
the program and
Kinect settings

Appendix: Technical Documentation

Step 10: Switch
back to the
server
application and
press the start
capturing button

Step 11: when
done, press the
stop capturing
button

Step 12: Press
the apply take
button

Appendix: Technical Documentation

Step 13: Make
sure the
animation is
recorded by
checking the
timeline, it
should have the
red key frames
marks

Step 14: select
the root joint of
the skeleton and
press the
characterize
button (repeat
this step if there
are two
skeletons)

Step 15: Make
sure that the
characterization
process is
successful by
checking the
characterization
tool

Appendix: Technical Documentation

Video demos and source code links

videos: http://youtu.be/EK-niqray10
http://youtu.be/LyaZFViItFI
http://youtu.be/ZcGmU-gXuoc

source code: http://dl.dropbox.com/u/3077083/KinectOscApp.cpp
 http://dl.dropbox.com/u/3077083/Final_R3.py

http://youtu.be/EK-niqray10
http://dl.dropbox.com/u/3077083/Final_R3.py
http://dl.dropbox.com/u/3077083/KinectOscApp.cpp
http://youtu.be/ZcGmU-gXuoc
http://youtu.be/LyaZFViItFI

	Abstract
	Table of Contents
	List of Abbreviations
	1. Introduction
	2. Methodology
	2.1 Process overview
	2.2 Methods used

	3. Background Research
	3.1 General Information Gathering
	3.2 Investigation of similar projects
	3.3 Literature review
	3.4 Conceptualizing the idea
	3.5 Formulating the research problem

	4. Implementation Alternatives Research
	4.1 Further research into MoCap
	4.2 Possible devices investigation
	4.3 The OpenNI framework
	4.4 The Kinect SDK
	4.5 OpenNI framework versus Kinect SDK
	4.6 The limitations stated

	5. User Requirements Elicitation
	5.1 Target user definition
	5.2 Determining user needs
	5.3 Features and architecture decided

	6. Client Module Development
	7.Networking Module Development
	7.1 Deciding the networking protocol
	7.2 The OSC protocol
	7.3 OSC message syntax and structure
	7.4 building the OSC messages
	7.5 receiving the OSC messages

	8. Server Module Development
	8.1 The server script
	8.2 MEL versus Python
	8.3 Server application in details
	8.4 The server's GUI
	8.5 Porting server code to MotionBuilder
	8.6 MotionBuilder's script limitations

	9. System Integration Testing
	10. Testing Usability
	10.1 Video tests
	10.2 Evaluation walkthrough

	11. Conclusions
	11.1 Answer to research questions

	12. Discussion
	12.1 Evaluation
	12.2 Comparison with similar projects
	12.3 Future work

	References

