

Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, March 2012

Learning efficient software fault localization via
genetic programming

Master of Science Thesis

Secure and dependable computer systems programme

GUOJIAN CHEN

The Author grants to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible on
the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Learning efficient fault localization via genetic programming

GUOJIAN CHEN

© GUOJIAN CHEN, February 2012.

Examiner: Johan Karlsson

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover: Diagram showing the improvement in fault localization effectiveness achieved by
a ranking function derived by genetic programming compared to other ranking functions
(page 28).

Department of Computer Science and Engineering
Göteborg, Sweden February 2012

Abstract

The high cost associated with debugging of computer software has motivated

development of semi-automatic fault localization techniques. Such techniques assist

developers in locating faulty code by ranking program statements according to their

likelihood of being faulty. The ranking is done by automated analysis of test coverage

or execution profile data. A variety of fault localization techniques utilizing different

types of ranking functions have been proposed in the past. In this paper, we present a

new fault localization technique where we have used genetic programming to find a

highly effective ranking function. First, we divide frequently appearing fault types

into four subsets. We then identify potentially useful execution profiles and use

genetic programming to search for a new improved ranking function for each fault

type individually. Finally, we merge the ranking lists provided by the four ranking

functions into a final aggregated ranking list, which is used by the developer to search

for faulty code. We evaluated the efficiency of our technique using execution profile

data from two programs, GCC and SPACE, and compared it to the efficiency of two

existing fault localization techniques. The result shows that our approach is highly

effective, as we can locate more than 90% of the faults by examining the top 20% of

the statements in the ranking list. The improvement in efficiency is about 10%

compared to Lightweight fault localization and 20% compared the Tarantula

technique.

Acknowledgements

I am heartily thankful to my supervisor Professor Shing-Chi Cheung at Hong Kong

University of Science and Technology. He gave me guidance and support throughout

the whole period of the thesis. I am grateful to my co-worker Dr Xingming Wang for

his great help and support. Also, I would like to thank my examiner Professor Johan

Karlsson at Chalmers University of Technology for spending much time on my

revision of thesis report. Finally, I offer my regards and blessings to all of those who

supported and helped me during this thesis report.

Table of Contents
Abstract .. i

Acknowledgements ... ii

1. Introduction ... 1

2. Related work .. 4

2.1. Execution profiles ... 4

2.2. Tarantula ... 7

2.3. Lightweight fault-localization using multiple coverage types 8

3. Genetic programming ... 10

3.1. Representation of expressions .. 12

3.2. Genetic operators ... 13

4. Definition of ranking functions .. 14

5. Work process and experimental setup .. 19

5.1. Work process ... 19

5.2. Fault data ... 20

5.3. Mapping execution profiles into genetic programming 21

5.4. Implementation of combination profiles ... 22

5.5. Generation of ranking functions ... 22

5.6. Fitness function .. 24

5.7. Execution of the genetic program ... 25

6. Result and analysis .. 25

7. Conclusion and future work .. 28

 References .. 30

1

1. Introduction

Debugging is a time consuming and expensive activity in software development.

Locating faulty code within a program has been recognized as the most challenging

step in debugging [14]. For this reason, extensive research efforts have been devoted

to the development of techniques for software fault localization. The aim of such

techniques is to guide developers in the process of finding faulty code.

Generally, software fault localization can be divided into two activities. The first

involves using an automated analysis of program properties for providing a list of

program entities (statements, methods, branches, etc.) that are deemed suspicious of

being faulty. In the second activity, the developer manually checks the correctness of

the suspicious program entities according to a priority scheme, or suspiciousness

ranking, produced by the automated analysis.

A variety of techniques for automated fault localization have been investigated in the

past. Some techniques reduce the debugging search domain by dividing the program

into segments. These techniques are in some papers called slice-based techniques (e.g.,

[18]). Other techniques are using instrumentation and evaluation of predicates in the

program to generate a ranking list of suspicious predicates that developers use to find

the fault. These techniques are called statistic-based techniques [9].

An important family of fault localization techniques is those that use execution

profiles to rank the suspiciousness of program statements. These techniques are in

some papers called spectrum-based fault localization (e.g., [3] and [19]). An

execution profile, a.k.a. a program spectrum, characterizes the behavior of a program

for a given set of inputs or test cases [16]. Examples of execution profiles that are

used for fault localization include statement coverage [2, 3, 4, 5], branch coverage [2,

3], du-pair coverage [2] and intra-procedural path coverage [7].

2

A well-known execution profile-based technique is Tarantula [4]. It uses pass/fail

information for each test case, and information about executed program entities

(statements, branches and methods) as inputs to the ranking function.

In general, execution profile-based fault localization has two main components. An

execution profile and a ranking function. The execution profile consists of coverage

information collected for a set of test cases. In addition, it also contain information

about the outcome of each test case, i.e., whether the program failed or passed the test.

The ranking function uses the execution profile information to calculate values of

suspiciousness for statements or code segments in the program. Examples of existing

ranking functions include the Tarantula function [4], the Ochiai coefficient [2], and

the CBI function used in statistical debugging [6].

The possible choices of execution profiles and ranking functions constitute a design

space for constructing execution profile-based fault localization techniques. The

exploration of this design space for finding more accurate techniques is a key research

issue, since also a small improvement in the fault localization accuracy is of direct

benefit to a developer. For example, if we can improve the ranking position of a faulty

statement with 1%, such as from rank 3000 to rank 2000, for a program with 100K

statements, then the developer needs to investigate 1000 fewer statements before the

fault is found.

In the literature, each of the existing execution profile-based fault localization

techniques contributes with one or a few points in the design space by exploring one

or several execution profile type and a ranking method. Till now, existing work in this

area has only covered a tiny portion of the design space. Many potentially useful

types of execution profiles, such as program state coverage, have not yet been

explored. A recent study by Santelices et al [2] suggests that the effectiveness of an

3

execution profiles depends on the nature of the faults. This means that an execution

profile that is highly effective in locating certain fault types could do a poor job in

locating other fault types. For example, a predicate profile might be good at locating

faults that are related to wrong branch condition, while an information flow profile

might be good at locating faults that are related to wrong assignments.

Inspired by the work of Santelices et al, we believe that the combination of multiple

execution profiles is a promising way toward finding more efficient and effective fault

localization techniques. Designing such a technique is however a challenging task as

the choices of execution profiles and the way to combine them in the ranking method

are many. In this thesis, we use genetic programming to automate the search for

effective ranking functions.

Genetic programming is a general technique for finding efficient or optimal solutions

to a given problem. It simulates the process of problem solving in an evolutionary

way. This means that the solution to a given problem will evolve until the user accepts

it. Based on this, we formulate a search space, which can be described as a large

number of execution based fault localization techniques. Our aim is to try to search

and evaluate a large number of possible solutions to find the best one. In this case, we

can get a new execution profile-based fault localization technique at the end and know

that this technique is better than most of the technique in the search space.

The remainder of this thesis is organized as follows. We describe related work in

execution profile-based fault localization in Section 2. In Section 3, we provide a

short introduction to genetic programming and discuss how we use it to search for

effective ranking functions. Section 4 describes three techniques for combining data

from different execution profiles for fault localization. In Section 5 we describe how

our experiments were designed and implemented. Section 6 presents our experimental

results. Conclusions and suggestions for future work are given in Section 7.

4

2. Related work

In this section, we give an introduction to execution profile-based fault localization

and describe two existing fault localization techniques, Tarantula [4] and Lightweight

fault localization [2]. In Section 2.1, we describe twelve different execution profiles

that can be used for fault localization. Overviews of Tarantula and Lightweight fault

localization are given in Section 2.2 and Section 2.3, respectively.

2.1. Execution profiles

Execution profile-based fault localization uses information collected during program

execution to rank the suspiciousness of each statement in a program, subprogram or a

block of code. The execution profile data is collected while the program is subjected

to a set of test cases. This data reflects different aspects of the program execution such

as which statements, branches, blocks and paths that are executed during execution of

the test cases. The ranking function uses this information to produce a ranking list of

suspicious program statements.

We use several types of execution profiles as input to genetic programming to find a

method to combine different execution profiles and to generate efficient ranking

functions. There are four execution profiles that are popular among fault localization

researchers: statement coverage [2, 3, 4, 5], branch coverage [2, 3], du-pair coverage

[2] and path coverage [7]. We use these four and another eight execution profiles

when we search for ranking functions via genetic programming.

5

Statement coverage consists of execution trace information in terms of how each test

case covers the executable statements and the corresponding pass/fail execution

result.

Branch coverage measures which possible branches are followed during the

execution of a test case. Sometimes faults are triggered only when a specific branch is

taken. Santelices et al [2] combines branch coverage, statement coverage and DU-pair

coverage in their approach call Lightweight fault localization. Their results show that

the use of branch coverage made it easier to locate faults such as a missing branch

statement or a wrong branch assignment, as well as those that are triggered by a

specific branch.

Path coverage counts the number of times each acyclic path within a program or

block of code is executed. Path coverage is computational expensive to measure, but

provides more information about a program’s dynamic behavior than statement

coverage, basic block coverage or edge coverage, which are simpler to measure. A

technique for efficient path profiling is presented by Ball and Larus in [15]. This

technique profiles each procedure separately and is therefore known as an intra-

procedural path profiling technique. Examples of fault localization techniques that use

path coverage are described in [7] and [16].

DU-pair coverage. A DU-pair is a pair consisting of the definition and the use of a

program variable. Using DU-pair coverage can simplify identification of faults that

are related to erroneous handling of variables. Missing assignments or assigning the

wrong value to a variable are examples of such faults.

Predicate coverage measures the outcome of instrumented predicates inserted at

selected program points. A variety of predicates can be used for fault localization. In

6

[20], the authors use predicates related to branches, function return values and scalar

pairs for statistical bug isolation.

Function coverage tracks function calls and records their execution information.

Block coverage is similar to statement coverage, but uses basic blocks rather than

individual statements as the measured entity.

Supersede coverage is a special version of statement coverage. Let Xy denote the

number of failed test cases that execute statement y. The supersede coverage for

statement i is defined as the cardinality of the set of statements S = { s | Xs > Xi }. That

is, the supercede coverage for statement i is equal to the number statements which has

a value of X that is greater than Xi.

Surpass coverage for statement i is the number of statements having a value of X that

is less than Xi. That is, the supersede coverage for statement i is defined as the

cardinality of the set of statements S = { s | Xs < Xi }.

Equivalent coverage. For a statement i, the equivalent coverage measures the

number of statements that have been executed by the same number of pass and fail

test cases as statement i.

Total Coverage is equal to total number of test cases (fail or pass) that executes a

given statement.

The supersede, surpass, total, and equivalent coverage can be viewed as special

execution profiles since they are represented by single variables in the genetic

programming approach.

7

2.2. Tarantula

In the Tarantula technique [4], the execution profile is statement coverage and the

ranking method is the heuristic formula shown in Figure 1. Failed Nr(S) is the number

of failed test cases that execute statement(S). Passed Nr(S) is the number of passed

test cases that execute statement(S). The variable Total Failed Cases is the total

number of failed test cases. Total Passed Cases is the total number of passed test cases.

ሺܵሻ݃݊݅݇݊ܽݎ ൌ

ሺܵሻݎܰ ݈݀݁݅ܽܨ
ݏ݁ݏܽܥ ݈݀݁݅ܽܨ ݈ܽݐܶ

ሺܵሻݎܰ ݈݀݁݅ܽܨ
ݏ݁ݏܽܥ ݈݀݁݅ܽܨ ݈ܽݐܶ

ሺܵሻݎܰ ݀݁ݏݏܽܲ
ݏ݁ݏܽܥ ݀݁ݏݏܽܲ ݈ܽݐܶ

Figure 1- The Tarantula ranking function

Figure 2 illustrates how Tarantula works with a simple example. This example is

taken from [4]. The black dots in the column denoted Test cases indicate which

statements that are executed for a given test case. For example, the test case, x=3,

y=3, z=5, executes statement 1, 2, 3, 4, 6, 7 and 13. We can see that statement 7 is

assigned the highest value of suspiciousness. Consequently, Tarantula successfully

pinpoints the faulty statement for this example.

8

Figure 2 – Tarantula example

2.3. Lightweight fault-localization using multiple coverage

types

Figure 3 shows the result of applying three different execution profile-based fault

localization techniques on 43 real faults, as reported in [2]. These three techniques

apply the Tarantula ranking formula (shown in Figure 1) on statement coverage

profile, branch coverage profile, and Du-Pair coverage profile, respectively. Their

results are shown as points of three different colors/shapes. In the diagram, the y-axis

represents the effectiveness of a fault localization technique, measured by percentage

of code that developers need to examine before they find the fault when they follow

the ranking result produced by a certain technique. The x-axis presents the index of

the fault.

9

Figure 3 – Fault Localization using Statement Branch Du-pair reported in [2].

From Figure 3, we can observe that different execution profiles are effective at

locating different types of faults. For example, fault 12 is best located with the

statement coverage profile, fault 13 is best located with the du-pair coverage profile,

and fault 15 is best located with the branch coverage profile. Therefore, none of the

three techniques is ideal. In [2], the authors suggest to combine the three execution

profiles toward a way to meet an ideal method, which is illustrated by the black curve

in Figure 4.

Figure 4 - Ideal method in [2]

Note that fault #35 still requires the developer to examine more than 50% of

statements, i.e., half the total source codes, to locate the fault. This observation

10

suggests that this curve still not represents the result of an ideal fault localization

technique.

Table 1- Example from Santelices et al [2].

Stmt Nr. Branch Coverage DU-pair Coverage Avg.Score Avg.Rank

 Score Rank Score Rank Score Rank

1 0 3 0.71 3 0.35 3

6 0.71 2 0.6 4 0.65 2

7(Faulty) 0.71 2 0.71 3 0.71 1

13 0 3 0.71 3 0.35 3

Table 1 shows how the lightweight fault localization technique combines different

execution profiles into a single ranking function. If we only use branch coverage, the

faulty statement is ranked as the second most suspicious statement. If we use du-pair

coverage instead, the faulty statement is ranked as the third most suspicious statement.

Now suppose we combine the two execution profiles, then the faulty statement is

ranked as the most suspicious statement. The method to combine two execution

profiles is simply to calculate the average score as the final ranking score for each

statement. The reason the combination of execution profile leads to better result is that

statement 6 and 7 are in the same branch, so the pass/fail data are the same, which

means that the ranking values also are the same. However, statement 6 and 7 are in

different du-pairs, which causes statement 7 to rank higher than statement 6 in the du-

pair coverage profile. Hence, if we use the average score as the ranking value, the

faulty statement 7 is given and highest rank.

3. Genetic programming

In this section, we describe what genetic programming is and how genetic

programming can be used to search for effective ranking functions.

Genetic programming is an evolutionary algorithm-based methodology to produce

computer programs (or algorithms) that can solve a given problem.

11

A genetic algorithm encodes the solution to a given problem as a string representing

an expression like the one shown in Figure 5. Each solution is called an individual.

The entire set of individuals is called a population. We evaluate the fitness of each

individual according to the usefulness of solving the given problem. To create the

next generation, we need a set of genetic operations to create new individuals from

the previous generation. An individual which has a higher fitness value has a higher

chance of being chosen to propagate to the next generation. This means that next

generation contains many individuals which contain one or more component from

good individuals of the previous generation. The ranking functions in the first

generation are generated randomly and are therefore not likely to achieve high fitness

values. However, the solutions improve rapidly within a few generations.

The procedure of genetic programming can be divided into 4 steps:

1. Randomly generate a set of possible solutions (individuals) to the problem.

2. Test each possible solution against the problem using a fitness function.

3. Keep the best solutions, and use them to generate new possible solutions.

4. Repeat the previous three steps until either an acceptable solution is found, or

the algorithm has iterated through a given number of cycles (generations)

Figure 5 - Tree representation of a ranking function

12

3.1. Representation of expressions

In our case, individuals are represented by a tree structure containing a set of math

operators, and a set of variables from different execution profiles.

Variables of each execution profile

As we collect data for a given execution profile, we get four types of values: 1) the

number of failed test cases, 2) number of passed test cases, 3) number of failed test

cases that executed the profile entity, and 4) number of passed test cases that executed

the profile entity. Here profile entity corresponds to the profile type, e.g., statement

coverage, path coverage, du-pair coverage. When programmers check a program for

faults, they directly focus on statements. So each profile entity should be determined

for each individual statement.

Hence, each execution profile can be represented by four variables.

For execution profile X:

 Totalfail, represent the total number of failed test cases.

 Totalpass, represent the total number of passed test cases.

 FailX(S), represent the number of failed test cases that executed profile X’s entity

related to statement S.

 PassX(S), represent the number of passed test cases that executed profile X’s

entity related to statement S.

Thus, an execution profile consists of a table with at least four entries for each

statement. In some execution profiles, there can be multiple entries for one statement.

An example of this is given in Figure 6, where the table containing the path coverage

data contains multiple entries for statement 1 and statement 3. The multiple entries

appear because one statement can be included in several paths.

13

Mathematical Operators

We use the following mathematical operators in the search for effective ranking

functions: Addition, Subtraction, Multiplication, Division, Logrithm and Exponent.

We limit ourselves to these mathematical operators to ensure that the formulas do not

get too complicated.

3.2. Genetic operators

Genetic operators are used for generating a new generation of individuals. They are a

key element in genetic programming, as they control the evolution process.

Replication

To guarantee that the good individuals survive the evolution process, the best

individuals are copied to the next generation. This set of individuals is about 10-50%

of whole population. Normally, the default percentage is 20% in genetic programming.

Mutation

Mutation can be divided into two sub-operators: node mutation and sub-tree

mutation. In node mutation, we randomly choose a node, and replace it with another

node of the same type. If the chosen node holds an execution profile variable,it is

replaced with a node representing another execution profile variable. If the node holds

a mathematical operator, it is replaced with node holding a different mathematical

operator.

In sub-tree mutation, a sub-tree is randomly selected and replaced with a new

randomly generated sub-tree.

Crossover

Crossover operator is used to exchange two nodes which are randomly selected in two

individuals. This creates two new individuals in the next generation.

14

4. Definition of ranking functions

Our approach is to use genetic programming to find efficient ranking functions which

use data from many execution profiles. Our goal is to find a ranking function that is

more efficient than those previously published in the literature. To this end, we have

developed a Java program that uses en open source library for genetic programming

called JGAP.

The input to this program is a set mathematical operators, Add, Subtract, Multiply,

Divide, Log, Exp, and the names of variables from the 12 execution profiles.

After we get a ranking function from genetic programming, the evaluation of this

ranking function is an important part too. If we get one ranking function, which

contains component variables from several execution profiles, we need to design how

to pick the passed/failed values in different execution profiles, since some execution

profiles have multiple entries for one statement, just like path coverage in Figure 6. If

we get several ranking functions we need to design how to combine them .

To evaluate a ranking function, we need to pick the values from the matrix of

execution profiles and apply them to ranking function to calculate the ranking value

for each statement. Finally, each statement has a ranking value; we sort the program

according to these values and check where the faulty statement is. Then we know how

well this ranking function is.

We have investigated three methods for combining execution profiles.

Combination Method 1:

In this method we try to learn a single ranking function which contains different

execution profile variables. In order to solve the multiple entries problems, we need to

15

associate different execution profiles one by one. That means we try to calculate all

the possible ranking values for a statement when we pick the values from different

execution profiles.

Figure 6 shows that in path coverage, statement 1 and 3 are executed by two paths

separately. Therefore, statements 1 and 3 both have 2 entries from different paths.

When we calculate the ranking value for statement 1, there is one possible value to

pick for statement 1 in statement coverage and two possible values to pick in path

coverage. Hence, the merge table should have 2 rows data for statement 1. Similarly,

if a ranking function contains variables from branch coverage, path coverage and du-

pair coverage and there are 2 entries in branch coverage 3 entries in path coverage and

4 entries in du-pair coverage for one statement. The possible number of ranking

values for this statement is 2*3*4=24, which means that there are 24 rows data for

this statement in the merge table. Among the 24 possible ranking values, we pick the

highest as this statement’s final ranking value.

Figure 6 – How to combine statement coverage and path coverage.

Unfortunately, it took us more than 12 hours to produce one generation with this

combination technique. The reason was that the execution time increases rapidly with

Stmt. PassNr. FailNr.

1 5 1

2 5 1

3 5 1

4 3 1

5 1 0

Stmt. PassNr. FailNr.

1 3 1

1 4 1

2 2 1

3 2 0

3 1 1

Stmt. PassNr.S FailNr.S PassNr.P FailNr.P

1 5 1 3 1

1 5 1 4 1

2 5 1 2 1

3 5 1 2 0

3 5 1 1 1

4 3 1 0 0

5 1 0 0 0

Path Coverage

Statement Coverage Statement Coverage

16

the number of profile variables that are associated with each statement. In our

experiment, there are 5000 individuals in one population and 400 faults are used to

evaluate the ranking function. Each fault is represented by data for 6000 statements. If

we assume that there are 50 possible combinations for each statement, then the

number of calculations required to produce one generation is 6000*5000*50*400 =

6000 0000 0000. This number does not include the sorting and compare operation.

Due to this high computational complexity we had to give up this combination

method.

Combination Method 2:

In method 2, we learn the best ranking function for each execution profile

individually. This means that we obtain one ranking list for each execution profile.

For profiles affected by the multiple entries problem, we pick the highest ranking

value of a statement as its ranking value. The different ranking lists are merged into a

single ranking list by assigning to each statement a ranking value that is equal to the

sum of the statement’s ranking values for each execution profile.

While the execution time for this method was acceptable, the results were poor. For

this method, we encounter situations where we use ranking values based on branch

coverage for locating bugs which are not associated with branches, which is

ineffective. We therefore believe that this method is unlikely to produce ranking

functions that more accurate than those used in existing fault localization techniques.

Combination Method 3:

In method 3, we learn four ranking functions. Each ranking function is associated

with a specific fault type. The fault types are: (1) missing conditional statement,

missing condition, (2) missing variable assignment, missing function call, (3) wrong

variable assignment, wrong function parameter, wrong function call, and (4) wrong

branch condition, missing term, missing branch. We merge the four ranking list into a

single ranking list by selecting for each statement the best ranking value (lowest

17

number) as the statement’s ranking value. This procedure is illustrated in Table 2 with

three ranking functions.

Table 2 - Combination of several ranking functions based on best value

Stmt.

No.

Formula1(Ranking

position)

Formula2(Ranking

position)

Formula3(Ranking

position)

Final ranking

position

1 15 827 278 15

2 369 27 47 27

3 274 381 763 274

4 32 748 62 32

…

One of the design goals for this combination method is to improve localization of

faults that are difficult to locate using a single ranking function. Table 3 shows the

ranking positions assigned to three real faults from the GCC program by method 3

and by the Tarantula ranking function. The table shows that all three faults are

difficult to locate. Tarantula assigns them ranking values between 59 and 97, while

our method assigns them with ranking values between 15 and 61. Hence, for these

faults combination method 3 shows a significant improvement over the Tarantula

technique, even though the rankings are far from the perfect result (rank No.1).

Table 3- Example of Method 3 from GCC program

Faults Ranking

function1(Ranking

position)

Ranking

function2(Ranking

position)

Ranking

function3(Ranking

position)

Total(Ranking

position)

Tarantula(Ranking

position)

Fault 1 215 457 12 24 71

Fault 2 26 890 1290 61 97

Fault 3 142 6 713 15 59

Moreover, we introduce a new method to calculate the ranking value and solving the

multiple entries problem, which can improve the speed of learning. First we analyze

the formula and determine which variable is using the highest/lowest value. We then

use these values as input to calculate the ranking value. As an example, consider the

following simple ranking function: failPATH(S) – passPATH(S). To ensure that this

ranking function always get the highest value for each statement, failPATH(S) should

18

use the maximum value in the MinMax table and passPATH(S) should use the

minimum value. The format of a MinMax table shows in Table 4.

Table 4 - MinMax Table example

StmtNr. Path

Pass

Max

Path

Pass

Min

Path

Fail

Max

Path

Fail

Min

Du-

pair

Pass

Max

Du-

pair

Pass

Min

Du-

pair

Fail

Max

Du-

pair

Fail

Min

…

1 63 32 4 1 47 24 4 2

2 36 15 3 3 64 45 3 2

3 73 23 2 0 31 23 4 1

…

19

5. Work process and experimental setup

In this section, we describe our work process, the fault data and relevant details about

the genetic programming configuration.

5.1. Work process

Our work can be divided into nine activities as shown in Figure 7. In activity 1, we

identified fault types which appear frequently in two real world programs: GCC and

SPACE. To extend the fault set, we generated a set of mutation faults for GCC and

SPACE in activity 2. For both programs, the number of real faults is about 200 and

the number of mutation faults is about 5000.

Figure 7- Work process

We used these faults to construct four sets of training data corresponding to the four

fault types used in combination method 3. In activity 4, we selected the potentially

useful math operators which were used in the genetic research of ranking functions. In

20

activities 5 and 6, we identified potentially useful execution profiles and investigated

the three methods for combining data from different execution profiles.

We generated the input data for the genetic programming search in activity 7. The

input data can be divided into two parts. One is the initial population of ranking

functions. Here, each individual is generated by random selection of a set of execution

profiles variables and a set of math operator. The other input is the matrixes of

execution profile data for each fault. These are used in the fitness tests of the ranking

functions.

In activity 8 we used genetic programming to search for ranking functions and use a

fitness function to evaluate them. We use the Java open source library JGAP, which is

a well-known library for implementation of genetic algorithm and genetic

programming. Finally in activity 9, we compared the ranking function obtained in

activity 8 and with four existing fault localization techniques.

5.2. Fault data

In our experiment, we need a lot of faults as input to the genetic program so that the

program can learn the ranking functions precisely. As mentioned previously, the fault

data are from GCC and SPACE. These two data sets are often used for evaluation of

faults localization techniques since they consist of real faults from two widely used

programs.

Each program is divided into several sub-programs. The average size of the

subprograms is 4000 statements in SPACE and 10000 statements in GCC. These sub-

programs can be divided to four subsets corresponding to the four fault types used by

combination method 3. These fault types are not complete, but we believe that they

are among the most common fault types.

21

Table 5 – The four subsets of fault types used by combination method 3

1 Missing conditional statement Missing condition

2 Missing variable assignment Missing function call

3 Wrong variable assignment Wrong function parameter Wrong function call

4 Wrong branch condition Missing term Missing branch

We need fault data not only for searching for new ranking functions but also for

evaluating the final ranking function. The faults that are used for learning can clearly

not be the same as the ones we use for evaluation, because we need to make sure the

final ranking function is good for locating also other faults than those we use in the

learning process. Therefore, we divide the fault data into two sets, one for learning

and one for evaluating the final ranking function. There are about 1600 faults in the

leaning set, 400 for each fault type. Since we have more than 5000 faults in total, we

use more than 3400 faults for the evaluation of the final ranking function.

5.3. Mapping execution profiles into genetic programming

In order to make use of all execution profile variables in the genetic search, we need

to map them to genetic programming variables. As we mention above, each execution

profile consist of 4 variables. 4 new profiles, which are supersede, surpass,

totalcoverage and equivalent, consist of only one variable. Each variable maps to one

variable in JGAP. In fact, our experiment use the same test cases when it collects

different execution profiles’ data. So Totalfail and Totalpass can be considered as two

constants. Hence, 12 execution profiles are represented by 8*2 + 1+1+1+1 + 2 = 22

variables in JGAP.

Operator set and terminal set are the variables that we need to input to genetic

programming so that genetic programming can use them to generate ranking

functions. Operator set consist of {+, -, *, /, log, Exp}. The terminal set is the

variables that we map from the execution profiles: passStat, failStat, failBRAN,

passBRAN, passPATH, failPATH, etc. (In total 22 variables). ranking.

22

5.4. Implementation of combination profiles

The MinMax value analysis function is defined as follows: first it creates a state table

which contains one row for each profile variable that is used by the target ranking

function. Table 6 shows an example of such a state table. This table has two columns,

one is the name of the variable, for example FailSTAT(S), and the other is the state of

this variable. Initially the state of a variable is set to 0. After the analysis, it is set to 1,

2 or 3. A “1” means the variable should be assigned the highest value in the execution

profile variable in each statement. A “2” means that the variable should be assigned

the lowest value in the execution profile. A “3” means that the variable appears

several times in the ranking function, and that at least one instance of the variable

need the maximum value while least one other instances needs the minimum value. If

a ranking function contains a variable with state 3, we discard that ranking function

since we want to have only monotonic functions.

Table 6 - Example of state table produced by analysis function

FailSTAT(S) * PassSTAT(S) – (FailBRAN(S) + FailSTAT(S))

FailSTAT(S) 3 (Mix)

PassSTAT(S) 1 (Max)

FailBRAN(S) 2 (Min)

5.5. Generation of ranking functions

Figure 8 shows the process of generating ranking functions. The first generation of

ranking functions is selected totally random. We evaluate the fitness of each

individual by computing a metric that reflects how well the individual can locate

faults.

23

 Figure 8- Process of Generating Ranking Function

Each new generation of ranking functions are created from the previous generation by

applying the genetic operators described above. An individual which has a high

fitness value have a higher probability of being chosen as the subject of a crossover or

mutation operation.

The internal of crossover and mutant are defined by JGAP, we use it just set some of

configuration. There are two constraints we need to consider:

 The length of each individual (ranking function) need to be limited

 Individuals need to be monotonic

Concerning constraint one, we found that short individuals worked better than long

ones. Long individuals were able to locate fault in the learning set, but did not

perform well in locating faults that did not belong to the learning set. In order to

address this problem, we limited the depth of the tree structure to 6.

For constraint two, we find that all ranking functions of existing techniques are

monotonic. We therefore decided to throw away all non-monotonic ranking functions.

We used the MinMax value analysis function to identify non-monotonic individuals.

24

While these constraints limit our search space, we believe it is unlikely that we have

missed ranking functions that are significantly more accurate than the ones we found.

5.6. Fitness function

The fitness function is used to evaluate the effectiveness of the individuals in each

generation. The calculation of the fitness value is divided into 3 steps:

1. First each variable in the ranking function is analyzed in order to create the state

table described in Section 5.4.

2. Program assigns the corresponding value to all variables to compute the ranking

value of each statement according to the state table.

3. Using the ranking values for each fault to evaluate the fitness of the target

ranking function and then return the fitness value back to genetic programming.

In step 1, method to analysis the ranking function is focus on tree structure. This

method just can analyze the operator we define, such as multiply, add, subtract,

divide, Log, Exp. Then output the state table we need.

In step 2, we produce a list to store the ranking values of all statements for each fault.

After we compute the ranking value of all the statements, we use the ranking list to

start step 3.

In step 3, using the ranking value of faulty statement as sample to check how many

statements’ ranking value higher than sample. Then, we collect all these numbers for

each fault and sum up them as target ranking function’s fitness value in genetic

programming.

After genetic programming use fitness function to evaluate all the individuals, genetic

programming starts to sort the population according to the fitness value. The

individual which has highest fitness value will set as a sample to mutant and crossover

for generating next generation.

25

5.7. Execution of the genetic program

Since the size of the learning set is large, we cannot run the genetic program within

one computer. We designed the program to run in a distributed environment with a

distributed file system. The program was divided into several parts, one master and

many slaves. The master program handles the core data of genetic programming while

the slaves evaluate the ranking functions within each generation concurrently.

Hence, after the population of a new generation has been generated, the master

program put each individual into a temporary directory which is shared by the other

computers. We then start the slaves to evaluate the individuals and write the result

back to the temporary directory. After this, the master program searches the result of

each individual in the temporary directory. The master program was run in a computer

with a dual-core CPU while the slave programs were run on eight computers with 16

cores and on 10 computers with 4 cores.

Due to limitations in computing power, our experiments were terminated after

approximately 200 generations. The population size was set to 5000, with a mutation

rate of 0.05, and crossover rate of 0.1.

6. Result and analysis

As previously described, we used genetic programming to search for four ranking

functions, one for each of the fault types described in Table 5. The four ranking

functions are shown Table 7.

26

Table 7 - Formulas on four subsets fault types

Fault type

no.

Ranking functions Symbol

1 ((SUPRASS * failCALLSTACK) + (passFUNC - passPAIR)) +

(failSTAT2 * SUPRASS)

(1)

2 (SUPRASS - passPAIR) * ((EQUIVALENT * passPATH-PAIR) +

(SUPRASS * failPATH-CALLSTACK))

(2)

3 ((Exp(failPAIR)) - passPAIR) * (SUPRASS * failCALLSTACK) (3)

4 failPAIR * ((SUPRASS * failPREDICATE) - (passBRANCH -

passPATH))

(4)

Table 8 shows the effectiveness of the ranking functions for their respective fault

types. The table shows for each fault type the number faults having a fault localization

effort below a certain percentage value. The fault localization effort for a given fault

is determined by its ranking position and is expressed as the percent of statements that

the developer must examine before he or she examines the faulty statement. (It is

assumed that developer examines the statements in the order suggested by the ranking

function.) As an example, we see that 120 out of 1731 faults of type 1 could be

located by examining less than 0.1% of statements. We can conclude that a majority

of the faults (76.8% for type 1, 79.3% for type 2, 86.9% for type 3, and 96.7% for

type 4) can be located by examining no more than 10% of the statements..

Table 8 – Fault localization effort (percent of statements examined) for each fault type.

 Fault type 1. Fault type 2 Fault type 3 Fault type 4.

0.1%statements examined 120 141 54 190

1% statements examined 648 582 528 696

5% statements examined 1216 1072 815 1095

10% statements examined 1329 (76.8%) 1360 (79.3%) 967 (86.9%) 1201 (96.7%)

20% statements examined 1645 1592 1027 1230

Total number of faults of

this type in evaluation set..
1731 1716 1113 1242

Average % examined to

locate all faults
5.198% 6.598% 9.811% 3.156%

27

However, when we debug a real program we do not know the type of the fault that we

are looking for. We therefore combine the four ranking functions into a single ranking

function, as described in Section 4 to locate the fault. Table 9 shows the result for the

combined ranking function.

Table 9 - Result of total

 Total

0.1% statements examined 188 (3.235%)

1% statements examined 2056 (35.381%)

5% statements examined 3612 (62.157%)

10% statements examined 4364 (75.098%)

20% statements examined 5337 (91.843%)

Total faults number 5811

Average % locate all faults 6.440%

Table 9 shows that we are able to locate 62.157% faults within 5% statements

examined and 91.843% faults within 20% statements examined. Total number of

faults that we use for evaluation is 5811. Also, we compare our result to three other

ranking functions, namely, Tarantula, Ochiai and Hybrid. The results are shown in

Figure 9. We get about 5% improvement with 10% statements examined and 10%

improvement with 20% statements examined comparing to the second best technique,

which is the hybrid [2]. Tarantula [4] locates about 50% faults within 5% statements

examined and 60% faults within 10% statements examined for our fault set.

28

Figure 9 - Result of different techniques

7. Conclusion and future work

In Section 4 we introduce three methods to combine different execution profiles. We

found that Combination Method 1 was infeasible due to its computational complexity

and that Combination Method 2 gave bad results. Hence, the result part just contains

data from Combination Method 3.

Our results show that the ranking functions derived through genetic programming

performs better than the Hybrid, Tarantula and Ochiai ranking functions. Our

technique was able to locate almost 92% of the faults by examining 20% of the

statements. This is an improvement of more than 10% compared to the Hybrid

technique, which was the second best technique. But this is not enough for real world

program, since if the program has 1000K statements then 1% statements is 10K

statements which is still a big time-consuming work.

29

Hence, I think there is existing one method which can improve much more than I

found. Maybe there is one execution profile or a combination method that have not

yet been explored.

Meanwhile, our experiment just focuses on single fault. But in real world, most of the

program has multi-faults problems. So this problem is another big issue in future

works.

Finally, computing power is the main issue in our experiment. Since if we have very

powerful computing facilities we can use Combination Method 1 to make experiment

much more precisely. Also, we can try more execution profiles in genetic

programming. So we can try to re-run the experiment again if we can get powerful

computer in future.

30

References

[1] Software Fault Localization, W. E. Wong and V. Debroy, (Section Authors), IEEE

Transactions on Reliability, Volume 59, Issue 3, pp. 473-475, September 2010

[2] Raul Santelices, James A. Jones, Yanbing Yu, and Mary Jean Harrold. 2009. Lightweight

fault-localization using multiple coverage types. In Proceedings of the 31st International

Conference on Software Engineering (ICSE '09). IEEE Computer Society, Washington, DC,

USA, 56-66.

[3] Rui Abreu, Peter Zoeteweij, Arjan J.C. van Gemund, "On the Accuracy of Spectrum-based

Fault Localization," Testing: Academic and Industrial Conference Practice and Research

Techniques - MUTATION, pp. 89-98, Testing: Academic and Industrial Conference Practice

and Research Techniques - MUTATION (TAICPART-MUTATION 2007), 2007

[4] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic

fault-localization technique. In Proceedings of the 20th IEEE/ACM international Conference

on Automated software engineering (ASE '05). ACM, New York, NY, USA, 273-282.

[5] Xinming Wang, S. C. Cheung, W. K. Chan, and Zhenyu Zhang. 2009. Taming coincidental

correctness: Coverage refinement with context patterns to improve fault localization. In

Proceedings of the 31st International Conference on Software Engineering (ICSE '09). IEEE

Computer Society, Washington, DC, USA, 45-55.

[6] Tai-Yi Huang, Pin-Chuan Chou, Cheng-Han Tsai, and Hsin-An Chen. 2007. Automated fault

localization with statistically suspicious program states. In Proceedings of the 2007 ACM

SIGPLAN/SIGBED conference on Languages, compilers, and tools for embedded systems

(LCTES '07). ACM, New York, NY, USA, 11-20.

[7] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and Kapil Vaswani. 2009.

HOLMES: Effective statistical debugging via efficient path profiling. In Proceedings of the

31st International Conference on Software Engineering (ICSE '09). IEEE Computer Society,

Washington, DC, USA, 34-44.

[8] Trotman, A. (2005). Learning to rank. Information Retrieval, 8(3), 359-381.

31

[9] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. 2005. SOBER:

statistical model-based bug localization. SIGSOFT Softw. Eng. Notes 30, 5 (September 2005),

286-295.

[10] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. 2005. Scalable

statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation (PLDI '05). ACM, New York, NY, USA,

15-26.

[11] Joel Emer and Nikolas Gloy. 1997. A language for describing predictors and its application to

automatic synthesis. SIGARCH Comput. Archit. News 25, 2 (May 1997), 304-314.

[12] Maggie Hamill, Katerina Goseva-Popstojanova, "Common Trends in Software Fault and

Failure Data," IEEE Transactions on Software Engineering, pp. 484-496, July/August, 2009

[13] George K. Baah, Andy Podgurski, and Mary Jean Harrold. 2010. Causal inference for

statistical fault localization. In Proceedings of the 19th international symposium on Software

testing and analysis (ISSTA '10). ACM, New York, NY, USA, 73-84.

[14] Jones, J. A., Harrold, M.J., and Stasko, J., Fault Localization Using Visualization of Test

Information, In Proc. of the 26th ICSE, Washington, USA, May, 2002

[15] Thomas Ball and James R. Larus. 1996. Efficient path profiling. In Proceedings of the 29th

annual ACM/IEEE international symposium on Microarchitecture (MICRO 29). IEEE

Computer Society, Washington, DC, USA, 46-57.

[16] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. 1998. An empirical investigation

of program spectra. SIGPLAN Not. 33, 7 (July 1998), 83-90. DOI=10.1145/277633.277647

[17] T. Reps, T. Ball, M. Das, and .J. Larus. The use of program profiling for software

maintenance with applications to the year 2000 problem. ACM Software Engineering Notes,

22(6):432-439, Nov. 1997.

[18] M. Weiser, “Programmers use slices when debugging,” Communications of the ACM,

25(7):446-452, July 1982

[19] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009. A practical

evaluation of spectrum-based fault localization. J. Syst. Softw. 82, 11 (November 2009),

1780-1792. DOI=10.1016/j.jss.2009.06.035 http://dx.doi.org/10.1016/j.jss.2009.06.035

32

[20] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,”Scalable statistical bug

isolation,” in Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pp. 15-26, Chicago, Illinois, June 2005

