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ABSTRACT 

In this thesis we present two prediction techniques for estimating the error coverage of target programs 

stimulated with different inputs. Preliminarily, we investigate the effects of the inputs on the failure 

distribution of the target programs using fault injection experiments. From this study, we could find a 

linear correlation between the length of the input and the error coverage. This result allows us to 

develop a linear regression model which is one of the prediction techniques that we adopt. As this 

correlation may not exist in other target programs, in the second technique called instruction-based 

prediction we propose an approach to predict the error coverage for an input using fault injection 

results of other inputs known as base points. In order to choose the base points, instruction-based 

prediction technique profiles the program through a set of metrics defined at the assembly code. Those 

metrics are used to feed a statistical technique that helps us select the more suitable inputs for the 

prediction. We also investigate the failure distributions of programs enhanced with the triple time 

redundancy execution with forward recovery (TTR-FR). From the results of the failure distributions, 

we observe that the non-covered failure is reduced to on the average around 1.2% for all TTR-FR 

execution flows which has a minor correlation to input length as analyzed by linear regression 

equation. 

Keywords: error coverage prediction, fault injection, assembly code, dependability assessment, 

software implemented fault tolerance, multivariate analysis, failure mode distributions.  
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1 Introduction 

Today, the usage of computer systems in safety-critical applications is tremendously increased. Such 

systems must be equipped with proper fault-tolerance mechanism to be able to detect or correct transient, 

intermittent, and permanent faults. In addition, the scaling of integrated circuits makes them less reliable 

according to the hardware failures presented in [1]. This implies that hardware fault rates for transient, 

intermittent, or even permanent faults is going to increase in future computer systems. Even though these 

systems are expected to have robust hardware error detection mechanisms, their error coverage should be 

evaluated using analytical or/and experimental techniques. Fault injection, one of the most popular 

experimental techniques, is used to estimate system’s error coverage in the presence of faults. However, 

performing fault-injection experiments is a time consuming process which inspire researchers to look for 

less expensive alternatives to estimate computer system’serrorcoverage.Even though the error coverage 

is directly affected by the effectiveness of the error detection mechanism, the program under assessment 

along with its different possibilities of input sequences can influence the calculated coverage to a great 

extent. Despite the notable researches that have been accomplished on the influence of error detection 

mechanisms on the error coverage [2] [3] [4] [5] , a little investigation has been done regarding target 

program variations with respect to different inputs [6] [7]. To the best of our knowledge, only little 

literature has investigated the effect of different inputs on error coverage when a target program is 

enhanced with a fault tolerance mechanism. 

In this thesis we aim at performing fault injections on two target programs using different input sequences 

to see whether there is any correlation between the input and the failure distribution. Moreover we 
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investigate the possibility of using assembly code metrics to predict error coverage distributions without 

performing fault injection. Furthermore, the effect of different inputs on error coverage is analyzed when 

the target programs are enhanced with temporal redundancy fault tolerance mechanism. 

By analyzing the outcomes of the fault injection experiments, we proposed two prediction techniques 

called linear regression model and instruction-based prediction. The former technique proves that in our 

target programs, there is a linear correlation between the length of input and the error coverage. This can 

then be used to predict the error coverage of the target programs using only the length of the input 

sequence. The outcome of the prediction from the linear regression model has a high accuracy, while it is 

not useful when there is no correlation between the input of a target program and its error coverage. On 

the other hand, the instruction-based prediction technique uses assembly level signature of a target 

program along with statistical techniques for multivariate analysis to predict the coverage of an input 

sequence using the fault injection results of another input sequence (base input). Though the accuracy of 

instruction-based technique lies to a great extent to the selection of the base input, it can be ideally 

adopted for all target programs. 

The remainder of the thesis is organized as follows. In Chapter 2 we present the required taxonomy and a 

brief background on the fault injection technique. Chapter 3 describes our methodology which is a 

detailed description of the instruction-based prediction technique along with assembly code metrics. The 

implementation of our target programs along with the experimental setup of the fault injection mechanism 

are presented in Chapter 4. Moreover, in this Chapter we describe the Assembly-Level Signature Creator 

(ASC) tool which is used to calculate the values of different metrics. In Chapter 5 we present the results of 

our study on the two target programs with/without software implemented fault tolerance. In addition, the 

results of two different predictors are compared with each other. We conclude with the limitations of this 

thesis along with future research in Chapter 6. 
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2 Background 

2.1 Terminology  

Common concepts of dependable and secure computing are defined in [8] which are summarized in this 

section based on their relevance to the thesis topic. 

2.1.1 Dependability 

A system is called safety-critical if its failure to deliver a correct service will endanger human life or the 

environment. Thus, the safety-critical system needs to provide dependability which is the ability of the 

system to avoid service failures that are more frequent and severe than acceptable. The generic concept of 

dependability includes three basic elements; attributes, threads and means.  

2.1.1.1 Dependability Attributes 

The main attributes for designing a dependable computer system are reliability, availability and safety. 

The reliability of a system is the probability that it provides a correct service for a specific period of time, 

when there are possibilities for permanent failures. The availability is the probability of the system to 

provide a correct service at a certain point in time, when the system is repairable. From the other point of 

view, safety provides the probability that the system failure does not result in any catastrophic 

consequences. The significance of each attribute in a system depends on the application usage. 

Furthermore, another attribute called maintainability should be considered in the implementation phase of 

fault tolerant computer systems which is the ability to perform modification and repair a system.   
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2.1.1.2 Dependability Threats 

The dependability threats include faults, errors and failures. The deviation of the system’s delivered 

service from the correct service is called the system failure. This deviation is triggered by an error which 

is an incorrect state in the system. The cause of an incorrect state is called a fault which is classified into 

three classes of development faults, interaction faults, and physical faults. 

Development faults are introduced in the development phase of the system. These faults are usually 

caused by human during software or hardware specification, design, and implementation. Interaction 

faults on the other hand, are introduced by human interacting with the system in the usage phase, e.g., a 

user typing a wrong input value. This category also accounts for the faults that take place during the 

exchange of information between computer systems. The third group of faults is physical faults which are 

either introduced in development or usage phases of the system. They can cause permanent, transient, and 

intermittent hardware failures in which the latter can be caused by high energy cosmic neutrons. 

Nowadays, computer hardware and processors are getting smaller and transistors are becoming less 

reliable. Bokar in [1], characterizes the main causes of failure in VLSI circuits as process variations, 

ionizing particle radiation, and aging effects. Hazucha et al. in [9] also believe that in each technology 

generation, single event upsets rate, caused by ionizing particle radiation, per bit is increased by about 8 

percent. In addition, negative bias temperature instability (NBTI) and Hot Carrier Injection (HCI) can 

over time, cause failures in integrated circuits. Therefore, computer systems should be equipped with fault 

tolerant mechanisms in order to increase the availability and reliability of the system. 

2.1.1.3 Dependability Means 

The dependability means include fault prevention, fault tolerance, fault removal, and fault forecasting. 

Fault prevention techniques are related to development phase of the system. Using these techniques, faults 

can be prevented in software or hardware. Moreover, design rules and formal verification can to some 

extent avoid fault occurrences in software and hardware. Fault removal techniques on the other hand, are 

involved in development and operational phases. During the development phase, validation and 

verification techniques can be used to reduce the number of faults. In addition, while the system is 

operational, maintenance and repair techniques can reduce faults and their consequences. Fault 

forecasting, as another dependability mean, tries to estimate system’s behavior in the presence of faults. 

With the help of quantitative and qualitative evaluation techniques such as markov modeling and failure 

modes and effects analysis (FMEA), it is possible to estimate dependability attributes. Fault tolerance 

techniques try to avoid system failure in the presence of faults. They require error detection and error 

recovery mechanisms to detect an active error and return the system to a nonfaulty state.    

2.1.2 Fault Tolerance Techniques 

Fault tolerance techniques imply built-in redundancy which can be formed as hardware redundancy, 

software redundancy, temporal redundancy or information redundancy. 

2.1.2.1 Hardware Redundancy 

There are three hardware redundancy techniques, namely voting, standby, and active redundancy. As an 

example, triple modular redundancy (TMR) is one of the most common voting redundancy configurations 
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in which three redundant modules are configured to perform the same functionality using the same set of 

inputs and applications. Modules outputs are then delivered to a voter which applies majority voting to 

deliver the result. Therefore in TMR, one module failure can be masked by the other two redundant 

modules, while the error can only be detected, not masked, in case of having two erroneous modules. 

2.1.2.2 Software Redundancy  

Software redundancy techniques can be divided into two different classes of with diversity and without 

diversity. The former corresponds to diversity in data, software design, and development process, while 

the latter provides error detection and/or recovery by using redundant data and instructions as mentioned 

in [10] for transient physical faults. N-version programming [11] is a well-known software redundancy 

technique which uses the diversity in development teams, program developers, programing languages, 

and/or program designs. All outputs generated by different program versions should be identical which is 

identified by a majority voter. Another example of software redundancy techniques is recovery blocks. As 

explained in [12], in this technique there are two primary and alternative software modules which are 

indeed two versions of the same program. An acceptance test is constantly applied to the outcome of the 

primary module so that in case of any failure, the output of the alternative module can be selected. 

2.1.2.3 Information Redundancy 

Information redundancy aimed to protect data stored in memories or the data transferred via networks. 

Systematic and non-systematic codes are two commonly used techniques. As an example, the parity check 

is a systematic code which generates some redundant bits attached to the original data to detect or correct 

the error in data. In the non-systematic technique, new sequence of data is created using the mapping of 

the original data. Thus it is designed in a way to detect or correct errors in the original data.  

2.1.2.4 Temporal Redundancy 

As mentioned before, the transient faults may cause a temporary erroneous result, so if the system is 

restored to its correct state and the program is executed again, it is possible to detect the error by double 

execution of the program. This can be done using result comparison of the two executions. The error can 

also be masked by executing the code three times and making use of the majority voter to decide on the 

correct result. This technique is more explained in [13] and is used as the fault tolerance technique in this 

thesis. 

2.2 Fault Injection 

Fault injection has been around since 1970s. Fault removal and fault forecasting are among the main 

purposes of using fault injection. It can also be used as a technique to measure the error coverage by fault 

introduction. The error coverage can then be used to calculate the availability and reliability of a 

computer system. Moreover, fault injection is a technique for testing programs’ fault tolerant

mechanisms. One of the most realistic ways of measuring the effectiveness of a fault tolerant mechanism 

is by injecting artificial faults to the systems and assessing the robustness of the system. The injected fault 

can be propagated throughout the program and resulted in an error in sections which were not protected 

properly by any fault tolerant mechanisms. Some properties of fault-injection are as follows [14]: 

 Repeatability, the ability of injecting the same fault and achieving the same result. 
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 Controllability, the ability of controlling the time and location of injecting a fault. 

 Observability, the ability of observing the effect of an injected fault. 

 Reachability, the ability of reaching possible fault locations in a processor. 

Fault injection techniques can be categorized in three different groups of software-implemented, 

hardware-implemented, and radiation-based injections as presented in [15]. Throughout the remaining of 

this section, we will present these techniques and a number of tools using them. N.B. faults can also be 

injected into a simulated model of a system that includes injections in device and logical levels along with 

injections in the system, functional block, and instruction set architecture. 

2.2.1 Software-Implemented Fault Injection 

Software-implemented fault injection (SWIFI) can be divided in two different categories, pre-runtime 

(compile-time) injection and runtime injection. In the pre-runtimeSWIFI,program’s data or source code 

is altered to inject simulated faults. Code insertion and mutation testing are the two commonly used pre-

runtime SWIFI techniques. In mutation testing, an existing line of code is modified which corresponds to 

the programmers’ unintentionally made mistakes. Whereas in code insertion, extra line(s) of code is 

inserted into the source code. Pre-runtime SWIFI was used in a distributed real-time system enhanced 

with a fault tolerance mechanism [16] [17]. Furthermore in runtime SWIFI, faults are injected into the 

system while it is running (execution-time). The system is equipped with additional software responsible 

for injecting faults which is either time-triggered or interrupt-triggered. Examples of tools which used 

runtime SWIFI include FIAT [18], FERRARI [2], and Exhaustif [19].  

2.2.2 Radiation-Based Fault Injections 

In this technique, the system is exposed to particle radiation and electromagnetic inferences (EMI). The 

main obstacles facing this technique are the controllability and repeatability. This is due to the fact that 

fault locations cannot be selected easily and also it is difficult to inject a previously injected fault and 

achieve the same result. In [20], heavy-ion from a Californium-252 source is radiated to a microprocessor 

in order to validate a fault-handling mechanism. 

2.2.3 Hardware-Implemented Fault Injection 

Faults can also be injected into systems’ hardware using pin-level and test port-based injections along 

with power supply disturbances. In pin-level and power supply disturbance techniques, faults are directly 

injected into the Integrated Circuit andmicroprocessor’s pins using additional signal or short voltage

drops, respectively. An example of a tool using pin-level injection is MESSALINE [21]. In test port-

based injections on the other hand, faults are mostly injected into the registers and memory words of a 

processor using test ports like BDM and Nexus.  

All experimental setups presented in this thesis use GOOFI-2 [22] tool equipped with exception-based, 

instrumentation-based, and Nexus-based fault-injection techniques. However, we only use its Nexus-

based fault-injection; more details can be found in subsection 4.2. N.B. exception-based and 

instrumentation-based injections are actually using SWIFI technique.  

2.3 Related Work 

Error coverage estimation is performed by evaluating the system with respect to fault occurrence or fault 

activation [8]. Since the high complexity of modern computer systems makes it difficult to estimate error 
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coverage analytically, different techniques such as fault injection are used to be able to estimate the error 

coverage. The authors in [23] and [24], estimated the error coverage through analytical models. In 

particular, in [23] they evaluate two sampling techniques for error coverage estimation, while in [24] they 

adopt statistical of extreme, i.e., statistical techniques to estimate rare events. In [25] and [26] coverage is 

calculated with respect to all possible inputs, fault location, and fault injection time. The work [27] 

surveys a variety of coverage models, from simple phase-type models to stochastic Petri net in order to 

predict coverage. 

Fault injection is an expensive time-consuming technique due to its mentioned properties. It is also 

notable that different program inputs result in different execution flows which means each injection setup 

corresponds only to a specific program input. Therefore, other techniques such as fault prediction have 

been introduced trying to validate fault-tolerance mechanisms in a more cost-efficient way. 

Program profiling [28] [29] is a method used in fault prediction. It is commonly used for software 

maintenance and testing [30] and also in literature analyzing fault localization, such as [31] [32]. In [31], 

different spectra (path, branch, data-dependence, etc.) of a target program are introduced and the 

correlation between various spectra types and program failure is analyzed. The main weakness of this 

method is that it is working on programs’ source code. In [33] [7], a path-based fault coverage prediction 

technique is proposed which uses the injection results of an input sequence (base input) to predict the 

error coverage for another input sequence. The path-based predictor is built upon the assumption that 

different inputs might form different execution flows which cause different code blocks to be executed 

different number of times. Based on the weight of each code block and the injection results of the base 

input sequence, the error coverage can be predicted for another input. 

The main weakness of the path-based prediction is the arbitrarily selection of the base input. In this thesis, 

we introduce an instruction-based prediction technique which profiles assembly level code instead of 

source code. We believe that assembly code is a better representative of target programs, see chapter 3. 

Moreover, in instruction-base estimation, not only more than one input can be selected as the base input, 

but also the base inputs are chosen wisely.  
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3 Methodology 

In this thesis we investigate the effect of different inputs on programs’ failure distributions. It is

accomplished by performing fault injection experiments on different target programs. We believe that 

inputs with similar characteristics result in similar failure distribution for the same target program. So, if 

we appropriately characterize an execution flow associated to an input, the failure distribution of another 

execution flow with similar characterizations can be estimated. In order to investigate this, different 

inputs are chosen for two different target programs, workloads, and their execution flows are compared 

and analyzed at the assembly code level. In addition, an assembly level signature is computed for each 

execution flow to be used in the prediction of failure mode distribution.  

3.1 Assembly Code Specifications  

As mentioned above, the assembly code of two workloads are examined to be able to characterize their 

execution flows. There are a number of reasons behind selecting the assembly code: 

 Assembly code is a proper representative of a program which is executed on the hardware exactly 

as it is without further optimization or interpretation by compilers or optimizers. Furthermore, 

since the fault model used in this thesis includes hardware transient faults, it will be more realistic 

to analyze target programs using their assembly code. Moreover, assembly code shows exactly 

which instructions, registers or memory locations are involved in the workload and indicates the 

potential places for failures during the execution flow. 
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 Even though, the assembly instruction set is different for different microprocessors, the general 

concepts used in this thesis to design proper signature, from assembly-level metrics, is applicable 

to different kinds of hardware architectures. In other words, our proposed metrics are not 

dependent on special hardware architecture and they can be calculated for other hardware 

architectures with minor changes in the implementation. 

 In addition to hardware flexibility, the target program can also be written in different programing 

languages, e.g., java/C/C++. This is due to the fact that programs are translated to assembly code 

before they could be executed on the hardware. Therefore, our approach is not dependent on the 

programing language.  

3.2 Assembly Code Metrics  

The assembly codes of two workloads are characterized in this thesis to estimate the failure distribution of 

their execution flows. In order to be able to characterize the fault-free execution of a workload, we 

classified the assembly code in three general categories; instructions, registers, and memory sections. For 

each of these categories, a number of metrics are designed, see Table 3.2. In this table, the first two 

metrics are calculated according to general characteristics of an execution flow: 

 (NEI), the total number of different instructions executed in an execution flow, regardless of the 

number of times each of them was executed.  

 (NE), the length of the execution flow in terms of the number of executed instructions. In other 

words, the number of times the program counter register (PCR) is updated. 

3.2.1 Instruction Metrics 

The workload instructions are categorized into six groups of instructions namely, load, store, arithmetic, 

branch, logical, and processor, see Table 3.1. The summary of the instruction set is available in [34]. For 

instance, add, sub, div, etc. instructions are included in arithmetic category, while and, or, xor, etc. are 

included in logical category. In this way, the metrics for each category of instructions are studied in terms 

of: 

 The number of times instructions of each category are executed, e.g., the total number of load 

instructions (lwz, lis, lbz, etc.) executed in an execution flow. 

 The percentage of the executed instructions for each category, out of the total number of 

instructions executed in an execution flow (NE). 

 The average distance between two consecutive executions of instructions in a specific group. 

For instance, if instructions are executed in the order shown in Figure 3.1, the first consecutive 

arithmetic instructions, addi, will have a distance of 3, while the second consecutive instance, 

addi and subf, will have a distance of 1. Finally, there is a distance of 3 between the last 

consecutive arithmetic instructions, subf and addi. The average distance metric for the 

arithmetic category can then be calculated using the average of these values which is 2.33. 
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Table 3.1. A sample list of different instruction categories 

Categories Instructions 

LOAD lbz, li, lwi, lmw, lswi, … 

STORE stb, stub, sth, sthx, stw, stwbrx, … 

ARITHMETIC add, addo, subf, divw, mulhw, …  

BRANCH b, bl, bc, bclr, … 

LOGICAL and, or, xor, cmp, rlwimi, …  

PROCESSOR mcrf, mftb, sc, rfi, … 

 

3.2.2 Register Metrics 

These metrics refer to registers used in each execution flow. The most important registers used in each 

execution flow are studied and grouped into three different categories: condition register (CR), stack 

pointer register (SP), and general purpose registers (GPR). The following metrics are studied: 

 The total number of different general purpose registers accessed in an execution flow. 

 The number of times registers of each category are read in an execution flow. 

 The number of times registers of each category are written in an execution flow. 

 The average distance between two consecutive “read” from registers of each category. 

 The average distance between two consecutive “write” into registers of each category.   

3.2.3 Memory Metrics 

The memory metrics and register metrics are designed similarly, i.e., the number of read/write and the 

average distance between two consecutive “read/write” are calculated in the same way with the exception 

that in memory metrics, sections of memory are considered instead of registers. The notable memory 

sections of our workloads are text, stack, bss/sbss, and data/sdata. 

The complete list of the mentioned assembly code metrics is shown in Table 3.2. A combination of these 

metrics is used as the signature for each execution flow to see whether there is any correlation between 

different inputs and their failure mode distribution; they can then be used in error coverage prediction. 

 

2548 38 09 26 30 Addi r0,r9,9776 

254c 90 1f 00 0c Stw r0,12(r31) 

2550 3d 20 00 3f Lis r9,63 

2554 38 09 70 00 Addi r0,r9,28672 

261c 7c 6a 18 50 Subf r3,r10,r3 

2620 83 c1 00 08 Lwz r30,8(r1) 

2624 7c 08 03 a6 Mtlr r0 

2628 38 21 00 10 Addi r1,r1,16 

Figure 3.1. Sample of workload’s execution flow 
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Table 3.2. Assembly metrics - Signature of an execution flow 

Metric 

Number 

Metric 

Name 
Description 

General Metrics 

1 NEI Number of different Executed Instructions, the total number of different instructions in the assembly code.  

2 NE Number of Executed instructions, i.e., the number of times that the PCR has been updated.  

Instruction Metrics 

3 NLI Number of Load Instructions. 

4 NSI Number of Store Instructions. 

5 NAI Number of Arithmetic Instructions. 

6 NBI Number of Branch Instructions. 

7 NLGI Number of Logical Instructions. 

8 NPI Number of Processor Instructions. 

9 PLI Percentage of Load Instructions. (NLI/NE) 

10 PSI Percentage of Store Instructions. (NSI/NE) 

11 PAI Percentage of Arithmetic Instructions. (NAI/NE) 

12 PBI Percentage of Branch Instructions. (NBI/NE) 

13 PLGI Percentage of Logical Instructions. (NLGI/NE) 

14 PPI Percentage of Processor Instructions. (NPI/NE) 

15 LAD Load Distance, the average distance between two consecutive executions of load instructions. 

16 SD Store Distance, the average distance between two consecutive executions of store instructions. 

17 AD Arithmetic Distance, the average distance between two consecutive executions of arithmetic instructions.  

18 BD Branch Distance, the average distance between two consecutive executions of branch instructions. 

19 LGD Logical Distance, the average distance between two consecutive executions of logical instructions. 

20 PD Processor Distance, the average distance between two consecutive executions of processor instructions. 

Register Metrics 

21 NGPR Total number of different GPRs accessed.  

22 NRCR Number of access in read mode to condition register.  

23 NWCR Number of access in write mode to condition register.  

24 NRSP Number of access in read mode to the stack pointer.  

25 NWSP Number of access in write mode to the Stack pointer. 

26 NRGPR Number of access in read mode to GPRs (all GPRs except r1, that has been counted in NRSP)  

27 NWGPR Number of access in write mode to GPRs  (all GPRs except r1, that has been counted in NWSP)  

28 NRXER Number of access in read mode to the XER. 

29 RDCR The average distance between two consecutive read operations from the CR. 

30 WDCR The average distance between two consecutive write operations  into the CR. 

31 RDSP The average distance between two consecutive read operations from the SP. 

32 WDSP The average distance between two consecutive write operations into the SP. 

33 RDGPR The average distance between two consecutive read operations from the GPRs. 

34 WDGPR The average distance between two consecutive write operations into the GPRs. 

35 RDXER The average distance between two consecutive read operations from the XER. 

Memory Metrics 

36 NRTXT Number of times the program reads from the text section. 

37 NRAS Number of times the program reads from the Stack section. 

38 NWAS Number of times the program writes into the Stack section. 

39 NRAB Number of times the program reads from the bss/sbss section. 

40 NWAB Number of times the program writes into the bss/sbss section. 

41 NRAD Number of times that the program read from data/sdata section.  

42 NWAD Number of times the program writes into the data/sdata section.  

43 RSD The average distance between two consecutive read operations from the stack section in terms of PC executions. 

44 WSD The average distance between two consecutive write operations into the stack section in terms of PC executions. 

45 RBD The average distance between two consecutive read operations from the bss/sbss section in terms of PC executions. 

46 WBD The average distance between two consecutive write operations into the bss/sbss section in terms of PC executions. 

47 RDD The average distance between two consecutive read operations from the data/sdata section in terms of PC executions. 

48 WDD The average distance between two consecutive write operations into the data/sdata section in terms of PC executions. 
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Figure 3.2. The instruction-based prediction process 

3.3 Instruction-based Prediction 

In this prediction technique, we profile different execution flows using assembly level metrics, discussed 

in Section 3.2, calculated from the fault-free run of each execution flow. The output of the profiling step 

allows us to select or generate the best base input sequences which can then be used to predict the error 

coverage of a new input sequence, see Figure 3.2. 

The instruction-based prediction technique is built upon the fact that different inputs cause different 

number of instruction categories to be executed. As mentioned in Section 3.2.1, we defined six different 

instruction category metrics corresponding to the number of executed instructions (metric numbers 3 to 8 

in Table 3.2). The weighted sum of these six metrics is used along with the failure distribution outcome of 

an input sequence (base input) to predict the failure distribution of a target input sequence.  

Let      denote the percentage of error classification   (N.B. error classifications are discussed in Section 

5.1.2) for the target input sequence  . For every error classification and input sequence,      is predicted 

using the equation (3.1):  

 
     ∑         

 

   

 (3.1) 

Here   corresponds to the instruction categories; and      is calculated according to the fault injection 

results of the base input sequence, see equation (3.2). In this equation,      refers to the number of injected 

faults in instruction category   that resulted in error classification  , while    corresponds to the total 

number of faults injected in instruction category  .  

       
    

  
 (3.2) 

The term      in equation (3.1) is an estimated weight for each instruction category  , which corresponds 

to the percentage of instruction category   that leads to error classification  , see equation (3.3). 

       
    

  
 (3.3) 

Workload Profiling 

Base Input Sequence 

Selection 

Prediction 
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In the estimation of the weight factor,    refers to the estimated number of injections for the target input 

sequence   which can be calculated using equation (3.4), while     , corresponds to the estimated total 

number of  faults which are injected into the instruction category   in case of using the target input 

sequence  , see equation (3.5).  

 

   ∑
  

  
     

 

   

 (3.4) 

 

 

 

      
  

  
      (3.5) 

Here    represents the number of faults injected in instruction category   for the base input sequence;    

shows the total number of executed instruction category   for the base input sequence, and      is the total 

number of executed instruction category   for the target input sequence  . 

Now that we have all the elements of equation (3.1), the percentage of error classification   for the target 

input sequence   can be predicted using equation (3.6).  

 

     ∑
    

  
   

    

∑
  

  
     

 

   

 

   

 
(3.6) 

It is clear that the instruction-based predictor is composed of two parts, i.e., data (         regarding the 

input sequence in which a fault injection campaign has been conducted for and data (      that refers to 

the input for which different error classification prediction is required. 

In this way, the error coverage of input sequence   can be predicted using equation (3.7) where    

represents the value failure classification. N.B. value failures are errors that lead to the production of 

wrong results. 

 
     ∑          

 

   

 (3.7) 

The effectiveness of the instruction-based error coverage prediction technique lies in the proper selection 

of the base input, i.e., not every base input result in an accurate prediction. Therefore, we need to enhance 

the instruction-based technique with a proper way of selecting the base input. In the next section, a well-

known mathematical technique called principal component analysis (PCA) [35] is presented. This 

technique, along with the proposed assembly level metrics, guides us in selecting the best base input from 

a list of already analyzed execution flows. 

3.3.1 Using Principal Component Analysis (PCA) for Base Input Selection  

PCA, invented by Karl Pearson in 1901, is a mathematical technique that converts a set of possibly 

correlated variables into a set of uncorrelated variables known as principal components, i.e., the PCA can 

reduce the initial dimensions in a smaller space. Moreover, components are sorted based on variability in 
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the data, i.e., the first component has the highest variance. The number of components should be chosen 

in a way that the sum of their variance accounts for the 80% of the initial variance. Thus by using the first 

few components, PCA can generate an N-dimensional representative of a higher-dimensional data space. 

This means that the metrics we proposed in Section 3.2 can now be used as the initial multivariate dataset 

and with the PCA it is possible to reduce them in a two dimensional space. The results of the analysis are 

enhanced and tend to be clearer in case of using the multivariate “normal” distribution of the initial

dataset. Therefore, we also normalize each calculated metric using equation (3.8) and then provide the 

normalized dataset to the PCA.  

 
                        

     

 
 (3.8) 

Here X is the metric value which should be normalized,   is the arithmetic mean of the distribution, and   

is the standard deviation of the distribution.  

Our main objective is to find a proper base input which can be used in the instruction-based predictor. 

Therefore we need to find a way to compare the base input and the target input sequence  , which is the 

input of the execution flow that we want to predict its failure distributions.  

Each of our target programs has nine different execution flows each corresponding to an input sequence. 

After applying PCA to the normalized results of the metrics, input sequences can be presented using their 

(x, y) coordinates, for example Figure 3.3 corresponds to PCA-generated inputs for SHA execution flows. 

All metrics are involved in the calculation of the principal components, i.e., in order to calculate the value 

of each principle component, its eigenvector should be multiplied to the normalized results of the metrics. 

 

Figure 3.3. PCA-generated input sequences of SHA execution flows 
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Several metrics also have the same correlation with each other, e.g., an increase in the number of 

execution of an instruction might also increase the number of access to a specific register. Therefore, 

principle components can also be calculated using arbitrary number of metrics from all non-correlated 

groups of metrics.  

Table 3.3 shows thecalculationof thefirst twoprinciplecomponentsusingeight“normalized”metrics

selected from four non-correlated groups of metrics. N.B. metric names have been taken from Table 3.2 

and the multiplicands correspond to each principle component’s eigenvector. These eight metrics are

selected from all the three main metric categories described in Table 3.2. However, principle components 

could also be calculated using other combinations of metrics.  

Table 3.3. Principle Component calculation using optimized number of metrics 

SHA 

PCA1 = 0.35159 * NLGI + 0.35937 * PLI - 0.35608 * PAI + 0.35829 * NRCR + 0.35328 * RDSP + 0.35036 * RDGPR - 

0.34654 * WSD + 0.35273 * WBD 

PCA2 = 0.40282 * NLGI - 0.14066 * PLI + 0.28238 * PAI + 0.19339 * NRCR + 0.36322 * RDSP - 0.42618 * RDGPR + 

0.49539 * WSD + 0.37663 * WBD 

CRC 

PCA1 = 0.35499 * NAI + 0.34155 * PLI - 0.34155 * PBI + 0.36295 * SD + 0.35499 * NRCR + 0.35499 * RDSP + 0.35499 * 

NRXER + 0.36178 * WSD 

PCA2 = 0.34778 * NAI - 0.42043 * PLI + 0.42043 * PBI - 0.27901 * SD + 0.34778 * NRCR + 0.34778 * RDSP + 0.34778 * 

NRXER - 0.29126 * WSD 

 

By analyzing the injection results of each execution flow and the coordinates of other PCA points, we 

conclude that closer base inputs to the target input   in the Cartesian coordinate system result in a better 

prediction. Therefore the best base input will be a point in the two-dimensional space closest to the target 

input sequence  . This is one of the strength of instruction-based technique when compared to path-based 

technique where the base input is selected arbitrarily. For example, as can be seen in Figure 3.3, in case 

we have already estimated failure distribution of SHA-7 using fault injection, we can predict the failure 

distribution of SHA-6 using SHA-7 as the base input.  

As mentioned before, the effectiveness of the instruction-based technique lies to a great extent on the 

selection of the base input i.e., it is useful when we predict different error classifications of an execution 

flow with an input sequence   so close to the base in the two-dimensional PCA representation. 

Throughout the remaining of this section, we introduce an algorithm which can be used to predict both 

“adjacent” and “distant” points. In our proposed algorithm, we either select or generate the best possible 

base input which divides the algorithm into two parts. 

In the first part of the algorithm, distances from all PCA-generated points to the target input point    are 

calculated. These distances will then be sorted and put in a list called BaseDistances. As can be guessed, 

an input sequence with the smallest distance in the BaseDistances gives us the best prediction when 

compared to other input sequences. The main weakness of this part is that the closest PCA-generated 

point might still be distant from  . Therefore, in the second part of the algorithm, we use two points 

instead of one to generate a better base for our prediction. 

In the second part of the algorithm, all combinations of the PCA-generated points should be coupled and 

analyzed. The idea with this part is to find possibly a better point on the line connecting the elements of 

each couple, i.e., to generate a point closer to the target input sequence  . 



 

16 

 

 

Figure 3.4. An example of generating a third point (G) using two other points (S,Q) 

Table 3.4. Calculated distances of the potential base inputs to the target input   

 Q – e S – e G – e 

Distance 5.65 10.04 2.43 

Figure 3.4 illustrates an example of generating a third point, G, using the couple (S, Q). This point is 

constructed using  coordinates and weights of S and Q; each of these points receives its weight based on 

its distance to  . This leads to the case in which a point with a smaller distance to   (Q in this example) 

causes G to be generated closer to   compare to the more distant point (S in this example). As can be seen 

in Table 3.4, G is closer to the target input  , which indicates that it is a better candidate to be the base 

input. Equation (3.9) and (3.10) show how to calculate the coordinates of the new generated point, G. 

                  (3.9) 

                  (3.10) 

Here    and    are calculated as 

                          (3.11) 

Furthermore,      and      correspond to the given weights of S and Q based on their distances to e;  

 
      

    

          
 (3.12) 

 
      

    

          
 (3.13) 

Here      and      are the distances between e to S and Q respectively. Now that we have another point in 

the Cartesian coordinate system, its distance to   will be put in the BaseDistances list. 
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Since it is not always the case to find a better point by using any two points, this procedure should be 

performed for all different combinations of the previously injected execution flows to discover the best 

possible base input. The ultimate BaseDistances list contains all possible base inputs selected or 

generated from the initial PCA-generated points. By selecting the base input with the shortest distance to 

  from the BaseDistances,wecanpredictatargetprogram’sfailuredistributionwithout performing any 

injection setups for the input sequence  . In case the selected base input is generated from two PCA-

generated points, for example S and Q in Figure 3.4, we need to also estimate the error classifications 

(     and   ) and metric values (   and   ) of the new generated input G to be used in equation (3.6). This 

can simply be done using the assigned weights of S and Q along with their error classifications and metric 

values. Therefore, instead of using equation (3.1) to predict the percentage of error classification   for 

input sequence  , equation (3.14) can be used in case the selected base input is generated from two PCA-

generated points. The results of the instruction-based prediction are presented in chapter 5. 

 
       ∑             

 

   

 (3.14) 

Here        is the predicted percentage of error classification   for input sequence   using the generated 

point G, and        is the estimated percentage of instruction category i classified as c for the execution 

flow corresponding to the generated point G. 

                                      (3.15) 

          
      

  
   (3.16) 

Here        and        are the percentage of instruction category i classified as c for the S and Q execution 

flows, respectively, and      and      can be calculated using equations (3.12) and (3.13). Moreover, in 

equation (3.16),        and    refer to the estimated number of experiments with injection in instruction 

category i, and the estimated total number of experiments for the e execution flow, respectively. They can 

be calculated using equations (3.17) and (3.18). 

               
    

    
   (3.17) 

 
    ∑      

    

    

 

   

   (3.18) 

Here      and      are the observed and estimated metric values (NLI, NSI, NAI, NBI, NLGI, and NPI) for 

the e execution flow and the execution flow corresponding to the generated point G, respectively, and      

is the estimated number of experiments with injection in instruction category i for the execution flow 

corresponding to the generated point G.      and      are calculated in equations (3.19) and (3.20). 

                                (3.19) 

                                (3.20) 
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Here      and      are the metric values (NLI, NSI, NAI, NBI, NLGI, and NPI) of the S and Q execution 

flows, respectively. Moreover,      and      refer to the total number of experiments with injection in 

instruction category i for the S and Q execution flows, respectively. 
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4 Implementation 

4.1 Target Programs 

In this section, we present the two target programs used in the fault injection setups; secure hash 

algorithm (SHA-1) and cyclic redundancy check (CRC-32). SHA-1 is a cryptographic hash function 

which generates a 160-bit message digest. It is used in many security protocols and applications such as 

SSL, TLS, SSH and IPsec. CRC-32 on the other hand, is a popular error-detecting code mostly used in 

networks to detect undesirable changes to data. Both SHA-1 and CRC-32 take as an input a string of 

arbitrary length. Even though the implementation of our both workloads can be found in the MiBench 

suite [36], we only take CRC from this suite. The MiBench implementation of SHA uses dynamic 

memory allocation which is not necessary for an embedded system. Thus, we adopt another 

implementation of SHA1. The choice of these two target programs is due to the following reasons: 

 Their acceptance as representative applications for characterizing instruction set architectures 

[37]. 

 They work on the same input type (a string of chars). Therefore we might investigate whether 

there is a correlation between the failure distribution, the applications, and the input e.g., the 

length of the input. 

 They have different structures, in particular with regards to; lines of source code (LOC), max 

Cyclomatic complexity (MCC), and size of the program, see Table 4.1. Moreover, CRC-32 has a 

                                                      
1 http://www.dil.univ-mrs.fr/~morin/DIL/tp-crypto/sha1-c 
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higher percentage of branch instructions when compared to SHA-1, while SHA-1 has a higher 

percentage of arithmetic instructions. Thus, CRC-32 can be considered as control flow intensive, 

while SHA-1 is arithmetic intensive. 

Table 4.1. The structure of the two target programs 

 Lines Of source Code 

(LOC) 

Max Cyclomatic 

Complexity (MCC) 

Size (bytes) 

CRC-32 16 2 2560 

SHA-1 125 7 13340 

Throughout the rest of this thesis, these two target programs are used in our fault injection setups 

(campaigns) and fault prediction. Moreover, they will be equipped with a proper software implemented 

fault tolerant to get validated on the effectiveness of the implemented fault tolerance mechanism. For 

simplicity throughout the remaining of this thesis, we use SHA and CRC instead of SHA-1 and CRC-32.  

4.1.1 SHA and CRC Input Sets 

Nine different inputs are selected for each workload. In order to be able to evaluate the behavior of each 

execution flow more accurately, the chosen set of inputs should be a proper representative of real 

applications. The input set is composed of sequences of alphanumerical characters generated randomly 

with a priori knowledge of input length. On the basis of the length of the inputs, we group them into the 

following three categories: 

 Small inputs, with length between 0 to 2 characters. 

 Medium inputs, with length between 3 to 60 characters. 

 Large inputs, their length between 61 to 99 characters. 

The three categories are chosen to represent input lengths that are common in real applications. Indeed, 

small inputs denote data produced by sensors to which is applied the CRC, medium inputs are 

representative of passwords hashed by SHA and large inputs are packets or messages to which have been 

appended a checksum or a digest as in TCP/IP networks. The input sets of the execution flows are shown 

in Table 4.2. 

Table 4.2. The input set for different execution flows 

Workload Category 
Number of inputs 

per category 
Input length Input name 

CRC 

Small inputs 3 

One input with length 0 CRC-1 

One input with length 1 CRC-2 

One input with length 2 CRC-3 

Medium inputs 4 
Two inputs with length 10 CRC-4 & CRC-5 

Two inputs with length 46 CRC-6 & CRC-7 

Large inputs 2 Two inputs with length 99 CRC-8 & CRC-9 

     

SHA 

small inputs 3 

One input with length 0 SHA-1 

One input with length 1 SHA-2 

One input with length 2 SHA-3 

Medium inputs 4 
Two inputs with length 10 SHA-4 & SHA-5 

Two inputs with length 60 SHA-6 & SHA-7 

Large inputs 2 Two inputs with length 99 SHA-8 & SHA-9 
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Since each input corresponds to an execution flow, the input name signifies both the workload and its 

input. For each input we perform two different campaigns; with and without software implemented fault 

tolerance. The result of the fault injection campaigns will be presented in chapter 5. 

4.1.2 Triple Time-Redundant Implementation with Forward Recovery (TTR-FR) 

TTR-FR [38] is implemented for both SHA and CRC to be used in our second set of campaigns. In this 

fault tolerance mechanism, each execution flow is being executed three times and the result of each run of 

the program is compared with the other runs. In case all runs of the program produces the same output, 

the injected fault has either been masked or had no impact on the generated sub-outputs of the execution 

flow; whereas different sub-outputs trigger the software-implemented voter to decide on the output of the 

execution flow. If only one run of the program generates a different output, output of the other two runs 

will be elected; this technique is known as forward recovery since the state of the faulty run moves 

forward to a fault-free point. Moreover, an unrecoverable error is signaled, if none of the program runs 

generate the same output. 

 

int main(void){  

     crc32file(input_1, &Output_1, &input_1_length));      

     crc32file(input_2, &Output_2, &input_2_length)); 

     crc32file(input_3, &Output_3, &input_3_length)); 

     if(Output_1 == Output_2){ 

        Output = Output_1; 

        if(Output_1 != Output_3){ 

            errorOccured = 85; 

            //Recover of Output-3 is done here. 

        } 

     } 

     else{ 

        errorOccured = 85; 

        if(Output_1 != Output_3){ 

            if(Output_2 != Output_3){ 

                errorOccured = 195; 

            } 

            else{//Recover Output-1 is done here. 

            } 

        } 

        else{//Recover Output-2 is done here. 

        } 

        if(errorOccured != 195){ 

            Output = Output_3;    

        } 

     } 

} 
 

Figure 4.1. TTR-FR implementation of CRC  

Figure 4.1 shows the TTR-FR implementation of the CRC target program. It is shown that crc32file, the 

function responsible for calculating CRC output, has been called three times each with a fresh copy of the 

input variable. The outputs of each program run are placed in Output-1, Output-2 and Output-3 variables, 

while the Output variable holds the elected value. The other important variable used in the TTR-FR 

implementation is errorOccured which is used to classify the effect of the injected fault in the system; as 

an example, in case errorOccured is equal to 85 at the end of a program run, the injected fault is classified 

as corrected by software (more on error classification in Section 4.2). ErrorOccured can have three 
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different values of (0, 85, and 195). This is due to the fact that we use a single-bit-flip fault model and 

there is a four-bit difference between each pair of errorOccured values, which makes a more robust fault 

tolerant implementation. 

4.2 Experimental Set-up 

As mentioned in chapter 2.2, Goofi-2 fault injection tool is used to evaluate the results of our instruction-

based prediction technique. In particular, the transient faults are emulated by single bit-flips in Goofi-2 

which is the fault model of the injections. In this thesis, as illustrated in Figure 4.2, Nexus-based fault 

injection technique is used with the support of iSYSTEM iC3000 Active Emulator [39]. The workloads 

are executed on the MPC565 microcontroller which is placed on a single-board computer phyCORE-

MPC565 [40]. The program which is written in C programming language is compiled with gcc 4.2.2 

compiler without any optimizations, and then it is downloaded to the board using WinIDEA [41]; an 

integrated development environment. Thus, in the first step, the program should be compiled, linked and 

executed in the WinIDEA interface to make sure it is correctly engaged on the board and ready to run the 

fault injection campaigns. 

 

Figure 4.2. Experimental setup 

Now, the fault injection campaign can be set up using Goofi-2 graphical user interface. Each campaign 

represents a set of fault injection experiments with a given execution flow. The injections are performed 

on registers and volatile memory words. Table 4.3 shows the used target registers and memory sections. 

The floating point registers are not among the target registers since they are not used in our target 

programs. Furthermore, since each workload’smachine code is located in the nonvolatile memory, it is 

excluded from the fault space. The fault injection space is then optimized by a pre-injection analysis [42] 

which reduces the fault space by excluding all redundant faults that have the same effect on the system 

and also the faults which are not going to be activated by the program execution. In addition, the fault 

injection is performed just before the target register or memory location is read by the execution flow. 

Table 4.3. Fault injection space 

Target registers  Target memory sections 

General Purpose Registers(GPR)  Stack 

Program Counter Register (PCR)  Data 

Link Register (LR)  Sdata 

Condition Register (CR)  Bss 

Integer Exception Register (XER)  Sbss 
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Since fault injection is a time-consuming process, an exhaustive fault injection is not feasible for the 36 

different campaigns that we are supposed to run, 18 for each target program (9 campaigns for when there 

is no fault tolerance mechanism and 9 campaigns for when there is TTR-FR). Therefore, in this thesis, 

each SHA and CRC campaign runs 25,000 and 12,000 injection experiments, respectively, with randomly 

selected fault locations, i.e., for each experiment, one fault location and one of its bits are randomly 

chosen. The results of one performed exhaustive injection have approved the proper choice of randomly 

chosen experiments. The next step is to set-up a timeout value for each campaign; this is defined 

according to the execution time of the target program to help Goofi-2 detect experiments that are stuck, 

e.g., in an infinite loop. The timeout is pessimistically selected to be 5 seconds for all our campaigns. This 

is due to the fact that the execution time of the fault-free program with/without TTR-FR is one order of 

magnitude less than this timeout. 

Finally when the setup configurations are completed and the campaign starts running, Goofi-2 performs a 

single fault-free run of the program, called the golden run, to store the measured results as reference data. 

The measured reference data will later on be compared to the results of the fault injection experiments to 

classify the outcome of every experiment. All measurements including the content of registers and 

memory locations will be stored in a database which is explained in the next section. 

4.2.1 Goofi Database   

Goofi-2 provides an optimized internal relational database to store data efficiently. A simplified 

representation of this database withtables’relationsis shown in Figure 4.3.Thecampaign’s configuration 

given in the interface of Goofi-2 is stored in the campaign table. Fault locations and injection space 

boundaries help Goofi-2 generate the elements of faultlist table. Furthermore, the faultlist table is 

connected to fault and registerinfo tables which store more detailed information about the fault injection 

locations and outcomes.  

The fault injection outcomes and measurements are stored in the experiment table which apart from the 

fault table, is connected to loggedmemorydata, loggedregisterdata, and pctrace. The values of registers 

and memory locations are stored in loggedregisterdata and loggedmemorydata, respectively for each 

experiment. Indeed, more detailed measurements of general purpose registers for each instruction 

execution are stored in gprvector table. On the other hand, the execution flow of the workload can be 

extracted from the pctrace table which includes program counter register values each indicating the 

address of an instruction. 
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Figure 4.3. Goofi-2 Database schema 

4.3 Assembly-Level Signature Creator (ASC) 

ASC is an application written in this thesis for analyzing the assembly code of the workloads and 

calculate the metric values explained in Section 3.2 in order to be able to create an assembly-level 

signature for each execution flow. 

In its first step, ASC parse the assembly code of a workload to makedistinctionbetween instructions’

address, opcode, and operands. The address corresponds to where the instruction is stored and is 

represented in hexadecimal format. The opcode is an assembly instruction from one of the instruction 

categories explained in Section 3.2.1, and operands are where the data is placed, i.e., different registers or 

memory locations. A part of an assembly code is shown in Figure 4.4. 

  Add r5,r5,r4 /* correct to real pointer */ 

200c: 7c a5 22 14 Add r5,r5,r4  

  Lwz r4,.Ltable(r5) /* get linker's idea of where .Laddr is */ 

2010: 80 85 80 00 Lwz r4,-32768(r5)  

Figure 4.4. A sample piece of an assembly code 

In order to analyze an execution flow, program counter register values should be traced for the golden 

run. Thisisduetothefactthatprogram’ssignatureisneededonthefault-free run of the program and the 

program counter register at any time contains the address of the executing instruction. Following program 

counter register values helps us find the execution flow of the program, e.g., different input sequences 

might lead to different number of while loop executions. Program counter register value updates of the 
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golden run can be followed using Goofi-2 database specifically the pctrace table as illustrated in Figure 

4.3. N.B. ASC does not use any data corresponding to the fault injection experiments and the only reason 

for using Goofi-2’sdatabaseisto retrieve the program counter register values of the golden run. There are 

other utilities which can be used for this purpose even though working with Goofi-2 pctrace table is more 

convenient. The next step is to calculate metric values. 

201c: 80 e5 80 10 Lwz r7,-32752(r5) 

Figure 4.5. Example of a load instruction 

The instruction metrics which were explained in Section 3.2.1 can now be extracted using the pctrace, 

instruction’s opcodes, and the “categoryfile” corresponding to the instruction categories. A part of this 

file contains the different instructions existed in the 6 defined instruction categories, see Table 3.1. 

To calculate the values of the registers metrics, additional information is needed to decide on how the 

registers are accessed, i.e., in the write mode or in the read mode. This is due to the fact that the operands 

ofan instructionareaccesseddifferentlyaccording to the instruction’sopcode.Forexample,add r4,r7 

results in two accesses in the read mode and one access in the write mode to general purpose registers. 

A list of opcodes with their operands access modes is provided as Assembly-level definitions for the 

MPC565 (PowerPC) in [43] which is also used in ASC with some modifications. Thus, the values of the 

register metrics are obtained by the following steps: 

 Using the pctrace table to find the current instruction in the execution flow. 

 Placingthefoundinstruction’sopcodeintoitsinstruction category. 

 Decidingontheaccessmodeofinstruction’soperandsbasedontheinstruction’sopcode 

 Calculating the values of the number of access and distance metrics. 

N.B. even though r1 is among the general purpose registers, it is analyzed in the metrics corresponding to 

the stack pointer. 

Since the memory metrics investigate the access to different memory sections in an execution flow, ASC 

needs to find out the memory addresses which are accessed during the execution of the program. The only 

instruction categories that access the memory are load and store which read/write form/to the memory, 

respectively. To find target memory locations of the instructions in these categories, operands of these 

instructions should be explored. For instance, consider the instruction in Figure 4.5 which loads from 

memory location -32752+(r5) to register r7. Thus, the value of r5 should be added to the constant value -

32752 to calculate the target memory location. 

This means that, sometimes the content of the general purpose registers are required to be able to 

calculate accessed memory locations. Therefore, ASC makes use of another Goofi-2 table called 

gprvector. This table holds values of general purpose registers for the Golden run of each execution flow. 

The next step is to find the memory section of the calculated memory location. This can be done by 

parsing the “memory section file” extracted for each execution flow using objdump utility. Memory 

section names and boundaries are placed in this file; therefore the calculated memory locations can be 

looked up in this file to be able to decide on the accessed memory section. N.B. since stack section is 
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allocateddynamically,only its start addresscanbecalculatedusing the“memory section file”. Its end

address is extracted automatically by ASC from the “linker file” of the workload.  

To conclude, the following files are parsed by ASC in order to calculate the values of different metrics of 

each execution flow: 

 The categories 

 The assembly-level definitions for the MPC565 (PowerPC) 

 The assembly code 

 The linker 

 The memory sections 

It should be mentioned that the “categories file” consists of instruction categories, register categories, and 

memory sections. Ultimately, ASC provides the values of all metrics in an output file to be used as the 

signature of each execution flow. 
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5 Result 

5.1 Experimental Results for Workloads without Software implemented 
Fault Tolerance  

5.1.1 Metrics Results 

Table 5.1 shows a summary of the assembly metrics that are defined in Table 3.2. Metrics in this table 

consist of the percentages of different executed instruction categories, the number of read from general 

purpose registers, and the number of read from stack pointer register. Throughout this section, the values 

of these metrics are used to analyze the results in more details. 

5.1.2 Experimental Results 

In this section we describe the outcomes of fault injection campaigns conducted on the two workloads, 

CRC and SHA. For each SHA and CRC execution flow we inject 25,000 and 12,000 faults, respectively, 

hence we have 9 fault injection campaigns for each workload that result in 225,000 and 108,000 of 

injected faults. The error classification scheme of each injection experiment is as follows: 

 No Impact (NI), errors that do not affect the output of the execution flow. 

 Detected by Hardware (DHW), errors that are detected by the hardware exceptions. 

 Time Out (TO), errors that cause violation of the timeout2. 

                                                      
2 Timeout is an order of magnitude larger than the worst-case execution time of a workload. 
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 Value Failure (VF), erroneous output with no indication of failure (silent failure). 

 Detected by Software (DSW), errors that are detected by the software detection mechanisms. 

 Corrected by Software (CSW), errors that are corrected by the software correction mechanisms. 
 

When presenting the results, we also define coverage as the probability that an error does not cause value 

failure, thus the coverage (COV) of each execution flow can be calculated using equation (5.1) : 

             (5.1) 

Where N is the total number of experiments, and #VF is the total number of experiments that resulted in 

value failure. This equation also includes experiments classified as no impact and timeout. No impact 

experiments can be regarded as internal robustness of the workload; therefore they contribute to the 

overall coverage of the system. Timeout experiments on the other hand, are detected Goofi-2. In a real life 

application where there is no fault injection tool to be used for timeout detection, watchdog timers are 

used to detect these errors. 

Table 5.1. Summary of assembly metrics for CRC and SHA execution flows 

Execution 

Flow 
PLI PSI PAI PBI PLGI PPI NRGPR NRSP 

SHA-1 34.99% 11.29% 30.68% 3.18% 19.41% 0.44% 10650 63 

SHA-2 35.07% 11.29% 30.56% 3.24% 19.40% 0.44% 10697 63 

SHA-3 35.12% 11.29% 30.48% 3.28% 19.39% 0.44% 10730 63 

SHA-4 35.53% 11.34% 29.96% 3.48% 19.26% 0.43% 10992 63 

SHA-5 35.53% 11.34% 29.96% 3.48% 19.26% 0.43% 10992 63 

SHA-6 36.57% 11.35% 29.05% 3.80% 19.02% 0.21% 23027 69 

SHA-7 36.57% 11.35% 29.05% 3.80% 19.02% 0.21% 23027 69 

SHA-8 37.38% 11.46% 27.99% 4.21% 18.77% 0.20% 24302 69 

SHA-9 37.39% 11.46% 27.98% 4.21% 18.76% 0.20% 24334 69 

AVERAGE 36.02% 11.35% 29.52% 3.63% 19.14% 0.33% 16527.89 65.66 

CRC-1 33.93% 26.79% 7.14% 10.71% 5.36% 16.07% 51 14 

CRC-2 37.21% 20.93% 9.30% 8.14% 12.79% 11.63% 87 14 

CRC-3 38.79% 18.10% 10.34% 6.90% 16.38% 9.48% 123 14 

CRC-4 41.85% 12.64% 12.36% 4.49% 23.31% 5.34% 411 14 

CRC-5 41.85% 12.64% 12.36% 4.49% 23.31% 5.34% 411 14 

CRC-6 42.97% 10.65% 13.09% 3.62% 25.84% 3.83% 1707 14 

CRC-7 42.97% 10.65% 13.09% 3.62% 25.84% 3.83% 1707 14 

CRC-8 43.16% 10.31% 13.22% 3.47% 26.27% 3.57% 3615 14 

CRC-9 43.16% 10.31% 13.22% 3.47% 26.27% 3.57% 3615 14 

AVERAGE 41.08% 14.78% 11.92% 5.44% 20.60% 6.96% 1303 14 

 

5.1.2.1 Workloads Comparison  

We investigate the experiments outcomes with respect to both the fault locations (e.g., general purpose 

registers) and the instructions being executed when the fault is injected. Table 5.2 summarizes the results 

of the fault injection campaigns for the two workloads. In this table, the ERRORS column shows to the 
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sum of faults for the nine campaigns corresponding to the mentioned fault locations. Besides, throughout 

the remaining of the thesis, we refer to the Link register, Condition register, and Integer Exception 

register as Miscellaneous registers (Misc).  

Table 5.2. Summary of CRC (left table) and SHA (right table) failure distributions  

Fault 

Location 

ERRORS NI VF  DHW TO  Fault 

Location 

ERRORS NI VF  DHW TO 

 # %   # % 

GPRs 48,163 27.45 39.66 30.95 1.93  GPRs 105,032 13.86 55.82 28.04 2.28 

PCR 42,371 13.58 11.46 74.58 0.38  PCR 85,271 13.73 16.86 68.87 0.54 

MISC 3,981 61.47 28.49 9.62 0.43  MISC 5,765 63.14 35.30 1.46 0.10 

MEM 13,485 28.35 63.65 7.69 0.31  MEM 28,932 10.10 84.17 3.94 1.80 

Total 108,000 23.38 31.18 44.38 1.06  Total 225,000 14.59 44.18 39.73 1.50 

 

After comparing the outcomes of the two workloads, a number of major findings are summarized as 

follows: 

 A high percentage of the errors in the program counter register are detected by hardware 

exceptions for both CRC and SHA, these results are in accord with [14]. This is due to the fact 

that an error in the program counter register is more likely to trigger a hardware exception like 

data violation or execution of a not implemented instruction.   

 The percentage of value failures caused by fault injections in Misc registers is higher for SHA 

than for CRC. The content of these registers are changed mainly by the arithmetic instructions 

which are executed significantly more in SHA than in CRC according to Table 5.1. 

 Indeed, fault injections in GPRs and memory locations cause a higher percentage of experiments 

to be classified as no impact in CRC compared to SHA. However in SHA, higher percentage of 

injections in GPRs and memory locations are classified as value failure compared with CRC. 

One reason for this behavior can be explained by analyzing the two case studies in Figure 5.1. In 

case 1, a piece of CRC disassembly code, shows that load instructions which fetch the memory 

contents, are followed by rotate, shift or compare instructions. These orders of instructions along 

with 0-bit sequences in the memory would make the bit flipping ineffective due to the fact that 

the memory content is changed immediately. Since there are a great number of experiments with 

the above mentioned behaviour in CRC, the results of the fault injections in the memory would 

not be effective in 28% of the times, e.g., 30% of the experiments for the load instruction at 

address 21f4, and 26% of experiments at address 219c resulted in no impact. On the other hand, 

the faults injected into the memory for SHA, as shown in the case 2 of Figure 5.1, turn out to be 

more effective. This might be due to the fact that the content of the memory is not always 

immediately consumed by rotate or compare instructions, e.g., the fetched memory content is 

stored in the memory for further usages. Therefore there is a higher probability that the injected 

fault causes value failure. In addition, SHA is a bigger program compared to CRC and it 

executes load instructions more than CRC, thus SHA is more prone to value failure than CRC. 

The proposed metrics are not capable of fully capturing these effects. However, percentage of 

load instructions (PLI) (see Table 5.1) can be used to help us understand whether a workload is 

more sensitive than another one to faults injected in memory. Indeed, the percentage of load 
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instructions for CRC is greater than the percentage of load instructions of SHA, which shows 

that CRC workload is more likely to mask the effects of the fault injections.  

 

Case 1  Case 2 
219c: 81 3f 00 14  lwz r9,20(r31) 

21a0: 55 20 06 3e  clrlwi r0,r9,24 

… 

21f4: 80 1f 00 14  lwz r0,20(r31) 

21f8: 2f 80 00 00  cmpwi cr7,r0,0 

… 

21a4: 81 7f 00 18  lwz r11,24(r31) 

21a8: 7c 00 5a 78  xor r0,r0,r11 

21ac: 54 00 06 3e  clrlwi r0,r0,24… 

 

 234c: 80 1f 00 10  lwz r0,16(r31) 

2350: 2f 80 00 00  cmpwi cr7,r0,0 

… 

26e4: 80 1f 00 0c  lwz r0,12(r31) 

26e8: 90 1f 00 08  stw r0,8(r31) 

… 

273c: 81 3f 00 10  lwz r9,16(r31) 

2740: 80 1f 00 0c  lwz r0,12(r31) 

2744: 7d 29 03 78  or r9,r9,r0) 

Figure 5.1. Case study of faults injected in memory for CRC (case 1) and SHA (case 2) 

5.1.2.2 Execution Flows Comparison 

Table 5.3 shows the experiment outcomes for different CRC and SHA execution flows. The percentage of 

experiments classified as value failure grows linearly as the length of the inputs increase. We can 

reasonably approximate the value failure to a normal variable due to the large number of experiments, 

25000 and 12000 for each SHA and CRC execution flow. Moreover, the number of experiments is 

enough to give high confidence in the obtained results. The 95% confidence interval for the value failures 

presented in Table 5.3 varies from ±0.43% to 0.88%. 

Table 5.3. CRC and SHA failure distributions for different execution flows 

Execution 

Flow 

Total NI VF DHW TO COV  Execution 

Flow 

Total NI VF DHW TO COV  

 #   %     #   %    

CRC-1 12000 42.72 6.06 48.22 3.01 93.94  SHA-1 25000 18.86 38.76 40.98 1.4 61.24  

CRC-2 12000 32.94 17.94 46.73 2.38 82.06  SHA-2 25000 17.76 40.1 40.99 1.14 59.9  

CRC-3 12000 28.3 24.31 45.83 1.56 75.69  SHA-3 25000 17.58 40.82 40.6 1 59.18  

CRC-4 12000 20.81 34.32 44.03 0.84 65.68  SHA-4 25000 15.94 43.13 39.37 1.56 56.87  

CRC-5 12000 20.33 35.5 43.61 0.57 64.5  SHA-5 25000 16.81 42.05 39.7 1.44 57.95  

CRC-6 12000 16.55 39.79 43.41 0.25 60.21  SHA-6 25000 11.53 47.06 39.5 1.9 52.94  

CRC-7 12000 17.06 39.59 43.05 0.3 60.41  SHA-7 25000 11.43 47.72 39.26 1.58 52.28  

CRC-8 12000 16.02 41.92 41.77 0.29 58.08  SHA-8 25000 10.72 48.81 38.78 1.68 51.19  

CRC-9 12000 15.68 41.19 42.75 0.38 58.81  SHA-9 25000 10.68 49.13 38.4 1.78 50.87  

 

If we consider that the value failure is distributed as a normal variable with a mean value equals to the 

quote between the number of value failure experiments and total number of experiments, we can conduct 

one way analysis of variance (ANOVA) to inspect if there is a linear correlation between the length of the 

input and the percentage of value failure. ANOVA is performed by testing the hypothesis H0 which states 

“there is no linear correlation between the length of the input and the percentage of value failure”. The 

results of ANOVA in Table 5.4 allow us to reject H0 with a confidence of 95%. The reason behind this 

correlation is that when the length of the input increases, the number of reads from registers and memory 

locations increase as well. This means that there are more possibilities to inject faults that result in value 

failure. 
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Table 5.4. Hypothesis test results for CRC and SHA 

Hypothesis Workload 
p-value 

(α=0.05) 
Outcome Linear regression Equation 

NO linear correlation between VF and 

input length. 
CRC 0.0309 Reject H0 VF = 23.55 + 0.22length 

SHA <0.001 Reject H0 VF = 40.64 + 0.09length 

NO linear correlation between DHW 

and input length. 
CRC 0.013 Reject H0 DHW = 45.78 - 0.040length 

SHA 0.034 Reject H0 DHW = 40.46 -0.019length 

NO linear correlation between TO and 

input length. 
CRC 0.046 Reject H0 TO = 1.67 - 0.017length 

SHA 0.37 Accept H0 -- 

NO linear correlation between COV 

and  input length 
CRC 0.0309 Reject H0 COV = 76.45 - 0.22length 

SHA <0.001 Reject H0 COV = 59.35-0.09length 
 

The percentage of detected by hardware experiments, as shown in Table 5.3, is always around 44 and 40 

percent for the CRC and SHA execution flows, respectively. This means that there may be only a minor 

correlation between the percentage of detected by hardware experiments and the input length. The 

outcome of the hypothesis test, H0 that states “there is no linear correlation between the results of 

detected by hardware experiments and the input length” is presented in Table 5.4. Though the test reveals 

that for both workloads this hypothesis is rejected, the probability of errors being detected by hardware 

slightly decreases as the input length increases (the coefficient is -0.019 for SHA and 0.04 for CRC). 

Analogously, the proportion of experiments classified as timeout is almost constant for all the workloads. 

Table 5.4 shows that COV is decreased as the input length increases for both CRC and SHA. This is 

acceptable because the percentage of value failures increases with the length of the input. The test of 

hypothesis in Table 5.4 reveals that coverage and value failures are linearly correlated and that the 

coverage decreases faster for CRC than SHA with the increase in the length of the input. 

 

Table 5.5. CRC and SHA failure distributions w.r.t. the PCR 

Execution 

Flow 

Total NI VF DHW TO  Execution 

Flow 

Total NI VF DHW TO 

 # %   # % 

CRC-1 4966 19.98 2.28 76.82 0.93  
SHA-1 

9,533 15.05 15.26 69.26 0.42 

CRC-2 4811 15.9 7.3 75.81 1  
SHA-2 

9,544 14.75 16.05 68.65 0.54 

CRC-3 4789 15.29 9.29 74.86 0.56  
SHA-3 

9,473 14.56 15.92 68.78 0.74 

CRC-4 4742 13.05 12.13 74.42 0.4  
SHA-4 

9,496 13.84 16.85 68.66 0.65 

CRC-5 4726 13.06 13.25 73.44 0.25  
SHA-5 

9,516 13.69 16.6 69.21 0.49 

CRC-6 4572 11.59 14.39 73.99 0.02  
SHA-6 

9,375 12.83 17.91 68.64 0.62 

CRC-7 4562 11.14 14.64 74.11 0.11  
SHA-7 

9,494 13.46 17.73 68.32 0.5 

CRC-8 4578 10.66 15.4 73.9 0.04  
SHA-8 

9,404 12.8 17.71 69.01 0.48 

CRC-9 4625 10.9 15.42 73.66 0.02  
SHA-9 

9,436 12.57 17.78 69.27 0.38 
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Table 5.5 shows that a high percentage of the errors in the program counter register are detected by 

hardware exceptions for both CRC and SHA. This is due to the fact that an error in the program counter 

register is more likely to trigger a hardware exception. However, around half of the remaining injections 

in the program counter register cause value failures. This might be due to the fact that some faults modify 

the program counter register in a way that the execution flow jumps to an instruction where it is still 

possible to finish the program execution without being detected by the hardware exceptions. 

5.1.2.3 Value Failure Distribution over the Instruction Categories 

Table 5.6 shows the distribution of the value failures over different instruction categories for all the 

execution flows, i.e., the value in each cell corresponds to the percentage of value failures for injections in 

different specific instruction categories. The distribution of the value failures for both workloads is in 

accord with the results in Table 5.1. Indeed, the most executed instructions are to a great extent 

responsible for value failures as it is shown in Figure 5.2. For instance, the load, logical, store, and 

arithmetic categories are the most executed instructions in CRC, and they are responsible for a significant 

part of value failures as well. 

Table 5.6. Value Failure distribution over the instruction categories for CRC and SHA 

 
LOAD STORE ARITHM BRANCH LOGICAL PROCESSOR 

% 

CRC-1 2.24 2.28 0.19 0.50 0.71 0.13 

CRC-2 6.46 4.78 2.48 0.87 2.79 0.56 

CRC-3 9.38 5.39 3.60 0.95 4.00 0.99 

CRC-4 15.06 4.83 6.18 1.27 5.78 1.21 

CRC-5 15.54 5.01 6.22 1.34 6.12 1.28 

CRC-6 18.10 4.46 7.17 1.48 7.31 1.28 

CRC-7 17.98 4.64 7.07 1.42 7.33 1.17 

CRC-8 19.03 5.04 7.36 1.46 7.78 1.24 

CRC-9 19.03 4.82 6.84 1.41 7.51 1.58 

SHA-1 14.84 5.02 11.48 0.57 6.80 0.04 

SHA-2 15.22 5.06 11.98 0.76 7.02 0.06 

SHA-3 15.79 5.28 11.98 0.79 6.93 0.06 

SHA-4 15.22 5.06 11.98 0.76 7.02 0.06 

SHA-5 16.74 5.42 11.94 0.94 6.96 0.06 

SHA-6 18.56 6.46 13.36 1.43 7.22 0.03 

SHA-7 19.22 6.51 13.55 1.43 7.00 0.01 

SHA-8 19.78 6.67 13.80 1.57 6.96 0.03 

SHA-9 20.04 6.96 13.49 1.59 7.02 0.02 
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Figure 5.2. Value Failure distributions over different instruction categories for CRC (left chart) and SHA (right chart) 

execution flows. 

5.2 Experimental Results for Workloads Equipped with TTR-FR 

All the analyzed non-TTR-FR workloads consist of three major code blocks; startup, main function, and 

core function. In addition to these code blocks, the TTR-FR implementation also consists of the voter in 

its main function which performs the majority voting, see Figure 5.3. The core function, which is called 

three times from the main function, performs the foremost functionality of each workload. As an example, 

in CRC, the core function is responsible for the checksum calculations. 

 

Figure 5.3. The TTR-FR code blocks 

5.2.1 Workloads Comparison 

This section summarizes the results of the fault injection campaigns for the workloads equipped with the 

TTR-FR mechanism. For simplicity, we refer to the two workloads as CRC-TTR and SHA-TTR. Table 

5.7 shows the aggregated results for CRC-TTR and SHA-TTR. In this table, DSW is the percentage of 

errors detected by software, which is when all three runs of the program produce different outputs. 

Moreover, CSW is when an execution flow generates a correct output as a result of the majority voting. 

Table 5.7. Summary of CRC-TTR (left table) and SHA-TTR (right table) failure distributions 

Fault 

Location 

ERRORS NI VF CSW DSW DHW TO  Fault 

Location 

ERRORS NI VF CSW DSW DHW TO 

 # %   # % 

GPRs 48186 23.80 0.58 44.18 0.11 30.30 1.02  GPRs 104800 14.01 0.36 54.57 0.01 28.58 2.48 

PCR 41782 13.22 1.77 11.24 0.30 73.24 0.23  PCR 85022 13.96 1.47 16.59 0.41 66.52 1.04 

MISC 3583 53.00 0.50 37.68 0.03 8.43 0.36  MISC 5922 65.25 0.24 33.18 0.02 1.22 0.10 

MEM 14448 24.54 5.17 60.71 0.19 8.11 1.28  MEM 29254 10.92 0.33 82.93 0.00 4.05 1.77 

Total 107999 20.77 1.65 33.43 0.19 43.22 0.73  Total 224998 14.92 0.77 43.36 0.16 39.00 1.79 
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The main observations are summarized as follows: 

 The TTR-FR mechanism seems to be very effective for both workloads, indeed the percentage of 

value failure is about 0.8% for SHA and 1.6% for CRC. 

 The TTR-FR mechanism proves to be a good technique to mask errors in all the fault locations 

and in particular for the general purpose registers. It is notable that the percentage of corrected 

errors in the GPRs is 54% for SHA-TTR while it is 44% for CRC-TTR. These results are 

expected because transient faults are masked with a new run of the program as it is done In the 

TTR-FR. Out of the total number of around 225000 and 108000 injected faults for SHA and 

CRC workloads, few experiments (1729 experiments for CRC and 1786 experiments for SHA) 

resulted in value failure. The proportion of value failure varies for different code blocks:  

a. With respect to the core function, the main contributor to the lack of coverage is 

injections in the program counter register. These faults change the control flow in such a 

way that the voter is incorrectly executed or not executed at all. For instance, for the core 

function of SHA, around 96% of the value failures were caused by faults in the program 

counter register. 

b. Since other parts of the source code including the voter are not protected with the TTR-

FR mechanism, the injections in different registers and memory words are more likely to 

contribute to the value failure. For this reason, we performed exhaustive fault injection 

(i.e., we inject all possible faults) in the voter to evaluate its robustness for each 

workload. It is notable that about 14% of the injections in the voter resulted in value 

failures. Therefore, even though TTR-FR mechanism decreases the percentage of value 

failure, the voter is one of the main contributors to the remained percentage of value 

failure. 

 The percentage of TTR-FR experiments classified as corrected by software is approximately 

equal to the percentage of value failure in Table 5.2. This means that the TTR-FR can tolerate 

almost all the previous cases of injections classified as value failures, although it is not totally 

immune to faults that affect program’s voter, startup code, or control flow. 

 The percentages of experiments classified as detected by hardware in CRC and SHA are 

analogous to their enhanced versions, CRC-TTR and SHA-TTR. The reason might be that, the 

enhanced version of the original workload can be considered as a program that executes the 

original workload three times, along with few more lines of codes, e.g. the voting function. The 

faults are then more likely to be injected during one of the three executions, since the new lines 

of codes run for much shorter time. Therefore the percentage of experiments classified as 

detected by hardware for the enhanced version of a workload is more likely to be similar to the 

original workload.  

 Another reason for observing analogous percentages of experiments classified as detected by 

hardware for CRC and SHA might be the similar percentages of injected faults in program 

counter register and general purpose registers for the original and its enhanced versions, see 

Table 5.2 and Table 5.7. Since experiments classified as detected by hardware are mainly as a 

result of injected faults in program counter register and GPR, the outcomes of detected by 

hardware for the original workloads are similar to the enhanced versions. Indeed, if an injected 

fault is classified as detected by hardware in one of the three runs, execution of the program will 

be terminated before it can be detected by TTR-FR. 
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 The percentages of experiments classified as no impact do not change significantly between the 

original workloads and their enhanced versions. 

5.2.2 Execution Flows Comparison 

Table 5.8 illustrates the outcome distribution of different execution flows in CRC-TTR and SHA-TTR. It 

is notable that the percentage of experiments classified as corrected by software increases with the growth 

of the input length. We can test it in a similar way that we did for SHA and CRC execution flows by 

using hypothesis H0 that states “there is no linear correlation between the percentage of errors corrected 

by software and the length of input”. The 95% confidence interval for the corrected by software 

experiments varies for about ± 0.6% for SHA-TTR and from ±0.56% to ± 0.88% for CRC-TTR. The 

results in Table 5.9 show that we can reject H0 for SHA, but accept it for CRC even though the p-value is 

0.065. Moreover, the slope of the linear regression model for SHA value failures in Table 5.4 and the 

slope of the model for corrected by software experiments in Table 5.9 are fairly close. This is a further 

enforcement of the observation that the TTR-FR can successfully cope with the errors classified as value 

failures with the increase of the input length. 

Table 5.8. CRC-TTR and SHA-TTR failure distributions for different execution flows 

Execution 

Flow 
Total NI VF CSW DSW DHW TO COV  

Execution 

Flow 
Total NI VF CSW DSW DHW TO COV 

 # %   # % 

CRC-1 12000 38.87 0.89 10.81 0 47.96 1.48 12000  SHA-1 25000 18.91 0.73 38.42 0.16 39.82 1.96 99.27 

CRC-2 12000 26.3 2.27 24.33 0.19 45.97 0.94 12000  SHA-2 25000 18.63 0.84 39.53 0.18 38.92 1.9 99.16 

CRC-3 12000 22.65 2.35 29.34 0.34 44.67 0.65 12000  SHA-3 24999 18.28 0.81 39.79 0.18 39.18 1.76 99.19 

CRC-4 12000 17.73 1.77 37.46 0.12 42.36 0.57 12000  SHA-4 24999 17.32 0.91 40.71 0.15 39.23 1.67 99.09 

CRC-5 12000 17.97 1.84 36.89 0.12 42.67 0.51 12000  SHA-5 25000 17.74 0.83 40.3 0.16 39.58 1.4 99.17 

CRC-6 12000 15.62 1.56 40.43 0.15 41.9 0.34 12000  SHA-6 25000 11.28 0.68 47.08 0.19 39 1.78 99.32 

CRC-7 11999 16.09 1.66 40.45 0.15 41.44 0.22 11999  SHA-7 25000 11.07 0.77 47.44 0.18 38.84 1.71 99.23 

CRC-8 12000 15.84 1.2 40.9 0.38 40.78 0.9 12000  SHA-8 25000 10.47 0.65 48.59 0.09 38.22 1.98 99.35 

CRC-9 12000 15.89 1.35 40.27 0.29 41.23 0.97 12000  SHA-9 25000 10.6 0.69 48.41 0.13 38.24 1.93 99.31 

 

Furthermore, we can investigate if there is a linear correlation between the value failures of the extended 

versions and the length of input. The limits of confidence interval of the experiments classified as value 

failures are ± 0.01% for SHA-TTR and ±0.27% for CRC-TTR. According to Table 5.9, such hypothesis 

still holds for SHA. However it is interesting to notice that value failures decreases with the length of 

input for SHA-TTR. A possible explanation for this behavior is that the relative size of the core function 

in SHA-TTR is bigger than CRC-TTR. By increasing the length of the input, the core function will be 

lengthier and more faults would be injected in it. These faults are less likely to cause value failure due to 

the redundancy in the core function. Moreover, the percentage of experiments classified as corrected by 

software increases with the increase of input length which causes the value failures to be decreased for 

SHA-TTR. 
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Table 5.9. Hypothesis test results for CRC-TTR and SHA-TTR 

Hypothesis Workload 

p-value 

(α=0.05) 

Outcome Linear regression Equation 

NO linear correlation between 

CSW and  input length 

CRC-TTR 0.065 Accept H0 -- 

SHA-TTR <0.001 Reject H0 CSW = 39.43 + 0.10length 

NO linear correlation between VF 

and  input length 

CRC-TTR 0.1891 Accept H0 -- 

SHA-TTR 0.015 Reject H0 VF = 0.0082 - 0.0016length 

NO linear correlation between 

DHW and  input length 

CRC-TTR 0.022 Reject H0 DHW = 44,78 - 0.0448length 

SHA-TTR 0.030 Reject H0 DHW = 39.42 - 0.011length 

NO linear correlation between 

COV and  input length 

CRC-TTR 0. 1891 Accept H0 -- 

SHA-TTR 0.015 Reject H0 COV = 99.17 + 0.001length 

 

In both workloads there is a linear correlation between the percentage of experiments classified as 

detected by hardware and the length of input. This result is similar to the one obtained for non TTR-FR 

workloads. 

The coverage, COV, defined in equation (5.1) is linearly correlated with the length of input for SHA, but 

it is not correlated for CRC. However, we can consider that the coverage is approximately constant, since 

the coefficient is very small for SHA and varies slightly in CRC.  

5.3 Instruction-based Prediction Results for CRC and SHA Workloads 

In this section, the instruction-based prediction technique is evaluated by investigating 9 different input 

sequences for each target program. The assembly level signatures of all fault-free execution flows are 

analyzed using PCA, discussed in Section 3.3.1. Moreover, the results of a number of failure distribution 

predictions are presented.  

The instruction-based prediction technique, as discussed in Section 3.3, consists of two parts. In the first 

part, only one input sequence is selected as the base input, while in the second part, two input sequences 

are used to generate a better base input. Figure 5.4 illustrates the PCA analysis results of different 

execution flows on the metric values generated by the assembly signature creator (ASC). As can be seen, 

execution flows with same input lengths generate adjacent point in the Cartesian coordinate system. This 

observation will later on be used in the failure distribution predictions. 
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Figure 5.4. PCA-generated points for different CRC and SHA execution flows 

5.3.1 Using One Input Sequence as the Base 

In order to predict the failure distribution of an execution flow, its closest point in the Cartesian 

coordinate system should be selected as its base input. Then by using the equation (3.6), the failure 

distribution of the target input can be predicted. As an example, as shown in Figure 5.4, in case we have 

already estimated the failure distribution of CRC-6 using fault injection, the failure distribution of CRC-7 

can be predicted using CRC-6 as the base input. The same scenario is applicable to CRC-8 and CRC-5 in 

which CRC-9 and CRC-4, respectively, will be selected as the best base input sequences. 

The results of using instruction-based prediction technique to predict non-covered errors (value failures) 

are shown in Figure 5.5. Subfigure a refers to the comparison of the predicted and observed value failures 

for CRC execution flows, while subfigure b corresponds to SHA. CRC shows higher fluctuation of value 

failure with regards to different input sequences. 

It can also be seen in Figure 5.5 that each predicted value failure leans towards the value failure of its 

selected base input (except for when CRC-1 is used to predict CRC-2). That is, the predicted value failure 

is a value between the observed value failures of every two inputs. As an example, the higher percentage 

of predicted value failure for SHA-8 (compared to its observed value failure percentage) using SHA-9 is 

due to the fact that SHA-9 has a higher observed value failure when compared to SHA-8. 

The weakness of the first part of the instruction-based prediction technique is that it only works fine when 

there is an adjacent point to the target point. For example, in case there was no point in Figure 5.4, 

corresponding to SHA-7, the selected base sequence for predicting the value failure of SHA-6 would be 

SHA-9. The value failure prediction of SHA-6 using SHA-9 as the base input shows the deviation of 

around 2% (between the predicted and observed values). It can also be seen in the subfigure a of Figure 

5.5 that the results of the predictions for the first three CRC execution flows are not satisfactory. This is 

as a result of the high distance between the PCA generated base and target inputs, see Figure 5.4. 

Therefore, in the second part, two input sequences are used to generate a possibly better base input.  
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Figure 5.5. Predicted vs. observed non-covered errors (value failures) using one input as the base 

N.B. the value inside the left square brackets corresponds to the base input while the right square bracket contain the target input. 

 

5.3.2 Using Two Input Sequences to Generate the Base Input  

In the second part of the instruction-based prediction technique, we use two input sequences to predict the 

failure distribution of another execution flow. The idea behind this mechanism is presented in Section 

3.3.1 where all different combinations of two input sequences should be selected to generate another input 

which can also be represented in the PCA diagram. Finally, the generated input with the shortest distance 

to the target input is selected as the base input. It is then used in equation (3.14) to predict the failure 

distribution of another input sequence.  

In order to evaluate the second part of the instruction-based technique using the presented execution 

flows, we assume that the closest base input is generated using two input sequences instead of one. For 

example, assume that in Figure 5.4, there is no point corresponding to CRC-7. Then the closest base input 

sequence to predict the failure distribution of CRC-6 is generated using CRC-8 and CRC-4. The reason 

for making this assumption is that for example CRC-7 is so close to CRC-6 that no other two input 

sequences can generate a better base input. Therefore, in order to evaluate the second part, we remove one 

input of each two adjacent points to let another two input sequences generate a better base input, e.g., 

when CRC-7 is removed, all combinations of the remained seven input sequences compete to generate a 

better base input for the prediction of CRC-6. 

Figure 5.6 shows the results of applying instruction-based prediction technique using two input sequences 

to predict the percentage of experiments resulted in value failure, detected by hardware, and time out 

classifications. Only the input sequences of 3, 4, and 6 of each workload are predicted with the left 

column corresponding to CRC and the right column corresponding to SHA. 
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Figure 5.6. Predicted vs. observed failure distributions using two base inputs 

N.B. the values inside the left square brackets corespond to the base inputs while the right square bracket contain the target input. 
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In the value failure predictions (subfigures a and b), the highest divergence from the observed percentage 

of value failure is 2.3 percentage points which corresponds to the case in which CRC-3 and CRC-7 are 

used to predict the value failure of CRC-4. This divergence is 24.5 percentage points in case of using only 

CRC-3 as the base input which means that the input generated by CRC-3 and CRC-7 produced a better 

base input. Even though there is a divergence of 2.3 percentage points for the value failure prediction of 

CRC-4, subfigure e shows that its time out is predicted with only 0.1 percentage points of deviation. 

In Table 5.10, we used mean squared error (MSE) in order to quantify the difference between the 

predicted and the observed percentages of value failures. In this table we compare the results of value 

failure prediction using instruction-based technique and linear regression equation presented in Table 5.4. 

The errors shown in the first two columns of Table 5.10 correspond to nine sample predictions, while the 

ones in the second two columns refer to the three sample predictions shown in Figure 5.6.  

Table 5.10. Error comparison of value failure prediction using instruction-based predictor and linear regression equation 

 Instruction-based 

prediction using 

one input 

Linear regression 

equation 

Instruction-based 

prediction using 

two input 

Linear regression 

equation 

CRC 24.38 67.75 3.25 12.33 

SHA 0.69 1.25 0.53 0.39 
 

For SHA, it can be seen that instruction-based prediction using one input has less amount of error when 

compared to the value failure predicted by linear regression equation. However, this is vice versa when 

two input sequences are used in the instruction-based prediction. The explanation for these results lies on 

thenatureofthetwopredictors.Theinstructionbasedpredictorpicksthe“closest” PCA-generated points 

to the target point, while the linear regression model is based on the minimization of the MSE for all the 

points existed in the data set. Therefore, the linear regression model is more robust compared to the 

instruction based when there is no close point. 

For CRC, the errors of both prediction techniques are almost an order of magnitude greater than the 

calculated MSE for SHA. This is mainly due to the fact that for CRC the failure distributions of the first 

three execution flows are outliers (CRC-1, CRC-2, CRC-3). This can also be seen in the signatures of the 

fault-free run of CRC execution flows, see Figure 5.4. However, the predicted value failures using 

instruction-based predictor have less amount of error when compared to the value failures predicted by 

linear regression equation. We also calculate the MSE by excluding the three outlier execution flows. 

This results in mean squared errors of 0.65 and 1.12 for instruction-based prediction using one point and 

linear regression equation for the remaining six execution flows, respectively.     

The effectiveness of the instruction-based technique lies to proper selection of the base input. The more 

input sequences we have, the higher the probability that we can select or generate a useful base input 

which results in a more accurate prediction. On the other hand, the linear regression equation only 

considers the length of the input in order to predict its failure distributions which in the case of our 

selected target programs seem to make accurate predictions. However, the failure distribution of other 

target programs like Quicksort might not be correlated to the size of the input, while it seems their failure 

distributions can still be predicted using their assembly code and instruction-based prediction technique. 
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6 Conclusions 

In this thesis we studied a series of fault injection campaigns conducted on two different target programs, 

SHA-1 and CRC-32. Each target program was analyzed using 18 different execution flows operating with 

different inputs and subsequently extended with a time redundant fault tolerant mechanism. The effect of 

different inputs on the failure distribution of each execution flow shows that there is a correlation between 

the length of the input and the error coverage. In fact inputs of the same length can be considered 

equivalent in terms of error coverage. This helps us reduce the number of fault injection campaigns and 

consequently to save resources such as time. For the non-fault-tolerant implementation of the target 

programs, execution flows with longer input sequences resulted in fewer covered errors when compared 

to shorter input sequences. Moreover, the error coverage of CRC execution flows varies between 93.94% 

and 58.08% while for SHA it is between 50.87% and 61.24%.  

The percentage of covered errors increased significantly (to around 99%) with the adoption of the TTR-

FR. Moreover, this mechanism is effective in detecting and correcting the value failures as the input 

changes. However, there are still faults that escape the TTR-FR and cause system failure. 

The results of our two proposed prediction techniques (linear regression equation and instruction-based 

prediction) are quite satisfactory. Foremost advantage of linear regression equation is its simple 

calculation. However, it can only be used when there is a correlation between the error coverage and input 

length of a target program. On the other hand, the instruction-based predictor can be considered as a more 

general approach which does not require any linear correlation between the size of input and error 

coverage. By comparing the observed percentage of experiments classified as value failures and its 
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predicted percentage, we conclude that for SHA execution flows, the linear regression equation gives us a 

better prediction with the mean square error (MSE) of 0.39. Whereas, the instruction-based predictor 

produces a better prediction for CRC execution flows with the MSE of 3.25. 

The percentage of experiments classified as detected by hardware (DHW) changes slightly for the 

execution flows of each target program. It is yet notable that the result of detected by hardware 

experiments does not change considerably in the TTR-FR version of each target program when compared 

to the non-fault-tolerant implementation. This means that the hardware detection mechanism operates 

independently from the TTR-FR.  

Future Work 

In this thesis we have shown that there is a linear correlation between the selected input and the failure 

distribution of SHA-1 and CRC-32 target programs. We have also proposed two prediction techniques, 

but more work is needed to determine whether the methodology is applicable to other target programs. 

Furthermore, the prediction techniques could be improved, and other statistical methods could be 

employed to achieve a more accurate prediction. Our selected target programs may or may not be 

representative for many other target programs, but the overall conclusion must be that it is worth 

investigating the correlation of different inputs to the failure distribution using assembly level signature of 

the target programs. Moreover, our target programs had low complexities, thus more complicated 

programs can be the next target of our technique. Larger programs typically consist of a number of 

subprograms, so error coverage for each of these subprograms could probably be used to estimate the 

total error coverage. We would also like to encourage other researchers to use other assembly level 

metrics to evaluate other target programs equipped with different fault tolerance mechanisms. In addition 

to the single bit flip fault model that we used in our fault injection campaigns, the effect of multiple bit 

flips can also be investigated in the future. 

Limitations 

The main limitation of this study is the random selection of fault injection locations instead of performing 

an exhaustive injection. This is a threat to the validity of results, i.e., the results of 25000 fault injection 

experiments for SHA and 12000 experiments for CRC might not be a good representative of the total 

failure distribution of each target program. Furthermore, we only used two target programs in our 

investigations which do not have high complexities. 
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