

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, December 2011

On the Use of Assembly Code Metrics for Error

Coverage Prediction
Master of Science Thesis in Networks and Distributed Systems

FATEMEH AYATOLAHI

BEHROOZ SANGCHOOLIE

The Author grants to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose make

it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that he/she has obtained any necessary permission from this third party to let Chalmers

University of Technology and University of Gothenburg store the Work electronically and

make it accessible on the Internet.

On the Use of Assembly Code Metrics for Error Coverage Prediction

FATEMEH AYATOLAHI

BEHROOZ SANGCHOOLIE

© FATEMEH AYATOLAHI, December 2011.

© BEHROOZ SANGCHOOLIE, December 2011.

Examiner: JOHAN KARLSSON

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden December 2011

ABSTRACT

In this thesis we present two prediction techniques for estimating the error coverage of target programs

stimulated with different inputs. Preliminarily, we investigate the effects of the inputs on the failure

distribution of the target programs using fault injection experiments. From this study, we could find a

linear correlation between the length of the input and the error coverage. This result allows us to

develop a linear regression model which is one of the prediction techniques that we adopt. As this

correlation may not exist in other target programs, in the second technique called instruction-based

prediction we propose an approach to predict the error coverage for an input using fault injection

results of other inputs known as base points. In order to choose the base points, instruction-based

prediction technique profiles the program through a set of metrics defined at the assembly code. Those

metrics are used to feed a statistical technique that helps us select the more suitable inputs for the

prediction. We also investigate the failure distributions of programs enhanced with the triple time

redundancy execution with forward recovery (TTR-FR). From the results of the failure distributions,

we observe that the non-covered failure is reduced to on the average around 1.2% for all TTR-FR

execution flows which has a minor correlation to input length as analyzed by linear regression

equation.

Keywords: error coverage prediction, fault injection, assembly code, dependability assessment,

software implemented fault tolerance, multivariate analysis, failure mode distributions.

Acknowledgments

It is a pleasure to thank all the people who made this thesis possible.

First of all, we want to express our sincere gratitude to our advisor Professor Johan Karlsson, whose

supervisions and supports have been crucial to finish this thesis.

We would also like to especially thank Domenico Di Leo for his magnificent helps and guidance

through all the phases of this thesis. Thank you for all the excellent ideas, discussions and

encouragements you gave us during this time.

Special thanks to Dr. Daniel Skarin for his helps and advices with the Goofi-2 tool.

At last but definitely not least, we want to thank all our friends and our wonderful families. Their love

and patience were the best support during these two years of our master studies.

I

Table of Contents
1 Introduction ... 1

2 Background ... 3

2.1 Terminology .. 3

2.1.1 Dependability .. 3

2.1.2 Fault Tolerance Techniques .. 4

2.2 Fault Injection ... 5

2.2.1 Software-Implemented Fault Injection .. 6

2.2.2 Radiation-Based Fault Injections .. 6

2.2.3 Hardware-Implemented Fault Injection .. 6

2.3 Related Work... 6

3 Methodology ... 8

3.1 Assembly Code Specifications .. 8

3.2 Assembly Code Metrics .. 9

3.2.1 Instruction Metrics .. 9

3.2.2 Register Metrics .. 10

3.2.3 Memory Metrics .. 10

3.3 Instruction-based Prediction .. 12

3.3.1 Using Principal Component Analysis (PCA) for Base Input Selection 13

4 Implementation ... 19

4.1 Target Programs .. 19

4.1.1 SHA and CRC Input Sets .. 20

4.1.2 Triple Time-Redundant Implementation with Forward Recovery (TTR-FR) 21

4.2 Experimental Set-up .. 22

4.2.1 Goofi Database .. 23

4.3 Assembly-Level Signature Creator (ASC) .. 24

5 Result... 27

5.1 Experimental Results for Workloads without Software implemented Fault Tolerance 27

II

5.1.1 Metrics Results .. 27

5.1.2 Experimental Results ... 27

5.2 Experimental Results for Workloads Equipped with TTR-FR ... 33

5.2.1 Workloads Comparison ... 33

5.2.2 Execution Flows Comparison ... 35

5.3 Instruction-based Prediction Results for CRC and SHA Workloads 36

5.3.1 Using One Input Sequence as the Base ... 37

5.3.2 Using Two Input Sequences to Generate the Base Input .. 38

6 Conclusions ... 41

III

Table of Figures
Figure 3.1.Sampleofworkload’sexecutionflow .. 10
Figure 3.2. The instruction-based prediction process .. 12
Figure 3.3. PCA-generated input sequences of SHA execution flows .. 14
Figure 3.4. An example of generating a third point (G) using two other points (S,Q) 16
Figure 4.1. TTR-FR implementation of CRC ... 21
Figure 4.2. Experimental setup ... 22
Figure 4.3. Goofi-2 Database schema ... 24
Figure 4.4. A sample piece of an assembly code .. 24
Figure 4.5. Example of a load instruction ... 25
Figure 5.1. Case study of faults injected in memory for CRC (case 1) and SHA (case 2) 30
Figure 5.2. Value Failure distributions over different instruction categories for CRC (left chart) and

SHA (right chart) execution flows. ... 33
Figure 5.3. The TTR-FR code blocks ... 33
Figure 5.4. PCA-generated points for different CRC and SHA execution flows 37
Figure 5.5. Predicted vs. observed non-covered errors (value failures) using one input as the base 38
Figure 5.6. Predicted vs. observed failure distributions using two base inputs 39

IV

List of Tables
Table 3.1. A sample list of different instruction categories .. 10
Table 3.2. Assembly metrics - Signature of an execution flow... 11
Table 3.3. Principle Component calculation using optimized number of metrics 15
Table 3.4. Calculated distances of the potential base inputs to the target input 16
Table 4.1. The structure of the two target programs ... 20
Table 4.2. The input set for different execution flows .. 20
Table 4.3. Fault injection space ... 22
Table 5.1. Summary of assembly metrics for CRC and SHA execution flows 28
Table 5.2. Summary of CRC (left table) and SHA (right table) failure distributions 29
Table 5.3. CRC and SHA failure distributions for different execution flows 30
Table 5.4. Hypothesis test results for CRC and SHA ... 31
Table 5.5. CRC and SHA failure distributions w.r.t. the PCR .. 31
Table 5.6. Value Failure distribution over the instruction categories for CRC and SHA 32
Table 5.7. Summary of CRC-TTR (left table) and SHA-TTR (right table) failure distributions 33
Table 5.8. CRC-TTR and SHA-TTR failure distributions for different execution flows 35
Table 5.9. Hypothesis test results for CRC-TTR and SHA-TTR .. 36
Table 5.10. Error comparison of value failure prediction using instruction-based predictor and linear

regression equation .. 40

1

1 Introduction

Today, the usage of computer systems in safety-critical applications is tremendously increased. Such

systems must be equipped with proper fault-tolerance mechanism to be able to detect or correct transient,

intermittent, and permanent faults. In addition, the scaling of integrated circuits makes them less reliable

according to the hardware failures presented in [1]. This implies that hardware fault rates for transient,

intermittent, or even permanent faults is going to increase in future computer systems. Even though these

systems are expected to have robust hardware error detection mechanisms, their error coverage should be

evaluated using analytical or/and experimental techniques. Fault injection, one of the most popular

experimental techniques, is used to estimate system’s error coverage in the presence of faults. However,

performing fault-injection experiments is a time consuming process which inspire researchers to look for

less expensive alternatives to estimate computer system’serrorcoverage.Even though the error coverage

is directly affected by the effectiveness of the error detection mechanism, the program under assessment

along with its different possibilities of input sequences can influence the calculated coverage to a great

extent. Despite the notable researches that have been accomplished on the influence of error detection

mechanisms on the error coverage [2] [3] [4] [5] , a little investigation has been done regarding target

program variations with respect to different inputs [6] [7]. To the best of our knowledge, only little

literature has investigated the effect of different inputs on error coverage when a target program is

enhanced with a fault tolerance mechanism.

In this thesis we aim at performing fault injections on two target programs using different input sequences

to see whether there is any correlation between the input and the failure distribution. Moreover we

2

investigate the possibility of using assembly code metrics to predict error coverage distributions without

performing fault injection. Furthermore, the effect of different inputs on error coverage is analyzed when

the target programs are enhanced with temporal redundancy fault tolerance mechanism.

By analyzing the outcomes of the fault injection experiments, we proposed two prediction techniques

called linear regression model and instruction-based prediction. The former technique proves that in our

target programs, there is a linear correlation between the length of input and the error coverage. This can

then be used to predict the error coverage of the target programs using only the length of the input

sequence. The outcome of the prediction from the linear regression model has a high accuracy, while it is

not useful when there is no correlation between the input of a target program and its error coverage. On

the other hand, the instruction-based prediction technique uses assembly level signature of a target

program along with statistical techniques for multivariate analysis to predict the coverage of an input

sequence using the fault injection results of another input sequence (base input). Though the accuracy of

instruction-based technique lies to a great extent to the selection of the base input, it can be ideally

adopted for all target programs.

The remainder of the thesis is organized as follows. In Chapter 2 we present the required taxonomy and a

brief background on the fault injection technique. Chapter 3 describes our methodology which is a

detailed description of the instruction-based prediction technique along with assembly code metrics. The

implementation of our target programs along with the experimental setup of the fault injection mechanism

are presented in Chapter 4. Moreover, in this Chapter we describe the Assembly-Level Signature Creator

(ASC) tool which is used to calculate the values of different metrics. In Chapter 5 we present the results of

our study on the two target programs with/without software implemented fault tolerance. In addition, the

results of two different predictors are compared with each other. We conclude with the limitations of this

thesis along with future research in Chapter 6.

3

2 Background

2.1 Terminology

Common concepts of dependable and secure computing are defined in [8] which are summarized in this

section based on their relevance to the thesis topic.

2.1.1 Dependability

A system is called safety-critical if its failure to deliver a correct service will endanger human life or the

environment. Thus, the safety-critical system needs to provide dependability which is the ability of the

system to avoid service failures that are more frequent and severe than acceptable. The generic concept of

dependability includes three basic elements; attributes, threads and means.

2.1.1.1 Dependability Attributes

The main attributes for designing a dependable computer system are reliability, availability and safety.

The reliability of a system is the probability that it provides a correct service for a specific period of time,

when there are possibilities for permanent failures. The availability is the probability of the system to

provide a correct service at a certain point in time, when the system is repairable. From the other point of

view, safety provides the probability that the system failure does not result in any catastrophic

consequences. The significance of each attribute in a system depends on the application usage.

Furthermore, another attribute called maintainability should be considered in the implementation phase of

fault tolerant computer systems which is the ability to perform modification and repair a system.

4

2.1.1.2 Dependability Threats

The dependability threats include faults, errors and failures. The deviation of the system’s delivered

service from the correct service is called the system failure. This deviation is triggered by an error which

is an incorrect state in the system. The cause of an incorrect state is called a fault which is classified into

three classes of development faults, interaction faults, and physical faults.

Development faults are introduced in the development phase of the system. These faults are usually

caused by human during software or hardware specification, design, and implementation. Interaction

faults on the other hand, are introduced by human interacting with the system in the usage phase, e.g., a

user typing a wrong input value. This category also accounts for the faults that take place during the

exchange of information between computer systems. The third group of faults is physical faults which are

either introduced in development or usage phases of the system. They can cause permanent, transient, and

intermittent hardware failures in which the latter can be caused by high energy cosmic neutrons.

Nowadays, computer hardware and processors are getting smaller and transistors are becoming less

reliable. Bokar in [1], characterizes the main causes of failure in VLSI circuits as process variations,

ionizing particle radiation, and aging effects. Hazucha et al. in [9] also believe that in each technology

generation, single event upsets rate, caused by ionizing particle radiation, per bit is increased by about 8

percent. In addition, negative bias temperature instability (NBTI) and Hot Carrier Injection (HCI) can

over time, cause failures in integrated circuits. Therefore, computer systems should be equipped with fault

tolerant mechanisms in order to increase the availability and reliability of the system.

2.1.1.3 Dependability Means

The dependability means include fault prevention, fault tolerance, fault removal, and fault forecasting.

Fault prevention techniques are related to development phase of the system. Using these techniques, faults

can be prevented in software or hardware. Moreover, design rules and formal verification can to some

extent avoid fault occurrences in software and hardware. Fault removal techniques on the other hand, are

involved in development and operational phases. During the development phase, validation and

verification techniques can be used to reduce the number of faults. In addition, while the system is

operational, maintenance and repair techniques can reduce faults and their consequences. Fault

forecasting, as another dependability mean, tries to estimate system’s behavior in the presence of faults.

With the help of quantitative and qualitative evaluation techniques such as markov modeling and failure

modes and effects analysis (FMEA), it is possible to estimate dependability attributes. Fault tolerance

techniques try to avoid system failure in the presence of faults. They require error detection and error

recovery mechanisms to detect an active error and return the system to a nonfaulty state.

2.1.2 Fault Tolerance Techniques

Fault tolerance techniques imply built-in redundancy which can be formed as hardware redundancy,

software redundancy, temporal redundancy or information redundancy.

2.1.2.1 Hardware Redundancy

There are three hardware redundancy techniques, namely voting, standby, and active redundancy. As an

example, triple modular redundancy (TMR) is one of the most common voting redundancy configurations

5

in which three redundant modules are configured to perform the same functionality using the same set of

inputs and applications. Modules outputs are then delivered to a voter which applies majority voting to

deliver the result. Therefore in TMR, one module failure can be masked by the other two redundant

modules, while the error can only be detected, not masked, in case of having two erroneous modules.

2.1.2.2 Software Redundancy

Software redundancy techniques can be divided into two different classes of with diversity and without

diversity. The former corresponds to diversity in data, software design, and development process, while

the latter provides error detection and/or recovery by using redundant data and instructions as mentioned

in [10] for transient physical faults. N-version programming [11] is a well-known software redundancy

technique which uses the diversity in development teams, program developers, programing languages,

and/or program designs. All outputs generated by different program versions should be identical which is

identified by a majority voter. Another example of software redundancy techniques is recovery blocks. As

explained in [12], in this technique there are two primary and alternative software modules which are

indeed two versions of the same program. An acceptance test is constantly applied to the outcome of the

primary module so that in case of any failure, the output of the alternative module can be selected.

2.1.2.3 Information Redundancy

Information redundancy aimed to protect data stored in memories or the data transferred via networks.

Systematic and non-systematic codes are two commonly used techniques. As an example, the parity check

is a systematic code which generates some redundant bits attached to the original data to detect or correct

the error in data. In the non-systematic technique, new sequence of data is created using the mapping of

the original data. Thus it is designed in a way to detect or correct errors in the original data.

2.1.2.4 Temporal Redundancy

As mentioned before, the transient faults may cause a temporary erroneous result, so if the system is

restored to its correct state and the program is executed again, it is possible to detect the error by double

execution of the program. This can be done using result comparison of the two executions. The error can

also be masked by executing the code three times and making use of the majority voter to decide on the

correct result. This technique is more explained in [13] and is used as the fault tolerance technique in this

thesis.

2.2 Fault Injection

Fault injection has been around since 1970s. Fault removal and fault forecasting are among the main

purposes of using fault injection. It can also be used as a technique to measure the error coverage by fault

introduction. The error coverage can then be used to calculate the availability and reliability of a

computer system. Moreover, fault injection is a technique for testing programs’ fault tolerant

mechanisms. One of the most realistic ways of measuring the effectiveness of a fault tolerant mechanism

is by injecting artificial faults to the systems and assessing the robustness of the system. The injected fault

can be propagated throughout the program and resulted in an error in sections which were not protected

properly by any fault tolerant mechanisms. Some properties of fault-injection are as follows [14]:

 Repeatability, the ability of injecting the same fault and achieving the same result.

6

 Controllability, the ability of controlling the time and location of injecting a fault.

 Observability, the ability of observing the effect of an injected fault.

 Reachability, the ability of reaching possible fault locations in a processor.

Fault injection techniques can be categorized in three different groups of software-implemented,

hardware-implemented, and radiation-based injections as presented in [15]. Throughout the remaining of

this section, we will present these techniques and a number of tools using them. N.B. faults can also be

injected into a simulated model of a system that includes injections in device and logical levels along with

injections in the system, functional block, and instruction set architecture.

2.2.1 Software-Implemented Fault Injection

Software-implemented fault injection (SWIFI) can be divided in two different categories, pre-runtime

(compile-time) injection and runtime injection. In the pre-runtimeSWIFI,program’s data or source code

is altered to inject simulated faults. Code insertion and mutation testing are the two commonly used pre-

runtime SWIFI techniques. In mutation testing, an existing line of code is modified which corresponds to

the programmers’ unintentionally made mistakes. Whereas in code insertion, extra line(s) of code is

inserted into the source code. Pre-runtime SWIFI was used in a distributed real-time system enhanced

with a fault tolerance mechanism [16] [17]. Furthermore in runtime SWIFI, faults are injected into the

system while it is running (execution-time). The system is equipped with additional software responsible

for injecting faults which is either time-triggered or interrupt-triggered. Examples of tools which used

runtime SWIFI include FIAT [18], FERRARI [2], and Exhaustif [19].

2.2.2 Radiation-Based Fault Injections

In this technique, the system is exposed to particle radiation and electromagnetic inferences (EMI). The

main obstacles facing this technique are the controllability and repeatability. This is due to the fact that

fault locations cannot be selected easily and also it is difficult to inject a previously injected fault and

achieve the same result. In [20], heavy-ion from a Californium-252 source is radiated to a microprocessor

in order to validate a fault-handling mechanism.

2.2.3 Hardware-Implemented Fault Injection

Faults can also be injected into systems’ hardware using pin-level and test port-based injections along

with power supply disturbances. In pin-level and power supply disturbance techniques, faults are directly

injected into the Integrated Circuit andmicroprocessor’s pins using additional signal or short voltage

drops, respectively. An example of a tool using pin-level injection is MESSALINE [21]. In test port-

based injections on the other hand, faults are mostly injected into the registers and memory words of a

processor using test ports like BDM and Nexus.

All experimental setups presented in this thesis use GOOFI-2 [22] tool equipped with exception-based,

instrumentation-based, and Nexus-based fault-injection techniques. However, we only use its Nexus-

based fault-injection; more details can be found in subsection 4.2. N.B. exception-based and

instrumentation-based injections are actually using SWIFI technique.

2.3 Related Work

Error coverage estimation is performed by evaluating the system with respect to fault occurrence or fault

activation [8]. Since the high complexity of modern computer systems makes it difficult to estimate error

7

coverage analytically, different techniques such as fault injection are used to be able to estimate the error

coverage. The authors in [23] and [24], estimated the error coverage through analytical models. In

particular, in [23] they evaluate two sampling techniques for error coverage estimation, while in [24] they

adopt statistical of extreme, i.e., statistical techniques to estimate rare events. In [25] and [26] coverage is

calculated with respect to all possible inputs, fault location, and fault injection time. The work [27]

surveys a variety of coverage models, from simple phase-type models to stochastic Petri net in order to

predict coverage.

Fault injection is an expensive time-consuming technique due to its mentioned properties. It is also

notable that different program inputs result in different execution flows which means each injection setup

corresponds only to a specific program input. Therefore, other techniques such as fault prediction have

been introduced trying to validate fault-tolerance mechanisms in a more cost-efficient way.

Program profiling [28] [29] is a method used in fault prediction. It is commonly used for software

maintenance and testing [30] and also in literature analyzing fault localization, such as [31] [32]. In [31],

different spectra (path, branch, data-dependence, etc.) of a target program are introduced and the

correlation between various spectra types and program failure is analyzed. The main weakness of this

method is that it is working on programs’ source code. In [33] [7], a path-based fault coverage prediction

technique is proposed which uses the injection results of an input sequence (base input) to predict the

error coverage for another input sequence. The path-based predictor is built upon the assumption that

different inputs might form different execution flows which cause different code blocks to be executed

different number of times. Based on the weight of each code block and the injection results of the base

input sequence, the error coverage can be predicted for another input.

The main weakness of the path-based prediction is the arbitrarily selection of the base input. In this thesis,

we introduce an instruction-based prediction technique which profiles assembly level code instead of

source code. We believe that assembly code is a better representative of target programs, see chapter 3.

Moreover, in instruction-base estimation, not only more than one input can be selected as the base input,

but also the base inputs are chosen wisely.

8

3 Methodology

In this thesis we investigate the effect of different inputs on programs’ failure distributions. It is

accomplished by performing fault injection experiments on different target programs. We believe that

inputs with similar characteristics result in similar failure distribution for the same target program. So, if

we appropriately characterize an execution flow associated to an input, the failure distribution of another

execution flow with similar characterizations can be estimated. In order to investigate this, different

inputs are chosen for two different target programs, workloads, and their execution flows are compared

and analyzed at the assembly code level. In addition, an assembly level signature is computed for each

execution flow to be used in the prediction of failure mode distribution.

3.1 Assembly Code Specifications

As mentioned above, the assembly code of two workloads are examined to be able to characterize their

execution flows. There are a number of reasons behind selecting the assembly code:

 Assembly code is a proper representative of a program which is executed on the hardware exactly

as it is without further optimization or interpretation by compilers or optimizers. Furthermore,

since the fault model used in this thesis includes hardware transient faults, it will be more realistic

to analyze target programs using their assembly code. Moreover, assembly code shows exactly

which instructions, registers or memory locations are involved in the workload and indicates the

potential places for failures during the execution flow.

9

 Even though, the assembly instruction set is different for different microprocessors, the general

concepts used in this thesis to design proper signature, from assembly-level metrics, is applicable

to different kinds of hardware architectures. In other words, our proposed metrics are not

dependent on special hardware architecture and they can be calculated for other hardware

architectures with minor changes in the implementation.

 In addition to hardware flexibility, the target program can also be written in different programing

languages, e.g., java/C/C++. This is due to the fact that programs are translated to assembly code

before they could be executed on the hardware. Therefore, our approach is not dependent on the

programing language.

3.2 Assembly Code Metrics

The assembly codes of two workloads are characterized in this thesis to estimate the failure distribution of

their execution flows. In order to be able to characterize the fault-free execution of a workload, we

classified the assembly code in three general categories; instructions, registers, and memory sections. For

each of these categories, a number of metrics are designed, see Table 3.2. In this table, the first two

metrics are calculated according to general characteristics of an execution flow:

 (NEI), the total number of different instructions executed in an execution flow, regardless of the

number of times each of them was executed.

 (NE), the length of the execution flow in terms of the number of executed instructions. In other

words, the number of times the program counter register (PCR) is updated.

3.2.1 Instruction Metrics

The workload instructions are categorized into six groups of instructions namely, load, store, arithmetic,

branch, logical, and processor, see Table 3.1. The summary of the instruction set is available in [34]. For

instance, add, sub, div, etc. instructions are included in arithmetic category, while and, or, xor, etc. are

included in logical category. In this way, the metrics for each category of instructions are studied in terms

of:

 The number of times instructions of each category are executed, e.g., the total number of load

instructions (lwz, lis, lbz, etc.) executed in an execution flow.

 The percentage of the executed instructions for each category, out of the total number of

instructions executed in an execution flow (NE).

 The average distance between two consecutive executions of instructions in a specific group.

For instance, if instructions are executed in the order shown in Figure 3.1, the first consecutive

arithmetic instructions, addi, will have a distance of 3, while the second consecutive instance,

addi and subf, will have a distance of 1. Finally, there is a distance of 3 between the last

consecutive arithmetic instructions, subf and addi. The average distance metric for the

arithmetic category can then be calculated using the average of these values which is 2.33.

10

Table 3.1. A sample list of different instruction categories

Categories Instructions

LOAD lbz, li, lwi, lmw, lswi, …

STORE stb, stub, sth, sthx, stw, stwbrx, …

ARITHMETIC add, addo, subf, divw, mulhw, …

BRANCH b, bl, bc, bclr, …

LOGICAL and, or, xor, cmp, rlwimi, …

PROCESSOR mcrf, mftb, sc, rfi, …

3.2.2 Register Metrics

These metrics refer to registers used in each execution flow. The most important registers used in each

execution flow are studied and grouped into three different categories: condition register (CR), stack

pointer register (SP), and general purpose registers (GPR). The following metrics are studied:

 The total number of different general purpose registers accessed in an execution flow.

 The number of times registers of each category are read in an execution flow.

 The number of times registers of each category are written in an execution flow.

 The average distance between two consecutive “read” from registers of each category.

 The average distance between two consecutive “write” into registers of each category.

3.2.3 Memory Metrics

The memory metrics and register metrics are designed similarly, i.e., the number of read/write and the

average distance between two consecutive “read/write” are calculated in the same way with the exception

that in memory metrics, sections of memory are considered instead of registers. The notable memory

sections of our workloads are text, stack, bss/sbss, and data/sdata.

The complete list of the mentioned assembly code metrics is shown in Table 3.2. A combination of these

metrics is used as the signature for each execution flow to see whether there is any correlation between

different inputs and their failure mode distribution; they can then be used in error coverage prediction.

2548 38 09 26 30 Addi r0,r9,9776

254c 90 1f 00 0c Stw r0,12(r31)

2550 3d 20 00 3f Lis r9,63

2554 38 09 70 00 Addi r0,r9,28672

261c 7c 6a 18 50 Subf r3,r10,r3

2620 83 c1 00 08 Lwz r30,8(r1)

2624 7c 08 03 a6 Mtlr r0

2628 38 21 00 10 Addi r1,r1,16

Figure 3.1. Sample of workload’s execution flow

11

Table 3.2. Assembly metrics - Signature of an execution flow

Metric

Number

Metric

Name
Description

General Metrics

1 NEI Number of different Executed Instructions, the total number of different instructions in the assembly code.

2 NE Number of Executed instructions, i.e., the number of times that the PCR has been updated.

Instruction Metrics

3 NLI Number of Load Instructions.

4 NSI Number of Store Instructions.

5 NAI Number of Arithmetic Instructions.

6 NBI Number of Branch Instructions.

7 NLGI Number of Logical Instructions.

8 NPI Number of Processor Instructions.

9 PLI Percentage of Load Instructions. (NLI/NE)

10 PSI Percentage of Store Instructions. (NSI/NE)

11 PAI Percentage of Arithmetic Instructions. (NAI/NE)

12 PBI Percentage of Branch Instructions. (NBI/NE)

13 PLGI Percentage of Logical Instructions. (NLGI/NE)

14 PPI Percentage of Processor Instructions. (NPI/NE)

15 LAD Load Distance, the average distance between two consecutive executions of load instructions.

16 SD Store Distance, the average distance between two consecutive executions of store instructions.

17 AD Arithmetic Distance, the average distance between two consecutive executions of arithmetic instructions.

18 BD Branch Distance, the average distance between two consecutive executions of branch instructions.

19 LGD Logical Distance, the average distance between two consecutive executions of logical instructions.

20 PD Processor Distance, the average distance between two consecutive executions of processor instructions.

Register Metrics

21 NGPR Total number of different GPRs accessed.

22 NRCR Number of access in read mode to condition register.

23 NWCR Number of access in write mode to condition register.

24 NRSP Number of access in read mode to the stack pointer.

25 NWSP Number of access in write mode to the Stack pointer.

26 NRGPR Number of access in read mode to GPRs (all GPRs except r1, that has been counted in NRSP)

27 NWGPR Number of access in write mode to GPRs (all GPRs except r1, that has been counted in NWSP)

28 NRXER Number of access in read mode to the XER.

29 RDCR The average distance between two consecutive read operations from the CR.

30 WDCR The average distance between two consecutive write operations into the CR.

31 RDSP The average distance between two consecutive read operations from the SP.

32 WDSP The average distance between two consecutive write operations into the SP.

33 RDGPR The average distance between two consecutive read operations from the GPRs.

34 WDGPR The average distance between two consecutive write operations into the GPRs.

35 RDXER The average distance between two consecutive read operations from the XER.

Memory Metrics

36 NRTXT Number of times the program reads from the text section.

37 NRAS Number of times the program reads from the Stack section.

38 NWAS Number of times the program writes into the Stack section.

39 NRAB Number of times the program reads from the bss/sbss section.

40 NWAB Number of times the program writes into the bss/sbss section.

41 NRAD Number of times that the program read from data/sdata section.

42 NWAD Number of times the program writes into the data/sdata section.

43 RSD The average distance between two consecutive read operations from the stack section in terms of PC executions.

44 WSD The average distance between two consecutive write operations into the stack section in terms of PC executions.

45 RBD The average distance between two consecutive read operations from the bss/sbss section in terms of PC executions.

46 WBD The average distance between two consecutive write operations into the bss/sbss section in terms of PC executions.

47 RDD The average distance between two consecutive read operations from the data/sdata section in terms of PC executions.

48 WDD The average distance between two consecutive write operations into the data/sdata section in terms of PC executions.

12

Figure 3.2. The instruction-based prediction process

3.3 Instruction-based Prediction

In this prediction technique, we profile different execution flows using assembly level metrics, discussed

in Section 3.2, calculated from the fault-free run of each execution flow. The output of the profiling step

allows us to select or generate the best base input sequences which can then be used to predict the error

coverage of a new input sequence, see Figure 3.2.

The instruction-based prediction technique is built upon the fact that different inputs cause different

number of instruction categories to be executed. As mentioned in Section 3.2.1, we defined six different

instruction category metrics corresponding to the number of executed instructions (metric numbers 3 to 8

in Table 3.2). The weighted sum of these six metrics is used along with the failure distribution outcome of

an input sequence (base input) to predict the failure distribution of a target input sequence.

Let denote the percentage of error classification (N.B. error classifications are discussed in Section

5.1.2) for the target input sequence . For every error classification and input sequence, is predicted

using the equation (3.1):

 ∑

 (3.1)

Here corresponds to the instruction categories; and is calculated according to the fault injection

results of the base input sequence, see equation (3.2). In this equation, refers to the number of injected

faults in instruction category that resulted in error classification , while corresponds to the total

number of faults injected in instruction category .

 (3.2)

The term in equation (3.1) is an estimated weight for each instruction category , which corresponds

to the percentage of instruction category that leads to error classification , see equation (3.3).

 (3.3)

Workload Profiling

Base Input Sequence

Selection

Prediction

13

In the estimation of the weight factor, refers to the estimated number of injections for the target input

sequence which can be calculated using equation (3.4), while , corresponds to the estimated total

number of faults which are injected into the instruction category in case of using the target input

sequence , see equation (3.5).

 ∑

 (3.4)

 (3.5)

Here represents the number of faults injected in instruction category for the base input sequence;

shows the total number of executed instruction category for the base input sequence, and is the total

number of executed instruction category for the target input sequence .

Now that we have all the elements of equation (3.1), the percentage of error classification for the target

input sequence can be predicted using equation (3.6).

 ∑

∑

(3.6)

It is clear that the instruction-based predictor is composed of two parts, i.e., data (regarding the

input sequence in which a fault injection campaign has been conducted for and data (that refers to

the input for which different error classification prediction is required.

In this way, the error coverage of input sequence can be predicted using equation (3.7) where

represents the value failure classification. N.B. value failures are errors that lead to the production of

wrong results.

 ∑

 (3.7)

The effectiveness of the instruction-based error coverage prediction technique lies in the proper selection

of the base input, i.e., not every base input result in an accurate prediction. Therefore, we need to enhance

the instruction-based technique with a proper way of selecting the base input. In the next section, a well-

known mathematical technique called principal component analysis (PCA) [35] is presented. This

technique, along with the proposed assembly level metrics, guides us in selecting the best base input from

a list of already analyzed execution flows.

3.3.1 Using Principal Component Analysis (PCA) for Base Input Selection

PCA, invented by Karl Pearson in 1901, is a mathematical technique that converts a set of possibly

correlated variables into a set of uncorrelated variables known as principal components, i.e., the PCA can

reduce the initial dimensions in a smaller space. Moreover, components are sorted based on variability in

14

the data, i.e., the first component has the highest variance. The number of components should be chosen

in a way that the sum of their variance accounts for the 80% of the initial variance. Thus by using the first

few components, PCA can generate an N-dimensional representative of a higher-dimensional data space.

This means that the metrics we proposed in Section 3.2 can now be used as the initial multivariate dataset

and with the PCA it is possible to reduce them in a two dimensional space. The results of the analysis are

enhanced and tend to be clearer in case of using the multivariate “normal” distribution of the initial

dataset. Therefore, we also normalize each calculated metric using equation (3.8) and then provide the

normalized dataset to the PCA.

 (3.8)

Here X is the metric value which should be normalized, is the arithmetic mean of the distribution, and

is the standard deviation of the distribution.

Our main objective is to find a proper base input which can be used in the instruction-based predictor.

Therefore we need to find a way to compare the base input and the target input sequence , which is the

input of the execution flow that we want to predict its failure distributions.

Each of our target programs has nine different execution flows each corresponding to an input sequence.

After applying PCA to the normalized results of the metrics, input sequences can be presented using their

(x, y) coordinates, for example Figure 3.3 corresponds to PCA-generated inputs for SHA execution flows.

All metrics are involved in the calculation of the principal components, i.e., in order to calculate the value

of each principle component, its eigenvector should be multiplied to the normalized results of the metrics.

Figure 3.3. PCA-generated input sequences of SHA execution flows

15

Several metrics also have the same correlation with each other, e.g., an increase in the number of

execution of an instruction might also increase the number of access to a specific register. Therefore,

principle components can also be calculated using arbitrary number of metrics from all non-correlated

groups of metrics.

Table 3.3 shows thecalculationof thefirst twoprinciplecomponentsusingeight“normalized”metrics

selected from four non-correlated groups of metrics. N.B. metric names have been taken from Table 3.2

and the multiplicands correspond to each principle component’s eigenvector. These eight metrics are

selected from all the three main metric categories described in Table 3.2. However, principle components

could also be calculated using other combinations of metrics.

Table 3.3. Principle Component calculation using optimized number of metrics

SHA

PCA1 = 0.35159 * NLGI + 0.35937 * PLI - 0.35608 * PAI + 0.35829 * NRCR + 0.35328 * RDSP + 0.35036 * RDGPR -

0.34654 * WSD + 0.35273 * WBD

PCA2 = 0.40282 * NLGI - 0.14066 * PLI + 0.28238 * PAI + 0.19339 * NRCR + 0.36322 * RDSP - 0.42618 * RDGPR +

0.49539 * WSD + 0.37663 * WBD

CRC

PCA1 = 0.35499 * NAI + 0.34155 * PLI - 0.34155 * PBI + 0.36295 * SD + 0.35499 * NRCR + 0.35499 * RDSP + 0.35499 *

NRXER + 0.36178 * WSD

PCA2 = 0.34778 * NAI - 0.42043 * PLI + 0.42043 * PBI - 0.27901 * SD + 0.34778 * NRCR + 0.34778 * RDSP + 0.34778 *

NRXER - 0.29126 * WSD

By analyzing the injection results of each execution flow and the coordinates of other PCA points, we

conclude that closer base inputs to the target input in the Cartesian coordinate system result in a better

prediction. Therefore the best base input will be a point in the two-dimensional space closest to the target

input sequence . This is one of the strength of instruction-based technique when compared to path-based

technique where the base input is selected arbitrarily. For example, as can be seen in Figure 3.3, in case

we have already estimated failure distribution of SHA-7 using fault injection, we can predict the failure

distribution of SHA-6 using SHA-7 as the base input.

As mentioned before, the effectiveness of the instruction-based technique lies to a great extent on the

selection of the base input i.e., it is useful when we predict different error classifications of an execution

flow with an input sequence so close to the base in the two-dimensional PCA representation.

Throughout the remaining of this section, we introduce an algorithm which can be used to predict both

“adjacent” and “distant” points. In our proposed algorithm, we either select or generate the best possible

base input which divides the algorithm into two parts.

In the first part of the algorithm, distances from all PCA-generated points to the target input point are

calculated. These distances will then be sorted and put in a list called BaseDistances. As can be guessed,

an input sequence with the smallest distance in the BaseDistances gives us the best prediction when

compared to other input sequences. The main weakness of this part is that the closest PCA-generated

point might still be distant from . Therefore, in the second part of the algorithm, we use two points

instead of one to generate a better base for our prediction.

In the second part of the algorithm, all combinations of the PCA-generated points should be coupled and

analyzed. The idea with this part is to find possibly a better point on the line connecting the elements of

each couple, i.e., to generate a point closer to the target input sequence .

16

Figure 3.4. An example of generating a third point (G) using two other points (S,Q)

Table 3.4. Calculated distances of the potential base inputs to the target input

 Q – e S – e G – e

Distance 5.65 10.04 2.43

Figure 3.4 illustrates an example of generating a third point, G, using the couple (S, Q). This point is

constructed using coordinates and weights of S and Q; each of these points receives its weight based on

its distance to . This leads to the case in which a point with a smaller distance to (Q in this example)

causes G to be generated closer to compare to the more distant point (S in this example). As can be seen

in Table 3.4, G is closer to the target input , which indicates that it is a better candidate to be the base

input. Equation (3.9) and (3.10) show how to calculate the coordinates of the new generated point, G.

 (3.9)

 (3.10)

Here and are calculated as

 (3.11)

Furthermore, and correspond to the given weights of S and Q based on their distances to e;

 (3.12)

 (3.13)

Here and are the distances between e to S and Q respectively. Now that we have another point in

the Cartesian coordinate system, its distance to will be put in the BaseDistances list.

17

Since it is not always the case to find a better point by using any two points, this procedure should be

performed for all different combinations of the previously injected execution flows to discover the best

possible base input. The ultimate BaseDistances list contains all possible base inputs selected or

generated from the initial PCA-generated points. By selecting the base input with the shortest distance to

 from the BaseDistances,wecanpredictatargetprogram’sfailuredistributionwithout performing any

injection setups for the input sequence . In case the selected base input is generated from two PCA-

generated points, for example S and Q in Figure 3.4, we need to also estimate the error classifications

(and) and metric values (and) of the new generated input G to be used in equation (3.6). This

can simply be done using the assigned weights of S and Q along with their error classifications and metric

values. Therefore, instead of using equation (3.1) to predict the percentage of error classification for

input sequence , equation (3.14) can be used in case the selected base input is generated from two PCA-

generated points. The results of the instruction-based prediction are presented in chapter 5.

 ∑

 (3.14)

Here is the predicted percentage of error classification for input sequence using the generated

point G, and is the estimated percentage of instruction category i classified as c for the execution

flow corresponding to the generated point G.

 (3.15)

 (3.16)

Here and are the percentage of instruction category i classified as c for the S and Q execution

flows, respectively, and and can be calculated using equations (3.12) and (3.13). Moreover, in

equation (3.16), and refer to the estimated number of experiments with injection in instruction

category i, and the estimated total number of experiments for the e execution flow, respectively. They can

be calculated using equations (3.17) and (3.18).

 (3.17)

 ∑

 (3.18)

Here and are the observed and estimated metric values (NLI, NSI, NAI, NBI, NLGI, and NPI) for

the e execution flow and the execution flow corresponding to the generated point G, respectively, and

is the estimated number of experiments with injection in instruction category i for the execution flow

corresponding to the generated point G. and are calculated in equations (3.19) and (3.20).

 (3.19)

 (3.20)

18

Here and are the metric values (NLI, NSI, NAI, NBI, NLGI, and NPI) of the S and Q execution

flows, respectively. Moreover, and refer to the total number of experiments with injection in

instruction category i for the S and Q execution flows, respectively.

19

4 Implementation

4.1 Target Programs

In this section, we present the two target programs used in the fault injection setups; secure hash

algorithm (SHA-1) and cyclic redundancy check (CRC-32). SHA-1 is a cryptographic hash function

which generates a 160-bit message digest. It is used in many security protocols and applications such as

SSL, TLS, SSH and IPsec. CRC-32 on the other hand, is a popular error-detecting code mostly used in

networks to detect undesirable changes to data. Both SHA-1 and CRC-32 take as an input a string of

arbitrary length. Even though the implementation of our both workloads can be found in the MiBench

suite [36], we only take CRC from this suite. The MiBench implementation of SHA uses dynamic

memory allocation which is not necessary for an embedded system. Thus, we adopt another

implementation of SHA1. The choice of these two target programs is due to the following reasons:

 Their acceptance as representative applications for characterizing instruction set architectures

[37].

 They work on the same input type (a string of chars). Therefore we might investigate whether

there is a correlation between the failure distribution, the applications, and the input e.g., the

length of the input.

 They have different structures, in particular with regards to; lines of source code (LOC), max

Cyclomatic complexity (MCC), and size of the program, see Table 4.1. Moreover, CRC-32 has a

1 http://www.dil.univ-mrs.fr/~morin/DIL/tp-crypto/sha1-c

20

higher percentage of branch instructions when compared to SHA-1, while SHA-1 has a higher

percentage of arithmetic instructions. Thus, CRC-32 can be considered as control flow intensive,

while SHA-1 is arithmetic intensive.

Table 4.1. The structure of the two target programs

 Lines Of source Code

(LOC)

Max Cyclomatic

Complexity (MCC)

Size (bytes)

CRC-32 16 2 2560

SHA-1 125 7 13340

Throughout the rest of this thesis, these two target programs are used in our fault injection setups

(campaigns) and fault prediction. Moreover, they will be equipped with a proper software implemented

fault tolerant to get validated on the effectiveness of the implemented fault tolerance mechanism. For

simplicity throughout the remaining of this thesis, we use SHA and CRC instead of SHA-1 and CRC-32.

4.1.1 SHA and CRC Input Sets

Nine different inputs are selected for each workload. In order to be able to evaluate the behavior of each

execution flow more accurately, the chosen set of inputs should be a proper representative of real

applications. The input set is composed of sequences of alphanumerical characters generated randomly

with a priori knowledge of input length. On the basis of the length of the inputs, we group them into the

following three categories:

 Small inputs, with length between 0 to 2 characters.

 Medium inputs, with length between 3 to 60 characters.

 Large inputs, their length between 61 to 99 characters.

The three categories are chosen to represent input lengths that are common in real applications. Indeed,

small inputs denote data produced by sensors to which is applied the CRC, medium inputs are

representative of passwords hashed by SHA and large inputs are packets or messages to which have been

appended a checksum or a digest as in TCP/IP networks. The input sets of the execution flows are shown

in Table 4.2.

Table 4.2. The input set for different execution flows

Workload Category
Number of inputs

per category
Input length Input name

CRC

Small inputs 3

One input with length 0 CRC-1

One input with length 1 CRC-2

One input with length 2 CRC-3

Medium inputs 4
Two inputs with length 10 CRC-4 & CRC-5

Two inputs with length 46 CRC-6 & CRC-7

Large inputs 2 Two inputs with length 99 CRC-8 & CRC-9

SHA

small inputs 3

One input with length 0 SHA-1

One input with length 1 SHA-2

One input with length 2 SHA-3

Medium inputs 4
Two inputs with length 10 SHA-4 & SHA-5

Two inputs with length 60 SHA-6 & SHA-7

Large inputs 2 Two inputs with length 99 SHA-8 & SHA-9

21

Since each input corresponds to an execution flow, the input name signifies both the workload and its

input. For each input we perform two different campaigns; with and without software implemented fault

tolerance. The result of the fault injection campaigns will be presented in chapter 5.

4.1.2 Triple Time-Redundant Implementation with Forward Recovery (TTR-FR)

TTR-FR [38] is implemented for both SHA and CRC to be used in our second set of campaigns. In this

fault tolerance mechanism, each execution flow is being executed three times and the result of each run of

the program is compared with the other runs. In case all runs of the program produces the same output,

the injected fault has either been masked or had no impact on the generated sub-outputs of the execution

flow; whereas different sub-outputs trigger the software-implemented voter to decide on the output of the

execution flow. If only one run of the program generates a different output, output of the other two runs

will be elected; this technique is known as forward recovery since the state of the faulty run moves

forward to a fault-free point. Moreover, an unrecoverable error is signaled, if none of the program runs

generate the same output.

int main(void){

 crc32file(input_1, &Output_1, &input_1_length));

 crc32file(input_2, &Output_2, &input_2_length));

 crc32file(input_3, &Output_3, &input_3_length));

 if(Output_1 == Output_2){

 Output = Output_1;

 if(Output_1 != Output_3){

 errorOccured = 85;

 //Recover of Output-3 is done here.

 }

 }

 else{

 errorOccured = 85;

 if(Output_1 != Output_3){

 if(Output_2 != Output_3){

 errorOccured = 195;

 }

 else{//Recover Output-1 is done here.

 }

 }

 else{//Recover Output-2 is done here.

 }

 if(errorOccured != 195){

 Output = Output_3;

 }

 }

}

Figure 4.1. TTR-FR implementation of CRC

Figure 4.1 shows the TTR-FR implementation of the CRC target program. It is shown that crc32file, the

function responsible for calculating CRC output, has been called three times each with a fresh copy of the

input variable. The outputs of each program run are placed in Output-1, Output-2 and Output-3 variables,

while the Output variable holds the elected value. The other important variable used in the TTR-FR

implementation is errorOccured which is used to classify the effect of the injected fault in the system; as

an example, in case errorOccured is equal to 85 at the end of a program run, the injected fault is classified

as corrected by software (more on error classification in Section 4.2). ErrorOccured can have three

22

different values of (0, 85, and 195). This is due to the fact that we use a single-bit-flip fault model and

there is a four-bit difference between each pair of errorOccured values, which makes a more robust fault

tolerant implementation.

4.2 Experimental Set-up

As mentioned in chapter 2.2, Goofi-2 fault injection tool is used to evaluate the results of our instruction-

based prediction technique. In particular, the transient faults are emulated by single bit-flips in Goofi-2

which is the fault model of the injections. In this thesis, as illustrated in Figure 4.2, Nexus-based fault

injection technique is used with the support of iSYSTEM iC3000 Active Emulator [39]. The workloads

are executed on the MPC565 microcontroller which is placed on a single-board computer phyCORE-

MPC565 [40]. The program which is written in C programming language is compiled with gcc 4.2.2

compiler without any optimizations, and then it is downloaded to the board using WinIDEA [41]; an

integrated development environment. Thus, in the first step, the program should be compiled, linked and

executed in the WinIDEA interface to make sure it is correctly engaged on the board and ready to run the

fault injection campaigns.

Figure 4.2. Experimental setup

Now, the fault injection campaign can be set up using Goofi-2 graphical user interface. Each campaign

represents a set of fault injection experiments with a given execution flow. The injections are performed

on registers and volatile memory words. Table 4.3 shows the used target registers and memory sections.

The floating point registers are not among the target registers since they are not used in our target

programs. Furthermore, since each workload’smachine code is located in the nonvolatile memory, it is

excluded from the fault space. The fault injection space is then optimized by a pre-injection analysis [42]

which reduces the fault space by excluding all redundant faults that have the same effect on the system

and also the faults which are not going to be activated by the program execution. In addition, the fault

injection is performed just before the target register or memory location is read by the execution flow.

Table 4.3. Fault injection space

Target registers Target memory sections

General Purpose Registers(GPR) Stack

Program Counter Register (PCR) Data

Link Register (LR) Sdata

Condition Register (CR) Bss

Integer Exception Register (XER) Sbss

23

Since fault injection is a time-consuming process, an exhaustive fault injection is not feasible for the 36

different campaigns that we are supposed to run, 18 for each target program (9 campaigns for when there

is no fault tolerance mechanism and 9 campaigns for when there is TTR-FR). Therefore, in this thesis,

each SHA and CRC campaign runs 25,000 and 12,000 injection experiments, respectively, with randomly

selected fault locations, i.e., for each experiment, one fault location and one of its bits are randomly

chosen. The results of one performed exhaustive injection have approved the proper choice of randomly

chosen experiments. The next step is to set-up a timeout value for each campaign; this is defined

according to the execution time of the target program to help Goofi-2 detect experiments that are stuck,

e.g., in an infinite loop. The timeout is pessimistically selected to be 5 seconds for all our campaigns. This

is due to the fact that the execution time of the fault-free program with/without TTR-FR is one order of

magnitude less than this timeout.

Finally when the setup configurations are completed and the campaign starts running, Goofi-2 performs a

single fault-free run of the program, called the golden run, to store the measured results as reference data.

The measured reference data will later on be compared to the results of the fault injection experiments to

classify the outcome of every experiment. All measurements including the content of registers and

memory locations will be stored in a database which is explained in the next section.

4.2.1 Goofi Database

Goofi-2 provides an optimized internal relational database to store data efficiently. A simplified

representation of this database withtables’relationsis shown in Figure 4.3.Thecampaign’s configuration

given in the interface of Goofi-2 is stored in the campaign table. Fault locations and injection space

boundaries help Goofi-2 generate the elements of faultlist table. Furthermore, the faultlist table is

connected to fault and registerinfo tables which store more detailed information about the fault injection

locations and outcomes.

The fault injection outcomes and measurements are stored in the experiment table which apart from the

fault table, is connected to loggedmemorydata, loggedregisterdata, and pctrace. The values of registers

and memory locations are stored in loggedregisterdata and loggedmemorydata, respectively for each

experiment. Indeed, more detailed measurements of general purpose registers for each instruction

execution are stored in gprvector table. On the other hand, the execution flow of the workload can be

extracted from the pctrace table which includes program counter register values each indicating the

address of an instruction.

24

Figure 4.3. Goofi-2 Database schema

4.3 Assembly-Level Signature Creator (ASC)

ASC is an application written in this thesis for analyzing the assembly code of the workloads and

calculate the metric values explained in Section 3.2 in order to be able to create an assembly-level

signature for each execution flow.

In its first step, ASC parse the assembly code of a workload to makedistinctionbetween instructions’

address, opcode, and operands. The address corresponds to where the instruction is stored and is

represented in hexadecimal format. The opcode is an assembly instruction from one of the instruction

categories explained in Section 3.2.1, and operands are where the data is placed, i.e., different registers or

memory locations. A part of an assembly code is shown in Figure 4.4.

 Add r5,r5,r4 /* correct to real pointer */

200c: 7c a5 22 14 Add r5,r5,r4

 Lwz r4,.Ltable(r5) /* get linker's idea of where .Laddr is */

2010: 80 85 80 00 Lwz r4,-32768(r5)

Figure 4.4. A sample piece of an assembly code

In order to analyze an execution flow, program counter register values should be traced for the golden

run. Thisisduetothefactthatprogram’ssignatureisneededonthefault-free run of the program and the

program counter register at any time contains the address of the executing instruction. Following program

counter register values helps us find the execution flow of the program, e.g., different input sequences

might lead to different number of while loop executions. Program counter register value updates of the

25

golden run can be followed using Goofi-2 database specifically the pctrace table as illustrated in Figure

4.3. N.B. ASC does not use any data corresponding to the fault injection experiments and the only reason

for using Goofi-2’sdatabaseisto retrieve the program counter register values of the golden run. There are

other utilities which can be used for this purpose even though working with Goofi-2 pctrace table is more

convenient. The next step is to calculate metric values.

201c: 80 e5 80 10 Lwz r7,-32752(r5)

Figure 4.5. Example of a load instruction

The instruction metrics which were explained in Section 3.2.1 can now be extracted using the pctrace,

instruction’s opcodes, and the “categoryfile” corresponding to the instruction categories. A part of this

file contains the different instructions existed in the 6 defined instruction categories, see Table 3.1.

To calculate the values of the registers metrics, additional information is needed to decide on how the

registers are accessed, i.e., in the write mode or in the read mode. This is due to the fact that the operands

ofan instructionareaccesseddifferentlyaccording to the instruction’sopcode.Forexample,add r4,r7

results in two accesses in the read mode and one access in the write mode to general purpose registers.

A list of opcodes with their operands access modes is provided as Assembly-level definitions for the

MPC565 (PowerPC) in [43] which is also used in ASC with some modifications. Thus, the values of the

register metrics are obtained by the following steps:

 Using the pctrace table to find the current instruction in the execution flow.

 Placingthefoundinstruction’sopcodeintoitsinstruction category.

 Decidingontheaccessmodeofinstruction’soperandsbasedontheinstruction’sopcode

 Calculating the values of the number of access and distance metrics.

N.B. even though r1 is among the general purpose registers, it is analyzed in the metrics corresponding to

the stack pointer.

Since the memory metrics investigate the access to different memory sections in an execution flow, ASC

needs to find out the memory addresses which are accessed during the execution of the program. The only

instruction categories that access the memory are load and store which read/write form/to the memory,

respectively. To find target memory locations of the instructions in these categories, operands of these

instructions should be explored. For instance, consider the instruction in Figure 4.5 which loads from

memory location -32752+(r5) to register r7. Thus, the value of r5 should be added to the constant value -

32752 to calculate the target memory location.

This means that, sometimes the content of the general purpose registers are required to be able to

calculate accessed memory locations. Therefore, ASC makes use of another Goofi-2 table called

gprvector. This table holds values of general purpose registers for the Golden run of each execution flow.

The next step is to find the memory section of the calculated memory location. This can be done by

parsing the “memory section file” extracted for each execution flow using objdump utility. Memory

section names and boundaries are placed in this file; therefore the calculated memory locations can be

looked up in this file to be able to decide on the accessed memory section. N.B. since stack section is

26

allocateddynamically,only its start addresscanbecalculatedusing the“memory section file”. Its end

address is extracted automatically by ASC from the “linker file” of the workload.

To conclude, the following files are parsed by ASC in order to calculate the values of different metrics of

each execution flow:

 The categories

 The assembly-level definitions for the MPC565 (PowerPC)

 The assembly code

 The linker

 The memory sections

It should be mentioned that the “categories file” consists of instruction categories, register categories, and

memory sections. Ultimately, ASC provides the values of all metrics in an output file to be used as the

signature of each execution flow.

27

5 Result

5.1 Experimental Results for Workloads without Software implemented
Fault Tolerance

5.1.1 Metrics Results

Table 5.1 shows a summary of the assembly metrics that are defined in Table 3.2. Metrics in this table

consist of the percentages of different executed instruction categories, the number of read from general

purpose registers, and the number of read from stack pointer register. Throughout this section, the values

of these metrics are used to analyze the results in more details.

5.1.2 Experimental Results

In this section we describe the outcomes of fault injection campaigns conducted on the two workloads,

CRC and SHA. For each SHA and CRC execution flow we inject 25,000 and 12,000 faults, respectively,

hence we have 9 fault injection campaigns for each workload that result in 225,000 and 108,000 of

injected faults. The error classification scheme of each injection experiment is as follows:

 No Impact (NI), errors that do not affect the output of the execution flow.

 Detected by Hardware (DHW), errors that are detected by the hardware exceptions.

 Time Out (TO), errors that cause violation of the timeout2.

2 Timeout is an order of magnitude larger than the worst-case execution time of a workload.

28

 Value Failure (VF), erroneous output with no indication of failure (silent failure).

 Detected by Software (DSW), errors that are detected by the software detection mechanisms.

 Corrected by Software (CSW), errors that are corrected by the software correction mechanisms.

When presenting the results, we also define coverage as the probability that an error does not cause value

failure, thus the coverage (COV) of each execution flow can be calculated using equation (5.1) :

 (5.1)

Where N is the total number of experiments, and #VF is the total number of experiments that resulted in

value failure. This equation also includes experiments classified as no impact and timeout. No impact

experiments can be regarded as internal robustness of the workload; therefore they contribute to the

overall coverage of the system. Timeout experiments on the other hand, are detected Goofi-2. In a real life

application where there is no fault injection tool to be used for timeout detection, watchdog timers are

used to detect these errors.

Table 5.1. Summary of assembly metrics for CRC and SHA execution flows

Execution

Flow
PLI PSI PAI PBI PLGI PPI NRGPR NRSP

SHA-1 34.99% 11.29% 30.68% 3.18% 19.41% 0.44% 10650 63

SHA-2 35.07% 11.29% 30.56% 3.24% 19.40% 0.44% 10697 63

SHA-3 35.12% 11.29% 30.48% 3.28% 19.39% 0.44% 10730 63

SHA-4 35.53% 11.34% 29.96% 3.48% 19.26% 0.43% 10992 63

SHA-5 35.53% 11.34% 29.96% 3.48% 19.26% 0.43% 10992 63

SHA-6 36.57% 11.35% 29.05% 3.80% 19.02% 0.21% 23027 69

SHA-7 36.57% 11.35% 29.05% 3.80% 19.02% 0.21% 23027 69

SHA-8 37.38% 11.46% 27.99% 4.21% 18.77% 0.20% 24302 69

SHA-9 37.39% 11.46% 27.98% 4.21% 18.76% 0.20% 24334 69

AVERAGE 36.02% 11.35% 29.52% 3.63% 19.14% 0.33% 16527.89 65.66

CRC-1 33.93% 26.79% 7.14% 10.71% 5.36% 16.07% 51 14

CRC-2 37.21% 20.93% 9.30% 8.14% 12.79% 11.63% 87 14

CRC-3 38.79% 18.10% 10.34% 6.90% 16.38% 9.48% 123 14

CRC-4 41.85% 12.64% 12.36% 4.49% 23.31% 5.34% 411 14

CRC-5 41.85% 12.64% 12.36% 4.49% 23.31% 5.34% 411 14

CRC-6 42.97% 10.65% 13.09% 3.62% 25.84% 3.83% 1707 14

CRC-7 42.97% 10.65% 13.09% 3.62% 25.84% 3.83% 1707 14

CRC-8 43.16% 10.31% 13.22% 3.47% 26.27% 3.57% 3615 14

CRC-9 43.16% 10.31% 13.22% 3.47% 26.27% 3.57% 3615 14

AVERAGE 41.08% 14.78% 11.92% 5.44% 20.60% 6.96% 1303 14

5.1.2.1 Workloads Comparison

We investigate the experiments outcomes with respect to both the fault locations (e.g., general purpose

registers) and the instructions being executed when the fault is injected. Table 5.2 summarizes the results

of the fault injection campaigns for the two workloads. In this table, the ERRORS column shows to the

29

sum of faults for the nine campaigns corresponding to the mentioned fault locations. Besides, throughout

the remaining of the thesis, we refer to the Link register, Condition register, and Integer Exception

register as Miscellaneous registers (Misc).

Table 5.2. Summary of CRC (left table) and SHA (right table) failure distributions

Fault

Location

ERRORS NI VF DHW TO Fault

Location

ERRORS NI VF DHW TO

 # % # %

GPRs 48,163 27.45 39.66 30.95 1.93 GPRs 105,032 13.86 55.82 28.04 2.28

PCR 42,371 13.58 11.46 74.58 0.38 PCR 85,271 13.73 16.86 68.87 0.54

MISC 3,981 61.47 28.49 9.62 0.43 MISC 5,765 63.14 35.30 1.46 0.10

MEM 13,485 28.35 63.65 7.69 0.31 MEM 28,932 10.10 84.17 3.94 1.80

Total 108,000 23.38 31.18 44.38 1.06 Total 225,000 14.59 44.18 39.73 1.50

After comparing the outcomes of the two workloads, a number of major findings are summarized as

follows:

 A high percentage of the errors in the program counter register are detected by hardware

exceptions for both CRC and SHA, these results are in accord with [14]. This is due to the fact

that an error in the program counter register is more likely to trigger a hardware exception like

data violation or execution of a not implemented instruction.

 The percentage of value failures caused by fault injections in Misc registers is higher for SHA

than for CRC. The content of these registers are changed mainly by the arithmetic instructions

which are executed significantly more in SHA than in CRC according to Table 5.1.

 Indeed, fault injections in GPRs and memory locations cause a higher percentage of experiments

to be classified as no impact in CRC compared to SHA. However in SHA, higher percentage of

injections in GPRs and memory locations are classified as value failure compared with CRC.

One reason for this behavior can be explained by analyzing the two case studies in Figure 5.1. In

case 1, a piece of CRC disassembly code, shows that load instructions which fetch the memory

contents, are followed by rotate, shift or compare instructions. These orders of instructions along

with 0-bit sequences in the memory would make the bit flipping ineffective due to the fact that

the memory content is changed immediately. Since there are a great number of experiments with

the above mentioned behaviour in CRC, the results of the fault injections in the memory would

not be effective in 28% of the times, e.g., 30% of the experiments for the load instruction at

address 21f4, and 26% of experiments at address 219c resulted in no impact. On the other hand,

the faults injected into the memory for SHA, as shown in the case 2 of Figure 5.1, turn out to be

more effective. This might be due to the fact that the content of the memory is not always

immediately consumed by rotate or compare instructions, e.g., the fetched memory content is

stored in the memory for further usages. Therefore there is a higher probability that the injected

fault causes value failure. In addition, SHA is a bigger program compared to CRC and it

executes load instructions more than CRC, thus SHA is more prone to value failure than CRC.

The proposed metrics are not capable of fully capturing these effects. However, percentage of

load instructions (PLI) (see Table 5.1) can be used to help us understand whether a workload is

more sensitive than another one to faults injected in memory. Indeed, the percentage of load

30

instructions for CRC is greater than the percentage of load instructions of SHA, which shows

that CRC workload is more likely to mask the effects of the fault injections.

Case 1 Case 2
219c: 81 3f 00 14 lwz r9,20(r31)

21a0: 55 20 06 3e clrlwi r0,r9,24

…

21f4: 80 1f 00 14 lwz r0,20(r31)

21f8: 2f 80 00 00 cmpwi cr7,r0,0

…

21a4: 81 7f 00 18 lwz r11,24(r31)

21a8: 7c 00 5a 78 xor r0,r0,r11

21ac: 54 00 06 3e clrlwi r0,r0,24…

 234c: 80 1f 00 10 lwz r0,16(r31)

2350: 2f 80 00 00 cmpwi cr7,r0,0

…

26e4: 80 1f 00 0c lwz r0,12(r31)

26e8: 90 1f 00 08 stw r0,8(r31)

…

273c: 81 3f 00 10 lwz r9,16(r31)

2740: 80 1f 00 0c lwz r0,12(r31)

2744: 7d 29 03 78 or r9,r9,r0)

Figure 5.1. Case study of faults injected in memory for CRC (case 1) and SHA (case 2)

5.1.2.2 Execution Flows Comparison

Table 5.3 shows the experiment outcomes for different CRC and SHA execution flows. The percentage of

experiments classified as value failure grows linearly as the length of the inputs increase. We can

reasonably approximate the value failure to a normal variable due to the large number of experiments,

25000 and 12000 for each SHA and CRC execution flow. Moreover, the number of experiments is

enough to give high confidence in the obtained results. The 95% confidence interval for the value failures

presented in Table 5.3 varies from ±0.43% to 0.88%.

Table 5.3. CRC and SHA failure distributions for different execution flows

Execution

Flow

Total NI VF DHW TO COV Execution

Flow

Total NI VF DHW TO COV

 # % # %

CRC-1 12000 42.72 6.06 48.22 3.01 93.94 SHA-1 25000 18.86 38.76 40.98 1.4 61.24

CRC-2 12000 32.94 17.94 46.73 2.38 82.06 SHA-2 25000 17.76 40.1 40.99 1.14 59.9

CRC-3 12000 28.3 24.31 45.83 1.56 75.69 SHA-3 25000 17.58 40.82 40.6 1 59.18

CRC-4 12000 20.81 34.32 44.03 0.84 65.68 SHA-4 25000 15.94 43.13 39.37 1.56 56.87

CRC-5 12000 20.33 35.5 43.61 0.57 64.5 SHA-5 25000 16.81 42.05 39.7 1.44 57.95

CRC-6 12000 16.55 39.79 43.41 0.25 60.21 SHA-6 25000 11.53 47.06 39.5 1.9 52.94

CRC-7 12000 17.06 39.59 43.05 0.3 60.41 SHA-7 25000 11.43 47.72 39.26 1.58 52.28

CRC-8 12000 16.02 41.92 41.77 0.29 58.08 SHA-8 25000 10.72 48.81 38.78 1.68 51.19

CRC-9 12000 15.68 41.19 42.75 0.38 58.81 SHA-9 25000 10.68 49.13 38.4 1.78 50.87

If we consider that the value failure is distributed as a normal variable with a mean value equals to the

quote between the number of value failure experiments and total number of experiments, we can conduct

one way analysis of variance (ANOVA) to inspect if there is a linear correlation between the length of the

input and the percentage of value failure. ANOVA is performed by testing the hypothesis H0 which states

“there is no linear correlation between the length of the input and the percentage of value failure”. The

results of ANOVA in Table 5.4 allow us to reject H0 with a confidence of 95%. The reason behind this

correlation is that when the length of the input increases, the number of reads from registers and memory

locations increase as well. This means that there are more possibilities to inject faults that result in value

failure.

31

Table 5.4. Hypothesis test results for CRC and SHA

Hypothesis Workload
p-value

(α=0.05)
Outcome Linear regression Equation

NO linear correlation between VF and

input length.
CRC 0.0309 Reject H0 VF = 23.55 + 0.22length

SHA <0.001 Reject H0 VF = 40.64 + 0.09length

NO linear correlation between DHW

and input length.
CRC 0.013 Reject H0 DHW = 45.78 - 0.040length

SHA 0.034 Reject H0 DHW = 40.46 -0.019length

NO linear correlation between TO and

input length.
CRC 0.046 Reject H0 TO = 1.67 - 0.017length

SHA 0.37 Accept H0 --

NO linear correlation between COV

and input length
CRC 0.0309 Reject H0 COV = 76.45 - 0.22length

SHA <0.001 Reject H0 COV = 59.35-0.09length

The percentage of detected by hardware experiments, as shown in Table 5.3, is always around 44 and 40

percent for the CRC and SHA execution flows, respectively. This means that there may be only a minor

correlation between the percentage of detected by hardware experiments and the input length. The

outcome of the hypothesis test, H0 that states “there is no linear correlation between the results of

detected by hardware experiments and the input length” is presented in Table 5.4. Though the test reveals

that for both workloads this hypothesis is rejected, the probability of errors being detected by hardware

slightly decreases as the input length increases (the coefficient is -0.019 for SHA and 0.04 for CRC).

Analogously, the proportion of experiments classified as timeout is almost constant for all the workloads.

Table 5.4 shows that COV is decreased as the input length increases for both CRC and SHA. This is

acceptable because the percentage of value failures increases with the length of the input. The test of

hypothesis in Table 5.4 reveals that coverage and value failures are linearly correlated and that the

coverage decreases faster for CRC than SHA with the increase in the length of the input.

Table 5.5. CRC and SHA failure distributions w.r.t. the PCR

Execution

Flow

Total NI VF DHW TO Execution

Flow

Total NI VF DHW TO

 # % # %

CRC-1 4966 19.98 2.28 76.82 0.93
SHA-1

9,533 15.05 15.26 69.26 0.42

CRC-2 4811 15.9 7.3 75.81 1
SHA-2

9,544 14.75 16.05 68.65 0.54

CRC-3 4789 15.29 9.29 74.86 0.56
SHA-3

9,473 14.56 15.92 68.78 0.74

CRC-4 4742 13.05 12.13 74.42 0.4
SHA-4

9,496 13.84 16.85 68.66 0.65

CRC-5 4726 13.06 13.25 73.44 0.25
SHA-5

9,516 13.69 16.6 69.21 0.49

CRC-6 4572 11.59 14.39 73.99 0.02
SHA-6

9,375 12.83 17.91 68.64 0.62

CRC-7 4562 11.14 14.64 74.11 0.11
SHA-7

9,494 13.46 17.73 68.32 0.5

CRC-8 4578 10.66 15.4 73.9 0.04
SHA-8

9,404 12.8 17.71 69.01 0.48

CRC-9 4625 10.9 15.42 73.66 0.02
SHA-9

9,436 12.57 17.78 69.27 0.38

32

Table 5.5 shows that a high percentage of the errors in the program counter register are detected by

hardware exceptions for both CRC and SHA. This is due to the fact that an error in the program counter

register is more likely to trigger a hardware exception. However, around half of the remaining injections

in the program counter register cause value failures. This might be due to the fact that some faults modify

the program counter register in a way that the execution flow jumps to an instruction where it is still

possible to finish the program execution without being detected by the hardware exceptions.

5.1.2.3 Value Failure Distribution over the Instruction Categories

Table 5.6 shows the distribution of the value failures over different instruction categories for all the

execution flows, i.e., the value in each cell corresponds to the percentage of value failures for injections in

different specific instruction categories. The distribution of the value failures for both workloads is in

accord with the results in Table 5.1. Indeed, the most executed instructions are to a great extent

responsible for value failures as it is shown in Figure 5.2. For instance, the load, logical, store, and

arithmetic categories are the most executed instructions in CRC, and they are responsible for a significant

part of value failures as well.

Table 5.6. Value Failure distribution over the instruction categories for CRC and SHA

LOAD STORE ARITHM BRANCH LOGICAL PROCESSOR

%

CRC-1 2.24 2.28 0.19 0.50 0.71 0.13

CRC-2 6.46 4.78 2.48 0.87 2.79 0.56

CRC-3 9.38 5.39 3.60 0.95 4.00 0.99

CRC-4 15.06 4.83 6.18 1.27 5.78 1.21

CRC-5 15.54 5.01 6.22 1.34 6.12 1.28

CRC-6 18.10 4.46 7.17 1.48 7.31 1.28

CRC-7 17.98 4.64 7.07 1.42 7.33 1.17

CRC-8 19.03 5.04 7.36 1.46 7.78 1.24

CRC-9 19.03 4.82 6.84 1.41 7.51 1.58

SHA-1 14.84 5.02 11.48 0.57 6.80 0.04

SHA-2 15.22 5.06 11.98 0.76 7.02 0.06

SHA-3 15.79 5.28 11.98 0.79 6.93 0.06

SHA-4 15.22 5.06 11.98 0.76 7.02 0.06

SHA-5 16.74 5.42 11.94 0.94 6.96 0.06

SHA-6 18.56 6.46 13.36 1.43 7.22 0.03

SHA-7 19.22 6.51 13.55 1.43 7.00 0.01

SHA-8 19.78 6.67 13.80 1.57 6.96 0.03

SHA-9 20.04 6.96 13.49 1.59 7.02 0.02

33

Figure 5.2. Value Failure distributions over different instruction categories for CRC (left chart) and SHA (right chart)

execution flows.

5.2 Experimental Results for Workloads Equipped with TTR-FR

All the analyzed non-TTR-FR workloads consist of three major code blocks; startup, main function, and

core function. In addition to these code blocks, the TTR-FR implementation also consists of the voter in

its main function which performs the majority voting, see Figure 5.3. The core function, which is called

three times from the main function, performs the foremost functionality of each workload. As an example,

in CRC, the core function is responsible for the checksum calculations.

Figure 5.3. The TTR-FR code blocks

5.2.1 Workloads Comparison

This section summarizes the results of the fault injection campaigns for the workloads equipped with the

TTR-FR mechanism. For simplicity, we refer to the two workloads as CRC-TTR and SHA-TTR. Table

5.7 shows the aggregated results for CRC-TTR and SHA-TTR. In this table, DSW is the percentage of

errors detected by software, which is when all three runs of the program produce different outputs.

Moreover, CSW is when an execution flow generates a correct output as a result of the majority voting.

Table 5.7. Summary of CRC-TTR (left table) and SHA-TTR (right table) failure distributions

Fault

Location

ERRORS NI VF CSW DSW DHW TO Fault

Location

ERRORS NI VF CSW DSW DHW TO

 # % # %

GPRs 48186 23.80 0.58 44.18 0.11 30.30 1.02 GPRs 104800 14.01 0.36 54.57 0.01 28.58 2.48

PCR 41782 13.22 1.77 11.24 0.30 73.24 0.23 PCR 85022 13.96 1.47 16.59 0.41 66.52 1.04

MISC 3583 53.00 0.50 37.68 0.03 8.43 0.36 MISC 5922 65.25 0.24 33.18 0.02 1.22 0.10

MEM 14448 24.54 5.17 60.71 0.19 8.11 1.28 MEM 29254 10.92 0.33 82.93 0.00 4.05 1.77

Total 107999 20.77 1.65 33.43 0.19 43.22 0.73 Total 224998 14.92 0.77 43.36 0.16 39.00 1.79

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%

LOAD STORE ARITHM

BRANCH LOGICAL PROCESSOR

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

LOAD STORE ARITHM

BRANCH LOGICAL PROCESSOR

34

The main observations are summarized as follows:

 The TTR-FR mechanism seems to be very effective for both workloads, indeed the percentage of

value failure is about 0.8% for SHA and 1.6% for CRC.

 The TTR-FR mechanism proves to be a good technique to mask errors in all the fault locations

and in particular for the general purpose registers. It is notable that the percentage of corrected

errors in the GPRs is 54% for SHA-TTR while it is 44% for CRC-TTR. These results are

expected because transient faults are masked with a new run of the program as it is done In the

TTR-FR. Out of the total number of around 225000 and 108000 injected faults for SHA and

CRC workloads, few experiments (1729 experiments for CRC and 1786 experiments for SHA)

resulted in value failure. The proportion of value failure varies for different code blocks:

a. With respect to the core function, the main contributor to the lack of coverage is

injections in the program counter register. These faults change the control flow in such a

way that the voter is incorrectly executed or not executed at all. For instance, for the core

function of SHA, around 96% of the value failures were caused by faults in the program

counter register.

b. Since other parts of the source code including the voter are not protected with the TTR-

FR mechanism, the injections in different registers and memory words are more likely to

contribute to the value failure. For this reason, we performed exhaustive fault injection

(i.e., we inject all possible faults) in the voter to evaluate its robustness for each

workload. It is notable that about 14% of the injections in the voter resulted in value

failures. Therefore, even though TTR-FR mechanism decreases the percentage of value

failure, the voter is one of the main contributors to the remained percentage of value

failure.

 The percentage of TTR-FR experiments classified as corrected by software is approximately

equal to the percentage of value failure in Table 5.2. This means that the TTR-FR can tolerate

almost all the previous cases of injections classified as value failures, although it is not totally

immune to faults that affect program’s voter, startup code, or control flow.

 The percentages of experiments classified as detected by hardware in CRC and SHA are

analogous to their enhanced versions, CRC-TTR and SHA-TTR. The reason might be that, the

enhanced version of the original workload can be considered as a program that executes the

original workload three times, along with few more lines of codes, e.g. the voting function. The

faults are then more likely to be injected during one of the three executions, since the new lines

of codes run for much shorter time. Therefore the percentage of experiments classified as

detected by hardware for the enhanced version of a workload is more likely to be similar to the

original workload.

 Another reason for observing analogous percentages of experiments classified as detected by

hardware for CRC and SHA might be the similar percentages of injected faults in program

counter register and general purpose registers for the original and its enhanced versions, see

Table 5.2 and Table 5.7. Since experiments classified as detected by hardware are mainly as a

result of injected faults in program counter register and GPR, the outcomes of detected by

hardware for the original workloads are similar to the enhanced versions. Indeed, if an injected

fault is classified as detected by hardware in one of the three runs, execution of the program will

be terminated before it can be detected by TTR-FR.

35

 The percentages of experiments classified as no impact do not change significantly between the

original workloads and their enhanced versions.

5.2.2 Execution Flows Comparison

Table 5.8 illustrates the outcome distribution of different execution flows in CRC-TTR and SHA-TTR. It

is notable that the percentage of experiments classified as corrected by software increases with the growth

of the input length. We can test it in a similar way that we did for SHA and CRC execution flows by

using hypothesis H0 that states “there is no linear correlation between the percentage of errors corrected

by software and the length of input”. The 95% confidence interval for the corrected by software

experiments varies for about ± 0.6% for SHA-TTR and from ±0.56% to ± 0.88% for CRC-TTR. The

results in Table 5.9 show that we can reject H0 for SHA, but accept it for CRC even though the p-value is

0.065. Moreover, the slope of the linear regression model for SHA value failures in Table 5.4 and the

slope of the model for corrected by software experiments in Table 5.9 are fairly close. This is a further

enforcement of the observation that the TTR-FR can successfully cope with the errors classified as value

failures with the increase of the input length.

Table 5.8. CRC-TTR and SHA-TTR failure distributions for different execution flows

Execution

Flow
Total NI VF CSW DSW DHW TO COV

Execution

Flow
Total NI VF CSW DSW DHW TO COV

 # % # %

CRC-1 12000 38.87 0.89 10.81 0 47.96 1.48 12000 SHA-1 25000 18.91 0.73 38.42 0.16 39.82 1.96 99.27

CRC-2 12000 26.3 2.27 24.33 0.19 45.97 0.94 12000 SHA-2 25000 18.63 0.84 39.53 0.18 38.92 1.9 99.16

CRC-3 12000 22.65 2.35 29.34 0.34 44.67 0.65 12000 SHA-3 24999 18.28 0.81 39.79 0.18 39.18 1.76 99.19

CRC-4 12000 17.73 1.77 37.46 0.12 42.36 0.57 12000 SHA-4 24999 17.32 0.91 40.71 0.15 39.23 1.67 99.09

CRC-5 12000 17.97 1.84 36.89 0.12 42.67 0.51 12000 SHA-5 25000 17.74 0.83 40.3 0.16 39.58 1.4 99.17

CRC-6 12000 15.62 1.56 40.43 0.15 41.9 0.34 12000 SHA-6 25000 11.28 0.68 47.08 0.19 39 1.78 99.32

CRC-7 11999 16.09 1.66 40.45 0.15 41.44 0.22 11999 SHA-7 25000 11.07 0.77 47.44 0.18 38.84 1.71 99.23

CRC-8 12000 15.84 1.2 40.9 0.38 40.78 0.9 12000 SHA-8 25000 10.47 0.65 48.59 0.09 38.22 1.98 99.35

CRC-9 12000 15.89 1.35 40.27 0.29 41.23 0.97 12000 SHA-9 25000 10.6 0.69 48.41 0.13 38.24 1.93 99.31

Furthermore, we can investigate if there is a linear correlation between the value failures of the extended

versions and the length of input. The limits of confidence interval of the experiments classified as value

failures are ± 0.01% for SHA-TTR and ±0.27% for CRC-TTR. According to Table 5.9, such hypothesis

still holds for SHA. However it is interesting to notice that value failures decreases with the length of

input for SHA-TTR. A possible explanation for this behavior is that the relative size of the core function

in SHA-TTR is bigger than CRC-TTR. By increasing the length of the input, the core function will be

lengthier and more faults would be injected in it. These faults are less likely to cause value failure due to

the redundancy in the core function. Moreover, the percentage of experiments classified as corrected by

software increases with the increase of input length which causes the value failures to be decreased for

SHA-TTR.

36

Table 5.9. Hypothesis test results for CRC-TTR and SHA-TTR

Hypothesis Workload

p-value

(α=0.05)

Outcome Linear regression Equation

NO linear correlation between

CSW and input length

CRC-TTR 0.065 Accept H0 --

SHA-TTR <0.001 Reject H0 CSW = 39.43 + 0.10length

NO linear correlation between VF

and input length

CRC-TTR 0.1891 Accept H0 --

SHA-TTR 0.015 Reject H0 VF = 0.0082 - 0.0016length

NO linear correlation between

DHW and input length

CRC-TTR 0.022 Reject H0 DHW = 44,78 - 0.0448length

SHA-TTR 0.030 Reject H0 DHW = 39.42 - 0.011length

NO linear correlation between

COV and input length

CRC-TTR 0. 1891 Accept H0 --

SHA-TTR 0.015 Reject H0 COV = 99.17 + 0.001length

In both workloads there is a linear correlation between the percentage of experiments classified as

detected by hardware and the length of input. This result is similar to the one obtained for non TTR-FR

workloads.

The coverage, COV, defined in equation (5.1) is linearly correlated with the length of input for SHA, but

it is not correlated for CRC. However, we can consider that the coverage is approximately constant, since

the coefficient is very small for SHA and varies slightly in CRC.

5.3 Instruction-based Prediction Results for CRC and SHA Workloads

In this section, the instruction-based prediction technique is evaluated by investigating 9 different input

sequences for each target program. The assembly level signatures of all fault-free execution flows are

analyzed using PCA, discussed in Section 3.3.1. Moreover, the results of a number of failure distribution

predictions are presented.

The instruction-based prediction technique, as discussed in Section 3.3, consists of two parts. In the first

part, only one input sequence is selected as the base input, while in the second part, two input sequences

are used to generate a better base input. Figure 5.4 illustrates the PCA analysis results of different

execution flows on the metric values generated by the assembly signature creator (ASC). As can be seen,

execution flows with same input lengths generate adjacent point in the Cartesian coordinate system. This

observation will later on be used in the failure distribution predictions.

37

Figure 5.4. PCA-generated points for different CRC and SHA execution flows

5.3.1 Using One Input Sequence as the Base

In order to predict the failure distribution of an execution flow, its closest point in the Cartesian

coordinate system should be selected as its base input. Then by using the equation (3.6), the failure

distribution of the target input can be predicted. As an example, as shown in Figure 5.4, in case we have

already estimated the failure distribution of CRC-6 using fault injection, the failure distribution of CRC-7

can be predicted using CRC-6 as the base input. The same scenario is applicable to CRC-8 and CRC-5 in

which CRC-9 and CRC-4, respectively, will be selected as the best base input sequences.

The results of using instruction-based prediction technique to predict non-covered errors (value failures)

are shown in Figure 5.5. Subfigure a refers to the comparison of the predicted and observed value failures

for CRC execution flows, while subfigure b corresponds to SHA. CRC shows higher fluctuation of value

failure with regards to different input sequences.

It can also be seen in Figure 5.5 that each predicted value failure leans towards the value failure of its

selected base input (except for when CRC-1 is used to predict CRC-2). That is, the predicted value failure

is a value between the observed value failures of every two inputs. As an example, the higher percentage

of predicted value failure for SHA-8 (compared to its observed value failure percentage) using SHA-9 is

due to the fact that SHA-9 has a higher observed value failure when compared to SHA-8.

The weakness of the first part of the instruction-based prediction technique is that it only works fine when

there is an adjacent point to the target point. For example, in case there was no point in Figure 5.4,

corresponding to SHA-7, the selected base sequence for predicting the value failure of SHA-6 would be

SHA-9. The value failure prediction of SHA-6 using SHA-9 as the base input shows the deviation of

around 2% (between the predicted and observed values). It can also be seen in the subfigure a of Figure

5.5 that the results of the predictions for the first three CRC execution flows are not satisfactory. This is

as a result of the high distance between the PCA generated base and target inputs, see Figure 5.4.

Therefore, in the second part, two input sequences are used to generate a possibly better base input.

38

Figure 5.5. Predicted vs. observed non-covered errors (value failures) using one input as the base

N.B. the value inside the left square brackets corresponds to the base input while the right square bracket contain the target input.

5.3.2 Using Two Input Sequences to Generate the Base Input

In the second part of the instruction-based prediction technique, we use two input sequences to predict the

failure distribution of another execution flow. The idea behind this mechanism is presented in Section

3.3.1 where all different combinations of two input sequences should be selected to generate another input

which can also be represented in the PCA diagram. Finally, the generated input with the shortest distance

to the target input is selected as the base input. It is then used in equation (3.14) to predict the failure

distribution of another input sequence.

In order to evaluate the second part of the instruction-based technique using the presented execution

flows, we assume that the closest base input is generated using two input sequences instead of one. For

example, assume that in Figure 5.4, there is no point corresponding to CRC-7. Then the closest base input

sequence to predict the failure distribution of CRC-6 is generated using CRC-8 and CRC-4. The reason

for making this assumption is that for example CRC-7 is so close to CRC-6 that no other two input

sequences can generate a better base input. Therefore, in order to evaluate the second part, we remove one

input of each two adjacent points to let another two input sequences generate a better base input, e.g.,

when CRC-7 is removed, all combinations of the remained seven input sequences compete to generate a

better base input for the prediction of CRC-6.

Figure 5.6 shows the results of applying instruction-based prediction technique using two input sequences

to predict the percentage of experiments resulted in value failure, detected by hardware, and time out

classifications. Only the input sequences of 3, 4, and 6 of each workload are predicted with the left

column corresponding to CRC and the right column corresponding to SHA.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

a) Non-covered errors (value failures)

Predicted

Observed

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

b) Non-covered errors (value failures)

Predicted

Observed

39

Figure 5.6. Predicted vs. observed failure distributions using two base inputs

N.B. the values inside the left square brackets corespond to the base inputs while the right square bracket contain the target input.

24.3%

32.0%

37.7%

24.3%

34.3%

39.8%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

CRC[1,4][3] CRC[3,7][4] CRC[4,8][6]

a) Non-covered errors (value failures)

Predicted

Observed

40.1%

42.1%

46.9%

40.8%

43.1%

47.1%

36.0%

38.0%

40.0%

42.0%

44.0%

46.0%

48.0%

SHA[1,5][3] SHA[3,6][4] SHA[5,9][6]

b) Non-covered errors (value failures)

Predicted

Observed

46.0%

44.6%

43.0%

45.8%

44.0%

43.4%

41.5%

42.0%

42.5%

43.0%

43.5%

44.0%

44.5%

45.0%

45.5%

46.0%

46.5%

CRC[1,4][3] CRC[3,7][4] CRC[4,8][6]

c) Detected by hardware (DHW) errors

Predicted

Observed
40.4% 40.4%

38.8%

40.6%

39.4%
39.5%

37.5%

38.0%

38.5%

39.0%

39.5%

40.0%

40.5%

41.0%

SHA[1,5][3] SHA[3,6][4] SHA[5,9][6]

d) Detected by hardware (DHW) errors

Predicted

Observed

1.5%

0.9%

0.6%

1.6%

0.8%

0.3%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

CRC[1,4][3] CRC[3,7][4] CRC[4,8][6]

e) Time out (TO) errors

Predicted

Observed
1.4%

1.2%

1.7%

1.0%

1.6%

1.9%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

SHA[1,5][3] SHA[3,6][4] SHA[5,9][6]

f) Time out (TO) errors

Predicted

Observed

40

In the value failure predictions (subfigures a and b), the highest divergence from the observed percentage

of value failure is 2.3 percentage points which corresponds to the case in which CRC-3 and CRC-7 are

used to predict the value failure of CRC-4. This divergence is 24.5 percentage points in case of using only

CRC-3 as the base input which means that the input generated by CRC-3 and CRC-7 produced a better

base input. Even though there is a divergence of 2.3 percentage points for the value failure prediction of

CRC-4, subfigure e shows that its time out is predicted with only 0.1 percentage points of deviation.

In Table 5.10, we used mean squared error (MSE) in order to quantify the difference between the

predicted and the observed percentages of value failures. In this table we compare the results of value

failure prediction using instruction-based technique and linear regression equation presented in Table 5.4.

The errors shown in the first two columns of Table 5.10 correspond to nine sample predictions, while the

ones in the second two columns refer to the three sample predictions shown in Figure 5.6.

Table 5.10. Error comparison of value failure prediction using instruction-based predictor and linear regression equation

 Instruction-based

prediction using

one input

Linear regression

equation

Instruction-based

prediction using

two input

Linear regression

equation

CRC 24.38 67.75 3.25 12.33

SHA 0.69 1.25 0.53 0.39

For SHA, it can be seen that instruction-based prediction using one input has less amount of error when

compared to the value failure predicted by linear regression equation. However, this is vice versa when

two input sequences are used in the instruction-based prediction. The explanation for these results lies on

thenatureofthetwopredictors.Theinstructionbasedpredictorpicksthe“closest” PCA-generated points

to the target point, while the linear regression model is based on the minimization of the MSE for all the

points existed in the data set. Therefore, the linear regression model is more robust compared to the

instruction based when there is no close point.

For CRC, the errors of both prediction techniques are almost an order of magnitude greater than the

calculated MSE for SHA. This is mainly due to the fact that for CRC the failure distributions of the first

three execution flows are outliers (CRC-1, CRC-2, CRC-3). This can also be seen in the signatures of the

fault-free run of CRC execution flows, see Figure 5.4. However, the predicted value failures using

instruction-based predictor have less amount of error when compared to the value failures predicted by

linear regression equation. We also calculate the MSE by excluding the three outlier execution flows.

This results in mean squared errors of 0.65 and 1.12 for instruction-based prediction using one point and

linear regression equation for the remaining six execution flows, respectively.

The effectiveness of the instruction-based technique lies to proper selection of the base input. The more

input sequences we have, the higher the probability that we can select or generate a useful base input

which results in a more accurate prediction. On the other hand, the linear regression equation only

considers the length of the input in order to predict its failure distributions which in the case of our

selected target programs seem to make accurate predictions. However, the failure distribution of other

target programs like Quicksort might not be correlated to the size of the input, while it seems their failure

distributions can still be predicted using their assembly code and instruction-based prediction technique.

41

6 Conclusions

In this thesis we studied a series of fault injection campaigns conducted on two different target programs,

SHA-1 and CRC-32. Each target program was analyzed using 18 different execution flows operating with

different inputs and subsequently extended with a time redundant fault tolerant mechanism. The effect of

different inputs on the failure distribution of each execution flow shows that there is a correlation between

the length of the input and the error coverage. In fact inputs of the same length can be considered

equivalent in terms of error coverage. This helps us reduce the number of fault injection campaigns and

consequently to save resources such as time. For the non-fault-tolerant implementation of the target

programs, execution flows with longer input sequences resulted in fewer covered errors when compared

to shorter input sequences. Moreover, the error coverage of CRC execution flows varies between 93.94%

and 58.08% while for SHA it is between 50.87% and 61.24%.

The percentage of covered errors increased significantly (to around 99%) with the adoption of the TTR-

FR. Moreover, this mechanism is effective in detecting and correcting the value failures as the input

changes. However, there are still faults that escape the TTR-FR and cause system failure.

The results of our two proposed prediction techniques (linear regression equation and instruction-based

prediction) are quite satisfactory. Foremost advantage of linear regression equation is its simple

calculation. However, it can only be used when there is a correlation between the error coverage and input

length of a target program. On the other hand, the instruction-based predictor can be considered as a more

general approach which does not require any linear correlation between the size of input and error

coverage. By comparing the observed percentage of experiments classified as value failures and its

42

predicted percentage, we conclude that for SHA execution flows, the linear regression equation gives us a

better prediction with the mean square error (MSE) of 0.39. Whereas, the instruction-based predictor

produces a better prediction for CRC execution flows with the MSE of 3.25.

The percentage of experiments classified as detected by hardware (DHW) changes slightly for the

execution flows of each target program. It is yet notable that the result of detected by hardware

experiments does not change considerably in the TTR-FR version of each target program when compared

to the non-fault-tolerant implementation. This means that the hardware detection mechanism operates

independently from the TTR-FR.

Future Work

In this thesis we have shown that there is a linear correlation between the selected input and the failure

distribution of SHA-1 and CRC-32 target programs. We have also proposed two prediction techniques,

but more work is needed to determine whether the methodology is applicable to other target programs.

Furthermore, the prediction techniques could be improved, and other statistical methods could be

employed to achieve a more accurate prediction. Our selected target programs may or may not be

representative for many other target programs, but the overall conclusion must be that it is worth

investigating the correlation of different inputs to the failure distribution using assembly level signature of

the target programs. Moreover, our target programs had low complexities, thus more complicated

programs can be the next target of our technique. Larger programs typically consist of a number of

subprograms, so error coverage for each of these subprograms could probably be used to estimate the

total error coverage. We would also like to encourage other researchers to use other assembly level

metrics to evaluate other target programs equipped with different fault tolerance mechanisms. In addition

to the single bit flip fault model that we used in our fault injection campaigns, the effect of multiple bit

flips can also be investigated in the future.

Limitations

The main limitation of this study is the random selection of fault injection locations instead of performing

an exhaustive injection. This is a threat to the validity of results, i.e., the results of 25000 fault injection

experiments for SHA and 12000 experiments for CRC might not be a good representative of the total

failure distribution of each target program. Furthermore, we only used two target programs in our

investigations which do not have high complexities.

43

Bibliography

[1] S. Borkar, "Designing reliable systems from unreliable components: the challenges of transistor

variability and degradation," in Micro, IEEE , 2005, pp. 10-16.

[2] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham, "FERRARI: a tool for the validation of system

dependability properties," in Twenty-Second International Symposium on Fault-Tolerant Computing,

1992. FTCS-22. Digest of Papers., 1992, pp. 336-344.

[3] Henrique Madeira, Mário Zenha Rela, Francisco Moreira, and João Gabriel Silva, "RIFLE: A

General Purpose Pin-level Fault Injector," in The First European Dependable Computing

Conference on Dependable Computing, 1994, pp. 199-216.

[4] J. Arlat et al., "Comparison of physical and software-implemented fault injection techniques," IEEE

Transactions on Computers , vol. 52, no. 9, pp. 1115-1133, September 2003.

[5] M. Sonza Reorda, M. Rebaudengo, "Evaluating the fault tolerance capabilities of embedded systems

via BDM ," in 17th IEEE VLSI Test Symposium, 1999, pp. 452-457.

[6] Z. Segall et al., "FIAT-fault injection based automated testing environment," in Eighteenth

International Symposium on Fault-Tolerant Computing, 1988, pp. 102-107.

[7] Peter Folkesson and Johan Karlsson, "Considering Workload Input Variations in Error Coverage

Estimation," in Third European Dependable Computing Conference on Dependable Computing,

1999, pp. 171-190.

[8] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, "Basic concepts and taxonomy of

dependable and secure computing," IEEE Transactions on Dependable and Secure Computing, vol.

1, no. 1, pp. 11-33, jan.-Mar. 2004.

[9] P. Hazucha et al., "Neutron Soft Error Rate Measurements in a 90-nm CMOS Process and Scaling

Trends in SRAM from 0.25-μsto90-nm Generation," in IEEE International Electron Devices

Meeting, 2003, pp. 21.5.1-21.5.4.

[10] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August, "SWIFT: software implemented

fault tolerance," in International Symposium on Code Generation and Optimization, 2005, pp. 243-

254.

[11] A. Avizienis, "The N-version Approach to Fault-Tolerant Software," IEEE Transactions on Software

Engineering, pp. 1491-1501, 1985.

[12] James J. Horning, Hugh C. Lauer, P. M. Melliar-Smith, and Brian Randell, "A program structure for

error detection and recovery," in International Symposium on Operating Systems, 1974, pp. 171-187.

[13] J. Aidemark, P. Folkesson, and J. Karlsson, "A framework for node-level fault tolerance in

distributed real-time systems ," in International Conference on Dependable Systems and Networks,

2005, pp. 656-665.

[14] Daniel Skarin, "On fault injection-based assessment of safety-critical systems," Chalmers University

44

of Technology, Gothenburg, PhD Thesis ISSN: 0346-718X, 2010.

[15] "AMBER, State of the Art," deliverable no.d2.2, 2010.

[16] H. Kopetz et al., "Distributed fault-tolerant real-time systems the MARS approach," in Micro, IEEE,

2002, pp. 25 - 40.

[17] Emmerich Fuchs, "An Evaluation of the Error Detection Mechanisms in MARS using Software

Implemented Fault Injection," in Dependable Computing - EDCC-2, Proceedings of the Second

European Dependable Computing Conference, 1996, pp. 73-90.

[18] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek, "Fault injection experiments using FIAT,"

in Computers, IEEE Transactions on, 1990, pp. 575-582.

[19] Antonio Dasilva, José F Martínez, Lourdes López, Ana B García, and Luis Redondo, "Exhaustif®: A

fault injection tool for distributed heterogeneous embedded systems," in Euro American conference

on Telematics and information systems , 2007, pp. 1-8.

[20] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, "Using heavy-ion radiation to

validate fault-handling mechanisms," in Micro, IEEE, 1994, pp. 8-23.

[21] J. Arlat, Y. Crouzet, and J.-C. Laprie, "Fault injection for dependability validation of fault-tolerant

computing systems," in Nineteenth International Symposium on Fault-Tolerant Computing, 1989,

pp. 348-355.

[22] D. Skarin, R. Barbosa, and J. Karlsson, "GOOFI-2: A tool for experimental dependability

assessment," in International Conference on Dependable Systems and Networks (DSN), 2010, pp.

557-562.

[23] D. Powell, E. Martins, J. Arlat, and Y. Crouzet, "Estimators for fault tolerance coverage evaluation,"

in The Twenty-Third International Symposium on Fault-Tolerant Computing, 1993, pp. 228-237.

[24] L.M. Kaufman, B.W. Johnson, and J.B. Dugan, "Coverage estimation using statistics of the extremes

for when testing reveals no failures," IEEE Transactions on Computers, vol. 51, no. 1, pp. 3-12,

January 2002.

[25] C Constantinescu, "Estimation of coverage probabilities for dependability validation of fault-tolerant

computing systems," in Ninth Annual Conference on Computer Assurance, 1994, pp. 101-106.

[26] C. Constantinescu, "Using multi-stage and stratified sampling for inferring fault-coverage

probabilities," IEEE Transactions on Reliability , vol. 44, no. 4, pp. 632-639, December 1995.

[27] J.B. Trivedi, K.S. Dugan, "Coverage modeling for dependability analysis of fault-tolerant systems,"

IEEE Transactions on Computers, vol. 38, no. 6, pp. 775-787, June 1989.

[28] Thomas Ball, Peter Mataga, and Mooly Sagiv, "Edge profiling versus path profiling: the showdown,"

in 25th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 1998, pp.

134-148.

45

[29] Thomas Ball and James R Larus, "Efficient path profiling," in 29th annual ACM/IEEE international

symposium on Microarchitecture, 1996, pp. 46-57.

[30] Yih-Farn Chen, D.S. Rosenblum, and Kiem-Phong Vo, "TESTTUBE: a system for selective

regression testing ," in 16th International Conference on Software Engineering, 1994, pp. 211-220.

[31] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi, "An empirical investigation of program

spectra," in ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, 1998, pp. 83-90.

[32] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus, "The use of program profiling for

software maintenance with applications to the year 2000 problem," in 6th European SOFTWARE

ENGINEERING conference held jointly with the 5th ACM SIGSOFT international symposium on

Foundations of software engineering , 1997, pp. 432-449.

[33] Peter Folkesson, Joakim Aidemark, and Johan Karlsson, "Path-Based Error Coverage Prediction,"

Electronic Testing, vol. 18, no. 3, pp. 343-349, June 2002.

[34] (2011, December) MPC565 Reference. Manual.

[35] Karl Pearson, "On Lines and Planes of Closest Fit to Systems of Points in Space," Philosophical

magazine, vol. 2, no. 6, pp. 559–572, 1901.

[36] (2011, December) MiBench version 1. [Online]. http://www.eecs.umich.edu/mibench/

[37] M.R. Guthaus et al., "MiBench: A freee commercially representative embedded benchmark suite," in

IEEE International Workshop on Workload Characterization WWC-4. , 2001, pp. 3-14.

[38] Ruben Alexandersson and Johan Karlsson, "Fault injection‐based assessment of aspect‐oriented fault

tolerance," Chalmers University of Technology, Gothenburg, Technical report ISSN : 1652-926x,

2010.

[39] (2011, December) iSYSTEM AG. [Online]. http://www.isystem.com/component/content/article/4-

articles/18-ic3000-activeemulator.html

[40] (2011, Dec. 1st) PHYTEC America. [Online].

http://www.phytec.com/products/som/PowerPC/phyCORE-MPC565.html

[41] (2011, December) iSYSTEM AG. [Online]. http://www.isystem.com/downloads/sw-

updates/winidea-2010.html

[42] R., Vinter, J., Folkesson, P., Karlsson, J. Barbosa, "Assembly-level preinjection analysis for

improving fault injection efficiency," in Proceedings of the Fifth European Dependable Computing

Conference (EDCC-5), Budapest, Hungry, 2005, pp. 246 – 262.

[43] Raul Barbosa, "Fault Injection Optimization through Assembly-Level Pre-injection Analysis,"

CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, Master's Thesis 2004.

[44] D. Skarin, "On Fault Injection-Based Assessment of Safety-Critical Systems," Chalmers University

http://www.eecs.umich.edu/mibench/
http://www.isystem.com/component/content/article/4-articles/18-ic3000-activeemulator.html
http://www.isystem.com/component/content/article/4-articles/18-ic3000-activeemulator.html
http://www.phytec.com/products/som/PowerPC/phyCORE-MPC565.html
http://www.isystem.com/downloads/sw-updates/winidea-2010.html
http://www.isystem.com/downloads/sw-updates/winidea-2010.html

46

of Technology, Göteborg, Ph.D Dissertation 2010.

[45] "Assessing, Measuring, and Benchmarking Resilience, State of the Art," deliverable no.d2.2, 2010.

