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Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
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Abstract

Cilk is a multithreaded programming language developed by MIT. It has a significant
feature that its runtime system can schedule the tasks among different processors au-
tomatically, leaving the programmer away from those burdens and focusing on explor-
ing parallelism and locality. In this thesis, a Cilk program which implements an LTE
Base-station uplink has been written and ported to the TILEPro64 processor. The per-
formance of the Cilk program on X86 platform and Tilera platform is evaluated and
compared with a Pthreads version of the same serial version.
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1. Introduction

The motivation of this thesis is to evaluate the parallelism power Cilk can provide on
different platforms. An existing serial version of the LTE base-station uplink is given
and the first phase of the thesis is to rewrite this program in Cilk and evaluate its perfor-
mance together with a Pthreads version written by my supervisor. The second phase is
to port the Cilk version of the program onto a Multicore platform, TILEPro64 processor,
and evaluate the performance on this platform and the scalability of Cilk.

In chapter 1, multicore processor technology and the importance of parallel comput-
ing will be elaborated; different parallel frameworks will also be introduced. In chapter
2, an introduction to the Cilk programming language will be given. Several keywords
of Cilk and its runtime system will be illustrated in details. In chapter 3 some concepts
of the LTE uplink will be introduced and a rough description of how the LTE uplink is
written serially will also be given. In chapter 4 specific details of my Cilk program of the
LTE uplink will be given and I will also explain some key factors to boost its parallelism.
In chapter 5 The TILEPro64 processor’s architecture and mechanism is elaborated. In
chapter 6 the steps and methods of porting the Cilk runtime and tool chain support for
the Tilera platform will be explained. The evaluation of the performance on different
platforms and comparison between different parallel programming languages will be
the main content of Chapter 7.

1.1. Parallel computing and multi-core processor technology

Accelerating computations has always been a main motivation in the computer science
realm. Building faster hardware was a valid measure of increasing computation speed:
sequential instructions can be executed faster if the clock speed of the CPU is faster.
Programmers benefited from this method for decades, until the prospects of Moore’s
law looked dimmer in recent years. Another method to increase computation speed is
exploiting parallel execution among sequential instructions, which is called Instruction
Level Parallelism (ILP). This method does not increase the speed of the execution of
a single instruction, rather it increases the number of instructions executed in a unit
of time. Instruction pipelining, very long instruction word (VLIW) and out-of-order
execution are typical examples of Instruction Level Parallelism. But this method is still
based on a single-core processor and the instructions are still written in a sequential
way.
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Computer manufacturers had a major shift in strategy from concentrating on a single-
core processor: to integrate more than one CPU core onto the processor die, which is
called multi-core technology. Adding another CPU core onto the processor die which
already has one would boost performance 100% in theory, adding more cores will in-
crease the performance more, multiple instructions can execute simultaneously on dif-
ferent CPU cores independently. It is the multi-core technology which fully realizes
parallel computation. Intel Core Duo and AMD Phenom II X6 are the typical repre-
sentatives of dual-core processors. As the multi-core technology develops, the scale of
cores on a single chip has reached to 100 cores. The multi-core processor used in this
thesis is the TILEPro64 processor, one decent representative of the multi-core processors
market. There are also some more ambitious establishments to realize parallel comput-
ing than only integrating cores on one die. Supercomputers are one typical example of
them. A supercomputer is a very powerful mainframe computer; the parallelism can
be reached in the scale of thousands of processors for one supercomputer. Clusters and
servers are also good examples of parallel computation hardware.

1.2. Different parallel programming frameworks

The software developers have shifted their strategy from using sequential program-
ming languages to developing advanced parallel technologies, including languages,
compilers, runtime systems, etc. Three typical parallel programming frameworks are
introduced in this section: Intel Threading Building Blocks, Habanero Multicore Soft-
ware Research Project and Wool.

1.2.1. Intel Threading Building Blocks

Intel Threading Building Blocks (Intel TBB) is a runtime library for parallel program-
ming in C++[6]. Its runtime system can help the programmer to exploit parallelism
without dealing with managing specific threads. In another word, Intel TBB does not
work in the low level of raw threads[7]. Intel TBB uses a working theory called ”task
stealing” to create, modify and terminate threads. As there can be multiple processors
available at the beginning of the execution of the program, the runtime system of Intel
TBB first distributes the work load evenly among the available processors. Then during
execution, if one processor has finished the work assigned to it, the processor becomes
available again. The runtime system then assigns work from those processors that are
still busy to this processor, which makes it look like the idle processor steal tasks from
others, this is why it is called ”task stealing”. By this working theory, Intel TBB can
orchestrate the existing threads. Though Intel TBB has the advantage of sparing the
programmer from working with raw threads, it can be used with other threading pack-
ages simultaneously, i.e. POSIX Threads. Intel TBB consists of libraries and header files,
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etc[7]. The library files include several basic and advanced algorithms and data struc-

Figure 1.1.: Dynamic Shared Libraries Included in Intel Threading Building Blocks[7]

tures. The dynamic shared library includes two versions; one library has the general
support while the other library features scalable memory allocation[7].

1.2.2. Habanero Multicore Software Research Project

Rice University launched the Habanero project in fall 2007. Quite a few new parallel
programming technologies have been developed by this project since then. Habanero
Programming languages consist of Habanero Java, Habanero C and Habanero Scala,
etc. New compiler research, virtual machine research and parallel runtime system
research have also been done within this project. The Habanero team does not only
validate these new parallel programming technologies by standard benchmark appli-
cations, but also by using other target applications, including medical imaging applica-
tions, seismic data processing and computer graphics and visualization. The Habanero
team has also been engaged in a number of multicore platforms, homogeneous as well
as heterogeneous.

Figure 1.2.: Habanero Multicore Platforms[8]

The Habanero C (HC) language is a new language developed for portable parallelism
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based on ANSI C. Habanero C is a task-based parallel programming language with two
basic primitives: async and finish . The async primitive creates a new task from the par-
ent task while the parent task resumes its execution. The finish <stml >primitive guar-
antees all the tasks created in <stml >must be finished before other tasks proceed[9].
Like Intel TBB, Habanero-C implements a work-stealing scheduler[10].

1.2.3. Wool

Wool is a C library for fine grained independent task parallelism[11]. It is developed by
the Swedish Institute of Computer Science (SICS). Wool aims to obtain low overhead
while achieving task-based parallelism. It is not a certain programming language nor
a runtime system but a library that contains macros and inline functions[11]. Wool
implements work-stealing scheme to achieve parallelism, which has been introduced
in the two previous subsections, which is an idle processors can steal work from other
busy processors. As a task-based C library, the main applications for Wool are fully
independent computation tasks, so synchronization and dependencies among different
threads are averted in Wool.

The Wool Application Programmer Interface (API) provides constructs for task defi-
nition, creation and synchronization[11]. Task definition is set by TASK n , in which n
is the number of arguments of this command. Task creation is done by SPAWN , which
starts a parallel computation together with its ancestor process. A SYNC construct is
used as a barrier for previous spawned processes to complete. To build the library, the
Wool library itself is built as an object file and linked with the program[11].

CHALMERS, Master’s Thesis 2011:11 4



2. Cilk language

2.1. Introduction to Cilk

Cilk is a multithreaded programming language. It is developed by the MIT CSAIL
Supertech Research Group. The first version of Cilk was introduced in 1994, now it has
been updated to Cilk-5.4.6. Cilk exists as a commercial version from Intel named Intel
Cilk Plus.

Cilk is designed to explore data parallelism efficiently and intensively. It is a task
based language and is provided with a very smart runtime system to schedule and dis-
tribute the tasks among given number of threads to realize parallel computation. The
Cilk runtime system provides the work-stealing techniques that keeps the program-
mer away from the burden of scheduling specific tasks for certain processors, leaving
the programmer concentrating on discovering possible tasks that can be executed in
parallel.

Cilk derives from ANSI C and is a faithful extension to C. In syntax, the difference
between Cilk and C is that Cilk contains a few additional keywords that C does not
have. This feature guarantees coding simplicity of Cilk. The Cilk keywords include cilk,
spawn and sync . These keywords enable Cilk to create scalable parallel applications. If
we remove the Cilk keywords from a typical Cilk program, it would be a corresponding
serial version of an ANSI C program that can run correctly on a single processor.

Cilk splits a certain program into multiple threads that can operate simultaneously
and collectively. The basis for Cilk multithreaded execution is procedure abstraction
[1]. A typical cilk program contains a parent procedure at the beginning. This parent
procedure can spawn its own procedures, which are called children. The parent pro-
cedure will start execution at the beginning. During its execution, procedures will be
spawned and start execution. One important feature of Cilk is illustrated here: when
the spawned procedures start execution, the parent does not stop but continue its own
execution, which means the parent and its children can execute in parallel.

2.2. Cilk keywords

In this section three Cilk keywords will be introduced and analyzed carefully. These
keywords are cilk , spawn and sync .
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The first keyword introduced is cilk itself. It is positioned before the normal C func-
tion body. The cilk keyword indicates this function is a Cilk function and not a normal
ANSI C function.

A spawn is positioned before the invocated Cilk function. This invocated Cilk func-
tion is spawned by its parent procedure. It is the Cilk analog of the function call in ANSI
C. The difference is mentioned as before that the parent procedure will not stop after
the spawned child start execution, and here is how parallelism is generated in Cilk.

The keyword sync has similar capability as a memory barrier . When a sync is exe-
cuted in the cilk program, all the children spawned by the procedure calling sync in the
program must finish their execution before the program proceeds. The procedure after
sync can only use the return values of its children when their execution finish. The sync
keyword is not a global memory barrier. It only prevents a certain procedure to resume
until all its spawned children are finished, other simultaneously executing procedures
can continue their execution regardless of the sync keyword.

2.3. Cilk DAG

A directed acyclic graph(DAG) [2] illustrates how the procedures and their children
execute in a Cilk program. A directed acyclic graph is a directed graph but with no
loop back to a certain start.

A Cilk program divides a single task into several independent procedures that can ex-
ecute in parallel. The Fibonacci function acts as an example to illustrate how it evolves
in a directed acyclic graph:

Fib(n)

if n < 2

then return n;

else x = spawn Fib(n-1);

y = spawn Fib(n-2);

sync;

return (x + y);

The Fibonacci function is a function to calculate the Fibonacci numbers. The argu-
ment n in Fib(n) denotes the number of Fibonacci number to calculate. We can analyze
the computation process by the DAG in figure 2.1.

Cilk is a multithreaded programming language. A thread refers to a certain amount
of serial ANSI C code, which is equivalent to a sequence of instructions without Cilk
keywords in a Cilk program. Cilk works on shared-memory multiprocessors, e.g. mul-
tiple threads in one Cilk program have access to a shared memory. In the DAG, each
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Figure 2.1.: a directed acyclic graph[1]

circle is a thread, the threads in a frame constitute a procedure, the sequence of ex-
ecution in each procedure is from left to right horizontally as the arrow denotes. A
downward arrow denotes spawning a new procedure from the parent procedure at the
start of that arrow. An upward arrow denotes a child procedure has finished its ex-
ecution and will send its return value to its parent. As in this DAG, fib(4) procedure
spawns two children, fib(2) and fib(3). After spawning, the fib(4) procedure resumes
its own execution without stalling, as the second circle in the procedure denotes. After
executing the first two threads in the fib(4) procedure, it must wait for its two children
to finish their execution and send their return values back in order to process its third
thread. As for the threads of fib(4), fib(3) and fib(2), they would go through a simi-
lar way in execution as their parents, spawning their children, resume execution and
wait for the return values from their children. The spawning will stop when the last
procedure that can be run in parallel is spawned. This DAG illustrates that it is pos-
sible to explore parallelism among procedures, without knowing the actual number of
processors of the chip we run our code on.

2.4. How Cilk program compiles and runs

Figure 2.2.: Cilk compiling process[3]

The current version of Cilk, Cilk 5.4.6, provides us with the cilkc command, which is
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a Cilk analogue to the gcc compiler. Many arguments for the gcc compiler can be used
in the same way for the cilkc command. The cilkc command will translate a .cilk file into
an executable file.

The details of the processes within the mechanism of cilkc command can be seen in
figure 2.2. A .cilk file is first translated into an ordinary .c file by cilk2c , then the gcc
compiler (assuming the code is run on an x86 machine) translates it into an object file.
At last, the linker links the object file with the Cilk runtime system and produces an
executable file.

In addition, some preprocessing work is completed first. A .cilkI file is produced at
the beginning when the .cilk file and its header file are combined. The .cilkI file is then
preprocessed by the C preprocessor and turned into a .cilki file. This file is processed by
the cilk2c tool, by which the Cilk constructs are translated into ANSI C constructs [3].

2.5. Cilk runtime system

Cilk has a smart runtime system to schedule the computation tasks of Cilk programs
among the processors automatically, thus taking this burden from the programmers
so they can focus on exploring possible parallelism. The current Cilk runtime system
supports scheduling a Cilk program on one or multiple processors [3]. The tool to
schedule a Cilk program on one single processor is called the nanoscheduler. The tool
to schedule a Cilk program on multiple processors is called the microscheduler.

The nanoscheduler simply removes the Cilk keywords in the Cilk program and maps
the program into a serial execution of an ordinary C program. Some extra code is added
to the program[3] for further scheduling of this program on multiple processors by the
microscheduler. Some concepts of data structures are introduced here. A frame is used
to keep the state of one procedure. A queue of frames is used to keep the status of
certain procedures, it has a head and a tail regarding the procedures. A deque of frames
has the same purpose as a queue, but a deque has no head or tail, the procedures can
come and go in both ends, it is the analog of the stack in C. The nanoscheduler creates a
frame and push it into the deque when a procedure is invocated. Here the _INIT_FRAME
macro is added in the code. The state of the procedure is saved in this frame during
execution. Some overhead occurs here as the current state of the procedure is constantly
saved when spawning children happens. When the execution of the procedure is done,
the frame is popped off from the deque using _BEFORE_RETURN_FAST macro.

The microscheduler implements a work-stealing scheme to maximize the efficiency
of all available processors. Some terms are introduced here. A thief is one processor
that has processed its own frames and trying to steal unprocessed frames from other
processors, which are called victim processors. The distribution of the initialized frames
among processors is randomized. A thief will constantly look for unprocessed frames
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from others, so this is also an automatic process. Some overhead of this scheduling
is inevitable in reality, but the overhead is very small compared to the efficiency the
microscheduler brings.

2.6. Performance boost

Two parameters are introduced here. The work denotes the total time for processing
all procedures in a Cilk program in serial, i.e. all procedures is processed in a single
processor and no parallelism is achieved. The Critical-path length denotes the total time
for processing all the procedures that cannot be parallelized [3]. Assuming P processors
are to process the Cilk program. T1 denotes the work time, TP denotes the critical-path
length and T∞ denotes the processing time of infinite number of processors. According
to Amdahl’s law, the maximum expected speedup of a parallelized implementation is
limited by the fraction of serial work in this implementation, so the lower bound is

Tp ≥ 1
P

T1 (2.1)

Cilk’s work-stealing scheme guarantees the following performance model, which means
in theory, Cilk can achieve optimal parallelism.

Tp ≈ 1
P

T1 + T∞ (2.2)

2.7. For loops in Cilk

The serial version of the LTE base-station uplink benchmark contains several levels of
for loops, therefore writing for loops in Cilk is crucial in this thesis. To optimize serial
for loops in Cilk, the keyword spawn must be added into the original serial program.
The thought about writing a for loop in Cilk at early stage is to spawn the loop body at
each iteration in the for loop:

void sample_for_loop(int n)

for (int i = 0; i < n; i++){

spawn iteration_context;

}

sync;

This way of parallelism is not very efficient when encountering a long loop. The
spawning of children is linear. A spawned child would only do one iteration’s context
work before sync comes, where scheduling overhead happens. The DAG of this serial
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Figure 2.3.: serial way to construct a Cilk for loop[16]

version of spawns is shown in figure 2.3. It is necessary to balance the work load of the
iterations.

Cilk is capable to exploit data-level parallelism so it is a data-parallel programming
language. The original data set to be processed will be divided into subsets of data. The
multiple processors will work on different parts of the original data simultaneously, so
as to realize parallelism. In the case of data-level parallelism, the performance can be
increased if more processors are added. This feature makes Cilk quite scalable to large
number of processors.

The size of each subset of data is called the grain size. Divide-and-conquer algorithm
is implemented in parallelizing for loops in Cilk. The iterations in the for loop will
recursively break into two branches, each contains half the size of the previous iteration
and is divided thus way until size is equal or smaller than the grain size. The DAG of
this implementation is shown in figure 2.4.

Figure 2.4.: divide-and-conquer way to construct a Cilk for loop[16]

Intel’s Cilk++ Programmer guide provides a pseudo code for realizing a divide and
conquer algorithm in for loops in Cilk, which is shown below after minor modification[16]:

void run_loop(first, last){
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if (last - first < grainsize){

for (int i = first; i < last; ++i) LOOP_BODY;

}

else {

int mid = (last-first)/2;

spawn run_loop(first, mid);

spawn run_loop(mid, last);

}

}

Each time a child is spawned, the unfinished work is split in half and each half is the
input to a spawned child. Compared with the simple linear way of spawning iterations
in the for loop, a child will not only do one iteration-context work but will do the half of
the unfinished work when it is spawned before the child reaches sync and scheduling
overhead takes place. The scheduling overhead for sync and spawning is in the order
of O(log2N), compared with the early stage with a scheduling overhead in the order of
O(N). This is why the divide-and-conquer way is more efficient when N is large. In this
thesis, the parallelisms of for loops in Cilk are all implemented in this way.
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3. LTE Uplink Receiver benchmark

In this chapter, the LTE standard will be discussed, two crucial techniques in the LTE
uplink design will be introduced and the target of parallelism in the LTE Uplink Re-
ceiver benchmark will be discussed.

3.1. Introduction to the LTE standard

3GPP Long Term Evolution (LTE) is the latest major standard for mobile communica-
tion. This standard is developed in the 3rd Generation Partnership Project (3GPP). It is
generally used in 4G wireless communication and is the global standard for 4G.

LTE is based on multiple access technology predecessors. LTE predecessors include
GSM/GPRS/EDGE, which belongs to the Second Generation access technology and
UMTS and HSPA, which are from the category of the third generation (3G) access tech-
nology. The second generation (2G) cellular telecom networks provides digital signals,
compared with the analog radio signals in the first generation (1G) network. The mul-
tiple access technologies used in 2G include TDMA and FDMA. 3G access technology
prevails 2G in higher data rate for downlink and uplink and support multimedia trans-
mission. 3G access technology embraces CDMA technology. In addition, a more reli-
able security encryption scheme is applied in 3G.

LTE offers a variety of benefits to the world: high peak rates, high spectrum efficiency,
low latency, high capacity and lower maintenance cost and wide range of applications.
As a result, LTE has been applied and positioned worldwide since 2011, especially in
North America and Scandinavia. One main feature of LTE is that packet-switched com-
munication method used in all transmissions in LTE. This feature prevails UMTS which
is based on the GSM standard. The main communication technologies used in LTE in-
clude OFDMA, MIMO and SC-FDMA. The peak downlink speed of LTE can reach more
than 300Mbit/s, while the peak uplink speed of LTE is more than 80Mbit/s. The down-
link speed is the data transmission rate from the base station to the user equipment,
e.g., a cell phone or a computer. The uplink speed is the data transmission rate from
the user equipment to the base station. In addition, LTE supports a variable range of
bandwidth, from 1.4 to 20 MHz.
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3.2. LTE Uplink Frame Structure

Multiple users carry data to transmit simultaneously in the LTE uplink. The number
of users of an LTE uplink can vary from time to time. The data users carry are in
two dimensions: time and frequency. For a given amount of time, users are allocated a
certain number of subcarriers [4]. These allocated blocks of data are denoted as physical
resource blocks. A base-station has a certain frequency band that is allocated by the
mobile network operator. This frequency band is divided into several kHz wide sub-
carriers, while each user occupies a certain number of them. A resource block is made
up of a certain number of sub-channels and it is also called a unit. In time dimension,
the time is divided into subframes that each lasts for 1 millisecond. Each subframe
is divided into two slots. The two slots have 0.5 millisecond latency between them.
Each slot contains seven symbols, in an order that 3 data symbols comes first, then one
reference symbol which is used for channel estimation, and 3 data symbols come at last.

Figure 3.1.: LTE uplink resource block[12]

3.2.1. Signal processing for one user

The front-end of the LTE-base-station receiver will first perform some signal processing
tasks that cannot be parallelized. This part is not considered in this thesis project.

The incoming data will go through a radio receiver, filters, cyclic prefix removal and
fast Fourier transform (FFT). After that, different resource blocks of a subframe of the
input data can be grouped together and processed. The signal processing kernels are
shown in figure 3.3.
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Figure 3.2.: signal processing tasks for one user [5]

For each slot in a subframe, the channel estimation for every reference symbol must
be performed first before the data symbols can be decoded. As a result, the first three
data symbols of a slot must be buffered before the channel estimation of the corre-
sponding reference symbol is finished. The channel estimation process is divided into
five stages. First, the reference symbol must go through a matched filter. Second, an
iFFT operation will be performed on the data, to transform the data from frequency do-
main to time domain. Then channel estimation is performed to calculate noise level and
power estimation. After that, the data will be transformed back into frequency domain
by an FFT operation. At the final stage of channel estimation, the combiner weights are
calculated for decoding the data symbols.

After the channel estimation, the data decoding of corresponding data symbols in the
same slot can be performed. From the combiner weights calculated during the chan-
nel estimation stage, the data from multiple antennas can be combined. After that, the
processed data is transformed back to the time domain by an iFFT. Then a series of sig-
nal processing steps will be performed serially: interleaving, soft symbol demapping,
turbo decoding and CRC.

3.3. Crucial techniques in LTE uplink design

The LTE uplink transmits data from the user equipments (UE) to the base-station (which
is termed eNodeB in LTE literatures). Two crucial techniques in LTE Uplink design,
OFDM and MIMO will be introduced in this section.

3.3.1. Orthogonal frequency-division multiplexing

The LTE uplink uses Single Carrier Frequency Division Multiple Access (SC-FDMA)
as its transmission scheme, while LTE downlink uses Orthogonal Frequency-Division
Multiplexing Access (OFDMA). OFDMA has many similarities with SC-FDMA thus
will be introduced here. OFDM is used in many applications. These applications
include digital television, wireless local area networks (WLANs), asymmetric digital
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Figure 3.3.: signal processing tasks to be written in Cilk [5]

subscriber loop (ADSL), etc. This technology divides a certain frequency bandwidth
available into a large number of sub-carriers. Multiple symbols can each occupy one
sub-carrier and thus these signals can transmit simultaneously, this results in a low data
stream in each sub-carrier while high data transmission rates of the system can be guar-
anteed. OFDM denotes orthogonality among these subcarriers. This orthogonal feature
and a guard interval at the beginning of every symbol prevents inter symbol interfer-
ence (ISI). Since ISI can be prevented at the modulation phase, the complexity of the
equalization procedures at the receiver can be much lower, thus the whole workload
can be reduced.

OFDM is widely used in broadband systems in that it can reduce the multipath prob-
lems in broadband systems. Multipath is the phenomenon that there are multiple trans-
mission paths between transmitter and receiver, due to environmental and geological
situations, so the received signal contains multiple transmitted signals with different
delay and attenuation. OFDM can provide longer symbol period and cyclic prefix
to solve this problem. A cyclic prefix is positioned as a guard interval prior to each
OFDM symbol as shown in figure 3.4, it can eliminate the interference from the previ-
ous interval[13].

ISI is seen by receiving the symbols at wrong time at the receiver stage, since the
channel delay is larger than a symbol period. If the symbol period is much larger than
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Figure 3.4.: Frequency-time Representation of an OFDM Signal[13]

the channel delay, the symbols can be identified correctly at the receiver stage. To obtain
a much larger symbol period while keeping a high transmission rate of data seems a
dilemma, but OFDM solves this perfectly. OFDM splits the high-speed data stream
into several parallel low-speed data streams and deploys them at separate subcarriers
so they can transmit simultaneously, each subcarrier is independently modulated by
phase shift keying or quadrature amplitude modulation. An OFDM symbol is a sum of
its subcarriers[14]. This method can be viewed in figure 3.5.

Figure 3.5.: OFDM modulator[?]

The design complexity of the OFDM receiver is relatively low, this advantage is
gained at the cost of a more complex transmitter, which leads to a much higher Peak-to-
Average Power Ratio(PAPR) [4]. The requirement of low PAPR is fulfilled at the uplink
design by using an alternative to OFDMA: SC (single-carrier)-FDMA. It is similar to
OFDM in many aspects. The difference between them is that SC-FDMA adds a pre-
processing block: a DFT processing block before the normal OFDM processing. The
feature of the single-carrier waveform guarantees a lower PAPR.
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3.3.2. MIMO

Multiple-Input Multiple-Output (MIMO) technology uses multiple transmitters and
multiple receivers at the same time to improve communication data-rate. Multiple an-
tennas at the transmitter side can send signals independently and the multiple antennas
at the receiver side can receive and recover the original signals. Derived from the con-
ventional time and frequency dimension in Single-Input, Single-Output (SISO), MIMO
technology adds a spatial dimension to increase channel capacity and throughput with-
out incurring additional occupancy of bandwidth or power.

Figure 3.6.: Simplified 2x2 MIMO block diagram[15]

In MIMO systems, the signals at the transmitter side will be precoded first and di-
vide into subset of signals to transmit simultaneously, by this one single data flow will
be lower, the transmission distance can be increased, and the receiving range of the
receiver antennas will be increased also. MIMO includes several specific technologies:
spatial multiplexing, spatial diversity, beamforming and precoding. Spatial multiplex-
ing splits a high-speed data stream into several low-speed data streams and send them
by different antennas in the same bandwidth. The receiver antennas can distinguish
and recover those low-speed data streams thanks to the difference in spatial dimen-
sion. The spatial multiplexing gain provided by MIMO can increase the channel capac-
ity. The spatial diversity technology sends the same data stream on multiple antennas.
This measure can enhance the reliability of the channel and reduce the error rate.

MIMO takes advantage of multiple paths to transmit data, therefore multi-path fade
could occur, as shown in figure 3.7. The transmitter design would also be complex be-
cause of the spatial multiplexing schemes. So OFDM technology is often accompanied
with MIMO technology, to solve the multipath problem and reduce the complexity of
the transmitter.
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Figure 3.7.: Typical multipath fading scenario[15]

3.4. Target parallelism in the workload of LTE uplink

The target parallelism to seek in the signal processing tasks mentioned in chapter 2 can
be realized in two parts and is shown in figure 3.8. The first part is channel estimation.
The second part is in the first two steps of data decoding. The incoming data comes as

Figure 3.8.: Target parallelism

a stream of subframes every DELTA microseconds. Spatial Diversity is implemented
here as multiple users will send the same subframe simultaneously. A constraint is
set for the maximum number of subframes that can be performed at the same time. If
the numbers of subframes unfinished exceeds that limit, the whole system will halt. We
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must seek parallelism between different subframes, since normally the workload of one
subframe for multiple users cannot be completed before the next subframe arrives. For
each subframe, parallelism can be exploited between different users who are processing
the subframe simultaneously. Multiple layers exist in each slot of each user of each
subframe, this indicates possible parallelism also exists among slots and layers.

A serial version of ANSI C pseudocode of how to perform the LTE uplink signal
processing can be generalized as follows.

int main(int argc, char* argv[])

{

init_data();

crcInit();

for ( subframe = 0; subframe < 100; subframe++ ) //

{

nmbUsers = user_control(user_data);

// In this unparallelized program, we process over each user

for ( user = 0; user < nmbUsers; user++ )

{// OK two slots have always the same set of user_data

for ( slot = 0; slot < 1; slot++)

{// Process each layer seperatly

for ( layer = 0; layer < user_data[user].nLayer; layer++ )

{//some code for channel estimation

for ( layer = 0; layer < user_data[user].nLayer; layer++ )

{//some code for symbol computing

} // layer loop

//some code including data symbol computing

} // slot loop

//some code for data decoding

} // user loop

} // subframe for loop

return 0;

}
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4. Cilk implementation of LTE uplink
benchmark

4.1. Creation of input data

MIMO technology prompts the number of transmitter antennas to four. It leads to huge
increase in data throughput at no cost of more bandwidth occupied, which results in
higher spectral efficiency. A function called init_data is created to initialize the input
data. The number of maximum data frames is assumed as 10, so first 10 sets of subframe
data are created as follows.

/* Input data */

static input_data data[NMB_DATA_FRAMES];

void init_data(void) {

int ofdm, frame;

int i,slot;

for (frame=0; frame<NMB_DATA_FRAMES; frame++) {

for (slot=0; slot<NMB_SLOT; slot++) {

for (ofdm=0; ofdm<OFDM_IN_SLOT; ofdm++) {

for (i=0; i<MAX_SC; i++) {

data[frame].in_data[slot][ofdm][0][i].re = rand();

data[frame].in_data[slot][ofdm][0][i].im = rand();

data[frame].in_data[slot][ofdm][1][i].re = rand();

data[frame].in_data[slot][ofdm][1][i].im = rand();

data[frame].in_data[slot][ofdm][2][i].re = rand();

data[frame].in_data[slot][ofdm][2][i].im = rand();

data[frame].in_data[slot][ofdm][3][i].re = rand();

data[frame].in_data[slot][ofdm][3][i].im = rand();

}

}

for (i=0; i<MAX_SC; i++) {

data[frame].fftw[slot][i].re = rand();

data[frame].fftw[slot][i].im = rand();
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}

}

// One reference symbol per layer

for (i=0; i<MAX_LAYERS; i++)

RsGen(MAX_RB, data[frame].in_rs[slot][i]);

}

}

After that, the contents for each subframe are initialized. Each subframe contains three
subsets of data: in_data, fftw and in_rs. Each subframe has two slots, while each slot
has seven OFDM symbols. As there are four antennas at the transmitter, each OFDM
symbol has four subsets of data. Each set contains a complex number for each subcar-
rier.

In this code, the initialization of input data is applied for every user. The number
of users for each subframe can be varied but limited to the maximum number set in
input data initialization. The uplink_parameters function generates users’ parameters,
including users’ number of layers and modulation schemes. The distribution of users’
parameters can be either fixed or random at request.

4.2. Channel Estimation

The serial program realizing the channel estimation in the layer loop is shown below:

// Process each layer separately

for (layer=0; layer< user -> nmbLayer; layer++){

mf(&user->data->in_data[slot][3][0][startSc], &user->data->in_rs[slot][startSc],

nmbSc, layer_data[layer][0], &pow[0]);

mf(&user->data->in_data[slot][3][1][startSc], &user->data->in_rs[slot][startSc],

nmbSc, layer_data[layer][1], &pow[1]);

mf(&user->data->in_data[slot][3][2][startSc], &user->data->in_rs[slot][startSc],

nmbSc, layer_data[layer][2], &pow[2]);

mf(&user->data->in_data[slot][3][3][startSc], &user->data->in_rs[slot][startSc],

nmbSc, layer_data[layer][3], &pow[3]);

ifft((short int*) layer_data[layer][0], nmbSc, (short int*)user->data->fftw[slot]);

ifft((short int*) layer_data[layer][1], nmbSc, (short int*)user->data->fftw[slot]);

ifft((short int*) layer_data[layer][2], nmbSc, (short int*)user->data->fftw[slot]);

ifft((short int*) layer_data[layer][3], nmbSc, (short int*)user->data->fftw[slot]);

chest(layer_data[layer][0], pow[0], nmbSc, layer_data[layer][0], &res_power[0]);

chest(layer_data[layer][1], pow[1], nmbSc, layer_data[layer][1], &res_power[1]);

chest(layer_data[layer][2], pow[2], nmbSc, layer_data[layer][2], &res_power[2]);
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chest(layer_data[layer][3], pow[3], nmbSc, layer_data[layer][3], &res_power[3]);

// Put power values in the R matrix,

R[layer][0] = cmake(res_power[0],0);

R[layer][1] = cmake(res_power[1],0);

R[layer][2] = cmake(res_power[2],0);

R[layer][3] = cmake(res_power[3],0);

fft((short int*) layer_data[layer][0], nmbSc, (short int*)user->data->fftw[slot]);

fft((short int*) layer_data[layer][1], nmbSc, (short int*)user->data->fftw[slot]);

fft((short int*) layer_data[layer][2], nmbSc, (short int*)user->data->fftw[slot]);

fft((short int*) layer_data[layer][3], nmbSc, (short int*)user->data->fftw[slot]);

} // layer loop

The signal processing tasks are performed serially for four receive antennas. The ifft
function for the four antennas can only begin before the match filtering is done for all
the four antennas. Equivalent scenario applies for the chest function, R function and fft
function in channel estimation.

One way to parallelize the channel estimation is to spawn each function for the four
receive antennas and place a sync after each function, e.g. the four mf are spawned and
a sync is positioned after them. Parallelism are gained from spawning four identical
functions for the four antennas. The next function can only start when all the four
antennas finish their previous function, e.g. the ifft function for the four antennas have
to wait for the completion of the mf function for the four antennas.

Another way is to parallelize all the functions in the channel estimations for each an-
tenna. The advantage of parallelizing function sets among antennas is reduced waiting
time for completion of previous functions. In this way, the next function can start when
the previous function of the same antenna is finished. The code of this part is shown
below:

cilk void chan_est(user_queue_item *user, int layer_i, int slot_id, int inner_id) {

mf(&user->data->in_data[slot_id][3][inner_id][user->startSc],

&user->data->in_rs[slot_id][user->startSc][layer_i],

user->nmbSc, user->slot_items[slot_id].layer_data[layer_i][inner_id],

&user->slot_items[slot_id].layer_items[layer_i].pow[inner_id]);

ifft(user->slot_items[slot_id].layer_data[layer_i][inner_id], user->nmbSc,

user->data->fftw[slot_id]);

chest((user->slot_items[slot_id].layer_data)[layer_i][inner_id],

user->slot_items[slot_id].layer_items[layer_i].pow[inner_id],

user->nmbSc, (user->slot_items[slot_id].layer_data)[layer_i][inner_id],

&user->slot_items[slot_id].layer_items[layer_i].res_power[inner_id]);

user->slot_items[slot_id].R[layer_i][inner_id] =

cmake(user->slot_items[slot_id].layer_items[layer_i].res_power[inner_id],0);
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fft(user->slot_items[slot_id].layer_data[layer_i][inner_id],

user->nmbSc, user->data->fftw[slot_id]);

}

The same method is implemented in symbol computing. The functions of each antenna
to perform the symbol computing are grouped together. In slot loops for each subframe,
two slots are spawned separately.

4.3. Modeling incoming input data streams

The model of incoming data is that a new subframe carrying a variable number of users
comes to the base-station every DELTA microseconds. To model this, a timer must be
set to interrupt a process every DELTA microseconds. This feature is realized by using
ualarm(DELTA, DELTA) function. This function can generate the SIGALRM signal every
time delta microseconds elapse. The signal(SIGALRM, uplink alarm handle) function will
trigger the uplink alarm handle function to start processing a new user’s data.
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5. TILEPro64 Processor

The second phase of the thesis is to port the X86 Cilk version of base-station uplink to
the TILEPro64 processor. An introduction of this processor is provided in this chapter.

5.1. Introduction

The TILEPro64 processor was brought to the market in 2008 by Tilera Corporation.
Tilera Corporation is a world-leading company in scalable multicore embedded pro-
cessor design. Its products include a series of full-featured multicore processors, a
complete set of multicore programming development tools and a series of high per-
formance boards.

Figure 5.1.: structure of TILEPro64 processor[17]

The TILEPro64 processor provides high level of performance together with high
power efficiency. It offers flexibility by its capability to be programmable in ANSI C.
It is comprised of 64 homogeneous processor cores (tiles) to provide significantly high
compute performance. The 64 homogenous processor cores (tiles) on the TILEPro64
processor are arranged as a two-dimensional, eight by eight grids.

These tiles are connected with each other and to the external off-chip memory. The
communication between these tiles is realized by the iMesh network, which is based
on Tileras iMesh technology. The processor also incorporates a Dynamic Distributed
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Cache (DDC) system. Compared with conventional memory hierarchy where a large
fixed L3 cache is shared by multiple cores, the L2 cache in DDC system is spread all over
the tiles of the processor. This feature greatly improves cache utilization and therefore
improves performance of the processor. The TILEPro64 processor also provides four
DDR2 controllers with optional ECC, two four-lane PCIe interfaces and flexible I/O in-
terfaces. These 64 tiles in one TILEPro64 processor have two kinds of clock frequencies:
one called -9 device has a clock frequency of 866MHz; the other kind called -7 device
has a clock frequency of 700 MHz.

5.2. Three key engines of the Tile Processor Architecture

Each tile on TILEPro64 processor is a full-featured processor core and an entire operat-
ing system can be run on a single tile. The TILEPro64 processor provides a technology
called multicore hardwall, this technology guarantees that each tile can perform its own
execution without interference from other tiles. Figure 5.2 shows how it works. Multi-
core hardwall mechanism can block traffic and interrupt a certain unwanted process to
protect desired applications or operating systems.

Figure 5.2.: protection structure of multicore hardwall[18]

Three engines in a tile guarantee its performance: a Processor Engine, a Cache Engine
and a Switch Engine.

The Processor Engine takes care of normal computations and memory management.
All the features a conventional single core processor possesses are included in a tile. A
tile contains a 32-bit processor-engine, which implements a three way VLIW instruction
set that provides three instruction execution pipelines. A tile can either be used to
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run one certain operating system, or cooperate with other cores to run a multi-core
operating system, thanks to the Processor Engine.

The Cache Engine contains two level of caches and Translation Lookaside Buffers,
which can translate virtual addresses to physical addresses. The two levels of caches
can reduce the waiting time of the processor for the memory latency. In this way it can
prevent the processor to stall and thus guarantee the processors performance. It is in
charge of the communication of instructions and data among the tiles and the on-chip
memory. The Cache Engine also supports direct memory access (DMA), leaving the
processor to perform other operations when data transfer is underway. Last but not
least, cache coherence is also maintained by the Cache Engine.

The Switch Engine comprises six networks including one called the Static Network
and five dynamic networks. These six networks are all full-duplex and transmit packet
data to other tiles and on-chip memory. These six networks is the basic structure of the
Tilera iMesh network.
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6. Porting Cilk to the TILEPro64 processor

Porting Cilk applications to the Tilera multicore platform can be accomplished with the
help of the Tilera’s Multicore Development Environment(MDE). The MDE is a set of
software tools, including ANSI C and C++ compilers, a runtime environment of Sym-
metric multiprocessing (SMP) Linux, an Integrated Development Environment (IDE)
and standard debug and profiling tools. It releases the programmers from working on
isolated cores so that the programmers can manage multiple cores on a higher level.

As the MDE supports ANSI C and SMP Linux, the porting task can be generally
described in four steps: the first step is to compile the Cilk runtime system for the
Tilera architecture, the second step is to compile the target benchmark on the Tilera’s
multicore platform, the third step is to link the benchmark with the Cilk runtime system
and the final step is to run the application on that platform.

To run the Cilk application on X86 machine, a gcc compiler is used to compile the Cilk
code and link it with the Cilk runtime system. When it comes to porting the application
on the Tilera platform, the Cilk runtime system must first be compiled for the Tilera
architecture. To do so, a Tilera cross compiler must be used instead of gcc, which is
called tile-cc. To change compilers and compile the Cilk runtime system for the Tilera
architecture, the following instruction must be performed before compiling:
CC=/opt/tilepro/bin/tile-cc ./configure

/opt/tilepro/bin/ is the location of tile-cc.

In addition, the system dependency file in Cilk runtime system, cilk-sysdep.h must be
modified to add the Tilera architecture dependencies and a specific atomic swap rou-
tine for the Tilera architecture as follows:

/*------------------------

TILE

------------------------*/

#ifdef __tile__

#define CILK_CACHE_LINE 64

#define CILK_MB() __asm__ __volatile__ ("mf" : : : "memory")

#define CILK_RMB() CILK_MB()

#define CILK_CACHE_LINE_PAD char __dummy[CILK_CACHE_LINE]

#define CILK_WMB() CILK_MB()

#include <atomic.h>
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/* atomic swap operation */

static inline int Cilk_xchg(volatile int *m, int val)

{

return atomic_exchange_and_add(m, val);

}

#endif /* __tile__ */

#ifndef CILK_CACHE_LINE

# error "Unsupported CPU"

#endif

The reason the constant CILK CACHE LINE is set to 64 is that the Level 1 data cache
line size of the TILEPro64 processor is 64 bytes.

The whole benchmark compiling process can be viewed in figure 6.1.
The first step of the compiling process is to pass the target Cilk program through

Figure 6.1.: Tilera compiling process[3]

the cilk2c checking preprocessor, this preprocessor can translate all Cilk constructs into
ANSI C constructs[3]. After that, the tile-cc compiler compiles the ANSI C code ob-
tained from the previous step into optimized machine code that can run on the Tilera
multicore platform. One advantage of the tile-cc compiler is that the arguments in the
gcc compiler can be applied in it. In the last step of the compiling process, the Cilk
runtime system is linked with the machine code and an executable file is produced.

The tile-cc compiler can ease the small cache problem on the Tilera platform. As a
multicore platform, the cache volume on each tile of the TILEPro64 processor is rela-
tively small compared with traditional single-core processors. To keep reasonable lo-
cality in temporal and spatial dimension, efforts should be made to divide large chunk
of data into smaller ones for each tile and avoid large communication overhead among
different tiles. The Imesh interconnect network contributes to reducing the communi-
cation latency and power compared to traditional architectures using a bus for trans-
ferring data between components.

The system software stack of the Tilera architecture consists of three layers. The first
layer is the hypervisor, the second is the supervisor layer and the third layer is the
application layer. The hypervisor is a virtual machine manager that manages multiple
operating systems to run on a host computer. In our case, one version of Symmetric
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Multiprocessing (SMP) Linux, which is called Tile Linux and implemented by Tilera,
is the guest operating system that runs on the hypervisor. The application layer is the
closest layer to the end-users, end-users interact with this layer to run applications in
user space.

31 CHALMERS, Master’s Thesis 2011:11



CHALMERS, Master’s Thesis 2011:11 32



7. Performance analysis

7.1. Performance comparison between Cilk and Pthreads

One of the main criteria of the performance of the LTE uplink benchmark is the interval
between incoming subframes. Incoming subframes are provided to the processor every
DELTA microseconds. The tolerance for a shorter interval indicates a faster speed of the
program. The maximum number of subframes the processor can maintain at the same
time is 10. If more than 10 unfinished subframes are on the processor, an error will
come out and interrupt the whole processing.

Two versions of code of the LTE uplink benchmark will be tested and compared.
One is the Cilk version and the other is the Pthreads version. The two versions of code
will be tested on two platforms. The first platform is a Linux 2.6.35-23 Server, Lucid
Ubuntu SMP. This server consists of two quad cores (e5620) with hyperthreading gives
16 virtual cores each containing a Intel Xeon 2.40 GHz CPU. The second platform is the
TILEPro64 processor. This processor contains 64 independent tiles. These tiles have
two kinds of clock frequencies: one called -9 device has a clock frequency of 866MHz,
the other called -7 device has a clock frequency of 700 MHz.

In the first step the lowest DELTA the two versions of LTE uplink benchmark can
tolerate are tested on the TILEPro64 processor. By typing the command:
make run_cilk_pci

the Cilk uplink executable is produced and run. By modifying the makefile, the Cilk
benchmark is tested on 4, 8, 12, 16, 20, 32, 48 and 64 parallel tiles on the server. As for
the Pthreads version, by typing the command:
make run_pci

the Pthread uplink executable is produced and run. No argument is used to set the
number of possible parallel threads but the program seeks parallelism automatically.
The results of the lowest DELTA for the two versions of code on the TILPro64 processor
platform are shown in figure 7.1.

The Cilk program has the lowest DELTA value 38 ms when it is running on 8 or 12
tiles. The DELTA on 16 and 20 tiles is 40 ms, which is also close to the lowest value.
When the program is running on 4 tiles, the speed decreases significantly as the DELTA
reaches the highest value of 130 ms. The Pthreada version has a DELTA value of 5 ms,
which indicates that the Pthreads version runs much faster than the Cilk version on the
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Figure 7.1.: smallest DELTA on the TILEPro64 processor

TILEPro64 processor platform.
From this test some analyses can be made. First, the dependencies among possible

parallel threads in the Cilk program have some negative impacts on the scheduling
tasks on the TILEPro64 processor. Second, the overhead of scheduling tasks among
tiles increases significantly when the number of tiles is large, in this test the number is
around 16 to 20.

In the second step the lowest DELTA the two versions of LTE uplink benchmark can
tolerate are tested on the Lucid Ubuntu SMP. By typing the command:
make run_cilk NPROC=16

the Cilk uplink executable is produced and run. The argument NPROC=16 denotes the
executable runs on 16 processors, by modifying this arguments, the Cilk benchmark is
tested on 4, 8, 12, 16 processors. The argument has also been modified to test hyper-
threading to 20, 32, 48 and 64 parallel threads on the server. As for the Pthreads version,
by typing the command:
make run_x86

the Pthreads uplink executable is produced and run. No argument is used to set the
number of possible parallel threads but the program seeks parallelism automatically.
The results of the lowest DELTA for the two versions of code on the Lucid Ubuntu SMP
platform are shown in figure 7.2.
The Cilk program has the lowest DELTA value 1.6 ms when it is running on 16 pro-

cessors. Hyperthreading to more than 16 cores cannot boost the performance as the
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Figure 7.2.: smallest DELTA on Lucid Ubuntu SMP

DELTA value remain almost the same as 1.6 ms when the program is running on 20,
32, 48 and 64 possible parallel threads. The speed of the program decreases linearly
when the number of available processors is 12 or 8, and when the program is running
on 4 processors, the speed decreases significantly as the DELTA reaches the highest
value of 28 ms. The Pthreads version has a DELTA value of 1.6 ms. The Cilk ver-
sion and the Pthreads version run at the same speed on the Lucid Ubuntu SMP server.
Cilk copes with the dependencies problem among possible parallel threads well on this
Linux server.

From these two tests and comparisons, some conclusions can be made. Cilk takes
the advantage of its simplicity in coding and its smart runtime system. But it is not
always efficient and sometimes not stable. In addition, Cilk has some difficulties in
handling interruptions when calling a Cilk function in an ANSI C program, which is
the main reason why the most dependencies are created in this Cilk program. The
Pthreads version is more complex and harder to write, and the scheduling of tasks
among processors is done by the programmer. But it provides more flexibility to assign
the tasks by the programmer.
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7.2. Performance boost in Cilk

In the following tests, the LTE uplink benchmark is modified to measure the processing
time for 10000 incoming subframes. Intervals and delay in the Cilk code is removed to
test the computation ability of Cilk on the two multicore platforms: the Lucid Ubuntu
SMP and the TILEPro64 processor. In the first step the processing time of 10000 incom-
ing subframes by the Cilk program is tested on the TILEPro64 processor. By typing the
command:
make run_cilk_pci

the Cilk uplink executable is produced and run. By modifying the makefile, the Cilk
benchmark is tested on 1, 2, 4, 8, 12, 16, 20, 32, 48 and 64 parallel tiles on the server. The
results of the processing time by the Cilk program on the TILPro64 processor platform
are shown in figure 7.3.

The smallest processing time is 285 seconds when the benchmark is running on 16

Figure 7.3.: time of processing 10000 subframes on the TILEPro64 processor

tiles. The processing time on 8, 4, 2, 1 tiles is inversely proportional to the number of
tiles, which demonstrates the scalability of Cilk program. The scalability also has a cer-
tain limit and as in the previous tests, as the number of tiles grows, the overhead of
scheduling tasks among tiles increases, which explains why the processing time on 20,
32, 48 and 64 tiles is larger than 285 seconds.

In the second step the processing time of 10000 incoming subframes by the Cilk pro-
gram is tested on the Lucid Ubuntu SMP. By typing the command:

CHALMERS, Master’s Thesis 2011:11 36



make run_cilk NPROC=16

the Cilk uplink executable is produced and run. The argument NPROC=16 denotes
the executable runs on 16 processors, by modifying this arguments, the Cilk bench-
mark is tested on 4, 8, 12, 16 processors. The argument has also been modified to test
hyperthreading to 20, 32, 48 and 64 parallel threads on the server. The results of the
processing time by the Cilk program on the Lucid Ubuntu SMP platform are shown in
figure 7.4.
The smallest processing time is 19.35 seconds when the benchmark is running on 16

Figure 7.4.: time of processing 10000 subframes on Lucid Ubuntu SMP

processors. Hyperthreading to more than 16 cores cannot boost the performance as the
processing time remain almost the same as 19.35 ms when the program is running on
20, 32, 48 and 64 possible parallel threads. The processing time on 8, 4, 2, 1 tiles is in-
versely proportional to the number of tiles, which demonstrates the scalability of Cilk
program, the speedup is almost proportional to the number of processors. This series
of tests demonstrate Cilk’s ability to exploit asynchronous parallelism optimally.

7.3. Performance analysis in the Cilk program

In this section, Oprofile is used to profile the LTE uplink benchmark on the TILEPro64
processor. The proportion of time occupied of the benchmark by each application is
shown below.
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Profiling result of the Cilk version on the TILEPro64 processor

samples % app name symbol name

1213 15.7799 libtile-cc.so.1 (no symbols)

859 11.1747 vmlinux (no symbols)

844 10.9796 no-vmlinux (no symbols)

787 10.2381 uplink do_what_it_says

380 4.9434 uplink cmul

371 4.8263 uplink Cilk_scheduler

339 4.4100 uplink fft

327 4.2539 uplink matrix_a_a_hermite_plus_b_4xX_complex

243 3.1612 uplink cadd

217 2.8229 uplink ant_comb

182 2.3676 libpthread-0.9.29.so (no symbols)

175 2.2766 uplink extend_global_pool

157 2.0424 uplink Cilk_exception_handler

152 1.9774 libuClibc-0.9.29.so (no symbols)

138 1.7952 uplink Cilk_parse_command_line

127 1.6521 uplink soft_demap

123 1.6001 uplink matrix_mult_4xX_complex

102 1.3269 uplink cscale

91 1.1838 uplink deque_xtract_top

68 0.8846 uplink mmse_by_cholsolve_4xX_complex

Profiling result of the Pthreads version on the TILEPro64 processor

samples % app name symbol name

2214 28.8019 uplink .plt

1213 15.7799 libtile-cc.so.1 (no symbols)

859 11.1747 vmlinux (no symbols)

844 10.9796 no-vmlinux (no symbols)

405 5.2686 uplink cmul

296 3.8507 uplink matrix_a_a_hermite_plus_b_4xX_complex

285 3.7076 uplink fft

281 3.6555 uplink cadd

198 2.5758 uplink ant_comb

182 2.3676 libpthread-0.9.29.so (no symbols)

152 1.9774 libuClibc-0.9.29.so (no symbols)

118 1.5351 uplink matrix_mult_4xX_complex

91 1.1838 uplink deactivate_cpu

86 1.1188 uplink cscale

83 1.0797 uplink soft_demap
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80 1.0407 uplink cholsolve_4xX_complex

65 0.8456 uplink mmse_by_cholsolve_4xX_complex

The scheduling overhead of the Cilk version is about 22% of the total time. The
scheduling overhead of the Pthread version is 29% takes about of a third of the total
time. But the scheduling in the Pthreads version on the TILEPro64 processor is more
efficient than the counterpart in the Cilk version, as the Pthreads version runs faster on
the TILEPro64 processor.
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8. Summary

The aim of this thesis project has been accomplished. The scalability of the Cilk lan-
guage has been demonstrated and tested on two different multicore platforms, espe-
cially when seeking asynchronous parallelism. The ability of the work-stealing sched-
uler of the Cilk runtime system to dynamically schedule the workload on multicore
platforms with very low overhead have also been investigated and approved. The
comparison between the Cilk language and the POSIX Threads have been done, ad-
vantages and disadvantages of the Cilk language have been examined thanks to the
comparison. Cilk is light-weighted and easy to program, with a strong ability to realize
asynchronous parallelism. Cilk is aimed at parallel programming but not multithread-
ing. Parallel programming is about explore the power of the processors that are avail-
able as much as possible to do one single task and this is what Cilk mainly do. The
parallelism power of Cilk can be discovered as the number of cores increases, because
Cilk can automatically take advantage of the power of the added cores without chang-
ing the code. The key advantage of Cilk is that Cilk eliminates the manual management
of threads; the only thing the programmer needs to focus on is to discover the potential
parallelism while the serial semantics of the program is preserved.
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A. Cilk Scripts

/*******************************************************************************

* LTE UPLINK RECEIVER PHY BENCHMARK *

* *

* This file is distributed under the license terms given by LICENSE.TXT *

*******************************************************************************

* Author: Hao Li *

******************************************************************************/

#include "uplink.cilkh"

#include "uplink_verify.h"

#include <signal.h>

#include <cilk.h>

/* define some global variables */

static int subframe_id;

pthread_mutex_t mutexsum;

parameter_model pmodel;

CilkContext* context;

char* argv[] = { "f", "--nproc", "4", 0 };

int argc = 3;

cilk void chan_est(user_queue_item *user, int layer_i, int slot_id, int inner_id) {

mf(&user->data->in_data[slot_id][3][inner_id][user->startSc],

&user->data->in_rs[slot_id][user->startSc][layer_i],

user->nmbSc, user->slot_items[slot_id].layer_data[layer_i][inner_id],

&user->slot_items[slot_id].layer_items[layer_i].pow[inner_id]);

ifft(user->slot_items[slot_id].layer_data[layer_i][inner_id], user->nmbSc,

user->data->fftw[slot_id]);

chest((user->slot_items[slot_id].layer_data)[layer_i][inner_id],

user->slot_items[slot_id].layer_items[layer_i].pow[inner_id],

user->nmbSc, (user->slot_items[slot_id].layer_data)[layer_i][inner_id],

&user->slot_items[slot_id].layer_items[layer_i].res_power[inner_id]);

user->slot_items[slot_id].R[layer_i][inner_id] =

cmake(user->slot_items[slot_id].layer_items[layer_i].res_power[inner_id],0);
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fft(user->slot_items[slot_id].layer_data[layer_i][inner_id],

user->nmbSc, user->data->fftw[slot_id]);

}

cilk void symbol_comp(complex *in[4], user_queue_item *user, int slot_id,

int layer_id, int index_out) {

ant_comb(in, user->slot_items[slot_id].combWeight[layer_id],

user->nmbSc, &user->symbols[index_out]);

/* Now transform data back to time plane */

ifft(&user->symbols[index_out], user->nmbSc,

user->data->fftw[slot_id]);

}

cilk void layer_inner_loop(int first, int last, user_queue_item *user,

int slot_id) {

int layer_i, layer_mid;

if (last - first < LAYER_GRAINSIZE) {

for (layer_i = first; layer_i <= last; ++layer_i) {

spawn chan_est(user, layer_i, slot_id, 0);

spawn chan_est(user, layer_i, slot_id, 1);

spawn chan_est(user, layer_i, slot_id, 2);

spawn chan_est(user, layer_i, slot_id, 3);

}

} else {

layer_mid = (first + last)/2;

spawn layer_inner_loop(first, layer_mid, user, slot_id);

spawn layer_inner_loop(layer_mid+1 ,last, user, slot_id);

}

return;

}

cilk void layer_loop(userS *user, int first, int last,

user_queue_item *user_item, int slot_id) {

int layer_id, rx, sc, ofdm;

spawn layer_inner_loop(first, last, user_item, slot_id);

sync;

uplink_layer_verify(user->subframe, user_item->slot_items[slot_id].layer_data,

user_item->slot_items[slot_id].R,user_item->nmbSc,

CHALMERS, Master’s Thesis 2011:11 46



user_item->nmbLayer, slot_id);

comb_w_calc(user_item->slot_items[slot_id].layer_data, user_item->nmbSc,

user_item->nmbLayer, user_item->slot_items[slot_id].R,

user_item->slot_items[slot_id].comb_w);

for (layer_id = 0; layer_id < user_item->nmbLayer; layer_id++)

for ( rx = 0; rx < RX_ANT; rx++ )

for ( sc = 0; sc < user_item->nmbSc; sc++ )

user_item->slot_items[slot_id].combWeight[layer_id][sc][rx] =

user_item->slot_items[slot_id].comb_w[sc][rx][layer_id];

uplink_weight_verify(user->subframe, user_item->slot_items[slot_id].combWeight,

user_item->nmbSc, user_item->nmbLayer, slot_id);

for (layer_id = 0; layer_id < user_item->nmbLayer; layer_id++) {

int ofdm_count = 0, index_out;

complex* in[4];

for (ofdm = 0; ofdm < OFDM_IN_SLOT; ofdm++) {

/* Collect the data for each layer in one vector */

if (ofdm != 3) {

in[0] = &user_item->data->in_data[slot_id][ofdm][0][user_item->startSc];

in[1] = &user_item->data->in_data[slot_id][ofdm][1][user_item->startSc];

in[2] = &user_item->data->in_data[slot_id][ofdm][2][user_item->startSc];

in[3] = &user_item->data->in_data[slot_id][ofdm][3][user_item->startSc];

/* Put all demodulated symbols in one long vector */

index_out = user_item->nmbSc*ofdm_count + slot_id*(OFDM_IN_SLOT-1)*

user_item->nmbSc

+ layer_id*2*(OFDM_IN_SLOT-1)*user_item->nmbSc;

spawn symbol_comp(in, user_item, slot_id, layer_id, index_out);

ofdm_count++;

}

}

}

}

cilk void slot_loop(userS *user) {

user_queue_item user_item;

user_item.nmbLayer = user->nmbLayer;

user_item.startRB = user->startRB;
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user_item.nmbRB = user->nmbRB;

user_item.mod = user->mod;

user_item.startSc = user->startRB*SC_PER_RB;

user_item.nmbSc = user->nmbRB*SC_PER_RB;

user_item.data = user->data;

spawn layer_loop(user, 0, user->nmbLayer, &user_item, 0);

usleep(DELTA/2);

spawn layer_loop(user, 0, user->nmbLayer, &user_item, 1);

sync;

user_item.nmbSymbols = 2*user->nmbLayer*user_item.nmbSc*(OFDM_IN_SLOT-1);

uplink_symbol_verify(user->subframe, user_item.symbols,

user_item.nmbSymbols);

interleave(user_item.symbols, user_item.deint_symbols,

user_item.nmbSymbols);

uplink_interleave_verify(user->subframe, user_item.deint_symbols,

user_item.nmbSymbols);

soft_demap(user_item.deint_symbols,

user_item.slot_items[1].layer_items[user_item.nmbLayer-1].pow[0],

user_item.mod, user_item.nmbSymbols, user_item.softbits);

user_item.nmbSoftbits = user_item.nmbSymbols * user_item.mod;

uplink_verify(user->subframe, user_item.softbits, user_item.nmbSoftbits);

}

cilk void user_loop(int first, int last, userS **users) {

int user_id, user_mid;

if(last - first < USER_GRAINSIZE) {

for(user_id = first; user_id <last; user_id++) {

/* start spawning processing each user */

spawn slot_loop(users[user_id]);

}

}

else{

user_mid = (first + last) / 2;

spawn user_loop(first, user_mid, users);

spawn user_loop(user_mid, last, users);

}
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}

cilk int dosubframe() {

user_parameters *parameters;

int nmbUsers, i;

userS **user_array;

parameters = uplink_parameters(&pmodel);

user_array = malloc(MAX_USERS*sizeof(userS *));

nmbUsers = 0;

while (parameters->first) {

user_array[nmbUsers++] = parameters->first;

parameters->first = parameters->first->next;

}

i = 0;

spawn user_loop(0, nmbUsers, user_array);

sync;

for (i=0; i<nmbUsers; i++) {

free(user_array[i]);

}

free(user_array);

free(parameters);

pthread_mutex_lock(&mutexsum);

subframe_id--; /* subtract subframe_id by 1 when one subframe is done */

pthread_mutex_unlock(&mutexsum);

return subframe_id;

}

//the following code are used to call a Cilk procedure

// from a C function indirectly

int EXPORT(dosubframe) (CilkContext *const context);

//signal handling function

int handle(int sig){

int y;

y = EXPORT(dosubframe)(context);
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pthread_mutex_lock (&mutexsum);

subframe_id++;

pthread_mutex_unlock (&mutexsum);

return 0;

}

cilk void main(int argc, char *argv[]) {

subframe_id = 0;

init_data();

init_verify();

pthread_mutex_init(&mutexsum, NULL);

init_parameter_model(&pmodel);

crcInit();

context = Cilk_init(&argc, argv);

signal(SIGALRM, handle); //set a function to handle the SIGALRM signal

ualarm(DELTA, DELTA); //start a new alarm in DELTA microseconds

while(subframe_id < 10)

{

;

}

Cilk_terminate(context);

return;

}
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