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The propagation of in-plane P-SV waves in a layered elastic

plate with periodic interface cracks: exact versus spring

boundary conditions
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( February 2011)

The propagation of in-plane (P-SV) waves in a symmetrically three-layered thick plate with
a periodic array of interface cracks are investigated. The exact dispersion relation is derived
based on an integral equation approach and Floquet’s theorem. The interface cracks can be a
model for interface damage, but a much simpler model is a recently developed spring boundary
condition. This boundary condition is used for the thick plate and also in the derivation of
plate equations with the help of power series expansions in the thickness coordinate. For low
frequencies (cracks small compared to the wavelength) the three approaches give more or less
coinciding dispersion curves, and this is a confirmation that the spring boundary condition is
a reasonable approximation at low frequencies.

Keywords: elastic waves; periodic cracks; spring boundary condition; plate equations

1. Introduction

Damage in a layered composite often occurs at the interfaces and this can be both
as a total delamination or as a more diffuse damage in the form of micro-cracks,
small voids, etc. The latter type of damage is not so easily modelled in the context
of ultrasonic wave propagation and nondestructive testing. One way is to model
the damage with a spring boundary condition, see Golub and Boström [1], where
the spring constant is derived for a random distribution of small cracks between
two isotropic media. Another way is to model the damage as a periodic set of
small interface cracks, see Boström and Kvasha [2] for the 2D anti-plane (SH)
case. In the present paper this approach is applied to the in-plane (P-SV) case.
Elastic wave propagation in a layered plate with interface damage in the form of
a periodic distribution of cracks is compared with the corresponding plate with
spring boundary conditions between the layers. Furthermore, a comparison with a
plate equation incorporating the spring boundary conditions is also performed.
A general good introduction to the elastic wave propagation and scattering in

the presence of cracks is given by Zhang and Gross [3], which in particular also
investigate a periodic distribution of cracks. Angel and Achenbach [4] and Mikata
and Achenbach [5] consider a periodic distribution of interface cracks between two
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isotropic half-spaces. Spring boundary conditions have been employed to model
different types of interfaces: Baik and Thompson [6], Rokhlin and Wang [7], and
Rokhlin and Huang [8] model various types of imperfect interfaces, while Boström
and Wickham [9], Nakagawa et al. [10], and Pecorari [11] model partially closed
cracks. Layers of damaged material are considered by Achenbach and Zhang [12]
and Achenbach et al. [13].
The plan of the present paper is as follows. In Section 2 the problem for the

in-plane modes in a symmetrically three-layered thick plate is formulated, and in
Section 3 the solution and the dispersion relation are derived with the help of an
integral equation approach and Floquet’s (or Bloch’s) theorem. In Section 4 the
spring boundary condition is stated and the symmetric (in-plane) and antisymmet-
ric (bending) plate equations are derived. In Section 5 the dispersion relations for
the three approaches are compared and Section 6 offers a few concluding remarks.

2. Formulation of the problem

Consider a symmetrically three-layered isotropic thick plate according to Fig. 1.
This geometry is chosen because it is simple and admits a subdivision into sym-
metric and antisymmetric parts. However, in principle any configuration of layers
can be chosen. The middle layer has thickness 2d1 and the two outer layers have
thickness d2 − d1 each; the total thickness of the plate is d = 2d2. The material
parameters in the layers are denoted by the index j = 1, 2 for the middle and outer
layers, respectively. Thus, λj , µj and ρj are the Lamé constants and densities of
the middle (j = 1) and outer (j = 2) layers. All the cracks are of equal width 2l,
periodically located with centers at x = ma, z = ±d1, m = 0,±1,±2, . . ., a > 2l.

x

z

O

a

d

d

1

2

μλ2 2, , 2

2l

ρ

μλ1 1, , 1ρ

Figure 1. Elastic plate with periodic arrays of cracks.

In-plane coupled compressional and shear (P-SV) wave propagation is consid-
ered. Time harmonic waves are assumed, with the time factor e−iωt suppressed
throughout. The displacement vectors uj = (ujx, u

j
z)T obey the Lamé equations

(λj + µj)∇∇ · uj + µj∆uj + ρjω
2uj = 0, j = 1, 2. (1)

The three relevant stress components are

σj
x = (λj + 2µj)

∂ujx
∂x

+ λj
∂ujz
∂z

,

σj
z = λj

∂ujx
∂x

+ (λj + 2µj)
∂ujz
∂z

,
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and

τ jxz = µj

(
∂ujx
∂z

+
∂ujz
∂x

)
, j = 1, 2.

From the symmetry it follows that only one half of the plate (−d2 < z < 0)
needs to be considered and that the problem can be decomposed into symmetric
and antisymmetric parts. The boundary conditions for the antisymmetric part are

u1x|z=0 = 0, σ1
z |z=0 = 0 and σ2|z=−d2

= 0. (2)

For the symmetric part they are instead

u1z|z=0 = 0, τ1xz|z=0 = 0 and σ2|z=−d2
= 0. (3)

Here σj = (τ jxz, σ
j
z)T is the stress vector at a horizontal surface element. On the

interface z = −d1 the displacement and traction are continuous except on the
cracks, where the boundary conditions are

σ1|z=−d1
= σ2|z=−d1

= 0, |x−ma| < l, m = 0,±1,±2, . . . . (4)

This gives rise to a displacement discontinuity on the cracks with the crack-opening
displacements (c.o.d.) defined as

vm(x) = u1(x,−d1)− u2(x,−d1), |x−ma| < l, m = 0,±1,±2, . . . .

As the plate with the cracks is a periodic system, the Bloch-Floquet theorem
[14] states that the modes in the plate have the property

uj(x, z) = eikxwj(x, z), j = 1, 2, (5)

where wj(x, z) are periodic functions with the period a:

wj(x+ma, z) = wj(x, z), m = 0,±1,±2, . . . , j = 1, 2.

The main goal here is to find the dispersion relation k = k(ω) for non-zero
solutions (5) obeying Eq. (1), homogeneous boundary conditions (2) or (3), the
conditions of stress and displacement continuity at the interface z = −d1 outside
the cracks, and the zero-traction condition (4) on the crack.

3. Exact solution

In this section the exact dispersion relation is derived. This is done by represent-
ing the fields by Fourier transforms with Green’s functions, which upon using the
boundary conditions and the Bloch-Floquet theorem lead to an integral equation
on a single crack. This equation is discretized by an expansion in Chebyshev poly-
nomials with a square-root weight to account for the singularity at the crack tips.
An alternative, essentially equivalent, way would be to use a Fourier series repre-
sentation over a single cell which together with the Bloch-Floquet theorem should
lead to the same integral equation.
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To derive a general solution the Fourier transform Fx:

Fx[u
j ] =

∞∫
−∞

uj(x, z)eiαxdx = Uj(α, z), j = 1, 2

is applied to the equations and boundary conditions of the problem considered.
In this way, the wave fields uj are sought for in the form of the inverse Fourier
transform:

uj(x, z) = F−1
x [Uj ] =

1

2π

∫
Γ

Uj(α, z)e−iαxdα, j = 1, 2. (6)

The integration path Γ goes in the complex α plane along the real axis Imα = 0,
deviating from it for bypassing real singularities of the integrands in accordance
with the principle of limiting absorption [15]. In the Fourier transform domain the
solution Uj is obtained in the form

Uj(α, z) = Kj(α, z)Q(α), j = 1, 2, (7)

where Kj = Fx[k
j ] are the Fourier transforms of the Green’s matrices kj(x, z) for

the layers −d1 < z < 0 (j = 1) and −d2 < z < d1 (j = 2) and Q = Fx[q] is the
transform of an unknown stress q(x) at the contact interface z = −d1.
Mathematically, the columns k1

n(x, z), n = 1, 2 of the two-by-two matrix k1(x, z)
are the solutions to Eq. (1) with j = 1 satisfying the boundary conditions

u1x|z=0 = 0, σ1
z |z=0 = 0 and σ1|z=−d1

= δ(x)en

or

u1z|z=0 = 0, τ1xz|z=0 = 0 and σ1|z=−d1
= δ(x)en,

where e1 = (1, 0)T and e2 = (0, 1)T are the unit coordinate vectors and δ(x) is
Dirac’s delta function. As in Eqs. (2) and (3), the choice of the boundary conditions
depends on whether the antisymmetric or the symmetric solution is considered.
Analogously, the columns k2

n, n = 1, 2, of the matrix k2(x, z) obey Eq. (1) with
j = 2 and the boundary conditions

σ2|z=−d1
= δ(x)en and σ2|z=−d2

= 0.

The matrices Kj(α, z) for homogeneous elastic layers are derived in a closed form
(e.g. [16]).
Eq. (7) implies a connection between the unknown vector functions q(x) and

vm(x) set at the interface. Indeed, taking the difference of the transforms Uj

specified by Eq. (7) yields at z = −d1

U1(α,−d1)−U2(α,−d1) = [K1(α,−d1)−K2(α,−d1)]Q(α) =

∞∑
m=−∞

Vm(α), (8)
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where Vm = Fx[vm]. Hence,

Q(α) = L(α)

∞∑
m=−∞

Vm(α), L(α) = [K1(α,−d1)−K2(α,−d1)]
−1. (9)

Furthermore, Eq. (7) can be rewritten in terms of Vm:

Uj(α, z) = N j(α, z)

∞∑
m=−∞

Vm(α), N j(α, z) = Kj(α, z)L(α), j = 1, 2,

which leads to the integral representations

uj(x, z) =
1

2π

∫
Γ

N j(α, z)

∞∑
m=−∞

Vm(α)e−iαxdα, j = 1, 2. (10)

Due to the periodicity property specified by Eq. (5), every function Vm can be
expressed via the single function V0:

Vm(α) =

ma+l∫
ma−l

vm(x)eiαxdx =

l∫
−l

v0(x)e
i(αx+(α+k)ma)dx = V0(α)e

i(α+k)ma, m = 0,±1,±2, . . .

The substitution of Vm(α) in this form into Eq. (10) and the use of the formula
[3]

∞∑
m=−∞

ei(α+k)ma = 2π

∞∑
m=−∞

δ

(
α+ k

2π
a−m

)

lead to a closed-form series representation for the periodic functions wj in Eq. (5):

wj(x, z) =
1

a

∞∑
m=−∞

N j(αm, z)V0(αm)e−iβmx, βm = 2πm/a, αm = βm−k, j = 1, 2.

(11)
In the same way, Eq. (9) yields q = F−1

x [Q] in the closed series form

q(x) =
1

a

∞∑
m=−∞

L(αm, z)V0(αm)e−iαmx. (12)

Since the crack sides are stress-free (see Eq. (4)), q = 0 at the segment |x| < l.
In fact, this condition reduces the problem to the homogeneous integral equation
with respect to the c.o.d. v0(x):

∞∑
m=−∞

L(αm)V0(αm)e−iαmx = 0, |x| < l, (13)
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V0(α) = Fx[v0] =

l∫
−l

v0(x)e
iαxdx.

The values k(ω), for which non-trivial solutions to Eq. (13) exist, are the wave
numbers of modes (5), propagating in the plate at a given frequency ω, while
Eq. (11) to constant multipliers yields their spatial eigenforms. In the latter, the
vectorsV0(αm) are expressed via the eigensolutions v0(x) associated with the roots
k = k(ω).
To discretize Eq. (13), the c.o.d. v0 is expanded in terms of the Chebyshev

polynomials of the second kind Un(x) with square-root weight:

v0(x) =

∞∑
n=0

cnpn(x), pn(x) = Un(x/l)
√

1− (x/l)2. (14)

The weight takes care of the square root singularity at the crack tips, but the
oscillating factor that is generally also present in the case of two different materials
is not included into Eq. (14). Nevertheless, it is enough to assure numerical stability
of the calculations below. The substitution of expansion (14) into Eq. (13) yields

∞∑
n=0

[
1

a

∞∑
m=−∞

L(αm)Pn(αm)e−iαmx

]
cn = 0, |x| < l, (15)

where

Pn(α) = Fx[pn] = π l in(n+ 1)Jn+1(αl)/α

and Jn+1(αl) are the Bessel functions. Following the Galerkin scheme, Eq. (15)
is multiplied by pj(x) for j = 0, 1, 2, . . . and integrated over −l < x < l. This
reduces Eq. (15) to an infinite homogeneous system of linear algebraic equations
with respect to the vector of expansion coefficients c = (c1, c2, ..., cn, ...)

T :

A(k, ω)c = 0. (16)

The matrix A = [Ajn]
∞
0 consists of 2× 2 blocks

Ajn(k, ω) =
1

a

∞∑
m=−∞

L(αm)Pn(αm)Pj(−αm), j, n = 0, 1, 2, ... (17)

Non-trivial solutions to system (16) exist when the matrix A(k, ω) becomes sin-
gular, that is

det (A(k, ω)) = 0. (18)

Eq. (18) is the sought-for dispersion relation. It implicitly relates the wave number
k to the frequency ω. With the series representations (13), (14) dispersion equation
(18) is explicit, but for numerical calculations the series, obviously, must be trun-
cated. The number of terms in the truncated series is determined from numerical
experiments to meet the accuracy required for the roots k = k(ω).
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4. Approximate plate equations

If the cracks are small as compared to characteristic wavelengths and plate di-
mensions, it is possible to consider the layered plate in a simple fashion using an
approximate spring boundary condition between the layers. First, it is noted that
the exact distribution of small cracks is expected to be unimportant. For both
the SH and the P-SV cases Boström and Golub [17] and Golub and Boström [1]
have derived an approximate spring boundary condition to model an interface with
a random distribution of small cracks of the same size. This boundary condition
should also be applicable to the periodic distribution of interface cracks in the plate
considered. Thus, the exact periodic boundary conditions at the interface z = −d1
are replaced by the simplified spring boundary condition:

σ1 = σ2 = κ(u1 − u2), z = −d1, (19)

where the spring constant is

κ =
8

πClβ
, β =

λ1 + 2µ1

µ1(λ1 + µ1)
+

λ2 + 2µ2

µ2(λ2 + µ2)
, (20)

and C = 2l/a is relative density of cracks. It may be surprising that the spring
constants are equal in the normal and tangential directions. However, it follows
from the analysis in Golub and Boström [1], and it may be less surprising when it is
noticed that the spring constant is independent of frequency. (And longitudinal and
transverse waves behave in similar manners in many respects.) The same situation,
with equal spring constants, also appear in the work of Boström and Wickham [9]
for the case of partially closed cracks and is, furthermore, confirmed by comparisons
with experiments.
The dispersion relations for thick layered plates with the spring boundary condi-

tion (19) between the layers and the boundary condition (2) or (3) on the external
sides are easily derived and are not given here.
If the thickness of the plate, as well as the cracks, are small as compared to

the characteristic wavelengths in the plate, then the problem can be further sim-
plified in the context of plate theory. Here the approach of Boström et al. [18] is
followed. Within this approach, the wave fields are expanded using Taylor power
series expansions as

u1(x, z) =

∞∑
n=0

u1
n(x)z

n and u2(x, z) =

∞∑
n=0

u2
n(x)(z + d1)

n, (21)

where uj
n = (ujx,n, u

j
z,n)T , j = 1, 2. Substitution of these formulas into Eq. (1) leads

to the recurrence relations

∆j
1u

j
x,n + (n+ 1)(λj + µj)

∂ujz,n+1

∂x
+ (n+ 2)(n+ 1)µju

j
x,n+2 = 0,

∆j
2u

j
z,n + (n+ 1)(λj + µj)

∂ujx,n+1

∂x
+ (n+ 2)(n+ 1)(λj + 2µj)u

j
z,n+2 = 0, n = 0, 1, 2, . . . ,

where the wave operators are

∆j
1 =

(
(λj + 2µj)

∂2

∂x2
− ρj

∂2

∂t2

)
, ∆j

2 =

(
µj

∂2

∂x2
− ρj

∂2

∂t2

)
, j = 1, 2.
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From these equations the expansion vector functions uj
n+2 can be expressed in

terms of uj
n+1 and uj

n. The recurrence relations can thus be used to eliminate all

the expansion functions except uj
0 and uj

1. Consequently, expansions (21) can be

brought to a form with only the four expansion vector functions uj
0 and uj

1, j =
1, 2. Their substitution into the spring boundary condition (19) imposes additional
relations among them. In this way, one can further eliminate all the functions
related to the second (j = 2) layer. Finally, boundary conditions (2) give for the
antisymmetric case (after elimination to a single equation) the scalar equation of
bending motion of the plate

A1

∂4u1z,0
∂x4

+B1

∂4u1z,0
∂t2x2

+C1

∂2u1z,0
∂t2

+D1

∂4u1z,0
∂t4

+
1

κ

(
E1

∂4u1z,0
∂t2x2

+ F1

∂4u1z,0
∂t4

)
= 0 (22)

with coefficients

A1 =
4

3

[
µ2(1− γ2)(d

3
2 − d31) + µ1d

3
1(1− γ1)

]
, C1 = d1ρ1 + (d2 − d1)ρ2,

B1 = −
[
2(1− γ2)d1(d2 − d1)

2ρ1 +
4µ2

µ1
(1− γ2)d

2
1(d2 − d1)ρ1 +

2

3
(3− 2γ1)d

3
1ρ1

+
4µ2

µ1
(1− γ2)d1(d2 − d1)

2ρ2 + 2γ2d1(d2 − d1)
2ρ2 + 2d21(d2 − d1)ρ2 +

2

3
(3− 2γ2)(d2 − d1)

3ρ2

]
,

D1 =
1

6µ1
(3+ γ1)d

3
1ρ

2
1+

1

2µ1
(3+ γ1)d

2
1(d2− d1)ρ1ρ2+

1

2µ2
(1+ γ2)d1(d2− d1)

2ρ1ρ2

+
1

6µ2
(3 + γ2)(d2 − d1)

3ρ22 +
1

µ1
d1(d2 − d1)

2ρ22,

E1 = −4µ2(1− γ2)(d2 − d1)(d1ρ1 + d2ρ2), F1 = 2d1(d2 − d1)ρ1ρ2 + (d2 − d1)
2ρ22,

where

γ1 =
µ1

λ1 + 2µ1
, γ2 =

µ2

λ2 + 2µ2
.

In the symmetric case boundary conditions (3) give the plate equation with respect
to the longitudinal displacement u1x,0

A2

∂2u1x,0
∂x2

+B2

∂2u1x,0
∂t2

+
1

κ

(
C2

∂4u1x,0
∂x4

+D2

∂4u1x,0
∂t2∂x2

+ E2

∂4u1x,0
∂t4

)
= 0, (23)

with

A2 = 4 [µ2(1− γ2)(d2 − d1) + µ1(1− γ1)d1] , B2 = − [d1ρ1 + (d2 − d1)ρ2] ,
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l/d = 0.05 
a/d = 1.0 

π

0

ω
d

ρ
√
–
–
– μ1–

2π

π 2π
kd

/1–

Figure 2. The wave numbers kd of the antisymmetric modes as a function of frequency ωd
√

ρ1/µ1 for
l/d = 0.05 and a/d = 1.0; solid lines: thick plate with periodic cracks, dotted lines: thick plate with spring
boundary condition; dash-dotted lines: plate equation with spring boundary condition.

C2 = −16µ1µ2(1−γ1)(1−γ2)d1(d2−d1), E2 = −
[
2d1(d2 − d1)ρ1ρ2 + (d2 − d1)

2ρ22
]
,

D2 = 4
[
µ2(1− γ2)d1(d2 − d1)ρ1 + µ2(1− γ2)(d2 − d1)

2ρ2 + 2µ1(1− γ1)d1(d2 − d1)ρ2
]
.

The first equation is written to the third order in thickness, the second one to
second order, but it is straightforward to go to higher orders. For both cases it is
straightforward to generalize to a plate in three dimensions by just changing all
second order derivatives in x to a sum of second order derivatives in x and y (or
the 2D Laplacian).
In the antisymmetric (bending) equation the A1 and C1 terms are recognized

as the Kirchhoff equation. Including also the B1 and D1 terms a Mindlin type of
equation is obtained, although the coefficients are not the same. The last two terms
that depend on the spring constant κ reflect the presence of the interface cracks.
These terms contain the same order of derivatives as the B1 and D1 terms. The
quotient between the B1 and E1 terms is of the order of the relative density of
cracks C times a factor depending on l/d, where d is the total plate thickness. The
spring terms can thus be of the same order as the correction terms of Mindlin type
to the Kirchhoff equation, although both C and l/d should be less than 1.
In the symmetric (stretching) equation the first two terms in A2 and B2 describe

usual in-plane motion. The other terms depend on the spring constant, and due to
the higher order derivatives these terms will generally be small at low frequencies.

5. Numerical examples

In this section some numerical results are given to compare the approximations de-
rived for the damaged layered plate with the exact solution for the thick plate with
a periodic array of interface cracks as treated in Section 2. The first approximation
is the thick plate with spring boundary condition (19). The second approximation
is to use the plate equation (22) or (23) (taken to the order given), with the disper-
sion relations following directly from them. In this way both the spring boundary
condition and the plate equations are checked.
The middle layer of the plate is made of aluminum (ν1 = 0.35, ρ1 = 2.7 ·

103 kg/m3, vs1 = 3110 m/s) and of thickness 2d1/d = 2/3, while the top and
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l/d = 0.05 
a/d = 1.0 
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Figure 3. The same as in Fig. 2, but for symmetric modes.

l/d = 0.25 
a/d = 2.0 

π

0

ω
d

ρ
√
–
–
– μ1–

2π

π 2π
kd

/1–

Figure 4. The same as in fig. 2, but for l/d = 0.25 and a/d = 2.0.

bottom ones are of titanium (ν2 = 0.3, ρ2 = 4.4 ·103 kg/m3, vs2 = 3270 m/s), with
thickness 2(d2 − d1)/d = 1/3.
Figures 2 – 7 show the dimensionless wave number kd as a function of the di-

mensionless frequency ωd
√

ρ1/µ1. Figures with even numbers show results for an-
tisymmetric modes and figures with odd ones show results for symmetric modes.
The corresponding crack sizes (l/d = 0.05, 0.25 and 0.5) and spacings (a/d = 1
and 2) are shown in the figures. The solid lines show the results for the thick plate
with periodic interface cracks, i.e. the roots of dispersion equation (18), the dashed
lines are the results for the thick plate with spring boundary condition (19), and
the dash-dotted lines are the results for plate equation (22) or (23).
As the interface cracks form a periodic system, this gives a system of Bloch

modes with periodicity in the kd direction for the solid lines. Then, the disper-
sion curves obtained for the plate with spring boundary conditions (dashed lines)
are typical for fundamental and higher-order guided waves propagating in elastic
layered waveguides. For the most part they coincide or closely follow the ascend-
ing parts of the Bloch modes, whereas no guided waves may be associated with
the descending ones. The approximate plate equations, in accordance with their
asymptotic nature, describe only fundamental modes. That is why they give only
two dispersion curves for antisymmetric modes (dash-dotted lines in Figs. 2, 4 and
6) and one (Figs. 3 and 5) or two (Fig. 7) curves in the symmetric case.
For the first antisymmetric and symmetric modes at low frequencies all three
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Figure 5. The same as in fig. 3, but for l/d = 0.25 and a/d = 2.0.
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Figure 6. The same as in fig. 2, but for l/d = 0.5 and a/d = 2.0.

theories agree very well, while for higher frequencies it is seen that the thick plate
with the spring boundary condition performs better than the plate theory.

6. Concluding remarks

In-plane P-SV modes in a layered plate with periodic distribution of interface
cracks have been investigated. The exact dispersion relation for a thick plate is
compared to the case when the interface cracks are approximated by means of a
distributed spring interface condition and also to plate equations incorporating this
spring interface condition. At low frequencies the agreement is very good and this
shows that the spring interface conditions can be used to model a periodic array of
interface cracks. A model with a distribution of interface cracks is a plausible model
for interface damage, and at low frequencies periodic and random distributions of
cracks give very similar wave propagation characteristics. Therefore, the spring
interface conditions should be a simple useful model for such damage. This model
can then be useful in more complex situations, like a plate with damage along a
finite part of the interface.
The situation considered here is only 2D, but there should be no principal ob-

stacles for investigating 3D problems as well, in particular for the case with a
rectangular interface crack. Also anisotropic media are of great practical interest
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l/d = 0.5 
a/d = 2.0 

π

0

ω
d

ρ
√
–
–
– μ1–

2π

π 2π
kd

/1–

Figure 7. The same as in fig. 3, but for l/d = 0.5 and a/d = 2.0.

as most composites can be modeled as anisotropic.
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