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Abstract

In this thesis we study a class of mixture models obtained by

mixing extreme value distributions over a positive stable distribu-

tion. This depicts a group structure, where the stable distribution

is a group speci�c quantity and a function of the surroundings.

The stable mixture models possess a number of interesting

characteristics. A key feature of these models is that they are

extreme value distributed, unconditionally as well as condition-

ally on the stable variables. Furthermore, all lower dimensional

marginals belong to the same class of models. These properties

make the models analytically tractable to work with and their ap-

plications comprehensible. Finally we have the �exibility quality.

We prove that any multivariate extreme value distribution may

be approximated by such a model. Because this class of mixture

models has a �nite parametrization, which in general multivari-

ate extreme value distributions do not have, we now have a �nite

parametrization for all multivariate extreme value distributions.

This means that, given enough complexity, any multivariate ex-

treme value distribution may be described by our stable mixture

models.

The �exibility of the models enables us to study the depen-

dence structure in a wide range of multivariate extreme value sit-

uations. In an environmental context, extreme values at several

nearby points in space or time may have profound e�ects on cli-

mate. We present a number of stable mixture models and derive

their bivariate dependencies. This gives us a set of models that

enable us to study not only the extremal properties of several pro-

cesses collectively, but also to in a straightforward way describe

their inter-relationships.

Finally we investigate extreme precipitation patterns in north-

ern Sweden by �tting stable mixture models to annual precipita-

tion maxima. From our results we are able to calculate risks for

landslides.

Keywords: multivariate extreme value theory, mixture model,

stable variable, dependence measure
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1 Introduction

1.1 General introduction

Multivariate extreme value statistics describes the behavior of two or
more variables at extreme levels. More speci�cally, a multivariate ex-
treme value distribution is the joint limiting distribution of component-
wise maxima of identically distributed random variables. In order to
describe phenomena involving extremes in more than one variable, mul-
tivariate extreme value models are required. They have a range of ap-
plications, in particular environmental and �nancial.

Gumbel and Goldstein (1964) wrote one of the early papers on bivari-
ate extreme value modeling. They analyse annual maximum discharges
of a river at two locations, upstream and downstream. The same paper
compares ages at death for women and men. Later a theoretical develop-
ment in the area of dependent multivariate extremes took place. De Haan
(1985) presents relevant results in probability theory, and Smith (1994)
estimates dependence structures for multivariate extremes, to mention a
few papers. They are followed by many other publications in the �eld.
For example, Coles and Walshaw (1994) describe directional modeling
of extreme wind speeds. Coles and Tawn (1994) model structural failure
of river banks. Another environmental application is the study by de
Haan and de Rondé (1998) on how the combination of high sea levels
and large sea waves can cause sea dikes. To mention a few applications
to �nance, St ric  (1999) and Poon et al. (2004) study joint extreme re-
turns, while Longin and Solnik (2001) model dependence in international
equity markets.

In this thesis we study a class of mixture models obtained by mixing
extreme value distributions over a positive stable distribution. A mixture
model describes the extreme behavior of a number of components. Each
component has its own variation, as well as an overall variation joint for
all components. This depicts a group structure, where the stable distri-
bution is a group speci�c quantity and a function of the surroundings.

The stable mixture models possess a number of interesting charac-
teristics. A key feature of these models is that they are extreme value
distributed, unconditionally as well as conditionally on the stable vari-
ables. Furthermore, all lower dimensional marginals belong to the same
class of models. These properties make the models analytically tractable
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to work with and their applications comprehensible. Finally we have
the �exibility quality. We prove that any multivariate extreme value
distribution may be approximated by such a model. Because this class
of mixture models has a �nite parametrization, which in general mul-
tivariate extreme value distributions do not have, we now have a �nite
parametrization for all multivariate extreme value distributions. This
means that, given enough complexity, any multivariate extreme value
distribution may be described by our stable mixture models.

The mixture models were introduced separately byWatson and Smith
(1985) as tensile strength models and by Hougaard (1986) and Crowder
(1989) in a survival analysis context. They have since been applied and
further developed in Tawn (1990) in a study of extreme sea levels, in
Crowder (1998) in survival analysis and in Fougères et al. (2009) with
an application to pitting corrosion.

We study the dependence structure in the mixture models through
parametric models. The dependence between extreme observations in a
group is described by these parametric models. Knowledge about the
dependence structure gives us information about how extremes in the
same group relate to one another. The �exibility of the models enables
us to study the dependence in a wide range of multivariate extreme
value situations. In an environmental context, extreme values at several
nearby points in space or time may have profound e�ects on climate.
We present a number of stable mixture models and derive their bivariate
dependencies. This gives us a set of models that enable us to study not
only the extremal properties of several processes collectively, but also to
in a straightforward way describe their inter-relationships.

Chapter 2 is an introduction to multivariate extreme value theory.
We present some of the existing dependence measures for multivariate
extremes, in particular the spectral measure. Chapter 3 is an overview
over the most common parametric families for bivariate extreme value
distributions. Via a transformation to a spectral measure information
about, and a visual understanding of the dependence structure is gained.
In Chapter 4 we introduce the stable mixtures. We study properties of
the stable mixtures and give three di�erent physical interpretations. We
show the �exibility of the models by proving that the set of distribution
functions for stable mixtures is dense in the set of all multivariate ex-
treme value distributions. Finally in Chapter 5 we present a number of
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stable mixture models, both spatial and temporal, and investigate their
dependence structures. In Chapter 6 we investigate extreme precipita-
tion patterns in northern Sweden by �tting stable mixture models to
annual precipitation maxima. From our results we are able to calculate
risks for landslides.

1.2 Contributions of this thesis

The main theme of this thesis is an investigation of dependence structures
in multivariate stable mixture models. The following points represent the
key results:

• We prove that the set of stable mixture models is dense in the
set of all multivariate extreme value distributions. This gives us a
�nite parametrization for all multivariate extreme value distribu-
tions (Chapter 4.3).

• We �nd the dependence properties of a number of time series stable
mixture models (Chapter 5).

• We derive a recursion formula for the likelihood function in a
MA(2) stable mixture model, enabling maximum likelihood cal-
culations and model �tting (Chapter 5.4).

• We illustrate the usefulness of stable mixture models by �tting
them to extreme precipitation data and by showing how the results
could be used to estimate risks for landslides (Chapter 6).
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2 Extreme value theory

2.1 Univariate extreme value theory

We begin with a short introduction to univariate extreme value theory.
LetMn denote the maximum of n i.i.d. variablesX1, ..., Xn with common
distribution function F ;

Mn = max (X1, ..., Xn) .

Fisher and Tippett (1928) proves that if there exist sequences of con-
stants {cn} and {dn > 0} such that

P

(
Mn − cn

dn
≤ x

)
= Fn(dnx+ cn)

d→ G(x) as n→∞, (2.1)

where G is a non-degenerate distribution function, then G belongs to the
generalized extreme value (GEV) family of distributions:

G(x) = exp

{
−
(

1 + γ
x− µ
σ

)−1/γ

+

}
,

for some constants γ, µ and σ > 0, and x+ =

{
x if x ≥ 0;
0 if x < 0.

For γ > 0

and γ < 0 the generalized extreme value distribution is called the Fréchet
and the Weibull distribution, respectively. In the limit γ → 0 the GEV
distribution becomes the Gumbel distribution:

G(x) = exp

{
− exp

{
−
(
x− µ
σ

)}}
.

2.2 Multivariate extreme value theory

In order to study extremes of two or more processes, multivariate extreme
value theory is a necessary tool. Of interest may be the extreme behavior
of observations of di�erent physical processes, of summarizing features
of one process, of observations at di�erent points in time of one process
or of a spatial process observed at a number of sites. An example of the
latter could be annual maximum sea-levels at two di�erent ports. In this
chapter we give a summary of multivariate extreme value theory. Some
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of the de�nitions will be useful in later chapters. We start by de�ning
multivariate extreme value distributions.

Let Xi = (Xi,1, ..., Xi,d), i = 1, ..., n, be a sequence of identically
distributed d-dimensional vectors of observations with joint distribution
function F . We de�ne the sample maximum Mn to be the vector of
component-wise maxima,

Mn = (Mn,1, ...,Mn,d) =

(
max

1≤i≤n
Xi,1, ..., max

1≤i≤n
Xi,d

)
.

If there exist constants cn,j and dn,j > 0 for j = 1, ..., d and i = 1, ..., n
such that

P

(
Mn,1 − cn,1

dn,1
≤ x1, ...,

Mn,d − cn,d
dn,d

≤ xd
)

= Fn(dn,1x1 + cn,1, ..., dn,dxd + cn,d)
d→ G(x1, ..., xd), as n→∞

for a d-variate distribution function G with non-degenerate margins, we
say that G is a multivariate extreme value distribution function and that
F is in the domain of attraction of G, written as F ∈ D(G). A distri-
bution function converges only if the marginal distribution functions do.
This means that we have

Fnj (dn,jxj + cn,j)
d→ Gj(xj), (2.2)

where Fj and Gj are the marginal distribution functions for F and G
respectively. Thus, the margins of G are univariate generalized extreme
value distribution functions (GEV's).

Let us introduce the concept of max-stability. A d-variate distribu-
tion function G is an extreme value distribution function if and only
if it is max-stable. This means that for every m = 2, 3, .., there exist
d-dimensional constant vectors Am > 0 and Bm such that

G(x) = Gm(Am,1x1 +Bm,1, ..., Am,dxd +Bm,d) (2.3)

The interpretation is the following: If Y ,Y1,Y2,... are independent ran-
dom variables with distribution function G, then

A−1
m

(
m∨
i=1

Yi −Bm

)
d
= Y, m = 1, 2, ...

5



Beside the marginal behavior, the other component of a joint distri-
bution is the dependence structure, which in this case is the dependence
between the component-wise maxima. Quantifying the dependence is
not as straightforward as with some other joint distributions, e.g. joint
Gaussian distributions. The reason is that there is no �nite parametriza-
tion that covers the whole class of dependence structures for multivariate
extreme value distributions. One way to get around this problem is to
construct parametric models. Here we do a transformation to pseudo-
polar coordinates, described in Chapter 2.3.1.

In order to isolate the dependence structure from the in�uence of the
margins, we standardize the margins so that they are all the same. For
technical convenience we choose to work with standard Fréchet margins,
i.e. with marginal distribution functions G∗j(z) = exp{−z−1

+ }, i.e. with
the GEV(µ = 1, σ = 1, γ = 1)-distribution. Thus, we transform the dis-
tribution function G to a distribution function G∗ with standard Fréchet
margins. Let G−1

j be the quantile function of a marginal distribution

function Gj , i.e. G
−1
j (p) = x if and only if Gj(x) = p for 0 < p < 1.

De�ne the transformed distribution function G∗:

G∗(z1, ..., zd) = G
(
G−1

1 (e−1/z1), ..., G−1
d (e−1/zd)

)
(2.4)

for z1, ..., zd ≥ 0. This transformation preserves the extreme value prop-
erty. For a Fréchet or Weibull distributed variable, a variable transfor-
mation to a standard Fréchet variable is possible:

X ∼ GEV (µ, σ, γ)⇒ Z =

(
1 + γ

X − µ
σ

)1/γ

∼ GEV (1, 1, 1), (2.5)

and for Gumbel variables

X ∼ GEV (µ, σ, 0)⇒ Z = e
X−µ
σ ∼ GEV (1, 1, 1).

The joint distribution function with standard Fréchet marginals is in the
same way achieved for Fréchet and Weibull variables,

G∗(z1, ..., zd) = G

(
µ1 + σ1

zγ11 − 1

γ1
, ..., µd + σd

zγdd − 1

γd

)
,

and for Gumbel variables

G∗(z1, ..., zd) = G (µ1 + σ1 log z1, ..., µd + σd log zd) .
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Now we can de�ne the exponent measure function V∗:

V∗(z) ≡ − logG∗(z) = µ∗([0,∞) \ [0,z]),

where µ∗ is called the exponent measure and can be shown to in fact be a
measure. The max-stability property (2.3) of extreme value distributions
implies (by a measure-theoretic argument) that

µ∗(s·) =
1

s
µ∗(·), 0 < s <∞. (2.6)

For future reference, we also de�ne the stable tail dependence func-
tion l. It describes the distribution of extremes in an equivalent way as
the exponent measure function V∗ and is de�ned as

l(v1, ..., vd) ≡ V∗(1/v1, ..., 1/vd). (2.7)

A stable tail dependence function has the following four properties:

1. l(s·) = sl(·) for 0 < s <∞

2. l(ej) = 1 for j = 1, ..., d where ej is the jth unit vector in Rd

3. v1 ∨ ...∨ vd ≤ l(v1, ..., vd) ≤ v1 + ...+ vd for v ∈ [0,∞), where ∨ is
the maximum-function

4. l is convex

2.3 Dependence in multivariate extreme value distribu-
tions

There exist several measures of dependence for multivariate extreme
value distributions in the literature. Here we will mention two; a spectral
measure and the Pickands dependence function.

2.3.1 Spectral measure

We start by looking at the d-dimensional unit simplex,

Sd = {ω ∈ [0,∞) : ω1 + ...+ ωd = 1} ,
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and do a mapping T from Rd+\ {0} to (0,∞)× Sd:

T (z) = (r,ω) where r =
d∑
j=1

zj and ωj =
zj∑d
i=1 zi

, j = 1, ..., d.

The spectral measure H∗ on Sd is de�ned as

H∗(B) = µ∗({z ∈ [0,∞) : z1 + ...+ zd ≥ 1,
z

z1 + ...+ zd
∈ B}),

for Borel sets B ⊂ Sd. By property (2.6) the exponent measure µ∗ may
then be expressed as

µ∗({z ∈ [0,∞) : z1 + ...+ zd ≥ r,
z

z1 + ...+ zd
∈ B})

= µ∗(r{z ∈ [0,∞) : z1 + ...+ zd ≥ 1,
z

z1 + ...+ zd
∈ B}) =

1

r
H∗(B)

for 0 < r < ∞. Thus, µ∗ factors into a product of two measures; a
radial measure r and a spectral measure H∗. This is called spectral
decomposition of the exponent measure (de Haan and Resnick, 1977),
written as

µ∗ ◦ T−1(dr, dω) =
1

r2
drH∗(dω).

The integral of a real-valued function g on [0,∞)\{0} with respect to
µ∗ is then∫

[0,∞)\{0}
g(z)µ∗(dz) =

∫
Sd

∫ ∞
0

g (rω)
1

r2
drH∗(dω)

=

∫
Sd

∫ ∞
0

g(rω)
1

r2
drH∗(dω).
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We can now express the exponent measure function V∗ in terms of the
spectral measure S:

V∗(z) = − logG∗(z) = µ∗([0,∞)\[0, z]) =

∫
[0,∞)\[0,z]

µ∗(dy)

=

∫
[0,∞)\{0}

1

 d∨
j=1

yj
zj
> 1

µ∗(dz)

=

∫
Sd

∫ ∞
0

1

r > 1∨d
j=1

ωj
zj

 1

r2
drH∗(dω)

=

∫
Sd

∫ ∞
1∨d

j=1

ωj
zj

1

r2
drH∗(dω) =

∫
Sd

d∨
j=1

ωj
zj
H∗(dω).

The stable tail dependence function l with a spectral measure H∗ may
thus be expressed as

l(v) =

∫
Sd

d∨
j=1

(ωjvj)H∗(dω). (2.8)

Because the margins of G∗ are standard Fréchet, the spectral measure
thus satis�es the condition∫

Sd
ωjH∗(dω) = 1, j = 1, ..., d. (2.9)

In particular, the total mass of H∗ is d since

H∗(Sd) =

∫
Sd

(ω1 + ...+ ωd)H∗(dω) (2.10)

=

∫
Sd
ω1H∗(dω) + ...+

∫
Sd
ωdH∗(dω) = d.

There are no other constraints on H∗, which implies that H∗ does not
have a �nite parametrization. But by looking at a set of densities of
H∗ on subspaces of Sd, parametric models may be constructed. First we
de�ne

H(ω1, ..., ωd−1) ≡ H∗([0, ω1]× · · · × [0, ωd]),
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the measure function associated with H∗. We also de�ne subspaces
Sm,c ⊂ Sd:

Sm,c = {ω ∈ Sd : ωk = 0, k /∈ c} ,

where c = {j1, ..., jm} is an index set over the subsets of size m of the
set {1, ..., d}. Now, the spectral density, hm,c, is the (m−1)-dimensional
density of H on Sm,c. The density hm,c may be expressed in terms of
derivatives of V∗ (Coles and Tawn, 1991, Theorem 1):

∂V∗
∂zj1 , ..., ∂zjm

(z) = −

(
m∑
l=1

zjl

)−(m+1)

hm,c

(
zj1∑
zjl
, ...,

zjm−1∑
zjl

)
, (2.11)

on {z ∈ Rd+ : zk = 0, k /∈ c}. The spectral density hm,c describes the
dependence between extremes of Xi,k for k = j1, ..., jm. For the case
m = d and c = {1, ..., d} we de�ne h ≡ hd,{1,...,d},

∂V∗
∂z1, ..., ∂zd

(z) = −

(
d∑
l=1

zl

)−(d+1)

h

(
z1∑
zl
, ...,

zd−1∑
zl

)
(2.12)

= −r−(d+1)h(ω1, ..., ωd−1),

Let us exemplify the interpretation of the spectral density by looking
at the two-dimensional case. We then study the extreme behavior of
two random variables, Xi,1 and Xi,2. The unit simplex S2 = {(ω1, ω2) ∈
[0,∞);ω1 + ω2 = 1} in Figure 2.1 is then equivalent to the unit inter-
val, [0, 1], and H is some function of ω ≡ z1

z1+z2
on [0, 1]. H may be

decomposed into three spectral densities. The density h = h2,{1,2} on
the interior of the interval, (0, 1), describes the dependence between ex-
tremes of the two components Xi,1 and Xi,2. A positive value of h(ω)
means that Xi,1 and Xi,2 are both extreme at the point ω. At the point
{ω = 1} the density h1,{1} describes those events which are extreme only
in the Xi,1-component. It is in fact the point mass of H∗ at ω = 1,
H∗({1}). Analogously, h1,{2} is the density at {ω = 0} and the point
mass of H∗ at ω = 0, H∗({0}). It describes those events which are ex-
treme only in Xi,2. Since by Equation (2.10) the total mass of H∗ on S2

is two, we have

H∗(S2) =

∫ 1

0
h(ω)dω +H∗({0}) +H∗({1}) = 2

10
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Figure 2.1: Unit simplex in two dimensions

2.3.2 Pickands dependence function

An alternative measure of dependence between extremes in the two-
dimensional case is the Pickands dependence function A. It is de�ned
as

A(t) = l(1− t, t) (2.13)

for t ∈ [0, 1], where l is the stable tail dependence function de�ned in
Equation (2.7).

The stable tail dependence function is uniquely determined by its cor-
responding Pickands dependence function, since it follows from Equation
(2.7) that

l(v1, v2) = (v1 + v2)A

(
v2

v1 + v2

)
,

where 0 ≤ v1, v2 < ∞ and v1 + v2 > 0. Because of properties 2, 3 and
4 of the stable tail dependence function expressed in Chapter 2.2, the
Pickands dependence function possesses the following properties:

• A(0) = A(1) = 1

• (1− t) ∨ t ≤ A(t) ≤ 1 for t ∈ [0, 1]

11



• A is convex

If A assumes its lower bound, A(t) = (1−t)∨t, we have complete depen-
dence. If A assumes its upper bound, A(t) = 1, we have independence.
An A in between its lower and upper bound corresponds to some other
type of dependence.

From Equation (2.7) we have the following relation between a multi-
variate extreme value distribution function with standard Fréchet mar-
gins, G∗, and its corresponding Pickands dependence function:

G∗(z1, z2) = exp

{
−
(

1

z1
+

1

z2

)
A

(
z1

z1 + z2

)}
. (2.14)
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3 Parametric families for bivariate extreme value

distributions

As mentioned in Chapter 2.2, there is in general no �nite parametriza-
tion for multivariate extreme value distributions. However, a number
of parametric subfamilies have been developed. Gumbel (1960) was the
�rst to construct parametric models for bivariate extremes. Here we give
a review of the most common existing di�erentiable parametric families
for bivariate extremes. Information about, and a visual understanding of
the dependence structure is gained with a transformation to the spectral
measure as described in Chapter 2.3.1. We will use the notation from
the same chapter. We let (X1, X2) be a bivariate random variable and
G∗ the corresponding bivariate extreme value distribution function with
standard Fréchet margins, describing the extreme behavior of X1 and
X2.

3.1 Independence and complete dependence

The distribution function

G∗(z1, z2) = exp

{
−
(

1

z1
+

1

z2

)}
= exp

{
− 1

z1

}
exp

{
− 1

z2

}
, (3.1)

corresponds to independence. Thus, extreme events in X1 and X2 occur
independently. In the two-dimensional unit simplex S2, this corresponds
to zero spectral density on (0, 1),

h(ω) = h

(
z1

z1 + z2

)
= −(z1 + z2)3 ∂V∗

∂z1∂z2
(z1, z2) = −(z1 + z2)3 · 0 = 0.

The spectral mass at the endpoint ω = 1 describes events extreme only
in X1,

H∗({1}) = h1,{1} = − lim
z2→0

z2
1

∂V∗
∂z1

(z1, z2) = −z2
1

(
− 1

z2
1

)
= 1,

while the mass at the other endpoint, ω = 0, describes events extreme
only in X2,

H∗({0}) = h1,{2} = − lim
z1→0

z2
2

∂V∗
∂z2

(z1, z2) = −z2
2

(
− 1

z2
2

)
= 1.
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Thus, independence corresponds to point masses at the endpoints. Note
that the total mass is 2, which is consistent with Equation (2.10).

For two completely dependent variables, i.e. P (X1 = X2) = 1, the
distribution function is

G∗(z1, z2) = exp

{
−min

(
1

z1
,

1

z2

)}
.

Here all the mass of H∗ is at the point ω = z1
z1+z2

= 1/2, corresponding

to extreme values of X1 = X2. Thus, H∗({1
2}) = H∗(S2) = 2.

3.2 Logistic distribution

The logistic model was developed by Tawn (1988). Its distribution func-
tion is

G∗(z1, z2) (3.2)

= exp

{
−

(
1− ψ1

z1
+

1− ψ2

z2
+

{(
ψ1

z1

)1/α

+

(
ψ2

z2

)1/α
}α)}

,

where 0 ≤ ψ1, ψ2 ≤ 1 and α ∈ (0, 1). The spectral density on (0, 1) is

h(ω) (3.3)

=
1− α
α

(ψ1ψ2)1/α {ω(1− ω)}−1/α−1 [ψ
1/α
1 ω−1/α + ψ

1/α
2 (1− ω)−1/α]α−2.

Let us also look at the endpoints of the interval. The mass at ω = 1 is

H∗({1}) = − lim
z2→0

z2
1

∂V∗
∂z1

(z1, z2) = 1− ψ1,

and at ω = 0

H∗({0}) = − lim
z1→0

z2
2

∂V∗
∂z2

(z1, z2) = 1− ψ2.

Thus, there is mass at the endpoints as well as in the interior of the inter-
val, corresponding to events extreme in only one variable or in both, re-
spectively. By varying the parameters α, ψ1 and ψ2, the spectral density
takes on di�erent shapes, corresponding to di�erent dependence struc-
tures. The spectral density always has one peak (for α < 0.5) or one

14
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(a) α > 0.5 and ψ1 = ψ2
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(b) α < 0.5 and ψ1 = ψ2
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(c) α < 0.5 and ψ1 > ψ2
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(d) α < 0.5 and ψ1 < ψ2

Figure 3.1: Spectral density for the logistic distribution.
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dip (for α > 0.5). As α increases, there is a gradual transformation
from peak to dip around α = 0.5. The parameter α may be seen as
a dependence parameter which determines the shape of the peak. The
smaller the α, the higher and narrower the peak, corresponding to more
dependence. In the limit α → 0 the logistic model becomes the com-
plete dependence model. Figure 3.1b shows the spectral measure for
near-complete dependence. The mass is here centered around ω = 0.5,
corresponding to X1 and X2 being extreme at the same time. As α in-
creases, the spectral mass �ows towards the endpoints, corresponding to
more independence. In the limit α→ 1 with ψ1 = ψ2, the logistic model
becomes the independence model. Figure 3.1a shows the spectral mea-
sure for a near-independence situation. The mass is concentrated at the
endpoints of the interval, representing two separate extreme behaviors
for X1 and X2. Large values of the parameters ψ1 and ψ2 give a high
peak, corresponding to large dependence. Small values of ψ1 and ψ2 give
a smeared out peak with more mass at the endpoints, corresponding to
small dependence. They may also be seen as asymmetry parameters.
The case ψ1 > ψ2 gives a peak at ω > 0.5, as shown in Figure 3.1c.
The case ψ1 < ψ2 gives a peak at ω < 0.5, displayed in Figure 3.1d.
For ψ1 = ψ2 = ψ we have a mixture of a symmetric logistic and an
independence model,

G∗(z1, z2) (3.4)

= exp

{
−

(
(1− ψ)

(
1

z1
+

1

z2

)
+ ψ

{(
1

z1

)1/α

+

(
1

z2

)1/α
}α)}

.

The particular case ψ1 = ψ2 = 1 is called the symmetric logistic distri-
bution and corresponds to the distribution function

G∗(z1, z2) = exp

{
−

((
1

z1

)1/α

+

(
1

z2

)1/α
)α}

, (3.5)

where all the mass is in the interior.
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3.3 Negative logistic distribution

Developed by Joe (1990), the distribution function for the negative lo-
gistic distribution is

G∗(z1, z2) = exp

− 1

z1
− 1

z2
+

{(
ψ1

z1

)−α
+

(
ψ2

z2

)−α}−1/α
 ,

where 0 ≤ ψ1, ψ2 ≤ 1 and α > 0. The spectral density becomes

h(ω) = (1 + α)ψ−α1 ψ−α2 {ω(1− ω)}α−1

{(
ω

ψ2

)α
+

(
ψ1

1− ω

)α}−1/α−2

,

and is shown for di�erent parameter values in Figure 3.2. There is mass
at the endpoints as well, since

H∗({1}) = − lim
z2→0

z2
1

∂V∗
∂z1

(z1, z2) = 1− ψ1,

and

H∗({0}) = − lim
z1→0

z2
2

∂V∗
∂z2

(z1, z2) = 1− ψ2.

The structure of the negative logistic distribution is similar to that of
the logistic distribution. The case ψ1 = ψ2 = 1 is symmetric. The limit
α, ψ1 or ψ2 → 0 gives the independence model. The case ψ1 = ψ2 = 1
and α→∞ gives the complete dependence model.

3.4 Bilogistic distribution

Derived by Joe et al. (1992), the bilogistic distribution function is

G∗(z1, z2) = exp

{
−
∫ 1

0
max

{
(1− α1)s−α1

z1
,
(1− α2)(1− s)−α2

z2

}
ds

}
,

for α1, α2 ∈ (0, 1]. The spectral density is

h(ω) =
(1− α1)(1− z)z1−α1

(1− ω)ω2 {(1− z)α1 + zα2}
,
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(a) α < 1 and ψ1 = ψ2
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(b) α > 1 and ψ1 = ψ2
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(c) α > 1 and ψ1 > ψ2
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(d) α > 1 and ψ1 < ψ2

Figure 3.2: Spectral density for the negative logistic distribution
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where z is the root of

(1− α1)(1− ω)(1− z)α2 − (1− α2)ωzα1 = 0.

There is no spectral mass at the endpoints (H∗({1}) = H∗({0}) = 0).
In some applications this is a reasonable assumption, if there are no ob-
servations on the boundary of the sample space. Note that this is not
the case for the logistic and negative logistic distributions (except for
the symmetric cases ψ1=ψ2=1). The bilogistic distribution is a gener-
alization of the symmetric logistic distribution, since for α1 = α2 the
bilogistic distribution reduces to the logistic distribution, seen in �gures
3.3a and 3.3b. Generally, α1−α2 ,may be seen as a measure of asymme-
try in the dependence structure. Similarly, α1 + α2 measures the extent
of dependence. For α1, α2 → 1 we have independence, and for α1, α2 → 0
complete dependence.

3.5 Dirichlet extreme value distribution

The Dirichlet distribution, also known as the Beta extreme value dis-
tribution, was derived by Coles and Tawn (1991). Its joint distribution
function is

G∗(z1, z2) = exp{− 1

z1

{
1−Be

(
α1 + 1, α2;

α1z1

α1z1 + α2z2

)}
− 1

z2
Be

(
α1, α2 + 1;

α1z1

α1z1 + α2z2

)
},

where α1, α2 > 0 and

Be(α1, α2;u) =
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ u

0
ωα1−1(1− ω)α2−1dω

is a normalized incomplete beta function. The spectral density on (0, 1)
is

h(ω) =
αα1

1 αα2
2 Γ(α1 + α2 + 1)

Γ(α1)Γ(α2)

ωα1−1(1− ω)α2−1

α1ω + α2(1− ω)1+α1+α2
,

and is shown for di�erent parameter values in Figure 3.4. As for the bil-
ogistic distribution, there is no mass at the endpoints, since H∗({1}) =
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(a) α1 = α2 > 0.5
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(d) α1 < α2

Figure 3.3: Spectral density for the bilogistic distribution
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(a) α1 = α2 < 1
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(b) α1 = α2 > 1
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(c) α1 > α2

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Ω

hHΩ
L

(d) α1 < α2

Figure 3.4: Spectral density for the Dirichlet distribution

H∗({0}) = 0. The parameter combination α1−α2
2 is a measure of asym-

metry. For α1 = α2 we have symmetry. Similarly, α1+α2
2 is a measure of

dependence. The limit α1, α2 → 0 gives independence, and α1, α2 →∞
complete dependence.
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4 Stable mixture models

In this chapter we introduce a class of stable mixture models. The mod-
els were introduced separately by Watson and Smith (1985) as tensile
strength models and by Hougaard (1986) and Crowder (1989) in a sur-
vival analysis context. They have since been applied and further devel-
oped in Tawn (1990) in a study of extreme sea levels, in Crowder (1998)
in survival analysis and in Fougères et al. (2009) with an application to
pitting corrosion.

In Chapter 4.1 we give three di�erent physical interpretations of the
mixture models. In Chapter 4.2 we introduce a class of stable mixture
models. We show their diversity in Chapter 4.3 by proving that their
distribution functions are dense in the set of all multivariate extreme
value distribution functions. We present the results for Fréchet distribu-
tions. The results for Gumbel and Weibull distributions are analogous
and mentioned in Chapter 5.7.

We start by letting S be a positive stable random variable character-
ized by its Laplace transform

E[e−tS ] = e−t
α
, t ≥ 0. (4.1)

where α ∈ (0, 1]. In the terminology of Samorodnitsky and Taqqu (1994),

S ∼ Sα

((
cos πα2

)1/α
, 1, 0

)
. Here c =

(
cos πα2

)1/α
is a scale parameter,

β = 1 an asymmetry parameter, µ = 0 a location parameter and α
a stability parameter. The combination β = 1 and µ = 0 gives the
support [0,∞). The stable distribution is heavy-tailed and leptokurtic.
The α parameter speci�es the asymptotic behavior of the distribution.
A smaller α corresponds to a thicker right tail of the distribution.

Now let F be a Fréchet distributed variable with location parameter
µ, scale parameter σ > 0 and shape parameter γ > 0:

P (F ≤ x) = exp

{
−
(
x− δ
σ/γ

)−1/γ

+

}
,

where δ ≡ µ−σ/γ is the �nite left endpoint of the distribution. De�ne a
new variable X by mixing the Fréchet distribution over a positive stable
distribution:

X = SγF + (1− Sγ)δ. (4.2)
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Conditionally on S, X is then Fréchet distributed with a new scale pa-
rameter Sγσ and the same left endpoint δ:

P (X ≤ x|S) = P (SγF + (1− Sγ)δ ≤ x|S) = P

(
F ≤ x− (1− Sγ)δ

Sγ
∣∣S)
(4.3)

= exp

−
(
x−(1−Sγ)δ

Sγ − δ
σ/γ

)−1/γ

+


= exp

{
−
(
x− δ
Sγσ/γ

)−1/γ

+

}
= exp

{
−S

(
x− δ
σ/γ

)−1/γ

+

}
.

Taking expectations, we get the unconditional distribution of X,

P (X ≤ x) = E[P (X ≤ x|S)] = E

[
exp

{
−S

(
x− δ
σ/γ

)−1/γ

+

}]
(4.4)

= exp

{
−
(
x− δ
σ/γ

)−α/γ
+

}
= exp

{
−
(
x− δ
σ
α/

γ
α

)−1/(γ/α)

+

}
.

Thus, X is unconditionally also Fréchet distributed, but with a larger
scale parameter σ/α and a larger shape parameter γ/α. We say that F
is directed by S. Note that in the special case δ = 0, σ = γ = α, X is
unconditionally standard Fréchet distributed:

P (X ≤ x) = exp{−x−α/γ+ } = exp{−x−1
+ }. (4.5)

4.1 Interpretations of the stable mixture model

The stable mixture model may be interpreted physically in a number of
ways. We give three di�erent interpretations. The interpretations are
inspired by Fougères et al. (2009), who give interpretations for Gumbel
stable mixture models.

4.1.1 Fréchet distribution as a scale mixture of Fréchet distri-

butions

Let F ∼GEV(µ, σ1, γ > 0) be a Fréchet distributed variable and look at
the following mixture variable,

X = σ2S
γF + (1− σ2S

γ) δ,
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where σ2 > 0 is some constant. The conditional distribution of X is then

P (X ≤ x|S) = P (σ2S
γF + (1− σ2S

γ) δ ≤ x|S)

= P

(
F ≤ x− (1− σ2S

γ)δ

σ2Sγ
∣∣S) = exp

−
(
x−(1−σ2Sγ)δ

σ2Sγ
− δ

σ1/γ

)−1/γ

+


= exp

{
−
(

x− δ
Sγσ1σ2/γ

)−1/γ

+

}
= exp

{
−S

(
x− δ
σ1σ2/γ

)−1/γ

+

}
.

Taking expectations, we get the unconditional distribution,

P (X ≤ x) = E[P (X ≤ x|S)] = E

[
exp

{
−S

(
x− δ
σ1σ2/γ

)−1/γ

+

}]
(4.6)

= exp

{
−
(
x− δ
σ1σ2/γ

)−α/γ
+

}
= exp

{
−
(
x− δ
σ1σ2
α / γα

)−1/(γ/α)

+

}
.

Thus, the unconditional distribution of X is Fréchet distributed with a
new scale parameter σ1σ2/α and a new shape parameter γ/α. The left
endpoint δ is unchanged. This corresponds to a scale transformation
with an accompanying shape and location transformation. To interpret
this physically, consider an area consisting of a number of groups. Each
group has its own Fréchet variation (with parameters µ, σ1, γ > 0) of
some variable of interest. On top of the Fréchet variation there is an
additional variation a�ecting all the groups in the area. This additional
variation has a stable distribution with parameter α. The unconditional
distribution in a test area is described by Equation (4.6).

4.1.2 Fréchet distribution as a size mixture of Fréchet distri-

butions

Here we regard an area consisting of n groups, all of the same size. The
maximum value of the variable of interest in each group is GEV(µ, σ1, γ >
0)-distributed. The maximum value (≡ X) of the variable in the whole
area then has distribution function

P (X ≤ x) =

(
exp

{
−
(
x− δ
σ1/γ

)−1/γ

+

})n
= exp

{
−n
(
x− δ
σ1/γ

)−1/γ

+

}
.
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If we assume that the size of the area is non-integer and random, we can

replace n with Sσ
1/γ
2 . Then

P (X ≤ x|S) = exp

{
−Sσ1/γ

2

(
x− δ
σ1/γ

)−1/γ

+

}

= exp

{
−S

(
x− δ
σ1σ2/γ

)−1/γ

+

}
,

and

P (X ≤ x) = exp

{
−
(
x− δ
σ1σ2/γ

)−1/(γ/α)

+

}
.

With this interpretation, Sσ
1/γ
2 is the random size of the area under the

in�uence of some external factor.

4.1.3 Fréchet distribution as the maximum of a conditional

Poisson point process

Let X1, X2, ... be iid variables. Then (see e.g. Leadbetter et al., 1983)
there exist sequences of constants {cn} and {dn > 0} such that

P

(
Mn − cn

dn
≤ x

)
→ exp

{
−
(
x− δ
σ1/γ

)−1/γ

+

}
,

where δ = µ− σ1/γ, if and only if the point process

Nn =

{(
i

n+ 1
,
Xi − cn
dn

)
: i = 1, ..., n

}
converges to a certain Poisson process N on regions of the form (0, 1)×
[u,∞) for any u > δ;

Nn → N.

The Poisson point process N has intensity measure Λ, which for A =
[t1, t2]× [x,∞), with t1, t2 ∈ (0, 1) and t1 < t2, is given by

Λ(A) = (t2 − t1)

(
x− δ
σ1/γ

)−1/γ

.
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If we include a random term Sσ2
1/γ in the intensity,

Λ(A) = (t2 − t1)Sσ
1/γ
2

(
x− δ
σ1/γ

)−1/γ

= (t2 − t1)

(
x− δ

Sγσ1σ2/γ

)−1/γ

,

then equivalently, X ≡ Mn−cn
dn

depends on n and is Fréchet distributed
conditionally on S:

P (X ≤ x|S) = P

(
Mn − cn

dn
≤ x|S

)
→ exp

{
−
(

x− δ
Sγσ1σ2/γ

)−1/γ

+

}

= exp

{
−S

(
x− δ
σ1σ2/γ

)−1/γ

+

}
.

Thus, X is Fréchet distributed with scale parameter σ1σ2/α, shape pa-
rameter γ/α and left endpoint δ,

P (X ≤ x) = E[P (X ≤ x|S)] = exp

{
−
(
x− δ
σ1σ2/γ

)−1/(γ/α)

+

}

= exp

{
−
(
x− δ
σ1σ2
α / γα

)−1/(γ/α)

+

}
.

4.2 A class of stable mixture models

In this chapter we introduce a class of multivariate stable mixture mod-
els. They may be seen as an extension of the univariate stable mixture
model in Equation (4.2) with left endpoint δ set to zero for convenience.
Let {Si; i = 1, ..., n} be independent positive stable variables de�ned
in Equation (4.1). Also let {Fj}, j = 1, ..., d, be independent Fréchet

variables with distribution functions exp

{
− 1

x
1/α
+

}
. Now create mixture

variables by mixing each Fréchet variable over n positive stable distribu-
tions:

Xj =

(
n∑
i=1

cj,iSi

)α
Fj (4.7)
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for j = 1, ..., d and constants cj,i ≥ 0. Then the conditional distribution
of Xj given the stable variables is

P (Xj ≤ xj |Si, i = 1, ..., n) = exp

{
−

n∑
i=1

cj,iSi
1

x
1/α
j

}
. (4.8)

Taking expectations, we get the joint distribution function for the stable
mixture:

Gn(x) ≡ P (X ≤ x) = E[P (X ≤ x|Si, i = 1, ..., n)] (4.9)

= E[P (X1 ≤ x1|Si, i = 1, ..., n) · ... · P (Xd ≤ xd|Si, i = 1, ..., n)]

= E

[
exp

{
−

n∑
i=1

c1,iSi
1

x
1/α
1

}
· ... · exp

{
−

n∑
i=1

cd,iSi
1

x
1/α
d

}]

= E

[
n∏
i=1

exp

{
−

(
c1,i

1

x
1/α
1

+ ...+ cd,i
1

x
1/α
d

)
Si

}]

=
n∏
i=1

exp

{
−

(
c1,i

1

x
1/α
1

+ ...+ cd,i
1

x
1/α
d

)α}

= exp

{
−

n∑
i=1

(
c1,i

1

x
1/α
1

+ ...+ cd,i
1

x
1/α
d

)α}
.

Let us check if Gn is an extreme value distribution function, or equiva-
lently, if Gn is max-stable (see Equation (2.3)). Thus, we need to �nd
d-dimensional vectors of constants Am > 0 and Bm such that for every
m = 2, 3, ...

Gn(x) = Gmn (Am,1x1 +Bm,1, ..., Am,dxd +Bm,d). (4.10)
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Starting from the right-hand side,

Gmn (Am,1x1 +Bm,1, ..., Am,dxd +Bm,d)

= exp

−
n∑
i=1

 d∑
j=1

cj,i
1

(Am,jxj +Bm,j)1/α

α

m


= exp

−
n∑
i=1

 d∑
j=1

cj,i
m1/α

(Am,jxj +Bm,j)1/α

α
= exp

−
n∑
i=1

 d∑
j=1

cj,i

(
1

Am,j
m1/αxj +

Bm,j
m1/α

)1/α
α .

Now, if we let Am,1 = ... = Am,d = m1/α and Bm = 0 we have Equation
(4.10). This means that the distribution function Gn is max-stable and
thus an extreme value distribution function. For convenience we will
work with standard Fréchet marginals, which is the case if

n∑
i=1

cαj,i = 1 for all j = 1, ..., d. (4.11)

Let us look at the dependence structure for our stable mixture models.
For simplicity we start with d = 2 dimensions. The distribution function
is then

Gn(x1, x2) = exp

{
−

n∑
i=1

(
c1,i

1

x
1/α
1

+ c2,i
1

x
1/α
2

)α}
.

The spectral density is calculated with Equation (2.12):

h

(
x1

x1 + x2

)
= −(x1 + x2)3 ∂V∗

∂x1∂x2
(x1, x2)

= −(x1 + x2)3
n∑
i=1

α− 1

α
c1,ic2,i

(
c1,i

1

x
1/α
1

+ c2,i
1

x
1/α
2

)α−2

· x−1/α−1
1 x

−1/α−1
2 .

28



0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Ω

hHΩ
L

(a) α > 0.5 and c1,2 = c2,1
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(b) α < 0.5 and c1,2 = c2,1

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Ω

hHΩ
L

(c) α < 0.5, c1,1 > c1,2, c2,1 > c2,2
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(d) α < 0.5, c1,1 > c1,2, c2,1 < c2,2

Figure 4.1: Spectral density for stable mixtures in two dimensions

A change of variables r = x1 + x2 and ω = x1
x1+x2

gives

h(ω) = r3
n∑
i=1

1− α
α

c1,ic2,i

(
c1,i

1

(rω)1/α
+ c2,i

1

(r(1− ω))1/α

)α−2

· (rω)−1/α−1(r(1− ω))−1/α−1

=

n∑
i=1

1− α
α

c1,ic2,i

(
c1,i

1

ω1/α
+ c2,i

1

(1− ω)1/α

)α−2

· (ω(1− ω))−1/α−1.

For n = 1 this is the symmetric logistic distribution in Equation (3.5).
For n ≥ 2 we have a product of logistic distributions in Equation (3.3)
with parameters ψ1 = cα1,i and ψ2 = cα2,i. The parameters depend on one
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another because of the constraints (4.11). For each i, there is a peak (for
α < 0.5) or a dip (for α > 0.5). A small α gives high peaks, corresponding
to large dependence. The explanation is that a small α gives a thick right
tail in the density of the stable variable S, which then is a dominant factor
in extremes of X (de�ned in Equation (4.7)). By varying the parameters
α and cj,i, j = 1, ..., d, i = 1, ..., n, we get di�erent shapes of the spectral
density, corresponding to di�erent dependence structures. Figure 4.1
shows the spectral density in two dimensions for some parameter values.

Now we pose the question; may any dependence structure be achieved
this way? We are interested in how big this subfamily of multivariate
extreme value distributions is. If this family of stable mixture distribu-
tions is in fact the entire class of multivariate extreme value distributions,
then equivalently any multivariate extreme value distribution function G
may be approximated by a stable mixture distribution function Gn. We
would thus have a parametrization for all multivariate extreme value
distributions.

We will prove that the set of stable mixture distribution functions
Gn is in fact dense in the set of multivariate extreme value distribution
functions G. First we prove that the set of stable tail dependence func-
tions for stable mixtures is dense in the set of stable tail dependence
functions for all multivariate extremes. The following theorem (4.1) im-
plies that for any �xed vector v, a stable tail dependence function for an
extreme value distribution may be uniformly approximated by a stable
tail dependence function for a stable mixture.

4.3 A density theorem

In this section we prove that the set of stable tail dependence functions
for the family of stable mixtures in Equation (4.7) is dense in the set
of all stable tail dependence functions for multivariate extreme value
distributions. As any multivariate extreme value distribution can be
transformed to a distribution with standard Fréchet margins, we assume
standard Fréchet margins throughout.

Recall from Equation (2.8) the stable tail dependence function l for
a d-variate extreme value distribution expressed with a spectral measure
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H∗,

l(v) =

∫
Sd

d∨
j=1

(ωjvj)H∗(dω), (4.12)

and the constraint on H∗ of standard Fréchet margins from Equation
(2.9) ∫

Sd
ωjH∗(dω) = 1, (4.13)

for all j = 1, ..., d.
Now let ln be the stable tail dependence function for the stable mix-

ture variable (4.7) with distribution function Gn from Equation (4.9),

ln(v) = − logGn

(
1

v1
, ...,

1

vd

)
=

n∑
i=1

(
c1,iv

1/α
1 + ...+ cd,iv

1/α
d

)α
, (4.14)

for v ∈ [0,∞]. For the stable mixture, the standard Fréchet constraint
reads

n∑
i=1

cαj,i = 1 for all j = 1, ..., d, (4.15)

from Equation (4.11).

Theorem 4.1. Let l be as in (4.12) and V any positive d-dimensional

vector. Let ε > 0. Then there exists an N ∈ N such that for all v ∈ [0,V]
and n ≥ N , there exists some ln as in (4.14) with

|l(v)− ln(v)| < ε.

We will approximate a general multivariate extreme value stable tail
dependence function, l, with a stable tail dependence function for a stable
mixture, ln, in a series of steps. In the �rst two steps we approximate
l(v) with a sum. In the third step we normalize constants in this sum in
a way to satisfy the standard Fréchet marginal condition (4.15). Finally
we use the triangle equality several times.
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We start by approximating the integral in (4.12) with a sum. Further,
we partition the d-dimensional unit simplex Sd into subareas Ωi, i =
1, ..., n, small enough so that

diam(Ωi) = sup(d(x, y);x, y ∈ Ωi) < εd,

where d is the Euclidean distance and εd > 0 depends on n and will be
speci�ed later. For each i, choose a point ωi in Ωi.

Lemma 4.2. Let ε > 0. Then there exists N ∈ N such that for all

v ∈ [0,V] and n ≥ N ,∣∣∣∫Sd (∨d
j=1 ωjvj

)
H∗(dω)−

∑n
i=1

(∨d
j=1 ω

i
jvj

)
H∗(Ωi)

∣∣∣ < ε/3.

Proof. The total mass of H∗ is d (H∗(Sd) = d) because of the standard
Fréchet condition (4.13). We will use this in the second to last step
below. In the third to last step we use that ω ∈ [0,1], and then get that∣∣∣∣∣∣

∫
Sd

 d∨
j=1

ωjvj

H∗(dω)−
n∑
i=1

 d∨
j=1

(ωijvj

H∗(Ωi)

∣∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣∣
∫

Ωi

 d∨
j=1

ωjvj

H∗(dω)−

 d∨
j=1

ωijvj

H∗(Ωi)

∣∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣∣
max

Ωi

 d∨
j=1

ωjvj

−
 d∨
j=1

ωijvj

H∗(Ωi)

∣∣∣∣∣∣
≤

n∑
i=1

εd

 d∨
j=1

vj

H∗(Ωi) = εd

 d∨
j=1

vj

 d ≤ εd

 d∨
j=1

Vj

 d.

Finally, if we choose εd small enough (that is n large enough) so that

εd

 d∨
j=1

Vj

 d < ε/3⇔ εd <
ε/3∨d

j=1(Vj)d
, (4.16)

the result follows.

In the next step we approximate the maximum-function in Lemma
4.2 with a sum.
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Lemma 4.3. Let ε > 0. Then there exists an N ∈ N and an α ∈ (0, 1]
such that for all v ∈ [0,V] and n ≥ N ,∣∣∣∣∣∣

n∑
i=1

 d∨
j=1

ωijvj

H∗(Ωi)−
n∑
i=1

((
ωi1v1

)1/α
+ ...+

(
ωidvd

)1/α)α
H∗(Ωi)

∣∣∣∣∣∣
< ε/3.

Proof. We use that for any constant a ≥ 0 and any α ∈ (0, 1] we have(
a

1/α
1 + ...+ a

1/α
d

)α
≤ dα

∨d
j=1 aj ,

|
n∑
i=1

((
ωi1v1

)1/α
+ ...+

(
ωidvd

)1/α)α
H∗(Ωi)−

n∑
i=1

 d∨
j=1

ωijvj

H∗(Ωi)|

=
n∑
i=1

((ωi1v1

)1/α
+ ...+

(
ωidvd

)1/α)α −
 d∨
j=1

ωijvj

H∗(Ωi)

≤
n∑
i=1


d
 d∨
j=1

ωijvj

1/α

α

−

 d∨
j=1

ωijvj


H∗(Ωi)

=

n∑
i=1

 d∨
j=1

ωijvj

 (dα − 1)H∗(Ωi) ≤
n∑
i=1

H∗(Ωi)

 d∨
j=1

vj

 (dα − 1)

= d

 d∨
j=1

vj

 (dα − 1) ≤ d

 d∨
j=1

Vj

 (dα − 1).

If we choose α small enough such that

d

 d∨
j=1

Vj

 (dα − 1) < ε/3⇔ dα < 1 +
ε/3

d
(∨d

j=1 Vj

) , (4.17)

Lemma 4.3 follows.

We want to �nd constants cj,i for j = 1, ..., d and i = 1, ..., n in the
expression (4.14) for the stable tail dependence function for our stable
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mixture that ful�ll the standard Fréchet condition (4.11). Therefore, we
normalize the constants (ωijH∗(Ωi))

1/α from Lemma 4.3 by de�ning

cj,i ≡

(
ωijH∗(Ωi)∑n

m=1 ω
m
j H∗(Ωm)

)1/α

,

for j = 1, ..., d, i = 1, ..., n and α ∈ (0, 1].

Lemma 4.4. Let ε > 0. Then there exists an N ∈ N and an α ∈ (0, 1]
such that for all v ∈ [0,V] and n ≥ N ,

|
n∑
i=1

((
ωi1v1

)1/α
+ ...+

(
ωidvd

)1/α)α
H∗(Ωi)

−
n∑
i=1

(
c1,iv

1/α
1 + ...+ cd,iv

1/α
d

)α
| < ε/3.

Proof. We use the requirement (4.13) on H∗,∣∣∣∣∣
n∑
i=1

ωijH∗(Ωi)− 1

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ωijH∗(Ωi)−
∫
Sd

ωjH∗(dω)

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣max
Ωi

ωj − ωij
∣∣∣∣H∗(Ωi) ≤

n∑
i=1

εdH∗(Ωi) = εdd,
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and get

|
n∑
i=1

((
ωi1v1

)1/α
+ ...+

(
ωidvd

)1/α)α
H∗(Ωi)

−
n∑
i=1

(
c1,iv

1/α
1 + ...+ cd,iv

1/α
d

)α
|

≤
n∑
i=1

∣∣ ((ωi1v1

)1/α
+ ...+

(
ωidvd

)1/α)α
H∗(Ωi)

−

((
ωi1v1∑n

m=1 ω
m
1 H∗(Ωm)

)1/α

+ ...+

(
ωidvd∑n

m=1 ω
m
d H∗(Ωm)

)1/α
)α

H∗(Ωi)
∣∣

≤
n∑
i=1

((
ωi1v1

)1/α
+ ...+

(
ωidvd

)1/α)α
H∗(Ωi)

(
1

1− εdd
− 1

)

≤
n∑
i=1

d
 d∨
j=1

vj

1/α

α

H∗(Ωi)

(
1

1− εdd
− 1

)
= dα

d∨
j=1

vjd

(
εdd

1− εdd

)

≤ dαd
d∨
j=1

Vj

(
εdd

1− εdd

)
.

If we use the restriction (4.17) on α from Lemma 4.3 and choose εd small
enough (i.e. n large enough) such that

dαd
d∨
j=1

Vj

(
εdd

1− εdd

)
< ε/3⇔

(
1 +

ε/3

d
∨n
j=1 Vj

)
d

d∨
j=1

Vjεdd <
ε

3
(1− εdd)

⇔ (d

n∨
j=1

Vj + ε/3)εdd <
ε

3
− ε

3
εdd⇔ εd <

ε/3

d2
∨n
j=1 Vj + 2ε

3 d
,

Lemma 4.4 follows. This is a stronger restriction on εd than (4.16) from
Lemma 4.2. Alternatively, we can use (4.16) on εd and restrict α instead
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of εd:

dαd

d∨
j=1

Vj

(
1

1− εdd
− 1

)
< ε/3⇒ dαd

d∨
j=1

Vj

 1

1− ε/3∨d
j=1 Vj

− 1

 < ε/3

⇔ dαd
d∨
j=1

Vj
ε/3∨d

j=1 Vj − ε/3
< ε/3⇔ dα <

∨d
j=1 Vj − ε/3
d
∨d
j=1 Vj

.

This is a stronger restriction on α than (4.17).

Now we are ready to prove our theorem.

Proof of Theorem 4.1. We use Lemmas 4.2-4.4 and the triangle inequal-
ity:

|l(v)− ln(v)| =

∣∣∣∣∣∣
∫
Sd

d∨
j=1

(ωjvj)H∗(dω)−
n∑
i=1

(
c1,iv

1/α
1 + ...+ cd,iv

1/α
d

)α∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Sd

d∨
j=1

(ωjvj)H∗(dω)−
n∑
i=1

d∨
j=1

(ωijvj)H∗(Ωi)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∑
i=1

d∨
j=1

(ωijvj)H∗(Ωi)−
n∑
i=1

(
(ωi1v1)1/α + ...+ (ωidvd)

1/α
)α

H∗(Ωi)

∣∣∣∣∣∣
+
∣∣ n∑
i=1

(
(ωi1v1)1/α + ...+ (ωidvd)

1/α
)α

H∗(Ωi)

−
n∑
i=1

(
c1,iv

1/α
1 + ...+ cd,iv

1/α
d

)α ∣∣ < ε/3 + ε/3 + ε/3 = ε

Theorem 4.1 says that the stable tail dependence function for any
extreme value distribution may be uniformly approximated by the sta-
ble tail dependence function for a stable mixture on an interval [0,∞).
In this section we show that the same can be done for the respective
distribution functions G(x) = e−l(1/x) and Gn(x) = e−ln(1/x).
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Theorem 4.5. Let G be a d-dimensional extreme value distribution

function. Then for every εG > 0 there exists an n ∈ N and a distri-

bution function Gn for a d-dimensional stable mixture, such that for all

x ∈ [0,∞],

|Gn(x)−G(x)| < εG.

Proof. Note that because we assume standard Fréchet marginals, we
have G(x) = Gn(x) = 0 for x ∈ [0,∞). We let γ be a constant vector
and consider the cases x ∈ [0,∞)\[0,γ] and x ∈ [0,γ] separately.

Assuming that ln( 1
x

)− l( 1
x

) is small, we can use Taylors formula on
exp{ln( 1

x
)− l( 1

x
)}. We also use Theorem 4.1 where we let ε = εG/6 and

V = 1/γ. Then for x ∈ [0,∞)\[0,γ] and ln( 1
x

)− l( 1
x

) small

|Gn(x)−G(x)| =
∣∣∣e−ln( 1

x
) − e−l(

1
x

)
∣∣∣ = e−ln( 1

x
)
∣∣∣1− eln( 1

x
)−l( 1

x
)
∣∣∣

≤ e−ln( 1
x

)

∣∣∣∣2(ln( 1

x

)
− l
(

1

x

))∣∣∣∣ < 1 · 2ε = εG/3.

For x ∈ [0,γ] we use the non-decreasing quality of the distribution func-
tion G. By choosing γ small enough, G(γ) can be made smaller than
εG/3. By above we have |Gn(x)−G(x)| < εG/3 and get

|Gn(x)−G(x)| ≤ Gn(x) +G(x) ≤ Gn(γ) +G(γ)

≤ |Gn(γ)−G(γ) + 2G(γ)|
≤ |Gn(γ)−G(γ)|+ 2G(γ) ≤ εG/3 + 2εG/3 = εG
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5 Some stable mixtures models

In this section we study a number of stable mixture models of the class
presented in Equation (4.7). We investigate their dependence structures
via a transformation to the spectral measure. The results are presented
for Fréchet distributions. However, the models are easily transferable to
Gumbel and Weibull distributions, as will be described in Chapter 5.7.

Let T and A be discrete index sets, and T �nite. Also let {ct,a}, t ∈ T ,
a ∈ A, be non-negative constants and {Sa}, a ∈ A, be independent
positive α-stable variables de�ned by Equation (4.1). We look at the
following T -dimensional stable mixture model,

Xt =

(∑
a∈A

ct,aSa

)γ
Ft +

(
1−

(∑
a∈A

ct,aSa

)γ)
δt, (5.1)

where t ∈ T , δt = µt − σt/γ, Ft ∼GEV(µt, σt, γ > 0), and Ft and Sa
are all mutually independent. The distribution of Xt conditioned on the
stable variables is

P (Xt ≤ xt|Sa, a ∈ A)

= P

((∑
a∈A

ct,aSa

)γ
Ft +

(
1−

(∑
a∈A

ct,aSa

)γ)
δt ≤ xt|Sa, a ∈ A

)

= P

(
Ft ≤

xt −
(
1−

(∑
a∈A ct,aSa

)γ)
δt(∑

a∈A ct,aSa
)γ

)

= exp

−


xt−(1−(
∑
a∈A ct,aSa)

γ
)δt

(
∑
a∈A ct,aSa)

γ − δt

σt/γ


−1/γ

+


= exp

−
(

xt − δt
σt/γ

(∑
a∈A ct,aSa

)γ
)−1/γ

+


= exp

{
−(
∑
a∈A

ct,aSa)

(
xt − δt
σt/γ

)−1/γ

+

}
.

Thus, the Xt's are conditionally independent Fréchet variables with scale
parameters σt

(∑
a∈A ct,aSa

)γ
. The unconditional joint distribution of
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X = {Xt}t∈T is

P (Xt ≤ xt, t ∈ T ) = E[P (Xt ≤ xt, t ∈ T |Sa, a ∈ A)] (5.2)

= E

[∏
t∈T

P (Xt ≤ xt|Sa, a ∈ A)

]

= E

[∏
t∈T

exp

{
−(
∑
a∈A

ct,aSa)

(
xt − δt
σt/γ

)−1/γ

+

}]

= E

[∏
t∈T

∏
a∈A

exp

{
−ct,aSa

(
xt − δt
σt/γ

)−1/γ

+

}]

= E

[∏
a∈A

exp

{
−
∑
t∈T

ct,aSa

(
xt − δt
σt/γ

)−1/γ

+

}]

=
∏
a∈A

E

[
exp

{
−Sa

∑
t∈T

ct,a

(
xt − δt
σt/γ

)−1/γ

+

}]

=
∏
a∈A

exp

{
−

(∑
t∈T

ct,a

(
xt − δt
σt/γ

)−1/γ

+

)α}
.

By Equation (2.3), X is max-stable if for every m = 2, 3, ... there exist
vectors of constants Am > 0 and Bm such that

P (Xt ≤ xt, t ∈ T ) = P (Xt ≤ Am,txt +Bm,t, t ∈ T )m.

We start from the right-hand side,

P (Xt ≤ Am,txt +Bm,t, t ∈ T )m

=
∏
a∈A

exp

{
−m

(∑
t∈T

ct,a

(
Am,txt +Bm,t − δt

σt/γ

)−1/γ

+

)α}

=
∏
a∈A

exp

{
−

(∑
t∈T

ct,am
1/α

(
Am,txt +Bm,t − δt

σt/γ

)−1/γ

+

)α}

=
∏
a∈A

exp

{
−

(∑
t∈T

ct,a

(
Am,txt +Bm,t − δt

(σt/γ)mγ/α

)−1/γ

+

)α}
.

By choosing Am,t = mγ/α and Bm,t = δt(1 − mγ/α) for all t ∈ T , we
see that we have max-stability. Hence, X follows a multivariate extreme
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value distribution. Using the dependence structure tools described in
Chapter 2.3.1 and the parametric families from Chapter 3 we will study
the dependence of a number of models of the form (5.1). For simplicity we
work with standard Fréchet variables, Ft ∼GEV(µt = 1, σt = 1, γ = 1).
We assume throughout that x ≥ 0.

5.1 One-way random e�ects model

We start by studying the following one-way random e�ects model:

Xi,j = SiFi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

where Fi,j is standard Fréchet and all variables independent. If we set
the index sets to T = {(i, j); 1 ≤ i ≤ m, 1 ≤ j ≤ ni} and A = {1, ...,m},
we have the model (5.1) with ct,a = c(i,j),a = 1{i=a}. By Equation (5.2),
the joint distribution is

P (Xi,j ≤ xi,j , (i, j) ∈ T ) =

m∏
a=1

exp

−
 ∑

(i,j)∈T

c(i,j),a
1

xi,j

α
=

m∏
a=1

exp

−
 ni∑
j=1

1

xa,j

α .

Let us study the dependence between variables at two adjacent points.
For two consecutive points in i-space,

P (Xi,j ≤ xi,j , Xi+1,j ≤ xi+1,j) =

i+1∏
a=i

exp

{
− 1

xαa,j

}

= exp

{
− 1

xαi,j

}
exp

{
− 1

xαi+1,j

}
= exp

{
−

(
1

xαi,j
+

1

xαi+1,j

)}
.

Next we standardize the margins to standard Fréchet in order to isolate
the dependence structure from the marginal behavior. Using Equation
(2.4) we get

G∗(zi,j , zi+1,j) = G(z
1/α
i,j , z

1/α
i+1,j) = exp

{
−
(

1

zi,j
+

1

zi+1,j

)}
.
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This is the independence model (3.1); since Si and Si+1 are independent,
as are Fi,j and Fi+1,j , Xi,j = SiFi,j and Xi+1,j = SiFi+1,j are naturally
independent.

Similarly, for two consecutive points in j-space,

P (Xi,j ≤ xi,j , Xi,j+1 ≤ xi,j+1) = exp

−
j+1∑
l=j

1

xa,l

α
= exp

{
−
(

1

xi,j
+

1

xi,j+1

)α}
.

Again transforming to a distribution function G∗ with standard Fréchet
margins gives

G∗(zi,j , zi,j+1) = G(z
1/α
i,j , z

1/α
i,j+1) = exp

{
−

(
1

z
1/α
i,j

+
1

z
1/α
i,j+1

)α}
.

This is the symmetric logistic model (3.5). For decreasing parameter α,
the variable Si is more dominant in Xi,j = SiFi,j and Xi,j+1 = SiFi,j+1,
giving larger dependence.

Next we study a class of time series models of the form Xt = Hγ
t Ft+

(1−Hγ
t )δt, where we have set δt = 0 and γ = 1 for convenience, i.e. we

work with standard Fréchet variables. We let Ht =
∑∞

i=−∞ biSt−i be a
linear stable process, where the Si are independent stable variables, bi are
nonnegative constants and Ht converges in distribution if

∑∞
i=1 b

α
i <∞.

5.2 AR(1) model

We study the following autoregressive time series model,

Xt = HtFt,

where Ft is standard Fréchet, 0 < ρ < 1, and Ht = ρHt−1 + St =∑∞
i=0 ρ

iSt−i is a positive stable AR-process. The index sets are here

T = {1, ..., n} and A = {0,±1, ...}. First, note that
∑∞

i=0 ρ
iS−i

d
=
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1
(1−ρα)1/α

S0, since by the Laplace transform characterization (4.1) of S,

E

[
exp

{
−t

∞∑
i=0

ρiS−i

}]
=
∞∏
i=0

E
[
exp

{
−tρiS−i

}]
=
∞∏
i=0

exp
{
−tαρiα

}
(5.3)

= exp

{
−tα

∞∑
i=0

ρiα

}
= exp

{
− tα

(1− ρα)

}

= E

[
exp

{
−t
(

1

1− ρα

)1/α

S0

}]
,

for any t ≥ 0. We thus have

0∑
a=−∞

ct,aSa =

∞∑
i=t

ρiSt−i = ρt
∞∑
i=0

ρiS−i
d
=

ρt

(1− ρα)1/α
S0.

So, ct,0 = ρt(1− ρα)−1/α, ct,a = ρt−a for t = 1, ..., n and a = 1, ..., t, and
ct,a = 0 otherwise.

Ht =
∞∑
i=0

ρiSt−i =
∑
a∈A

ct,aSa =
0∑

a=−∞
ct,aSa +

t∑
a=1

ct,aSa +
∞∑

a=t+1

ct,aSa

d
= ρt

1

(1− ρα)1/α
S0 +

t∑
a=1

ρt−aSa + 0

We get the joint distribution function from Equation (5.2),

P (Xt ≤ xt, 1 ≤ t ≤ n) =
0∏

a=−∞
exp

{
−

(
n∑
t=1

ct,a
1

xt

)α}

·
n∏
a=1

exp

{
−

(
n∑
t=1

ct,a
1

xt

)α} ∞∏
a=n+1

exp

{
−

(
n∑
t=1

ct,a
1

xt

)α}

= exp

{
− 1

(1− ρα)

(
n∑
t=1

ρt

xt

)α} n∏
a=1

exp

{
−

(
n∑
t=a

ρt−a
1

xt

)α}
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The joint distribution of X1 and X2 can then be calculated as

P (X1 ≤ x1, X2 ≤ x2)

= exp

{
− 1

1− ρα

(
2∑
t=1

ρt

xt

)α} 2∏
a=1

exp

{
−

(
2∑
t=a

ρt−a

xt

)α}

= exp

{
− 1

1− ρα

(
ρ

x1
+
ρ2

x2

)α}
exp

{
−
(
ρ0

x1
+
ρ1

x2

)α}
exp

{
−
(
ρ0

x2

)α}
= exp

{
− 1

1− ρα

(
1

x1
+

ρ

x2

)α
− 1

xα2

}
.

Hence, because of stationarity of the process Ht, the joint distribution
function for any two consecutive points in time, (Xt, Xt+1) (t<n), is

G(xt, xt+1) = P (Xt ≤ xt, Xt+1 ≤ xt+1) (5.4)

= exp

{
− 1

1− ρα

(
1

xt
+

ρ

xt+1

)α
− 1

xαt+1

}
.

Transforming to a distribution function G∗ with standard Fréchet mar-
gins,

G∗(zt, zt+1) = G

(
z

1/α
t

(1− ρα)1/α
,

z
1/α
t+1

(1− ρα)1/α

)

= exp

{
−

(
1

z
1/α
t

+
ρ

z
1/α
t+1

)α
− 1− ρα

zt+1

}
.

This is the logistic model in Equation (3.2) with parameters ψ1 = 1
and ψ2 = ρα, displayed in Figure 5.1 for di�erent values of ρ and α.
The AR-process is a dynamic process where the distribution of future
values depend on the previous values. More distant values have smaller
weights. The parameter ρ is a measure of strength of memory. For ρ→ 1
the memory is strong and therefore the dependence large, displayed in
Figure 5.1c. For ρ→ 0 memory is weak and therefore dependence small,
as shown in Figure 5.1d. Furthermore, a small α means thicker tails
for the stable variables giving a narrow tall peak. Let us also study the
dependence between two points that are m time units apart, Xt and
Xt+m. Calculating the distribution function for (Xt, Xt+m) is analogous
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(a) α > 0.5
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(b) α < 0.5
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(c) α < 0.5 and ρ→ 1
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(d) α < 0.5 and ρ→ 0

Figure 5.1: Spectral density describing the dependence between two con-
secutive points in the AR(1) model
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(a) m = 2
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(b) m = 6

Figure 5.2: Spectral density describing the dependence between two
points m time points apart in the AR(1) model

with Equation (5.4),

G(xt, xt+m) = exp

{
− 1

1− ρα

(
1

xt
+

ρm

xt+m

)α
− 1− ρmα

1− ρα
1

xαt+m

}
,

giving

G∗(zt, zt+m) = exp

{
−

(
1

z
1/α
t

+
ρm

z
1/α
t+m

)α
− 1− ρmα

zt+m

}
.

This is the logistic model with parameters ψ1 = 1 and ψ2 = ρmα. With
increasing m, memory decreases and thus also dependence, as displayed
in Figure 5.2.

5.3 MA(1) model

We have a Fréchet time series model,

Xt = HtFt, (5.5)

where Ft is a standard Fréchet variable, Ht = b0St + b1St−1 is an MA(1)
process, and b0, b1 are non-negative constants. Setting the index sets to
T = {1, ..., n} and A = {0,±1, ...}, we get ct,a = bt−a for t = {1, ..., n}

45



and a = {t−1, t}, and ct,a = 0 otherwise. The joint distribution function
is then by (5.2)

P (Xt ≤ xt, 1 ≤ t ≤ n) =

n∏
a=0

exp

−
n∧(a+1)∑

t=1∨a

bt−a
xt

α .

The joint distribution for the �rst two time points is then

P (X1 ≤ x1, X2 ≤ x2) (5.6)

=
2∏

a=0

exp

−
2∧(a+1)∑

t=1∨a
bt−ax

−1
t

α
= exp

{
−

(
1∑
t=1

btx
−1
t

)α}
exp

{
−

(
2∑
t=1

bt−1x
−1
t

)α}

· exp

{
−

(
2∑
t=2

bt−2x
−1
t

)α}

= exp

{
−
((

b1
x1

)α
+

(
b0
x1

+
b1
x2

)α
+

(
b0
x2

)α)}
.

By the stationarity of Ht we thus have

G(xt, xt+1) = P (Xt ≤ xt, Xt+1 ≤ xt+1)

= exp

{
−
((

b1
xt

)α
+

(
b0
xt

+
b1
xt+1

)α
+

(
b0
xt+1

)α)}
.

As before we transfer to a distribution function with standard Fréchet
marginals,

G∗(zt, zt+1) = G
(

((bα0 + bα1 )zt)
1/α, ((bα0 + bα1 )zt+1)1/α

)
(5.7)

= exp

{
− 1

bα0 + bα1

(
bα1
zt

+

(
b0

z
1/α
t

+
b1

z
1/α
t+1

)α
+

bα0
zt+1

)}
.

This is the logistic model with ψ1 =
bα0

bα0 +bα1
and ψ2 =

bα1
bα0 +bα1

, displayed

in Figure 5.3. The case b0 > b1, gives a peak in the spectral density
for ω > 0.5, as shown in Figure 5.3c. For b0 < b1 we have a peak
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(a) α > 0.5 and b0 = b1
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(b) α < 0.5 and b0 = b1
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(c) α < 0.5 and b0 > b1
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(d) α < 0.5 and b0 < b1

Figure 5.3: Spectral density describing the dependence between two con-
secutive points in the MA(1) model
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at ω < 0.5, shown in Figure 5.3d. For b0 = b1 we have a mixture of
symmetric logistic and independence, displayed in Figures 5.3a and 5.3b
for di�erent values of α.

In order to estimate parameters for a data set �tted to the MA(1)
model, we would need the likelihood function of the distribution. We
look at a general Fréchet variable Ft ∼GEV(µ, σ, γ). We set b0 = 1 for
identi�ability and get

F = P (Xt ≤ xt, 1 ≤ t ≤ n) (5.8)

=
n∏
k=0

exp

−
n∧(k+1)∑

t=1∨k
bt−k

(
xt − δ
σ/γ

)−1/γ

+

α
= exp{−

(
b1

(
x1 − δ
σ/γ

)−1/γ

+

)α

−
n−1∑
t=1

[(
xt − δ
σ/γ

)−1/γ

+

+ b1

(
xt+1 − δ
σ/γ

)−1/γ

+

]α
−
(
xn − δ
σ/γ

)−α/γ
+

}

= exp

{
−(b1z1)α −

n−1∑
t=1

(zt + b1zt+1)α − zαn

}
,

where zt =
(
xt−δ
σ/γ

)−1/γ

+
for t = 1, ..., n. De�ne u1 = b1z1, ut = zt−1 +b1zt

and un+1 = zn. By induction, the likelihood function can be shown to
be

L(µ, σ, γ, b1, α|X) = QnF
n∏
t=1

1

σ

(
xt − δ
σ/γ

)−1/γ−1

+

,

where

Q0 = 1

Q1 = α(b1u
α−1
1 + uα−1

2 )

Qi = −Qi−2α(α− 1)b1u
α−2
i +Qi−1α(b1u

α−1
i + uα−1

i+1 ), i = 2, ..., n.

5.4 MA(2) model

We have the model

Xt = HtFt, (5.9)
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with Ft standard Fréchet, Ht = b0St+b1St−1 +b2St−2 an MA(2) process,
and b0, b1, b2 non-negative constants. All variables are mutually indepen-
dent. Setting T = {1, ..., n} and A = {0,±1, ...}, we have ct,a = bt−a for
t = {1, ..., n} and a = {t− 2, t− 1, t}, and ct,a = 0 otherwise. The joint
distribution is thus

P (Xt ≤ xt, 1 ≤ t ≤ n) =

n∏
a=−1

exp

−
n∧(a+2)∑

t=1∨a
bt−ax

−1
t

α . (5.10)

For the �rst two time points we have

P (X1 ≤ x1, X2 ≤ x2) =

2∏
a=−1

exp

−
2∧(a+2)∑

t=1∨a
bt−ax

−1
t

α
= exp

{
−

(
1∑
t=1

bt+1x
−1
t

)α}
exp

{
−

(
2∑
t=1

btx
−1
t

)α}

· exp

{
−

(
2∑
t=1

bt−1x
−1
t

)α}
exp

{
−

(
2∑
t=2

bt−2x
−1
t

)α}

= exp

{
−
((

b2
x1

)α
+

(
b1
x1

+
b2
x2

)α
+

(
b0
x1

+
b1
x2

)α
+

(
b0
x2

)α)}
,

and because of stationarity of Ht we have

G(xt, xt+1) = P (Xt ≤ xt, Xt+1 ≤ xt+1) =

= exp

{
−
((

b2
xt

)α
+

(
b1
xt

+
b2
xt+1

)α
+

(
b0
xt

+
b1
xt+1

)α
+

(
b0
xt+1

)α)}
.

The standardized distribution function becomes

G∗(zt, zt+1) = G
(

((bα0 + bα1 + bα2 )zt)
1/α, ((bα0 + bα1 + bα2 )zt+1)1/α

)
(5.11)

= exp{− 1

bα0 + bα1 + bα2

·

(
bα2
zt

+

(
b1

z
1/α
t

+
b2

z
1/α
t+1

)α
+

(
b0

z
1/α
t

+
b1

z
1/α
t+1

)α
+

bα0
zt+1

)
}.
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This distribution does not belong to any of the parametric families from
Chapter 3. In order to investigate the dependence structure we calculate
the spectral density.

h

(
zt

zt + zt+1

)
= −(zt + zt+1)3 ∂V∗

∂zt∂zt+1

= −(zt + zt+1)3α− 1

α

1

bα0 + bα1 + bα2( b1

z
1/α
t

+
b2

z
1/α
t+1

)α−2

b1b2 +

(
b0

z
1/α
t

+
b1

z
1/α
t+1

)α−2

b0b1

 z
−1/α−1
t z

−1/α−1
t+1 .

Further, a change of variables r = zt + zt+1 and ω = zt
zt+zt+1

gives

h(ω) = −r3α− 1

α

1

bα0 + bα1 + bα2
(

(
b1

(rω)1/α
+

b2

(r(1− ω))1/α

)α−2

b1b2

(5.12)

+

(
b0

(rω)1/α
+

b1

(r(1− ω))1/α

)α−2

b0b1)(rω)−1/α−1(r(1− ω))−1/α−1

(5.13)

=
1− α
α

1

bα0 + bα1 + bα2
·

·

((
b1

ω1/α
+

b2

(1− ω)1/α

)α−2

b1b2 +

(
b0

ω1/α
+

b1

(1− ω)1/α

)α−2

b0b1

)
[ω(1− ω)]−1/α−1

=
1− α
α

b1b2
bα0 + bα1 + bα2

(
b1

ω1/α
+

b2

(1− ω)1/α

)α−2

[ω(1− ω)]−1/α−1

+
1− α
α

b0b1
bα0 + bα1 + bα2

(
b0

ω1/α
+

b1

(1− ω)1/α

)α−2

[ω(1− ω)]−1/α−1.

This is a product of two logistic distribution functions with ψ1 =
bα1

bα0 +bα1 +bα2
, ψ2 =

bα2
bα0 +bα1 +bα2

, φ1 =
bα0

bα0 +bα1 +bα2
and φ2 =

bα1
bα0 +bα1 +bα2

. There

are thus two peaks or dips in the spectral density, displayed in Figure
5.4. In the MA(2) model the variables St and St+1 are common for
Ht = b0St + b1St−1 + b2St−2 and Ht+1 = b0St+1 + b1St + b2St−1. In the
case b0 > b1 large values of St e�ects Xt more than Xt+1, giving a peak
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(a) α < 0.5 and b1 > b0, b2,
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(b) α < 0.5 and b2 < b1 < b0
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(c) α < 0.5 and b0, b2 > b1
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(d) α < 0.5 and b0 < b1 < b2

Figure 5.4: Spectral density describing the dependence between two con-
secutive points in the MA(2) model
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in the spectral density for ω > 0.5. For b1 > b0 large values of St e�ects
Xt+1 more, giving a peak at ω < 0.5. Analogously, for b1 > b2 large
values of St−1 e�ects Xt more than Xt+1, giving a peak in the spectral
density for ω > 0.5, while for b2 > b1 large values of St−1 e�ects Xt+1

more, giving a peak at ω < 0.5. For the symmetric case b0 = b1 = b2 we
have a mixture of symmetric logistic and independence.

As with the MA(1) model, we need to derive a recursion formula
for the likelihood function. De�ne u1 = b2z1, u2 = b1z1 + b2z2, ut =
zt−2 + b1zt−1 + b2zt for t = 3, ..., n, un+1 = zn−1 + b1zn and un+2 = zn,

where zt =
(
xt−δ
σ/γ

)−1/γ

+
for t = 1, ..., n.

The likelihood function can by induction be shown to be

L(µ, σ, γ, b1, b2, α|X) = QnF
n∏
t=1

1

σ

(
xt − δ
σ/γ

)−1/γ−1

+

,

where

Q0 = 1

Q1 = α(b2u
α−1
1 + b1u

α−1
2 + uα−1

3 )

Q2 = −α(α− 1)(b1b2u
α−2
2 + b1u

α−2
3 ) +Q1α(b2u

α−1
2 + b1u

α−1
3 + uα−1

4 )

Q3 = α(α− 1)(α− 2)b1b2u
α−3
3

− α2(α− 1)uα−2
3 b2(b2u

α−1
2 + b1u

α−1
3 + uα−1

4 )

−Q1α(α− 1)(b1b2u
α−2
3 + b1u

α−2
4 ) +Q2α(b2u

α−1
3 + b1u

α−1
4 + uα−1

5 )

Qi = Qi−4α
2(α− 1)2uα−2

i−1 u
α−2
i b22 +Qi−3α(α− 1)(α− 2)uα−3

i b1b2

−Qi−3α
2(α− 1)uα−2

i b2(b2u
α−1
i−1 + b1u

α−1
i + uα−1

i+1 )

−Qi−2α(α− 1)(b1b2u
α−2
i + b1u

α−2
i+1 )

+Qi−1α(b2u
α−1
i + b1u

α−1
i+1 + uα−1

i+2 ), i = 4, ..., n.

5.5 ARMA(1,1) model

We study the following time series model,

Xt = HtFt,
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where Ft is standard Fréchet, 0 < ρ1, ρ2 < 1, andHt = ρ1Ht−1+ρ2St−1+
St is a positive stable ARMA(1,1)-process. A closed form for Ht is

Ht = ρ1Ht−1 + ρ2St−1 + St = ρ1[ρ1Ht−2 + ρ2St−2 + St−1] + ρ2St−1 + St

= ρ2
1Ht−2 + ρ1ρ2St−2 + (ρ1 + ρ2)St−1 + St

= ρ2
1[ρ1Ht−3 + ρ2St−3 + St−2] + ρ1ρ2St−2 + (ρ1 + ρ2)St−1 + St

= ρ3
1Ht−3 + ρ2

1ρ2St−3 + ρ1(ρ1 + ρ2)St−2 + (ρ1 + ρ2)St−1 + St

= ... =
∞∑
i=1

ρi−1
1 (ρ1 + ρ2)St−i + St.

The index sets are here T = {1, ..., n} and A = {0,±1, ...}. We have∑∞
i=0 ρ

i
1S−i

d
= 1

(1−ρα)1/α
S0 by (5.3). For a ≤ 0, i.e. for i ≥ t, we thus

have

0∑
a=−∞

ct,aSa =
∞∑
i=t

(ρ1 + ρ2)ρi1St−i = (ρ1 + ρ2)ρt−1
∞∑
i=0

ρi1S−i

d
=

(ρ1 + ρ2)

(1− ρα)1/α
ρt−1

1 S0.

Thus, ct,0 = (ρ1+ρ2)

(1−ρα)1/α
ρt−1

1 , ct,a = (ρ1 + ρ2)ρt−a−1
1 for t = 1, ..., n and

a = 1, ..., t− 1, ct,t = 1 for t = 1, ..., n, and ct,a = 0 otherwise.

Ht =
∞∑
i=0

ρi−1(ρ1 + ρ2)St−i =
∑
a∈A

ct,aSa + St

=

0∑
a=−∞

ct,aSa +
t−1∑
a=1

ct,aSa + ct,tSt +
∞∑

a=t+1

ct,aSa

d
=

(ρ1 + ρ2)

(1− ρα)1/α
ρt−1

1 S0 +
t−1∑
a=1

(ρ1 + ρ2)ρt−a−1Sa + St + 0
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We get the joint distribution function from (5.2),

P (Xt ≤ xt, 1 ≤ t ≤ n) =
∞∏

a=−∞
exp

{
−

(
n∑
t=1

ct,a
1

xt

)α}

=

0∏
a=−∞

exp

{
−

(
n∑
t=1

ct,a
1

xt

)α} n−1∏
a=1

exp

{
−

(
n∑
t=1

ct,a
1

xt

)α}

· exp

{
−

(
n∑
t=1

ct,t
1

xt

)α} ∞∏
a=n+1

exp

{
−

(
n∑
t=1

ct,a
1

xt

)α}

= exp

{
−

(
n∑
t=1

ct,0
1

xt

)α} t∏
a=1

exp

{
−

(
n∑
t=1

ρt−a
1

xt

)α}

= exp

{
−(ρ1 + ρ2)α

(1− ρα1 )

(
n∑
t=1

ρt−1
1

xt

)α}
n−1∏
a=1

exp

{
−

(
1

xa
+

n∑
t=a+1

(ρ1 + ρ2)ρt−a−1
1

1

xt

)α}
exp

{
− 1

xαn

}
.

The joint distribution of X1 and X2 can then be calculated as

P (X1 ≤ x1, X2 ≤ x2)

= exp

{
−(ρ1 + ρ2)α

(1− ρα1 )

(
2∑
t=1

ρt−1
1

xt

)α}

· exp

{
−
(

1

x1
+ (ρ1 + ρ2)ρ2−1−1

1

1

x2

)α}
exp

{
− 1

xα2

}
= exp

{
−(ρ1 + ρ2)α

(1− ρα1 )

(
1

x1
+
ρ1

x2

)α}
· exp

{
−
(

1

x1
+ (ρ1 + ρ2)

1

x2

)α}
exp

{
− 1

xα2

}
= exp

{
−
(

(ρ1 + ρ2)α

(1− ρα1 )

(
1

x1
+
ρ1

x2

)α
+

(
1

x1
+ (ρ1 + ρ2)

1

x2

)α
+

1

xα2

)}
.

Because of stationarity of the process Ht, the joint distribution function
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for any two consecutive points in time, (Xt, Xt+1), is

G(xt, xt+1) = P (Xt ≤ xt, Xt+1 ≤ xt+1) (5.14)

= exp{−(
(ρ1 + ρ2)α

(1− ρα1 )

(
1

xt
+

ρ1

xt+1

)α
+

(
1

xt
+ (ρ1 + ρ2)

1

xt+1

)α
+

1

xαt+1

}.

Transforming to a distribution function G∗ with standard Fréchet mar-
gins with

G−1
t (p) =

(
(ρ1 + ρ2)α + 1− ρα1

(− log p)(1− ρα1 )

)1/α

= G−1
t+1(p),

we get

G∗(zt, zt+1) = G
(
G−1
t (e−1/zt), G−1

t+1(e−1/zt+1)
)

= G

(
z

1/α
t

(
(ρ1 + ρ2)α + 1− ρα1

(1− ρα1 )

)1/α

, z
1/α
t+1

(
(ρ1 + ρ2)α + 1− ρα1

(1− ρα1 )

)1/α
)

= exp{−(ρ1 + ρ2)α

(1− ρα1 )
(

1

z
1/α
t

(
(1− ρα)

(ρ1 + ρ2)α + 1− ρα1

)1/α

+
ρ1

z
1/α
t+1

(
(1− ρα)

(ρ1 + ρ2)α + 1− ρα1

)1/α

)α

+ (
1

z
1/α
t

(
(1− ρα)

(ρ1 + ρ2)α + 1− ρα1

)1/α

+
ρ1 + ρ2

z
1/α
t+1

(
(1− ρα)

(ρ1 + ρ2)α + 1− ρα1

)1/α

)α

+
1

zt+1

(
(1− ρα)

(ρ1 + ρ2)α + 1− ρα1

)
}

= exp{− 1− ρα1
(ρ1 + ρ2)α + 1− ρα1

·

(
(ρ1 + ρ2)α

(1− ρα1 )

(
1

z
1/α
t

+
ρ1

z
1/α
t+1

)α
+

(
1

z
1/α
t

+
ρ1 + ρ2

z
1/α
t+1

)α
+

1

zt+1

)
}.
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We do not recognize this distribution from the parametric families in
Chapter 3. In order to describe the dependence we calculate the spectral
density.

h

(
zt

zt + zt+1

)
= −(zt + zt+1)3 ∂V∗

∂zt∂zt+1

= −(zt + zt+1)3α− 1

α

1− ρα1
(ρ1 + ρ2)α + 1− ρα1

·

·

(ρ1 + ρ2)α

(1− ρα1 )

(
1

z
1/α
t

+
ρ1

z
1/α
t+1

)α−2

ρ1 +

(
1

z
1/α
t

+
ρ1 + ρ2

z
1/α
t+1

)α−2

(ρ1 + ρ2)


z
−1/α−1
t z

−1/α−1
t+1

Further, a change of variables r = zt + zt+1 and ω = zt
zt+zt+1

gives

h(ω) = −r3α− 1

α

1− ρα1
(ρ1 + ρ2)α + 1− ρα1

· ((ρ1 + ρ2)α

(1− ρα1 )

(
1

(rω)1/α
+

ρ1

(r(1− ω))1/α

)α−2

ρ1

+

(
1

(rω)1/α
+

ρ1 + ρ2

(r(1− ω))1/α

)α−2

(ρ1 + ρ2))

· (rω)−1/α−1(r(1− ω))−1/α−1

=
1− α
α

1− ρα1
(ρ1 + ρ2)α + 1− ρα1

· ((ρ1 + ρ2)α

(1− ρα1 )

(
1

ω1/α
+

ρ1

(1− ω)1/α

)α−2

ρ1

+

(
1

ω1/α
+

ρ1 + ρ2

(1− ω)1/α

)α−2

(ρ1 + ρ2))[ω(1− ω)]−1/α−1

=
1− α
α

(ρ1 + ρ2)αρ1

(ρ1 + ρ2)α + 1− ρα1

(
1

ω1/α
+

ρ1

(1− ω)1/α

)α−2

[ω(1− ω)]−1/α−1

+
1− α
α

(ρ1 + ρ2)α(ρ1 + ρ2)

(ρ1 + ρ2)α + 1− ρα1

(
1

ω1/α
+

ρ1 + ρ2

(1− ω)1/α

)α−2

[ω(1− ω)]−1/α−1

This is a product of two logistic models with ψ1 = (ρ1+ρ2)α

(ρ1+ρ2)α+1−ρα1
,

ψ2 =
(ρ1+ρ2)αρα1

(ρ1+ρ2)α+1−ρα1
, φ1 = (ρ1+ρ2)α

(ρ1+ρ2)α+1−ρα1
and φ2 = (ρ1+ρ2)α(ρ1+ρ2)α

(ρ1+ρ2)α+1−ρα1
. The
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(d) α < 0.5 and ρ2 → 0

Figure 5.5: Spectral density describing the dependence between two con-
secutive points in the ARMA(1,1) model
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spectral density is displayed in Figure 5.5. Memory and thus dependence
increases with a larger ρ1.Dependence also increases with a larger ρ2, but
to a lesser extent. Nete that for ρ2 = 0 we have the AR(1) model and
for ρ1 = 0 we have the MA(1) model.

5.6 Spatial hidden MA model

We let {Si,j ;−∞ < i, j < ∞} be independent α-stable variables and
de�ne the model

Xi,j = Hi,jFi,j , 1 ≤ i, j ≤ n,

where Hi,j =
∑

(k,l)∈n(i,j)
δSk,l, Fi,j standard Fréchet and all variables

mutually independent. The neighborhood n(i,j) of the point (i, j) are its
four closest points and the point itself:

n(i,j) = {(i, j), (i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)} . (5.15)

Also de�ne n(k,l) = n(k,l)

⋂
{(i, j); 1 ≤ i, j ≤ n}. Letting the index sets

be T = {(i, j); 1 ≤ i, j ≤ n} and A = {(k, l);−∞ < k, l < ∞}, we have
ct,a = δ for (i, j), (k, l) such that (k, l) ∈ n(i,j), and ct,a = 0 otherwise.
The joint distribution function is thus

P (Xi,j ≤ xi,j ; 1 ≤ i, j ≤ n) =
∏
(k,l)

exp

−δα
 ∑

(i,j)∈n(k,l)

1

xi,j

α .
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The joint distribution for X1,1 and X1,2 is then

P (X1,1 ≤ x1,1, X1,2 ≤ x1,2)

=
∏
(k,l)

exp

{
−δα

(
1

x1,1
1(1,1)∈n(k,l)

+
1

x1,2
1(1,2)∈n(k,l)

)α}

= exp

{
−δα

(
1

x1,1
1(1,1)∈n(0,l)

+
1

x1,2
1(1,2)∈n(0,l)

)α}
· exp

{
−δα

(
1

x1,1
1(1,1)∈n(0,2)

+
1

x1,2
1(1,2)∈n(0,2)

)α}
· exp

{
−δα

(
1

x1,1
1(1,1)∈n(1,0)

+
1

x1,2
1(1,2)∈n(1,0)

)α}
· exp

{
−δα

(
1

x1,1
1(1,1)∈n(1,1)

+
1

x1,2
1(1,2)∈n(1,1)

)α}
· exp

{
−δα

(
1

x1,1
1(1,1)∈n(1,2)

+
1

x1,2
1(1,2)∈n(1,2)

)α}
· exp

{
−δα

(
1

x1,1
1(1,1)∈n(1,3)

+
1

x1,2
1(1,2)∈n(1,3)

)α}
· exp

{
−δα

(
1

x1,1
1(1,1)∈n(2,1)

+
1

x1,2
1(1,2)∈n(2,1)

)α}
= exp

{
−δα 1

xα1,1

}
exp

{
−δα 1

xα1,2

}
exp

{
−δα 1

xα1,1

}

· exp

{
−δα

(
1

x1,1
+

1

x1,2

)α}
exp

{
−δα

(
1

x1,1
+

1

x1,2

)α}
· exp

{
−δα 1

xα1,2

}
exp

{
−δα 1

xα1,1

}

= exp

{
−δα

(
2

(
1

x1,1
+

1

x1,2

)α
+ 3

1

xα1,2
+ 3

1

xα1,2

)}
.
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By stationarity of Ht the joint distribution function of two consecutive
points in j-space is then

P (Xi,j ≤ xi,j , Xi,j+1 ≤ xi,j+1)

= exp

{
−δα

(
2

(
1

xi,j
+

1

xi,j+1

)α
+ 3

1

xαi,j
+ 3

1

xαi,j+1

)}
.

With inverses

G−1
i,j (p) =

δ51/α

(− log p)1/α
= G−1

i,j+1(p),

we get

G∗(zi,j , zi,j+1) = G
(
G−1
i,j (e−1/zi,j ), G−1

i,j+1(e−1/zi,j+1)
)

= G(δ51/αz
1/α
i,j , δ5

1/αz
1/α
i,j+1)

= exp

{
−δα

(
2

(
1

δ51/αzi,j1/α
+

1

δ51/αz
1/α
i,j+1

)α
+

3

δα5zi,j
+

3

δα5zi,j+1

)}

= exp

{
−

(
2

5

(
1

z
1/α
i,j

+
1

z
1/α
i,j+1

)α
+

3

5zi,j
+

3

5zi,j+1

)}
.

This is the mixture of symmetric logistic and dependence model in Equa-
tion (3.4) with ψ = 2

5 . The number of shared elements between the
the neighborhoods ni,j and ni,j+1 determine the degree of dependence.
With this choice (5.15) of neighborhoods, ni,j and ni,j+1 share two ele-
ments, (i, j) and (i, j + 1). The processes Hi,j =

∑
(k,l)∈n(i,j)

δSk,l and

Hi,j+1 =
∑

(k,l)∈n(i,j+1)
δSk,l therefore have two out of �ve variables in

common, Si,j and Si,j+1. By symmetry, the dependence between Xi,j

and Xi+1,j can be described by the same model.

5.7 Stable mixtures of Gumbel and Weibull distributions

So far in this chapter we have studied stable mixtures of Fréchet distri-
butions of the form (5.1). Analogously, we can study stable mixtures of
Gumbel and Weibull distributions. The Gumbel version of model (5.1)
is

Xt = Gt + σt log

(∑
a∈A

ct,aSa

)
, (5.16)
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where t ∈ T , Gt ∼Gumbel(µt, σt), and the Gt and Sa are mutually
independent. Fougères et. al (2009) show that the joint distribution
function is

P (Xt ≤ xt, t ∈ T ) =
∏
a∈A

exp

{
−

(∑
t∈T

ct,ae
−xt−µt

σt

)α}
. (5.17)

Thus, to go from standard Fréchet marginals to Gumbel marginals in

the models in sections 5.1-5.6, we need to replace 1
xt

by e
−xt−µt

σt in the
joint distribution functions.

The Weibull version of model (5.1) is

Xt =

(∑
a∈A

ct,aSa

)γ
Ft +

(
1−

(∑
a∈A

ct,aSa

)γ)
δt, (5.18)

where γ < 0 and δt = µt + σt/|γ| is the right endpoint. It can be shown
that to go from standard Fréchet marginals to Weibull marginals in the

models in sections 5.1-5.6 we need to replace 1
xt

by
(
−xt−δt
σt/|γ|

)−1/γ
in the

joint distribution functions.
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6 Application to extreme precipitation

In Chapter 4.3 we showed the �exibility of the stable mixture models
by proving that any multivariate extreme value distribution may be ap-
proximated by a stable mixture. This �exibility means that given enough
complexity, any multivariate extreme value situation may be modeled.
This motivates exploring suitable versions of the stable mixture models
when describing a multivariate extreme value situation. As is often the
case in modeling, there is a trade-o� between simplicity of calculations
and model �t.

In this chapter we investigate extreme precipitation patterns in north-
ern Sweden. We use daily accumulated precipitation data (in mm) from
Abisko Scienti�c Research Station during 96 years; from January 1st

1913 to December 31st 2008 (Figure 6.1a). Extreme precipitation has a
number of potentially hazardous consequences such as �ooding, plugged
drainage systems, wasted crops and landslides.

6.1 Preliminary analysis

Let us look at extreme amounts of daily precipitation. To avoid any ef-
fects of seasonality we study annual maxima of daily precipitation (Fig-
ure 6.1b). The data appear to be stationary and we therefore begin our
analysis by applying a simple univariate block maxima method to the
annual maxima. Maximum likelihood estimates of the location, scale,
and shape parameter of the �tted GEV model, with standard errors in
brackets are

(µ̂, σ̂, γ̂) = (20.36, 5.64, 0.078) [0.64, 0.47, 0.069].

From the quantile plot (Figure 6.1c) the �t appears to be good. Due
to the contemporary climate discussion there is a concern for increasing
extreme precipitation. We therefore �t a GEV model with a linear trend
in the location parameter of the GEV model; µ = µ0+βt. The maximum
likelihood estimate of β with standard error is β̂ = −0.0072 [0.021].
There is consequently no signi�cant trend.

To get a fuller picture of the extreme precipitation behavior, we also
study extreme precipitation during a longer time period. We choose to
study precipitation accumulated during three days (Figure 6.2a). The
3-day maxima also look stationary (Figure 6.2b) and we apply a block
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Figure 6.1: Daily precipitation
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Figure 6.2: 3 days of accumulated precipitation

64



maxima approach to these data as well. The maximum likelihood esti-
mates of the GEV model are

(µ̂, σ̂, γ̂) = (28.32, 8.47,−0.041) [0.97, 0.69, 0.071].

From the quantile plot in Figure 6.4c the �t appears to be good. As
with the daily maxima, we �t a linear trend in the location parameter;
µ = µ0 + βt. Maximum likelihood estimation gives β̂ = 0.0026 [0.032].
We conclude that there is no signi�cant trend.

6.2 Dependence between 1-day maxima and 3-day max-
ima

When describing extreme precipitation patterns, the relationship be-
tween longer precipitation periods and shorter ones is relevant. Studying
the data, we see that the 1-day maximum and 3-day maximum occur at
the same time in two thirds of the 96 years. Clearly there is a depen-
dence between the 1-day maxima and the 3-day maxima. We attempt
to describe the dependence with a stable mixture model. A character-
istic of the stable mixture models is that they are multivariate extreme
value distributed (Chapter 4.2). By Equation (2.2) this means that the
marginals are univariate extreme value distributed. A prerequisite when
�tting the stable mixture models to data is therefore that the marginals
have good GEV �ts. In Chapter 6.1 we found that the 1-day and 3-day
maxima do have good GEV �ts. In addition, the shape parameters of the
1-day and 3-day maxima are su�ciently close to zero, and a likelihood
ratio test con�rms that the annual maxima are well described by Gumbel
variables. Maximum likelihood estimates of the Gumbel parameters for
the 1-day maxima are

(µ̂, σ̂) = (20.60, 5.79), (6.1)

and for the 3-day maxima

(µ̂, σ̂) = (28.13, 8.38).

For any given year, let X1 be the 1-day maximum and X2 the 3-day
maximum.
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We start by �tting a moving average model to the data. The Gumbel
version of the MA(1) model (5.5) is by Equation (5.16)

Xi = Gi + σi log(b0Si + b1Si−1), (6.2)

where Gi ∼Gumbel(µi, σi), i = 1, 2 and all Si and Gi are mutually
independent. After some investigations we �nd that the MA(1) model
does not achieve the level of dependence necessary for these data. In
addition, the moving average model assumes stationarity, which is not a
natural assumption here.

We replace the MA(1) model with a more general model for this
situation:

X1 = G1 + σ1 log(S1 + b1S2) (6.3)

X2 = G2 + σ2 log(S1 + b2S3)

where Gi ∼Gumbel(µi, σi), i = 1, 2 and all Si and Gi are mutually
independent. With the terminology of Chapter 5, we have c1,1 = 1,
c1,2 = b1, c2,1 = 1, c2,3 = b2, and ci,a = 0 otherwise. Naturally, for
any given year the 1-day maximum is smaller than 3-day maximum (see
Figure 6.3a). We hope to catch this in our model with the separate
marginal parameters for X1 and X2. A limitation of the model remains,
in the sense that there is still a positive probability that X1 is larger
than X2. However, we disregard this shortcoming and proceed with
estimation of the parameters. By Equations (5.2) and (5.17) the joint
distribution function for a given year is

P (X1 ≤ x1, X2 ≤ x2) =

3∏
a=1

exp

{
−
(
c1,ae

−x1−µ1
σ1 + c2,ae

−x2−µ2
σ2

)α}
(6.4)

= exp

{
−
((

b1e
−x1−µ1

σ1

)α
+

(
e
−x1−µ1

σ1 + e
−x2−µ2

σ2

)α
+

(
b2e
−x2−µ2

σ2

)α)}
.

Assuming precipitation between years is independent, the joint distribu-
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tion function for all 96 years is

P (X1,j ≤ x1,j , X2,j ≤ x2,j , 1 ≤ j ≤ 96)

=
96∏
j=1

exp{−(

(
b1e
−
x1,j−µ1

σ1

)α
+

(
e
−
x1,j−µ1

σ1 + e
−
x2,j−µ2

σ2

)α
+

(
b2e
−
x2,j−µ2

σ2

)α
)}. (6.5)

The likelihood function is

L(µ1, µ2, σ1, σ2, b1, b2, α|X)

=
96∏
j=1

∂2

∂x1,j∂x2,j
exp{−(

(
b1e
−
x1,j−µ1

σ1

)α
+

(
e
−
x1,j−µ1

σ1 + e
−
x2,j−µ2

σ2

)α
+

(
b2e
−
x2,j−µ2

σ2

)α
)},

and is calculated via symbolic derivation in the R software. Maximiza-
tion of the log-likelihood function gives parameter estimates

(µ̂1, µ̂2, σ̂1, σ̂2, b̂1, b̂2, α̂)

= (20.7, 28.2, 2.74, 3.83, 6.20 · 10−11, 1.02 · 10−9, 0.470).

Figure 6.3a shows �tted joint density contours together with the observed
data. The quantile plots in Figures 6.3b and 6.3c show satisfactory
marginal �ts.

The parameter values of b1 and b2 are both small. This con�rms
our notion of a large dependence between the 1-day maxima and 3-
day maxima. In order to see the dependence structure, we transform
the distribution function to one with standard Fréchet margins. With
inverses

G−1
1 (p) = − log

(
− log p

1 + bα1

)
σ1

α
+ µ1, and

G−1
2 (p) = − log

(
− log p

1 + bα2

)
σ2

α
+ µ2,
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(a) Contour plot with observed data
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(b) Marginal distribution of 1-day maxima
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(c) Marginal distribution of 3-day maxima
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Figure 6.3: Model (6.3)
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we have by Equation (2.4)

G∗(z1, z2) = G(G−1
1 (e−1/z1), G−1

2 (e−1/z2))

= exp

{
−

(
bα1 /z1

1 + bα1
+

(
1/z

1/α
1

(1 + bα1 )1/α
+

1/z2

(1 + bα2 )1/α

)α
+
bα2 /z2

1 + bα2

)}
.

This is the logistic model with parameters ψ1 = 1
1+bα1

= 0.99998 and

ψ2 = 1
1+bα2

= 0.99994. As a check of the �t of dependence we com-

pare the Pickands dependence function A together to a non-parametric
estimate of the Pickands dependence function, An in Figure 6.3d. By
the de�nition of the Pickands dependence function (2.13) and of the tail
dependence function (2.7) we have for the logistic model

A(t) = l(1− t, t) = V∗

(
1

1− t
,
1

t

)
= (1− ψ1)(1− t) + (1− ψ2)t+

{
(ψ1(1− t))1/α + (ψ2t)

1/α
}α

.

We let {(Z1,j , Z2,j)} be standard Fréchet transformed versions of our
variables {(X1,j , X2,j)}. By Pickands (1981) a non-parametric estimate
of the Pickands dependence function is

An(t) = n

·

 n∑
j=1

1/max {Z1,j(1− t), Z2,jt} − (1− t)
n∑
j=1

1/Z2,j − t
n∑
j=1

1/Z1,j + n

 .
The �t of the dependence appears to be good. The estimated parameter
values b1 and b2 are both very small. This means that the stable variable
S1, which represents some environmental factor a�ecting both X1 and
X2, is more dominant than the individual variations S2 and S3. Inter-
preting the logistic model, small values of b1 and b2 mean large values
of the parameters ψ1 and ψ2, corresponding to large dependence. Note
that depending on the parameter values, we have 0 ≤ ψ1, ψ2 ≤ 1 for this
model. We thus have the full �exibility of the logistic model. This in
contrast to the MA(1) model (6.2), which is limited by ψ1 +ψ2 = 1 (see
Chapter 5.3).

The parameter values of b1 and b2 are roughly of the same order of
magnitude. This suggests setting b1 = b2 = b in model (6.3). We get
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essentially the same results, and a likelihood ratio test motivates this
simpli�ed version.

To check for any trends in the dependence, we include trends in the
dependence parameters, b = b0+βt and α = α0+βt. However, likelihood
ratio tests show no signi�cant trend parameters.

6.3 5-day precipitation maxima

We want a fuller picture of the extreme precipitation behavior. Let
us therefore also look at �ve days of accumulated precipitation (Figure
6.4a). The 5-day annual maxima look stationary (Figure 6.4b) and an
initial block maxima approach gives the following GEV parameter esti-
mates:

(µ̂, σ̂, γ̂) = (32.9, 9.95,−0.0785) [1.1, 0.80, 0.072].

Like the 1-day and 3-day maxima, the 5-day maxima may be modeled
with a Gumbel variable. The maximum likelihood estimates of the Gum-
bel parameters are

(µ̂, σ̂) = (32.52, 9.75).

6.4 Dependence between 1-day, 3-day and 5-day maxima

Let us improve our model by including �ve days of accumulated precipi-
tation. For any given year, let X3 be the 5-day maximum. An extension
of model (6.3) could be

Xi = Gi + σi log(Hi) (6.6)

H1 = S1 + b1S2

H2 = S1 + b2S2

H3 = S1,

where Gi ∼Gumbel(µi, σi), i = 1, 2, 3 and all variables are mutually
independent. Here c1,1 = c2,1 = c3,1 = 1, c1,2 = b1, c2,2 = b2, and
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Figure 6.4: 5 days of accumulated precipitation
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ci,a = 0 otherwise. By Equation (5.2) the joint distribution function of
all three maxima for a given year is

P (X1 ≤ x1, X2 ≤ x2, X3 ≤ x3) =
2∏

a=1

exp

{
−

(
3∑
i=1

ci,ae
−xi−µi

σi

)α}
(6.7)

= exp {− ((y1 + y2 + y3)α + (b1y1 + b2y2)α)} ,

where yi = e
−xi−µi

σi for i = 1, 2, 3. Assuming precipitation between years
is independent, the joint distribution function for all 96 years is

P (X1,j ≤ x1,j , X2,j ≤ x2,j , X3,j ≤ x3,j , 1 ≤ j ≤ 96)

=

96∏
j=1

exp {− ((y1,j + y2,j + y3,j)
α + (b1y1,j + b2y2,j)

α)} ,

where yi,j = e
−
xi,j−µi
σi for i = 1, 2, 3 and j = 1, ..., 96. The likelihood

function is

L(µ1, µ2, µ3, σ1, σ2, σ3, b1, b2, α|X) =
96∏
j=1

∂3

∂x1,j∂x2,j∂x3,j

exp {− ((y1,j + y2,j + y3,j)
α + (b1y1,j + b2y2,j)

α)} ,

and is calculated through symbolic derivation in R. Maximum likelihood
estimation using the GEV parameter estimates as starting values gets
stuck in local maxima. We therefore do a rough optimization of the nine
parameters over a number of di�erent starting values chosen at random.
We use the parameter combination which gives the largest likelihood as
starting values in the maximization procedure in R. Our �nal maximum
likelihood estimates are

(µ̂1, µ̂2, µ̂3, σ̂1, σ̂2, σ̂3, b̂1, b̂2, α̂)

= (17.7, 28.3, 30.0, 1.69, 2.50, 2.99, 0.568, 3.86 · 10−4, 0.286).

Marginal �ts are shown in the quantile plots in Figure 6.5.

72



●
●●
●

●●●●●●●
●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●●

●●●●●●
●●

●

●●●
●
●●●●

●●
●●●

●●

●
●

●●
●

●

●

●

10 20 30 40 50

10
20

30
40

50
60

Quantile plot

Model

E
m

pi
ric

al

(a) Marginal distribution of 1-day maxima
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(b) Marginal distribution of 3-day maxima
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(c) Marginal distribution of 5-day maxima

Figure 6.5: Marginal �ts
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(a) Contour plot with observed data
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Figure 6.6: Marginal distribution of (X1, X2)

Let us look at the bivariate dependence between the 1-day and 3-
day maxima, to compare with the model (6.3). The marginal bivariate
distribution function of X1 and X2 is from Equation (6.7)

P (X1 ≤ x1, X2 ≤ x2)

= exp

{
−
((

e
−x1−µ1

σ1 + e
−x2−µ2

σ2

)α
+

(
b1e
−x1−µ1

σ1 + b2e
−x2−µ2

σ2

)α)}
.

A contour plot together with observed data is displayed in Figure 6.6a.
With inverses

G−1
1 (p) = − log

(
− log p

1 + bα1

)
σ1

α
+ µ1, and

G−1
2 (p) = − log

(
− log p

1 + bα2

)
σ2

α
+ µ2,
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we have

G∗(z1, z2) = G(G−1
1 (e−1/z1), G−1

2 (e−1/z2))

= exp{−(

(
1/z

1/α
1

(1 + bα1 )1/α
+

1/z
1/α
2

(1 + bα2 )1/α

)

+

(
b1/z

1/α
1

(1 + bα1 )1/α
+

b2/z
1/α
2

(1 + bα2 )1/α

)α
)}.

This could be described as a mixture of two logistic models and an in-
dependence model. The Pickands dependence function together with
a non-parametric estimate is displayed in Figure 6.6b. The �t of the
dependence appears slightly better than for the two-dimensional model
(6.3).

We can also study the marginal dependence between the 3-day and
5-day maxima. From Equation (6.7) we get

P (X2 ≤ x2, X3 ≤ x3) = exp

{
−
(
bα2 e
−x2−µ2

σ2/α +

(
e
−x2−µ2

σ2 + e
−x3−µ3

σ3

)α)}
.

A contour plot together with observed data is shown in Figure 6.7a.
With inverses

G−1
2 (p) = − log

(
− log p

1 + bα2

)
σ2

α
+ µ2, and

G−1
3 (p) = − log (− log p)

σ3

α
+ µ3,

we have

G∗(z2, z3) = G(G−1
2 (e−1/z2), G−1

3 (e−1/z3))

= exp

{
−

(
bα2 /z2

1 + bα2
+

(
1/z

1/α
2

(1 + bα2 )1/α
+ 1/z

1/α
3

)α)}
.

This is the logistic model with parameters ψ1 = 1
1+bα2

= 0.90 and ψ2 =

1. The Pickands dependence function together with a non-parametric
estimate is shown in Figure 6.7b. The �t appears good.

Finally, let us look at the dependence between the 1-day maxima
and 5-day maxima. From Equation (6.7) we get the bivariate marginal
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(a) Contour plot with observed data
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Figure 6.7: Marginal distribution of (X2, X3)

distribution of X1 and X3:

P (X1 ≤ x1, X3 ≤ x3) = exp

{
−
(
bα1 e
−x1−µ1

σ1/α +

(
e
−x1−µ1

σ1 + e
−x3−µ3

σ3

)α)}
.

Then

G∗(z1, z3) = G(G−1
1 (e−1/z1), G−1

3 (e−1/z3))

= exp

{
−

(
bα1 /z1

1 + bα1
+

(
1/z

1/α
1

(1 + bα1 )1/α
+ 1/z

1/α
3

)α)}
.

This is the logistic distribution with parameters ψ1 = 1
1+bα1

= 0.54 and

ψ2 = 1. A contour plot and Pickands function estimates are displayed in
Figure 6.8. The �t of the dependence is not as good in this case. This
may be due to an inadequacy of the parametric model to estimate the
X1−X3 dependence, or to imperfections in the non-parametric Pickands
estimate.

6.5 Landslides

Extreme precipitation may cause severe damage to the environment;
�oods, plugged drainage systems and wasted crops are among the devas-
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(a) Contour plot with observed data
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Figure 6.8: Marginal distribution of (X1, X3)

tating e�ects of extreme rain or snowfall. Increased water content in the
ground increases pore water pressure which in turn reduces the e�ective
strength of surface soils, causing a landslide. Both rapidly and slowly
moving landslides are a�ected. While slowly moving grounds are often
a consequence of water accumulated over several months, debris �ows
and shallow landslides may be caused by a few days of intense rain or
snowfall.

In order to illustrate the bene�ts of our multivariate models (6.3) and
(6.6), we use one of the many empirically based threshold models in the
literature for initiation of shallow landslides and debris �ows to calculate
the probability of a landslide occurring. Guzzetti (2007) proposes the
following threshold relation for highland climates in central and southern
Europe between intensity (I) in mm/h and duration (D) in hours of
precipitation:

I = 7.56 ·D−0.48.

The amount of precipitation necessary during 24 hours to cause a shallow
landslide or debris �ow is according to this model 7.56 · 240.52 = 39.5
mm. A 3-day period of less intense precipitation period may also cause
shallow landslides or debris �ows. The threshold amount for 3 days of
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precipitation is 7.56 ·720.52 = 69.9 mm. For a 5-day period the threshold
amount 7.56 · 1200.52 = 91.1 mm. With the joint distribution function
(6.7) we are now able to calculate the probability of a landslide or debris
�ow occurring as a consequence of one, three or �ve days of extreme
precipitation for any given year,

P (X1 > 39.5 ∪X2 > 69.9 ∪X3 > 91.1)

= 1− P (X1 ≤ 39.5 ∩X2 ≤ 69.9 ∩X3 ≤ 91.1)

= 1− exp
{
−
(

(y1 + y2 + y3)0.29 +
(
0.57y1 + 3.9 · 10−4y2

)0.29
)}

= 0.051,

where y1 = e−
39.5−17.7

1.69 , y2 = e−
69.9−28.3

2.50 and y3 = e−
91.1−33.0

2.99 . If it is
assumed that 1-day, 3-day and 5-day maxima are independent Gumbel
variables, we would have

P (X1 > 39.5 ∪X2 > 69.9 ∪X3 > 91.1)

= P (X1 > 39.5) + P (X2 > 69.9) + P (X3 > 91.1)

= 0.0377 + 0.00682 + 0.00288 = 0.047,

using the GEV estimates from Chapters 6.1 and 6.3. Our risk estimate
is thus slightly larger than the estimate using the independence assump-
tion. A clear limitation of this calculation is that we have not taken
all possible precipitation periods into consideration. Another is that the
threshold model is not constructed for our particular location. More
knowledge about local geological conditions and landslide activity may
give more precise threshold estimates and hence better risk estimates.

6.6 Comments

The dependence structure of the model (6.6) is seen in Hi for i = 1, 2, 3.
The stable variable S1 represents some environmental factor a�ecting all
three periods of precipitation. S2 represents a joint variation for X1 and
X2 which, as indicated by the parameter estimates of b1 and b2, is less
in�uential than the joint variation for all three periods of precipitation.

We have �tted a variety of versions of the model (6.6) to the data.
Here we have shown the results for the model with the best �t.

Note that our stable mixture models are non-physical modeling tools.
Surrounding factors such as temperature, wind and atmospheric pressure
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are not taken into consideration. Incorporating these factors into a model
would be a possible expansion.

6.7 MA(1) �t to annual maxima

In Chapter 6.1 we �t annual precipitation maxima to a GEV model with
a linear trend in the location parameter. We found no signi�cant trend.
However, there could be some other dependence structure in the annual
maxima that is not described by a linear trend. As a check of dependence
over time, we �t a Gumbel MA(1) model to the annual maxima.

Xt = σ log(St + b1St−1) +Gt,

where Gt ∼Gumbel(µ,σ) and t = 1, ..., 96. We calculate maximum likeli-
hood estimates of the parameters with a Gumbel version of the recursion
formula in Chapter 5.3, derived in Fougères et al (2009):

L(µ, σ, b1, α|X) = QnF
n∏
t=1

zt
σ
,

where zt = exp
(
−
(xt−µ

σ

))
. We set u1 = b1z1, ut = zt−1 + b1zt for

t = 2, ..., n and un+1 = zn. Then

Q0 = 1

Q1 = α(b1u
α−1
1 + uα−1

2 )

Qi = −Qi−2α(α− 1)b1u
α−2
i +Qi−1α(b1u

α−1
i + uα−1

i+1 ), i = 2, ..., n.

The maximum likelihood estimates are

(µ̂, σ̂, b̂1, α̂) = (20.6, 4.40, 0.00134, 0.755)

We see that b̂1 is very small, implying a small dependence between con-
secutive years. A likelihood ratio test also con�rms that the MA(1)
model is not signi�cantly better than a simple Gumbel model. This
further motivates our assumption of independence in between years in
models (6.3) and (6.6).
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A Alternative proof of density in two dimensions

In Chapter 4.3 we proved that any multivariate extreme value distribu-
tion may be approximated by a stable mixture by studying distribution
functions. In this section we give an alternative proof for the bivariate
case using the Pickands dependence function. The distribution function
for a stable mixture in two dimensions is by Equation (4.9):

Gn(x1, x2) = exp

{
−

n∑
i=1

(
c1,i

1

x
1/α
1

+ c2,i
1

x
1/α
2

)α}
. (A.1)

The marginals are standard Fréchet if

n∑
i=1

cαj,i = 1 for j = 1, 2. (A.2)

A bivariate extreme value distribution may be determined by its margins
and its Pickands dependence function A(t) = l(t, 1 − t), where l is the
stable tail dependence function. This means that we can get all the
information about the dependence structure by studying the Pickands
dependence function,

A(t) = l(t, 1− t) = − logGn

(
1

t
,

1

1− t

)
=

n∑
i=1

(
c1,it

1/α + c2,i(1− t)1/α
)α

,

for t ∈ [0, 1]. If the family of bivariate stable mixture distributions
is in fact the entire class of bivariate extreme value distributions, then
equivalently the set of Pickands dependence functions for bivariate stable
mixtures is dense in the set of all Pickands dependence functions on [0, 1].

Theorem A.1. Let V be the class of all Pickands dependence functions

on [0, 1]. Also let U be the class of Pickands dependence functions for

bivariate stable mixtures, de�ned by Equation (A.1), i.e. for g ∈ U ,

g(t) =
n∑
i=1

(
c1,it

1/α + c2,i(1− t)1/α
)α

, (A.3)

where c1,i, c2,i ≥ 0, α ∈ (0, 1] and
∑n

i=1 c
α
1,i =

∑n
i=1 c

α
2,i = 1. Then U is

dense in V .
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Figure A.1: Boundaries for a Pickands dependence function and a k ∈ K

We will prove Theorem A.1 by showing that any Pickands dependence
function may be approximated by a Pickands dependence function for
a stable mixture. We do this in a series of steps. After making some
restrictions, we approximate a function in the set V with a sum and
normalize its constants to give standard Fréchet margins. Finally we use
the triangle inequality. We start by approximating the functions in V
with functions that have restrictions on the derivatives at the endpoints:

Lemma A.2. Let K be the set of convex functions {k : [0, 1]→ R with

k(0) = k(1) = 1, k′(0) = −1 and k′(1) = 1, kconvex} and V as in

Theorem A.1. Then K is dense in V.

Proof. We see thatK ⊂ V , since the derivative restrictions and convexity
of a function in K forces it to stay within the triangle with vertices
(0, 1), (1

2 ,
1
2), (1, 1). Let f ∈ V . Thus, f is a convex function within the

triangle (0, 1), (1
2 ,

1
2), (1, 1) and because of property 1 of the Pickands

dependence function in Chapter 2.3.2, f has endpoints f(0) = f(1) = 1.
But f ′(0) ≥ −1 and f ′(1) ≤ 1 which means that f is not necessarily in
K. Now build the function

k(t) =


1− t for 0 ≤ t < εf

f(t)− εf for εf ≤ t ≤ 1− εf
t for 1− εf < t ≤ 1
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for a small εf > 0. We see that k is a convex function on [0, 1]. With
k de�ned as above, it can easily be seen that k′(0) = −1 and k′(1) = 1.
We conclude that k ∈ K. Now, for any t ∈ [0, 1] we have

|f(t)− k(t)| ≤ εf .

This di�erence can be made arbitrarily small by choosing εf small enough.
We have thus found a function in K that converges uniformly to a given
function in V . Equivalently K is dense in V .

Now restrict a subset of K to allow only twice di�erentiable (C2)
functions and call this subset H. In the following lemma we show that
H is dense in K. We need the result of Leviatan (1986, Theorem 1):

There exists an absolute constant C such that for any convex function
f ∈ C[−1, 1] and every n ≥ 1, there is a convex polynomial pn of degree
not exceeding n satisfying

|f(t)− pn(t)| ≤ Cω2(f,
√

1− t2/n), − 1 ≤ t ≤ 1,

where ω2(f, ·) is the second moment of continuity of f :

ω2(f,
√

1− t2/n)

= sup
0≤u≤

√
1−t2/n

−1≤t≤1

|f(t− u
√

1− t2)− 2f(t) + f(t+ u
√

1− t2)|,

if t± u
√

1− t2 ∈ [−1, 1], and = 0 elsewhere.

Lemma A.3. Let H be the set of convex C2-functions {h : [0, 1] → R

with h(0) = h(1) = 1, h′(0) = −1 and h′(1) = 1, h ∈ C2, h convex}.
Then H is dense in K.

Proof. De�ne P to be the set of all real-valued polynomials on [0, 1] with
the endpoint restrictions as for H and K. We show that P is dense in
K and since P ⊂ H ⊂ K, H is thus dense in K. Let k ∈ K and pn ∈ P
be a polynomial of degree not exceeding n. Let ε > 0. As n → ∞,
u ≤
√

1− t2/n→ 0 and hence ω2(f,
√

1− t2/n)→ 0. Thus, if we choose
n large enough,

|k(t)− pn(t)| ≤ Cω2(f,
√

1− t2/n)
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can be made arbitrarily small. Thus, P is dense in K. We conclude that
H is dense in K. In other words, for any k ∈ K and εk > 0 there is an
h ∈ H such that

|k(t)− h(t)| < εk.

Next we show that a h ∈ H can be expressed as an integral.

Lemma A.4. For h ∈ H and t ∈ [0, 1],

h(t) =

∫ 1

0
max

(
t(1− y)h′′(y), (1− t)yh′′(y)

)
dy, (A.4)

Proof. Using (1 − t)yh′′(y) ≥ t(1 − y)h′′(y) ⇔ (h′′(y) = 0 or y ≥ t) we
get∫ 1

0
max

(
t(1− y)h′′(y), (1− t)yh′′(y)

)
dy

=

∫ 1

t
(1− t)yh′′(y)dy +

∫ t

0
t(1− y)h′′(y))dy

= (1− t)
(

[yh′(y)]1t −
∫ 1

t
h′(y)dy

)
+ t

(
[(1− y)h′(y)]t0 +

∫ t

0
h′(y)dy

)
= (1− t)

(
1− th′(t)− 1 + h(t)

)
+ t
(
(1− t)h′(t) + 1 + h(t)− 1

)
= h(t).

Next we approximate a function in H with a Riemann sum.

Lemma A.5. Let h ∈ H. For any εr > 0 there exists an N ∈ N such

that for n > N ,

|h(t)−
n∑
i=1

max

(
t
n− i
n2

h′′
(
i

n

)
, (1− t) i

n2
h′′
(
i

n

))
| < εr. (A.5)

Proof. From Lemma A.4 we know that h has the integral expression
(A.4). Because h ∈C 2, the integrand is continuous, and the integral can
be approximated by its right Riemann sum, which is the sum in (A.5).
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In other words, the statement in Lemma A.5 holds. For future reference
we call this Riemann sum hR(t),

hR(t) ≡
n∑
i=1

max

(
t
n− i
n2

h′′
(
i

n

)
, (1− t) i

n2
h′′
(
i

n

))
. (A.6)

Now that we have a function hR expressed as a sum, the next step is
to approximate it with a function of structure (A.3). De�ne g̃ as

g̃(t) (A.7)

≡
n∑
i=1

((
n− i
n2

h′′
(
i

n

))1/α

t1/α +

(
i

n2
h′′
(
i

n

))1/α

(1− t)1/α

)α
,

where α ∈ (0, 1].

Lemma A.6. For any εr > 0 and α ∈ (0, 1],

|g̃(t)− hR(t)| ≤ (1 + εr)(2
α − 1).

Proof. Using

hR(t) =
n∑
i=1

max

(
t
n− i
n2

h′′
(
i

n

)
, (1− t) i

n2
h′′
(
i

n

))

≤
n∑
i=1

((
t
n− i
n2

h′′
(
i

n

))1/α

+

(
(1− t) i

n2
h′′
(
i

n

))1/α
)α

= g̃(t),

and

g̃(t) =

n∑
i=1

((
t
n− i
n2

h′′
(
i

n

))1/α

+

(
(1− t) i

n2
h′′
(
i

n

))1/α
)α

≤
n∑
i=1

(2 max(

(
n− i
n2

h′′
(
i

n

))1/α

t1/α,

(
i

n2
h′′
(
i

n

))1/α

(1− t)1/α))α

=
n∑
i=1

max

(
t
n− i
n2

h′′
(
i

n

)
, (1− t) i

n2
h′′
(
i

n

))
2α = hR(t)2α,
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together with Lemma A.5 we have

|g̃(t)− hR(t)| ≤ hR(t)2α − hR(t) = hR(t)(2α − 1) ≤ (1 + εr)(2
α − 1),

and we are done.

Now we have a function g̃ of the form (A.3) with constants c̃2,i =(
i
n2h
′′( in)

)1/α
and c̃1,i =

(
n−i
n2 h

′′( in)
)1/α

. The constants c̃2,i, c̃1,i ≥ 0 for
all i = 1, ..., n because of the convexity of h. For g̃ to be in the set
U of Pickands dependence functions for stable mixtures, the standard
Fréchet margin prerequisite in (A.2) must be ful�lled. We therefore
de�ne normalized constants

c1,i =

(
n−i
n2 h

′′( in)
)1/α∑n

m=1
n−m
n2 h′′(mn )

and c2,i =

(
i
n2h
′′( in)

)1/α∑n
m=1

m
n2h′′(

m
n )
, (A.8)

for which

n∑
i=1

cα1,i = 1 and
n∑
i=1

cα2,i = 1.

We call the function with normalized constants g:

g(t) ≡
n∑
i=1

( (
n−i
n2 h

′′( in)
)1/α∑n

m=1
n−m
n2 h′′(mn )

t1/α +

(
i
n2h
′′( in)

)1/α∑n
m=1

m
n2h′′(

m
n )

(1− t)1/α

)α
(A.9)

Then g ∈ A.

Lemma A.7. Let g and g̃ be as in (A.9) and (A.7), respectively. Also

let εc, εr > 0. Then there exists an N ∈ N and an α ∈ (0, 1] such that

for n > N and t ∈ [0, 1],

|g̃(t)− g(t)| ≤ (1 + εr)2
α

(
1

(1− εc)α
− 1

)
.

Proof.
∑n

i=1 c̃
α
1,i and

∑n
i=1 c̃

α
2,i are Riemann sums:

lim
n→∞

n∑
i=1

c̃α1,i = lim
n→∞

n∑
i=1

n− i
n2

h′′(
i

n
) (A.10)

=

∫ 1

0
(1− y)h′′(y)dy = [(1− y)h′(y)]10 +

∫ 1

0
h′(y)dy = 1 + (1− 1) = 1,
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lim
n→∞

n∑
i=1

c̃α2,i = lim
n→∞

n∑
i=1

i

n2
h′′(

i

n
) (A.11)

=

∫ 1

0
yh′′(y)dy = [yh′(y)]10 −

∫ 1

0
h′(y)dy = 1− (1− 1) = 1,

and can thus be made arbitrarily close to 1 for n large enough. In other
words, for a given εc > 0 there exists an N ∈ N such that for n > N ,

|
n∑
i=1

n− i
n2

h′′(
i

n
)− 1| < εc and |

n∑
i=1

i

n2
h′′(

i

n
)− 1| < εc. (A.12)

Using (A.12) we get,

g̃(t)
1

(1 + εc)α
=

n∑
i=1

((
n−i
n2 h

′′( in)
)1/α

1 + εc
t1/α +

(
i
n2h
′′( in)

)1/α
1 + εc

(1− t)1/α

)α
≤ g(t)

and

g(t) =
n∑
i=1

( (
n−i
n2 h

′′( in)
)1/α∑

m
n−m
n2 h′′(mn )

t1/α +

(
i
n2h
′′( in)

)1/α∑
m

m
n2h′′(

m
n )

(1− t)1/α

)α

≤
n∑
i=1

((
n−i
n2 h

′′( in)
)1/α

1− εc
t1/α +

(
i
n2h
′′( in)

)1/α
1− εc

(1− t)1/α

)α
= g̃(t)

1

(1− εc)α

Finally using Lemma A.5 and Lemma A.6,

|g̃(t)− g(t)| ≤
(

1

(1− εc)α
− 1

)
g̃(t)

≤
(

1

(1− εc)α
− 1

)
hR(t)2α ≤

(
1

(1− εc)α
− 1

)
(1 + εr)2

α.

We are now ready to prove Theorem A.1.
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Proof of Theorem A.1. Let ε > 0, choose εf = εk = εr = εc = ε/7
and 2α − 1 = ε/7. We use Lemmas A.2-A.7 and the triangle inequality
multiple times,

|g(t)− f(t)|

= (1 + εr)2
α

(
1

(1− εc)α
− 1

)
+ (1 + εr)(2

α − 1) + εr + εk + εf

< (1 + ε/7)(1 + ε/7)2ε/7 + (1 + ε/7)ε/7 + ε/7 + ε/7 + ε/7

≤ 2(ε/7)3 + 5(ε/7)2 + 6ε/7 < ε.

Thus, U is dense in V .
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