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ABSTRACT

In this thesis, two identification methods for time varying electrical per-

manent magnet synchronous motor (PMSM) parameters are studied and

compared. The Recursive Least Square (RLS) with forgetting factor and

the Normalized Projection Algorithm (NPA) are applied to a salient PMSM

model in dq-coordinates. The stator resistance and the stator inductances

are identified both online and offline. The simulation results illustrate the

efficiency of the two methods. It is shown that both algorithms are capable

to identify the parameters both online and offline, but compared to the NPA,

the RLS tracks the parameter variations much better.

Computational time per iteration is also estimated and it is shown that

the NPA is approximately three times faster than the RLS.

By experimental verification from real motor data it is shown that the

algorithms do not convergence to the same parameter values.

The stator resistance and the stator inductances have also been measured

directly on the motor windings and compared with the identified parameter

values from the algorithms. It is shown that they deviate more than expected.

Analysis of the obtained estimates indicates that the parameter values could

have been fitted to some disturbance in the measured motor currents and/or

that the applied voltages to the motor deviate from the reference voltages

used as input to the algorithms.
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Chapter 1

Introduction

In this chapter, a motivation for parameter identification in permanent mag-

net synchronous motor drives is given. The concept of offline and online

parameter identification in motor drives is introduced and a brief overview

of different methods found in the literature is presented. The focus is put on

parameter identification methods useful for motor control. The outline of the

thesis, as well as scientific contributions, are also presented.

1.1 Motivation of Parameter Identification in

Permanent Magnet Synchronous Motor

Drives

A permanent magnet synchronous motor (PMSM) is frequently used in the

industry due to its high efficiency and quick mechanical dynamics. To design

high performance control systems it is important to have accurate knowledge

about the motor parameters. The data sheet, containing the motor parame-

ters, that comes from the manufacturer of an electrical motor is not always

1



1 Introduction

available, and when a new PMSM should be installed in an application, it is

therefore desirable to be able to identify the parameters automatically with

parameter identification. This is also more time efficient compared to manu-

ally changing the parameter values. Even when the data sheet is available, it

does not usually take into account that some parameters tend to vary during

different operation points. Classical motor control techniques such as Vec-

tor Control (see Chapter 3) require a position sensor to control the PMSM,

and in such case the parameter information from the data sheet is normally

sufficient. But since a sensor brings high cost and sometimes low reliability,

it is desirable to remove the sensor [18] which will require more advanced

control techniques. Many position sensorless control methods are reliable on

an accurate motor model and by introducing online parameter identification

in such drive systems, it is possible to improve the control performance (see

section 1.3 for explanation of the concept online parameter identification).

1.2 Offline Parameter Identification

Techniques for determine motor parameters in standstill or in rotation with-

out any load are called ”offline parameter identification methods”. The offline

methods can further be categorized in self-commission and commission [1].

In self-commission all required motor parameters suitable for control are de-

termined without any previous knowledge about the parameter values. In

commission some previous information about the parameter values is known.

2



1.3 Online Parameter Identification

1.3 Online Parameter Identification

The techniques that adapt the motor parameters during the drive opera-

tions are called ”online parameter identification methods”[1]. Many online

identification algorithms with different nature have been proposed in earlier

literature and they can be categorized in four groups:

Spectral Analysis

In spectral analysis techniques the motor parameters are determined from

a measured response from a deliberate injection test signal or an existing

characteristic harmonic in the voltage/current spectrum [1]. The stator cur-

rent and/or voltage are sampled and analysed with spectral analysis and the

motor parameters are then derived.

Observer Based System

The well known Extended Kalman Filter(EKF) can be used as an observer

for online parameter identification of a PMSM and is especially suitable in a

noisy environment. Other observers can also be used but the most frequently

used observers today seem to be based on the Kalman Filter. The full order

EKF is sometimes replaced by a reduced order system due to the fact the the

full order version is very computationally demanding [1]. The Recursive Least

Square (RLS) algorithm that we are going to discuss in detail in Chapter 5

is a special case of the Kalman Filter.

3



1 Introduction

Model Reference Adaptive System

This method is based on principles of model reference adaptive control. The

Model reference adaptive system (MRAS) techniques are relatively simple

to implement and are not as computationally demanding as other methods.

Because of this the MRAS has attracted the most attention in the literature

[1]. The principle is built on the fact that some quantities can be calculated in

two ways. The first are calculated from a model and the others from measured

signals. A few parameters are assumed to be known in the model and the

difference between the quantities calculated from the model and the measured

ones is assigned to the parameter errors from the unknown parameters in the

model. The errors in the output signals are then used to drive an adaptive

mechanism that provides a correction of the unknown parameters. Figure 1.1

illustrates a plant and control system in MRAS based identification of PMSM

parameters. The drawback is that the method is only suitable in stationary

operation where the other parameters that are not going to be adapted can

be assumed to have constant known values. The method does not work well

in standstill and with low torque. In [2], a MRAS based method is proposed

for online identification of PMSM parameters. Online estimation of the rotor

resistance with MRAS is successfully applied to a sensorless control algorithm

in [3]. A comparison between the MRAS and EKF is treated in [4, 5, 6]. The

conclusion from those papers is that a MARS method using decoupling of

the stator currents has the best characteristics and the executing time is also

much shorter compared to the EKF.
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Currents 

Controller 

model
Adjustable

PMSM

mechanism
Adaptive

Speed reference

Speed

+

Control voltages 

Current errors

Estimated currents 

Figure 1.1: MRAS based identification of PMSM parameters

Other Methods

There are a number of other methods for identification of PMSM parameters

and many of them come from the filed of artificial intelligence (AI) . In MRAS

the adapting mechanism is mostly linear and for parameter identification in

a non linear system neural networks (NN) have shown to give good results. A

MRAS algorithm using NN in the adaptation mechanism is proposed in [7].

Another paper that proposes a NN based algorithm is [8]. Particle swarm

optimization based parameter identification applied to PMSM is proposed in

[9] and a fuzzy hybrid swarm optimization algorithm is presented in [10].

1.4 Outline of Thesis

In this thesis, two identification methods for time varying electrical per-

manent magnet synchronous motor (PMSM) parameters are studied and

compared. The RLS with forgetting factor and the Normalized Projection

5



1 Introduction

Algorithm (NPA) are applied to a salient PMSM model in dq-coordinates.

The stator resistance and the stator inductances are identified both online

and offline

In the second chapter, mathematical modelling of PMSMs for control

purposes is derived for both salient and non salient PMSMs. The idea is to

describe the salient model, derived from the non model, of the motor that

is used in the parameter identification algorithms in the following chapters.

In order to give the reader some crucial background knowledge, this chapter

starts with introducing the concept of three phase systems and space vectors.

In the third chapter, the concept of vector control within motor drives

is introduced. The intention is to give an overview of the PMSM control

system used in this thesis, as well as present applications of online parameter

identification within vector control.

In Chapter 4, the non salient model is discretized and transformed into a

linear regression model. This makes the model suitable for standard param-

eter identification algorithms.

The fifth chapter presents and derives the two algorithms used later in

the thesis to estimate the motor parameters, namely the RLS with forgetting

factor and the NPA. The intention is not only to present the algorithms, but

also give the reader some background knowledge of how the algorithms can

be derived.

The sixth chapter concerns simulations of the RLS with forgetting factor

and the NPA used for estimations of the motor parameters. First, the sim-

ulation procedure is described and then the results from the simulations are

presented.

In order to further verify the performance of the proposed identifica-

tion methods, in Chapter 7, recorded data from a testbed PMSM drive sys-

6



1.5 Contributions

tem similar to the simulation set-up in Chapter 5 have been used in MAT-

LAB/SIMULINK together with the algorithms. A complexity analysis of the

RLS with forgetting factor and the NPA have also been done to investigate

if the algorithms are suitable for implementation in existing DSP:s at Aros

electronics AB.

In the last chapter, the conclusions from the thesis are presented, and

some future work is suggested.

1.5 Contributions

The main scientific contribution in the thesis, is in the comparison of the

parameter identification algorithms RLS with forgetting factor and the NPA

within PMSM drives. The general properties of the RLS and the NPA are

well treated and compared in [11]. The RLS with forgetting factor for identifi-

cation of synchronous reluctance motor parameters is proposed in [12, 13, 14].

In this thesis, the RLS with forgetting factor is compared with the NPA for

tracing electrical PMSM parameters both online and offline.
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Chapter 2

Modelling of Permanent

Magnet Synchronous Motors

In this chapter, mathematical modelling of PMSMs for control purposes is

derived for both salient and non salient PMSMs. The idea is to describe the

salient model, derived from the non salient model, of the motor that is used in

the parameter identification algorithms in the following chapters. In order to

give the reader some crucial background knowledge, this chapter starts with

introducing the concept of three phase systems and space vectors.

2.1 Three Phase Systems

Three phase systems are very common for powering electronic motors [15].

The basic idea is to use three sinusoidal AC voltages separated by 120◦

for each phase [16]. Figure 2.1 shows the phase currents of an ideal three

phase system. For an ideal symmetric system the sum of the instantaneous

values are zero and the power is constant. The three phase currents have the

8



2.2 Space Vectors

following relations:

isa + isb + isc = 0. (2.1)
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Figure 2.1: Ideal three phase currents

2.2 Space Vectors

It is possible to describe the phase currents by introducing a space vector.

The coordinate system for the space vector is called αβ coordinates [15] .

The relation between the three phase currents and space vector is as follows:

iss(t) = isα(t) + jisβ(t) =
2

3
[isa(t) + isb(t)e

jγ + isc(t)e
j2γ] with γ =

2π

3
(2.2)

Figure 2.2 illustrates how this is done. Now we have a complex vector circu-

lating with the stator frequency ωs that is a projection of the three physical

9



2 Modelling of Permanent Magnet Synchronous Motors

Figure 2.2: Construction of a current space vector.

phase currents. Other three phase quantities are obtained in a similar way

by introducing space vectors. The space vector can equally be represented

on matrix form as:

isα(t)

isβ(t)

 =

2
3
−1

3
−1

3

0 1√
3
− 1√

3


︸ ︷︷ ︸

T32


isa(t)

isb(t)

isc(t)

 (2.3)

The backward transformation from the space vector to the three phase quan-

tities is given by:
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2.2 Space Vectors


isa(t)

isb(t)

isc(t)

 =


1 0

−1
2

√
3
2

−1
2
−
√
3
2


︸ ︷︷ ︸

T23

isα(t)

isβ(t)

 . (2.4)

If we have a symmetric three phase system with the currents as


isa(t)

isb(t)

isc(t)

 =


Îs cos(ωst+ φ)

Îs cos(ωst− 2π/3 + φ)

Îs cos(ωst− 4π/3 + φ)

 (2.5)

the space vector will then be

Iss = Îse
jωst+φ (2.6)

which corresponds to a rotating phasor aligned with phase a.

When it comes to control the speed and torque in a PMSM drive sys-

tem, the thee phase motor currents need to be controlled somehow with the

help of the three phase voltages fed to the PMSM. By projecting the three

phase voltages and currents into space vectors, and then introducing a new

rotating coordinate system called dq coordinates [16], rotating with the sta-

tor frequency ωs, the quantities will not be seen to rotate at all. The three

phase currents and voltages transformed into dq coordinates can be seen as

DC components in steady state.

11



2 Modelling of Permanent Magnet Synchronous Motors

With

θs =

∫ t

0

ωsdt (2.7)

the equation for the dq transformation is given by

is = e−jθ(t)iss = isd(t) + jisq(t) (2.8)

and the reverse transformation back to αβ coordinates is then

iss = ejθ(t)is = isα(t) + jisβ(t). (2.9)

It is not always possible to use complex space vectors when it comes to digital

implementation of the control algorithms (and also when modelling a salient

PMSM as we will do later on). The corresponding real valued vector to iss is

donated as iss and we have the following equality:

iss = isα(t) + jisβ(t) ⇐⇒ iss =

isα(t)

isβ(t)

 . (2.10)

By introducing a matrix

J =

0 −1

1 0

 (2.11)

that corresponds to the imaginary unit j, the equation for the dq transfor-

mation is then given by

is = e−Jθ(t)iss (2.12)

and the reverse transformation back to αβ coordinates is then

iss = eJθ(t)is. (2.13)
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2.3 Modelling of a non salient PMSM

We also have that

e−Jθ(t) =

 cos θs sin θs

− sin θs cos θs


︸ ︷︷ ︸

Tdq(θs)

(2.14)

and

e−Jθ(t) =

cos θs − sin θs

sin θs cos θs


︸ ︷︷ ︸

Tαβ(θs)

. (2.15)

The matrices Tdq(θs) and Tαβ(θs) are frequently used in Digital Signal Pro-

cessors (DSPs) when doing the dq transformation.

2.3 Modelling of a non salient PMSM

The stator voltage to the non salient PMSM is given by

vss = Rs +
dψss
dt

(2.16)

and the equation for the stator flux is

ψss = Lsi
s
s + ψsm. (2.17)

ψsm is the rotor flux linkage vector and is given by

ψsm = ψme
jθr (2.18)

where the ψm is the rotor flux linkage from the permanent magnets, θr is

the electrical rotor angle and Ls is the stator inductance . By assuming that

the linkage inductance and the flux linkage from the permanent magnet are

13



2 Modelling of Permanent Magnet Synchronous Motors

varying slowly [16], the derivative of the stator flux is then

dψss
dt

= Ls
diss
dt

+ jωrψme
jθr (2.19)

where ωr is the electrical rotor frequency. Putting equation (2.19) into (2.16)

gives

Ls
diss
dt

= vss −Rsi
s
s − jωrψmejθr . (2.20)

Assuming perfect field orientation, the equation (2.20) in the dq coordinates

is then

Ls
dis
dt

= vs − (Rs + jωrLs)is − jωrψm. (2.21)

Splitting up equation (2.21) in d and q directions gives

usd = Rsisd + Ls
disd
dt
− ωrLsisq (2.22)

usq = Rsisq + Ls
disq
dt

+ ωrLsisd + ωrψm. (2.23)

In the next section, the salient PMSM model equations are derived from 2.22

and 2.23.

2.4 Modelling of a salient PMSM

For a salient PMSM the stator inductance is not equal around the airgap.

The coordinates of a salient PMSM are illustrated in Figure 2.3. In dq

coordinates the stator inductance is equal to Ld on the d axis and equal to

Lq on the q axis [16].
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Figure 2.3: Coordinates of a salient PMSM.

usd and usq can therefore be modelled as:

usd = Rsisd + Ld
disd
dt
− ωrLqisq (2.24)

usq = Rsisq + Lq
disq
dt

+ ωrLdisd + ωrψm. (2.25)

Equation 2.24 and 2.25 describe the electrical subsystem for a salient PMSM

model and this subsystem can also be represented by dynamic equivalent

circuits showed in Figure 2.4.

Equation 2.24 and 2.25 can also be written in state space form as

d

dt

id
iq

 =

−Rsd
Ld

ωrLq
Ld

−ωrLd
Lq

−Rsq
Lq

id
iq

+

 1
Ld

0

0 1
Lq

 ud

uq − ωrψm

 . (2.26)
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2 Modelling of Permanent Magnet Synchronous Motors

The electrical torque Te is given by [16] as

Te =
3np
2

[ψmisq + (Ld − Lq)isdisq] (2.27)

where np is the numper of pole pairs of the motor (which is well described in

[17]). According to [16] the Speed of the rotor can further be expressed as

Jml
np

dωr
dt

= Te − TL. (2.28)

Jml here represents the inertia of the motor plus load, and the motor load

TL is given by

TL =
Bml

np
ωr + TL,extra. (2.29)

Bml is the viscous friction of the motor and load and TL,extra is the load

connected to the motor.

L

ψrω

isdω rLdL q R ssqi

rω isq

m

qdL
sRsdi

sdu

usq

_

+

_

+

Figure 2.4: Dynamic equivalent circuits for the salient PMSMs electrical
subsystem.
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Chapter 3

Speed and Current Vector

Control

In this chapter, the concept of vector control within motor drives is intro-

duced. The intention is to give an overview of the PMSM control system

used in this thesis, as well as present a motivation of online parameter iden-

tification within sensorless vector control.

3.1 Vector Control

Vector control is today the most common ac machine control technique and

can be applied for both induction machines (IM) and synchronous machines

(SM). The method is widely used in high performance industrial application

of electric drives. The basic idea is to force the AC machine to behave

dynamically as a DC machine by the use of field orientation and feedback

control [16]. A PMSM can be seen as a DC motor turned inside out and

after field orientation is obtained the control design for a DC motor can be

used.
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PMSM in dq coordinates 

rrθ
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T32
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θ

Figure 3.1: Transformation of the PMSM model into dq coordinates.

The procedure for transforming the PMSM model into dq coordinates is as

follow:

• Measures the three phase currents and projects them into a space vector

in the αβ-reference frame.

• Transforms the current vector in the αβ-reference frame in to the dq-

reference frame.

• Transforms the desired dq-frame stator voltage in to the αβ-reference

frame.

• Transforms the αβ-frame stator voltage to three phase voltages. The

three phase voltages are then used to form the control signal to the pulse

with modulation(PWM) of the inverter (power electronic amplifier).

This transformation of the PMSM model into dq coordinates without consid-

ering the inverter and PWM, is illustrated in Figure 3.1 (theory of inverters

and PWM can be found in [16, 15]). The decoupling of flux and torque is

18
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3 Speed and Current Vector Control

done by letting the d-axis be aligned with ψm (see Figure 2.3). Now, the

input and output to the drive system are in the dq-frame and the PMSM

behaves as a DC motor in steady state. All torque lies in the q-axis direction

and by varying the stator current component iq the torque can be changed.

The flux is changed by varying the current component id. The control sys-

tem to the PMSM can now be designed with inner model control techniques.

First a current control loop is added and then cascade coupled with a speed

control loop as in Figure 3.2

3.2 Motivation for Online Parameter Identi-

fication within Sensorless Vector Control

The basic vector control algorithms require a position sensor to control the

motor currents, and since a sensor brings high cost and sometimes low re-

liability it is desirable to remove the sensor [18]. The concept of sensorless

vector control is basically vector control without any speed or position sen-

sor. In this control strategy, the speed and position need to be determined

by an observer [1]. In salient PMSM drives the observer is normally built

on the electrical motor equations (2.24) and (2.25). This means that if the

electrical PMSM parameters do not match the actual values, a speed and

position error will occur which affects the control performance of the PMSM.

By introducing online parameter identification of electrical PMSM parame-

ters it is possible to design accurate adaptive speed and position observers to

sensorless vector control systems. Figure 3.3 illustrates control and system

plant for a sensorless vector control PMSM system based on an adaptive

speed and position observer with online identification of electrical PMSM

parameters.
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Control
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Figure 3.3: Online identification of electrical PMSM parameters within sen-
sorless vector control.
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Chapter 4

Discretization and Linear

Regression Models

In this chapter, the non salient model is discretized and transformed into a

linear regression model. This makes the model suitable for standard parame-

ter identification algorithms.

4.1 Discretization

Since the control system is implemented in a digital signal processor (DSP),

a discretized model of the PMSM is necessary. If a general continuous time

invariant system given in the state space form

dx

dt
= Ax(t) +Bu(t)

y(t) = Cx(t)

(4.1)

is zero-order-hold (ZOH) sampled with period h, the system equation will

then be
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4.1 Discretization

x(kh+ h) = Ad(kh) +Bdu(kh)

y(kh) = Cdx(kh)
(4.2)

where

Ad = eAh

Bd =

∫ h

0

eAsdsB

Cd = C.

(4.3)

It is necessary to approximate the matrices Ad and Bd. One way to do that

is to introduce a matrix Ψ [19] defined as

Ψ =

∫ s

0

hAsds '
n∑
i=0

Aihi+1

(i+ 1)!
(4.4)

and then calculate Ad and Bd as

Ad = I + AΨ

Bd = ΨB.
(4.5)

When n goes to infinity the approximation error will go to zero. The approxi-

mation where n = 0 is equal to the Euler Forward difference and corresponds

to replacing the derivatives with

dx(t)

dt
' x(t+ h)− x(t)

h
. (4.6)

Now, by writing the electrical space equation (4.7) for the salient PMSM as

d

dt

isd
isq

 =

a11 a12

a12 a22


︸ ︷︷ ︸

A

isd
isq

+

b11 b12

b21 b22


︸ ︷︷ ︸

B

usd
usq

 (4.7)
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4 Discretization and Linear Regression Models

where

A =

a11 a12

a12 a22

 =

−Rsd
Ld

ωrLq
Ld

−ωrLd
Lq

−Rsq
Lq


B =

b11 b12

b12 b22

 =

 1
Ld

0

0 1
Lq


usq = usq − ωrψm

. (4.8)

the discretization model with Euler Forward difference givesisd(t+ 1)

isq(t+ 1)

 =

a11d a12d

a12d a22d


︸ ︷︷ ︸

Ad

id(t)
iq(t)

+

b11d b12d

b21d b22d


︸ ︷︷ ︸

Bd

ud(t)
usq(t)

 (4.9)

were

Ad =

a11d a12d

a12d a22d

 =

a11h+ 1 a12h

a12h a22h+ 1

 =

−Rsd
Ld
h+ 1 ωrLq

Ld
h

−ωrLd
Lq

h −Rsq
Lq
h+ 1


Bd =

b11d b12d

b12d b22d

 =

b11h b12h

b12h b22h

 =

 1
Ld
h 0

0 1
Lq
h


(4.10)

4.2 Linear Regressions

The model structure

y(t) = ϕ(t)T θ (4.11)

is well known in the statistic as liner regressions, assuming that (4.11) is linear

in θ. The vector ϕ(t) is named linear regression vector, and the elements in

ϕ(t) are called regessors [20]. The name comes from the fact that we try

to calculate/describe y(t) by going back (regress) to ϕ(t). The vector θ is
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4.2 Linear Regressions

called parameter vector and is used to parametrize the model. θ consists of

model parameters. For the multivariable case θ is a matrix. The algorithms

for parameter identification that are going to be used later need to have the

discretized motor model on linear regression from. Time shifting equation

(4.9) one step backwards in time gives:

isd(t)
isq(t)

 =

a11d a12d

a21d a22d


︸ ︷︷ ︸

Ad

isd(t− 1)

isq(t− 1)

+

b11d b12d

b21d b22d


︸ ︷︷ ︸

Bd

usd(t− 1)

usq(t− 1)

 . (4.12)

This model can then be written on linear regression from as:

[
isd(t) isq(t)

]
︸ ︷︷ ︸

y(t)

=
[
isd(t− 1) isq(t− 1) usd(t− 1) usq(t− 1)

]
︸ ︷︷ ︸

ϕT (t)


a11d a21d

a12d a22d

b11d b21d

b12d b22d


︸ ︷︷ ︸

θ

.

(4.13)

With Euler Forward difference, the motor parameters can be driven from θ

as:

Rs =
2− a11d − a22d
b11d + b22d

Ld =
h

bb11

Lq =
h

bb22

. (4.14)
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Chapter 5

Recursive Parameter

Estimation

This chapter presents and derives the two algorithms used later in the thesis

to estimate the motor parameters, namely recursive least square algorithm

with forgetting factor and the normalized projection algorithm. The intention

is not only to present the algorithms, but also give the reader some background

knowledge of how the algorithms can be derived.

5.1 The Least Square Method

Assume that the model is written on linear regression form and that we want

to estimate the parameter matrix θ from the measured variable vector y(t)

and the regression vector ϕ(t) in the sense of least squares. Then we can

introduce a loss function

V (θ, t) =
1

2

t∑
i=1

(y(i)− ŷ(i))2 = V (θ, t) =
1

2

t∑
i=1

(y(i)− ϕT (i)(θ))2. (5.1)
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5.2 Recursive Least Square Algorithm

By minimizing V (θ, t) with respect to θ we get the least square error. This

can be done in many ways. One way is to set the derivative to zero due to

the fact that V (θ, t) is quadratic in θ [20]. This gives

0 =
d

dθ
V (θ, t) =

t∑
i=1

ϕ(t)(y(i)− ϕT (i)θ) (5.2)

and then we have

θ̂ =

[∑t
i=1 ϕ(i)ϕT (i)

]−1 t∑
i=1

ϕ(i)y(i) (5.3)

were θ̂ is the estimated parameter matrix. Equation (5.3) can then be solved

by numerical algorithm from recorded data containing ϕ(t) and y(t) over a

time interval. It is also possible to make the computations recursively in real

time.

5.2 Recursive Least Square Algorithm

For identification of parameters in real time, the algorithm is done recursively.

Measurement from time t-1 is used to predict parameters at time t. By

introducing a new matrix P(t) [20] defined as

P−1(t) =
t∑
i=1

ϕ(i)ϕT (i) =
t−1∑
i=1

ϕ(i)ϕT (i)︸ ︷︷ ︸
P−1(t−1)

+ϕ(t)ϕT (t), (5.4)

equation (5.3) can be expressed as

θ̂(t) = P (t)
t∑
i=1

ϕ(i)y(i) = P (t)

(
t−1∑
i=1

ϕ(i)y(i) + ϕ(t)ϕT (t)

)
. (5.5)
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5 Recursive Parameter Estimation

From equations (5.3) and (5.4) we also have that

t−1∑
i=1

ϕ(i)y(i) = P−1(t− 1)θ̂(t− 1) = P−1(t)θ̂(t− 1)− ϕ(t)ϕ(t)T θ̂(t− 1).

(5.6)

And the parameter matrix θ̂(t) can then be written as

θ̂(t) = θ̂(t− 1) + P (t)ϕ(t)(y(t)− ϕ(t)T θ̂(t− 1)) = θ̂(t− 1) + L(t)ε(t) (5.7)

where

L(t) = P (t)ϕ(t) (5.8)

ε(t) = y(t)− ϕ(t)T θ̂(t− 1). (5.9)

To calculate P (t) from P (t− 1) the matrix inversion lemma is used [11]:

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1. (5.10)

Equation (5.4) implies that

P (t) = (P−1(t− 1) + ϕ(t)ϕT (t))−1 = (P−1(t− 1) + ϕ(t)IϕT (t))−1, (5.11)

and applying the matrix inversion lemma gives

P (t) = P (t−1)−P (t−1)ϕ(t)(I+ϕT (t)(P (t−1)ϕ(t))−1ϕT (t)P (t−1). (5.12)
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5.3 Recursive Least Square with Forgetting Factor

By combining equations (5.8) with (5.12) and applying the matrix inversion

lemma again, L(t) can be calculated as

L(t) = P (t)ϕ(t) = P (t− 1)ϕ(t)(I + ϕ(t)TP (t− 1)ϕ(t))−1 (5.13)

which implies that

P (t) = (I − L(t)ϕT (t))P (t− 1). (5.14)

The recursive scheme to calculate the parameter matrix is given bellow:

1. ε(t) = (y(t)− ϕT (t)θ̂(t− 1))

2. L(t) = P (t− 1)ϕ(t)(I + ϕ(t)TP (t− 1)ϕ(t))−1

3. P (t) = (I − L(t)ϕT (t))P (t− 1)

4. θ̂(t) = θ̂(t− 1) + L(t)ε(t)

5. t = t+ 1

6. Go to step 1.

(5.15)

5.3 Recursive Least Square with Forgetting

Factor

In the scheme (5.15) the parameter matrix θ is assumed to be time invariant

and for the case where we have time varying parameters, the algorithm needs

to be extended. Recursive least square with forgetting factor is an extended

version that can handle slow time varying parameters [11]. The idea is to

weight data depending on how old it is. The most recent data will have the

highest weight and the oldest data will have the lowest weight. This can be
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5 Recursive Parameter Estimation

done by replicating the loss function (5.1) with

V (θ, t) =
1

2

t∑
i=1

λt−i[y(i)− ϕT (i)(θ)]T [y(i)− ϕT (i)(θ)]. (5.16)

This loss funtion also includes the multivariable case. The variable λ is

called the forgetting factor and is in the range ]0, 1]. Now, the most recent

data is weighted with λ and data that is n units old is weighted with λn.

With the same approach as for the non multivariable case without forgetting

factor a recursive scheme can be obtained. A recursive scheme including the

multivariable case and forgetting factor is given bellow:

1. ε(t) = [y(t)− ϕT (t)θ̂(t− 1)]

2. L(t) = P (t− 1)ϕ(t)[λI + ϕ(t)TP (t− 1)ϕ(t)]−1

3. P (t) =
1

λ
[P (t− 1)− L(t)ϕT (t)P (t− 1)]

4. θ̂(t) = θ̂(t− 1) + L(t)ε(t)

5. t = t+ 1

6. Go to step 1.

(5.17)

5.4 Normalized Projection Algorithm

In the RLS algorithm the updating of the P matrix takes most computational

effort. Several simplified algorithms that do not need to update the P matrix

are proposed in the literature. In this way the computational effort decreases.

One of the algorithms is called normalized projection algorithm (NPA) or

simply projection algorithm [11]. The estimate θ̂(t) is here chosen so that

||θ̂(t) − θ̂(t − 1)|| is a minimized subject to the constraint y(t) = ϕT (t)θ̂(t).

The constraint can be handled by introducing a Lagrangian multiplier ᾱ.
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5.4 Normalized Projection Algorithm

The loss function that is going to be minimized is given by

V =
1

2
[θ̂(t)− θ̂(t− 1)]T [θ̂(t)− θ̂(t− 1)] + ᾱ[y(t)− ϕ(t)T θ̂(t)]. (5.18)

Putting derivatives with respect to θ̂(t) and ᾱ to zero and solving the equa-

tions gives the updating formula

θ̂(t) = θ̂(t− 1) +
ϕ(t)

ϕTϕ
[y(t)− ϕT (t)θ̂(t− 1)] (5.19)

Multiplying the nominator with a factor γ and replace the denominator ϕTϕ

to ϕTϕ + α makes it possible to change the step length of the parameter

adjustment and potential problem with ϕ = 0 is avoided. These changes to

the updating formula (5.19) gives the final NPA as

θ̂(t) = θ̂(t− 1) +
γϕ(t)

α + ϕ(t)Tϕ(t)
[y(t)− ϕT (t)θ̂(t− 1)] (5.20)

where α ≥ 0 and 0 < γ < 2 to get the algorithm stable. The recursive

scheme to calculate the parameter matrix with the NPA is given bellow:

1. ε(t) = [y(t)− ϕT (t)θ̂(t− 1)]

2. θ̂(t) = θ̂(t− 1) +
γϕ(t)

α + ϕ(t)Tϕ(t)
ε(t)

3. t = t+ 1

4. Go to step 1.

(5.21)
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Chapter 6

Simulations

This chapter concerns simulations of the RLS with forgetting factor and the

NPA used for estimations of the motor parameters. First, the simulation

procedure is described and then the results from the simulations are presented.

6.1 Simulation procedure

A three phase PMSM with salient poles is simulated in MATLAB/SIMULINK

to investigate the performance of the RLS with forgetting factor and NPA

algorithms applied to the electrical motor parameter identification. In the

simulation, the controller to the PMSM drive system with cascaded PI-

controllers as in Figure 3.2 is used. A similar drive system is used in the

implementation presented in chapter 5. The mechanical parameters of the

simulated PMSM are chosen identical to the test motor data sheet param-

eters. The nominal electrical motor parameters Ld, Lq and Rs that are

identified in the simulations are measured direct on the motor windings. ψm

is also measured and assumed to be known in all simulations.

Figure 6.1 shows the inner current loop of the vector control system to-

32



6.1 Simulation procedure

gether with the identification part. usq,x and usd,x represent the identification

signals. In order to identify the electrical motor parameters, the identification

signals must ensure that u∗sq and u∗sd satisfy the condition of persistent exci-

tation [20]. The identification signals are here binary signals that switches

between ±5V (' ±30% of the voltage limit to the motor) with a probability

of 20 percent in each sample. The measured disturbances are represented in

the simulation by nd and nq. They are created from Gaussian noise signals

with variance 1 multiplied with 1.5 percent of the actual current values. In

all simulations the sampling time h = 0.25ms. The initiated P matrix and λ

for the RLS are selected as follows:

λ = 0.99;

P =


0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1


(6.1)

For the NPA γ is chosen to:

γ = 0.01 (6.2)
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6 Simulations
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Figure 6.1: Inner current loop of the vector control system together with the
identification part.
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6.2 Simulation Results

6.2 Simulation Results

All combinations of start positions of the parameter matrix θ with

Rs0 = (1± 0.5)Rs

Ld0 = (1± 0.5)Ld

Lq0 = (1± 0.5)Lq

(6.3)

have been tested with the two algorithms used as commission offline param-

eter identification methods. The motor is in standstill with non loadand and

in each case both algorithms converge. The efficiency is quite clear, but it

can be seen that the NPA is less efficient than the RLS as expected. The

settling time for the NPA is about 1.2 seconds and for the RLS 0.02 sec-

onds, so the RLS is 6 times faster. Both methods converge to nearly the

same parameter values, but the NPA gives a large overshoot or undershoot

when estimating Rs. Figure 6.2 illustrates simulation results where the start

position of θ is chosen so that Rs0 = 0.5Rs, Ld0 = 0.5Ld and Lq0 = 0.5Lq.

Figure 6.3 illustrates simulation results when the rotor speed ωr = 600[rpm]

instead, the same results are obtained. Table 6.1 shows the magnitude mean

errors for the estimated parameters that are valid for both algorithms. Figure

||Mean Error||
Ld ≤ 5%
Lq ≤ 4%
Rs ≤ 0.7%

Table 6.1: Magnitude mean error for the parameters when RLS and NPA
are used as commission offline parameter identification methods

6.4 illustrates a simulation where the algorithms are used as online param-

eter estimation methods. Rs, Ld and Lq are here defined as variables of

35



6 Simulations

times that change sinusoidally. The PMSM is loaded with a constant torque

TL = 0.3Nm. The RLS tracks the parameter variations much better com-

pared to the NPA and especially when it comes to Rs. Table 6.2 shows the

maximal magnitude of the parameter error for the two algorithms in this sim-

ulation. Figure 6.5 shows a simulation were the load torque and parameters

(||Max Error||)RLS (||Max Error||)NPA
Ld ≤ 18% ≤ 42%
Lq ≤ 16% ≤ 32%
Rs ≤ 12% ≤ 70%

Table 6.2: Maximal magnitude of the parameter error for the RLS and NPA
when the parameter changes sinusoidally

are changed with a step during the simulation. After 0.3s TL increases from

0.3Nm to 0.5Nm by a step, Ld decrease with 5%, Lq decrease with 50% and

Rs increase with 40%. The settling time is around 0.08s for both algorithms

after the steps are introduced. The two algorithms do not converge to the

same parameter values when estimating Lq and Rs. NPA also gives a very

noisy estimate of Rs. Table 6.3 shows the steady state mean value of the

parameters after the first step at 0.3s. Figure 6.6 shows a simulation quite

(Mean Error)RLS (Mean Error)NPA
Ld ≤ 6% ≤ 6%
Lq ≤ 10% ≤ 71%
Rs ≤ 0.5% ≤ 4.7%

Table 6.3: Steady state mean value of the parameters after the first step
at 0.3s of simulation in Figure 6.5.TL increases from 0.3Nm to 0.5Nm, Ld
decrease with 5%, Lq decrease with 50% and Rs increase with 40%

similar to Figure 6.5, but now TL decrease from 0.3Nm to 0.1Nm by a step,

Ld increase with 5%, Lq increase with 10% and Rs decrease with 20% instead.
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6.2 Simulation Results

In this case, both algorithms convergence and the mean parameter errors in

steady state are nearly the same. Table 6.4 shows the steady state mean value

of the parameters after the first step at 0.3s for this simulation. The reason

(Mean Error)RLS (Mean Error)NPA
Ld 3.2% 3.3%
Lq 2.7% 2.6%
Rs 0.9% −0.4%

Table 6.4: Steady state mean value of the parameters after the first step at
0.3s of simulation in Figure 6.6. TL decrease from 0.3Nm to 0.1Nm by a step,
Ld increase with 5%, Lq increase with 10% and Rs decrease with 20%

way the RLS convergence much slower when the parameters change stepwise

during the time is because we have same memory stored from old parameter

values in the covariance matrix P (t) and the step size L(t) = P (t)ϕ(t) is now

much smaller compared to the initialization. RLS with forgetting factor is

based of the assumption that the behaviour of the algorithm is homogeneous

in time [11] and step changes in the parameters are therefore less suitable.

If the forgetting factor λ is decreased, the algorithm will be faster due to

the fact that P (t) contains less information of previous date. The cost of

that is noisier parameter estimation. In a situation with step changing (or

very fast changing) parameters, it is more appropriate to reset the P (t) to

a large value matrix when the parameter changes occur. The problem here

will be to detect the step changing in the parameters. Figure 6.6 illustrate

a simulation similar to Figure 6.6, but now the the covariance matrix P (t)

is reset when a step change in the parameters occur. The mean parameter

error after convergence is more or less the same, but settling time for the

RLS is equally fast as for the offline case.

In Figure 6.8 and Figure 6.9 angular errors of the rotor flux position

are introduced in the vector control system to investigate the robustness of

37
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the algorithms when the exact rotor flux position is not known. It can be

seen that if 5% angular error is introduced the parameter errors from the RLS

nearly do not change at all. For the NPA we also have good performance, but

the estimation of Rs becomes more noisy and the mean error changes from

−0.4% to −1.5% (in same simulation the mean error of Rs does not change

at all). Generally, for both algorithms, when the angular error increases

the absolute value estimation error of Rs increases and becomes more noisy.

Table 6.5 shows the mean parameter errors when the the angular error is as

much as 40%.

(Mean Error)RLS (Mean Error)NPA
Ld 12% 14%
Lq −5% 0.5%
Rs −8% −3%

Table 6.5: Mean parameter errors when an angular rotor flux error of 40%
is introduced in the vector control system
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decrease with 5%, Lq decrease with 50% and Rs increase with 40% in the
first step.
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Figure 6.6: A simulation were the load torque and parameters are changed
with steps. After 0.3s TL decrease from 0.3Nm to 0.1Nm by a step, Ld
increase with 5%, Lq increase with 10% and Rs decrease with 20%.
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Figure 6.7: A simulation were the load torque and parameters are changed
with steps similar to Figure 6.6, but now the the covariance matrix P (t) is
retested when a step change in the parameters occur.
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Figure 6.8: A simulation were an angular rotor flux error is introduced in
the vector control system. The angular error increments from 0◦ to 10◦.
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Figure 6.9: A simulation were an angular rotor flux error is introduced in
the vector control system. The angular error increments from 10◦ to 40◦
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Chapter 7

Implementation

In order to further verify the performance of the proposed identification meth-

ods, recorded data from a testbed PMSM drive system similar to the simula-

tion set-up in Chapter 5 have been used in MATLAB/SIMULINK together

with the algorithms. A complexity analysis of the RLS with forgetting factor

and the NPA have also been done to investigate if the algorithms are suitable

for implementation in existing DSP:s at Aros electronics AB.

7.1 Implementation complexity

To investigate the implementation complexity of the two methods, the num-

ber of operations that are needed for each algorithm has been calculated.

Table 7.1 shows the number of operations that are needed for implementa-

tion of the RLS and the NPA.

Computational time for both methods has been estimated from the num-

ber of operations that are required. Table 7.2 shows the estimated computa-

tional time for two DSP:s at Aros electronics AB.
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7 Implementation

Multiplications Additions Divisions
NPA 36 14 1
RLS 104 72 2

Parameter Calculations 0 1 3

Table 7.1: Number of operations that are needed for implementation of the
RLS and the NPA.

DSP1 DSP2
NPA + Parameter Calculations 24µs 4µs
RLS + Parameter Calculations 66µs 11µs

Table 7.2: Estimated computational time for RLS and NPA.

7.2 Implementation Set-up

Figure 7.1 illustrates the implemented vector control system together with

the identification signals. The inputs and outputs are recorded and stored

in a memory. The recorded data are then used in MATLAB/SIMULINK

together with the two algorithms.
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7.3 Experimental Results

In the experimental results, the recorded data from the realizations is used

in MATLAB/SIMULINK in order to test the algorithms. The parameter

variations due to different working points are assumed to be in the range

0.8Rs,m < Rs < 1.4Rs,m

0.95Ld,m < Ld < 1, 05Ld,m

0.5Lq,m < Lq < 1.1Lq,m

(7.1)

where Rs,m, Ld,m and Lq,m correspond to the measured values.

Figure 7.2 shows the result from a realization where the identification

signals usq,x and usd,x switches between ±4V (' ±24% of the voltage limit

to the motor) with an approximate probability of 20 percent in each sample.

The motor is non loaded and the mechanical rotor reference speed ωm,ref is

set to zero. The algorithms are here used as commission offline parameter

identification methods. In this realization the loss function (5.1) converges

to zero, so the quadratic error is therefore minimized. A theoretical param-

eter matrix θ has been calculated in MATLAB from equation (4.7) with the

expected parameter values. The discretization method was ZOH (n→∞ in

equation (4.4)) in order to minimize the approximation error. By comparing

the estimated parameter matrix θ̂ with the theoretical θ, it is shown that all

elements that are expected to be zero are close to zero and that the other

elements have the right sign. Nothing here indicates bad quality of θ̂.

In order to test the algorithms as online methods, a realization were the

ωm,ref = 600[RPM ] and TL,extra = 0.5[Nm] has further been done. The same

identification signals usq,x and usd,x have been used as in the first realization

(Figure 7.2). Results can be seen in Figure 7.3. In this realization, the loss
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function (5.1) also converges to zero, but by comparing θ̂ with the theoretical

θ (calculated in a similar way as in the firs realization), it is shown that one

of the elements has the opposite sign and that one of the other elements is

close to zero which it should not be. This could indicate that θ̂ is fitted

to some disturbance in the measured three phase currents and/or that the

applied tree phase voltages to the motor deviate from the reference voltages

used as input to the algorithms (the three phase voltages are not measured).

Figure 7.4 illustrates another realization were TL,extra = 0.1[Nm], ωm,ref =

600[RPM ] and usq,x, usd,x switch between ±3V (' ±18% of the voltage limit

to the motor) with a approximate probability of 6 percent in each sample.

Also here the loss function (5.1) converges to zero. Comparing θ̂ with the

theoretical θ (calculated in a similar way as in the first realization) gives

similar results as in the realisation illustrated in Figure 7.3 and the same

conclusions can be drawn.
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Figure 7.2: Result from a realization were usq,x and usd,x switches be-
tween ±4V with a approximately probability of 20 percent in each sample.
TL,extra = 0 and ωm,ref = 0
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Figure 7.4: Result from a realization were usq,x and usd,x switches between
±3V with a approximately probability of 6 percent in each sample, TL,extra =
0.1[Nm] and ωm,ref = 600[RPM ].

54



Chapter 8

Conclusion and Future Work

In this chapter, the conclusions from the thesis are presented, and some future

work is suggested.

8.1 Conclusion

In this thesis, two identification methods for electrical PMSM parameters

are studied and compared. The RLS with forgetting factor and the NPA are

applied to the salient PMSM model in dq-coordinates. The electrical stator

parameters Rs, Ld and Lq are identified both online and offline. The rotor

flux linkage ψm is assumed to be known.

The following summarizes the most important conclusions of the simula-

tions in chapter 6.

• It is shown that for the commission offline parameter identification

case, both algorithms converge to the same parameter values, but the

RLS is about 6 times faster and the NPA gives a large overshoot or

undershoot when estimating Rs. The magnitude mean error of the
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estimated parameter Ld is lower than 5% and for Lq lower than 4%.

When it comes to Rs the magnitude mean error is lower than 0.7%.

• Both algorithms are capable of tracking time varying PMSM param-

eters, but the RLS tracks the parameter variations much better com-

pared to the NPA and especially when it comes to Rs.

• The NPA gives noisier parameter estimations in general.

• Both algorithms are robust to angular error in ψm lower then 5%.

The following summarizes the most important conclusions from chapter 7,

Implementation.

• Computational time for both methods has been estimated from the

number of operations that are required and it is shown that the NPA

is about 3 times faster compared to the RLS. The fastest DSP today

at Aros electronics AB can approximately execute the NPA in 4µs and

the RLS in 11µs. It is important to clear out that this is a rough

approximation.

• Experimental verification from real motor data has shown that the

algorithms do not convergence to the same parameter values. The

NPA estimates the parameter higher than the RLS and especially Lq.

• The stator resistance and the stator inductances have been measured

directly on the motor windings and compared with the identified pa-

rameter values from the algorithms. It is shown that they deviate

more than expected. Analysis of the obtained estimates indicates that

the parameter values could have been fitted to some disturbance in the

measured motor currents and/or that the applied voltages to the motor

deviate from the reference voltages used as input to the algorithms.
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8.2 Future Work

This thesis has considered parameter identification algorithms for electrical

PMSM parameters. As always, much more aspects could be considered. The

following gives some proposed future work to the thesis.

• It is a time delay from the reference voltage to the voltage applied to

the motor. This time delay is not considered in this thesis. It would be

interesting to investigate the impact of the time delay on the parameter

identification algorithms.

• More investigations could be done to verify that the recorded motor

data and the measured currants are correct.

• When the algorithms work properly on the recorded data the next step

would be to implement one or both algorithms in real time.

• By identifying parameter variation in real time it is possible to detect

drive faults. A lot of research has been done in this area and it would

be interesting to investigate how well the algorithms work for drive

fault diagnosis.
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