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Abstract—In this paper, we discuss the possibility to sup-
press interference for wideband multiple-input-multiple-output
(MIMO) radar, using only the temporal properties of the signals.
The idea is to use tunable filters each connected to a wideband
waveform generator, and to derive the optimal power spectral
density (PSD) of the resulting signals in a known environment.
The metric used to evaluate the enhancement in the system
performance is the signal-to-noise and interference ratio (SNIR),
from which the optimal transmit and receive filter properties
are derived. We discuss two optimization approaches: one alter-
nating and one joint algorithm. Each method is separated into
two cases: for a total power constraint and for an individual
power constraint on the transmit filters, respectively. Numerical
validation illustrates the possibility to suppress the interference
in the temporal domain, without actually forming a spatial null
in the direction of the interference.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) radar has in the re-
cent years drawn considerable interest. A comparison between
the related MIMO communication area and MIMO radar is
presented in [1]. Further, an investigation of how MIMO
antenna systems can potentially improve the radar performance
is discussed from a general point of view in [2].

In this paper, we seek to find the optimal signal design
to suppress interference. In the literature there are two main
design approaches, where the first focuses on the spatial
properties of the transmit signal and the second concerns the
temporal properties of the transmitter–receiver chain. For the
first approach, the problem is usually expressed as an optimiza-
tion of the spatial correlations of the waveforms. Research so
far concerns mainly narrowband radar, see e.g. [3] [4], where
the optimization procedure may involve finding the covariance
matrix of the waveforms that coincides with a desirable
transmit beampattern. For the wideband case the problem is
reformulated as matching the cross spectral density matrix to
a desired spatial beampattern [5]. In [6] the signals are instead
described by the Fourier transform of the beampattern.

The focus of our work is on the second case, where
the temporal properties of the signals are used to suppress
interference. This is typically achieved by using tunable filters
at the transmitter and receiver sides. In the area of MIMO
communication, a multitude of studies concerning this design
process have been performed, e.g. the optimal design of space-
time precoders and decoders is described in [7], and in [8]
methods to design complex relay networking beamforming

weights are addressed. A similar problem has been considered
for radar [9], where an alternating method to design the
transmit and receive filters for an extended target in clutter
is discussed.

In this paper, we propose two algorithms for optimizing
the transmit and receive filters for a known scenario. The
environment may include the target(s) of interest, interference
and clutter. The focus is on signal-dependent interference
(smart jamming). Performance is measured at the receiver
output as a function of the signal-to-noise-and-interference
ratio (SNIR). Note that the investigation is a first step to reach
a fully adaptive system, where the waveforms are continuously
optimized to a time-variant scenario. Moreover, a combination
between a spatial and a temporal optimization may further
enhance the system performance.

Notation: Time domain samples are denoted by lowercase
letters, vectors by boldface lowercase letters and matrices with
boldface uppercase letters. Underlined samples, vectors and
matrices are used to emphasize a signal transformed into the
frequency domain. The transpose of a vector or a matrix is
denoted (·)T , the complex conjugate as (·)C and the complex
conjugate transpose as (·)H .

II. PROBLEM FORMULATION

Consider the radar system shown in Fig. 1, with K transmit
antenna subarrays, each equipped with Ks elements and L
receive antenna subarrays, each equipped with Ls elements.
Note that no spatially adaptive filters are used at the receiver
side. This ensures that no cancellation directions are formed
in the receive pattern. Let vk(t) = ck(t)e

j2πfct denote the
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Fig. 1. Schematic view of the system model.

continuous time domain signal sequence, where ck(t) is an
arbitrary signal generated from waveform generator k with
bandwidth B, k = 1 . . .K and fc being the carrier frequency.
Sampling ck(t) at t = nTs, where Ts = 1

B gives the discrete
baseband version of the signal, ck[n], n = 0 . . . N − 1, which
is assumed to be a white noise sequence. Each waveform



generator is connected to a transmit filter, here modeled as a
finite impulse response (FIR) filter with an order of P , yielding

sk[n] =
P∑
p=0

bk,pck[n− p], (1)

where bk,p are the complex weights associated with the FIR
filters. The signal is expressed as its equivalent discrete Fourier
transform (DFT)

sk[m] =
N−1∑
n=0

P∑
p=0

bk,pck[n− p]e−j2π
nm
N = fT [m]Ckbk. (2)

Here, m = 0 . . . N − 1, f [m] = [1 . . . e−j2π
(N−1)m

N ]T , bk =
[bk,0 . . . bk,P ]

T and

Ck =

 ck[0] . . . ck[−P ]
...

. . .
...

ck[N − 1] . . . ck[N − 1− P ]

 is a cyclically

shifted signal matrix.
Further, if we assume true time delay (TTD) technology in

the transmitters and receivers, the signals will not be distorted
by the wide signal bandwidth. At an angle α in a 2D space
(ignoring the effect of the time delay), the signal is

rα[m] =
K∑
k=1

aTT (α,
m

NTs
)wC

T,k(θT ,
m

NTs
)sk[m]. (3)

In (3), aTT (α,
m
NTs

) describes the physical antenna, where α
is the angle of departure (AOD) at frequency index m

NTs
and

wC
T,k(θT ,

m
NTs

) is the beamforming vector for the kth subarray,
θT being the steering angle. The sum of the received signals
is expressed as

y[m] =

L∑
l=1

( I∑
i=1

γi[m]wH
R,l(θR,

m

NTs
)aR(βi,

m

NTs
)rαi

[m]

(4)

+ nl[m])

)
,

where θR is the steering angle for the lth receiver antenna
subarray, βi is the angle of arrival (AOA) and γi[m] the
corresponding complex radar cross section (RCS), including
path loss. The receiver noise at the lth subarray is denoted
nl[m]. The received signal, y, is passed through a temporal
receive filter h giving the output signal u, which in the time
domain is

u[n] = y[n] ∗ h[n] =
N−1∑
i=0

hc[n− i]y[i]. (5)

The peak of u[n] is obtained when n = N − 1, i.e. u[N −
1] =

∑N−1
i=0 hc[N − 1 − i]y[i] = h̃Hy, where h̃ = [h[N −

1] . . . h[0]]T and y = [y[0] . . . y[N − 1]]T . Define a matrix F
that consists of the DFT coefficients and note that FHF = NI,
which results in

u[N − 1] = h̃H
FHF

N
y =

1

N
h̃HFHF(y) =

h̃HFHy

N
, (6)

where y is the DFT of y and is given in (4). We seek to
maximize the SNIR at the receiver output, defined as

SNIR =
E[|h̃HFHy

s
|2]

E[|h̃HFHy
i
|2] + E[|h̃HFHn|2]

. (7)

Here, y
s

and y
i

are the received signal components from the
targets and the interference, respectively, and n is the total
amount of receiver noise.

III. OPTIMIZATION PROCEDURE

In this section, the transmit and receive filters that yield
optimal system performance are derived. We assume the target
and interference signals to be deterministic (i.e. fixed), whereas
the noise is random. This gives the following maximization
problem

max
b,h̃

SNIR(b, h̃) =
|h̃HXsb|2

|h̃HXib|2 + E[|h̃HnF |2]
(8)

subject to ||bk||2 ≤ Pmax
T,k .

In (8), b = [bT1 . . .b
T
K ]T , nF = FHn, FHy

s
= Xsb,

FHy
i
= Xib and Pmax

T,k is the power constraint associated
with the transmit filters. Further, Xs = [xs[0] . . .xs[N − 1]]T

and xs[m] = [gs,1(m)c1[m] . . . gs,1(m)c1[m − P ]
gs,2(m)c2[m] . . . gs,K(m)ck[m − P ]]T , where gs,k(m) =
γs[m]wH

R (θR,
m
NTs

)aR(βs,
m
NTs

)aTT,k(αs,
m
NTs

)wC
T,k(θT ,

m
NTs

).
The matrix Xi is derived in a similar way.

Continuing, we discuss two optimization methods: one
alternating approach (see Section III-A) and one joint transmit-
receive approach (see Section III-B). This gives the possibility
to compare the performance of both methods. The optimal
transmit filters are derived for two cases: a total power
constraint and for an individual power constraint on each
subarray. To the respectively best knowledge of the authors the
latter case has not been studied for MIMO radar. Nonetheless,
it is of great importance as large antenna arrays typically are
divided into several subarrays with a power amplifier at each
element. Therefore, a power constraint associated with each
subarray is equivalent to (as the same waveform is used for
each element in the subarray) a power constraint one each
element.

A. Alternating Transmit–Receive Filter Optimization
Herein, the transmit and receive filter coefficients are opti-

mized separately, i.e. to solve the maximization problem (8),
we first find the optimal h̃ while keeping b fixed, and second
we find the optimal b for a fixed h̃. The problem is evaluated
for two power constraint formulations (see Section III-A1
and III-A2). To initialize, the weight coefficients are set to
be the optimal weights for the case where no interference is
present (the matched filter).

1) Optimization Using a Total Power Constraint: The
alternating method is similar to the one described in [9]
and [8]. However, our formulation is a combination of both
methods and evaluated for a different application. First, (8) is
maximized with respect to h̃

max
h̃

SNIR(h̃) =
h̃HXsbb

HXH
s h̃

h̃H(Xibb
HXH

i +Rn)h̃
. (9)



Here, Rn = E[nFn
H
F ] is the covariance matrix of the receiver

noise. By using the Cauchy-Schwarz inequality with vectors
(R

1/2
j,n h̃) and (R

−1/2
j,n Xsb), (Rj,n = Xibb

HXH
i +Rn), the

upper bound is obtained when h̃opt = R−1
j,nXsb. In the second

step, (8) is maximized with respect to b. The optimization
problem is reformulated as (see [8] for details)

max
b̂

SNIR(b̂) =
Pmax
T b̂HTb̂

b̂H(Pmax
T Q+ σ2

n,h̃
I)b̂

(10)

subject to ||b̂||2 = 1,

where b̂ = b/
√
Pmax
T , T = XH

s h̃h̃HXs, Q = XH
i h̃h̃HXi

and σ2
n,h̃

= h̃HRnh̃. The solution is b̂opt = Pmax
T (Pmax

T Q+

σ2
z,h̃

I)−1XH
s h̃, normalized to satisfy the unit norm constraint

and finally bopt =
√
Pmax
T b̂opt.

2) Optimization Using a Power Constraint for each Subar-
ray: In this section, we describe the alternating optimization
when each subarray has an individual power constraint. The
receive filter is independent of the power constraint. Thus, it
is solved as in the previous section. However, the second step
is

max
b

SNIR(b) =
|bHXH

s h̃|2

|bHXH
i h̃|2 + h̃HRnh̃

(11)

subject to ||bk||2 ≤ Pmax
T,k ,

where Pmax
T,k is the maximum allowable transmit power of the

kth subarray. Exploiting the properties of the trace operator
denoted as Tr(·), and by introducing a slack variable t gives
the reformulation by means of semidefinite relaxation [8]

max
B,t

t (12)

subject to Tr(B(T− tQ)) ≥ σ2
n,h̃
t (13)

Bkk ≤ Pmax
T,k ,B � 0.

Here, B = bbH . The optimization problem is quasi convex
and can be solved using a bisection technique [10]. Thus, a
convex feasibility problem is solved in each step for a fixed
value of t ∈ [tl tu], tl and tu being the lower and upper
bound for the feasibility problem. The variable, t, is increased
when there exist a feasible solution and decreased when the
solution is infeasible. Note that in semidefinite relaxation the
rank constraint on the matrix B is ignored. However, this is
not always fulfilled. In the sequel we assume that B has rank–
1 if 99% of the energy is contained in the largest eigenvalue.
Thus, if rank(B) 6= 1, a randomization technique [11] is used
to find a valid solution.

B. Joint Transmit–Receive Filter Optimization

Herein we discuss a joint optimization approach, where the
receive filter is directly given by the transmit filters. Thus, we
optimize the transmit filters while keeping the receive filter
matched to the transmitted signals in the mainbeam direction.
For fixed transmit filters the upper bound of the SNIR is
obtained when h̃opt = R−1

j,nXsb. Consequently, we write the

maximization problem as

max
b

SNIR(b) = bHXH
s R−1

j,nXsb

subject to ||bk||2 ≤ Pmax
T,k . (14)

Using the matrix inversion lemma yields the more computa-
tionally efficient form

SNIR(b) = bHX̂
H

s X̂sb−
bHX̂

H

s X̂ibb
HX̂

H

i X̂sb

1 + bHX̂
H

i X̂ib
, (15)

In (15), X̂s = R
−1/2
j,n Xs and X̂i = R

−1/2
j,n Xi which results

in the following optimization problem

max
b

SNIR(b)

subject to ||bk||2 ≤ Pmax
T,k , (16)

where Pmax
T,k is a total or divided power constraint for the

weight coefficients. The optimization problem consist of a
non–convex nonlinear objective function with constraints that
are nonlinear, i.e. for the total and divided power constraint.
A full grid search is of exponential complexity. We have
therefore used a local optimization technique, initialized in
a similar way as the alternating optimization. However, there
is no guarantee that the solution will converge to a global
optimum. Nonetheless, through experimental validation it is
seen that the cost function has several local maxima each
with slightly different SNIR, implying that the algorithm is
insensitive to the initialization vector. Thus, even by reaching
a local maximum we achieve the maximization of the SNIR.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithms. The following settings are used: a monostatic
radar, (α = β), equipped with a uniform linear array (ULA)
with K = 15 and L = 15 elements in the transmitter
and receiver, respectively, divided equally into 3 subarrays.
The carrier frequency is fc = 9 GHz with a bandwidth of
B = 1 GHz. This corresponds to a relative bandwidth of 11%.
The inter-spacing between the elements is d = c

2(fc+B/2)
.

The time domain samples ck[n], n = 1 . . . 256, are gen-
erated as complex white Gaussian noise with variance 1.
We investigate the case where a target with a radar cross
section (RCS), pathloss and effective receive subarray area
of γs[m] = γs = 20 log10(

Ps

P tot ) dB, (Ps = 10−2 and P tot

is the total maximum transmit power) is situated at an angle
αs = 30◦. The interference consists of a repetition jammer,
which retransmits the signal with an amplified power, here
Pj = 102 at αj = −30◦. The antenna array is steered towards
the target of interest, i.e. θT = θR = αs. The receiver noise
is generated as complex white Gaussian noise with a 10 times
higher power than the total maximum transmit power. The
results are averaged over 200 Monte Carlo trials.

The SNIR is evaluated for a total power of Pmax
T = 1 W,

and for a divided power of Pmax
T,k = 1

3 W. In Fig. 2, the
comparison of the SNIR for different number of FIR filter
orders is illustrated. As seen, the joint and the alternating
optimization methods follow each other and are bounded by



the matched filter bound, i.e. when no interference exist. As
expected, the SNIR is reduced when the power cannot freely
be distributed between the transmit filters.
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Fig. 2. Comparison of the maximum SNIR for both optimization method
evaluated for different FIR filter orders.

Continuing, we expect that the alternating and the joint
optimization converge to the same value. Hence, by increasing
the number of iterations and forcing the alternation to con-
tinue, the difference reduces from 3% after 10 iterations to
0.03% after 20.000 iterations for the total power constraint. In
comparison, for the divided power constraint it is not obvious
that the algorithms converge to the same SNIR due to the
semidefinte relaxation, where the solution may not satisfy the
rank–1 condition.

To evaluate the solution of the joint optimization; 100
randomly initialized weight coefficients are used as start values
for the optimization, and each trial achieves the same SNIR
with a maximum difference in the fourth decimal.

An initial study of the expected loss in performance when
the prior knowledge of the angle towards the target and jammer
differ from the actual position is shown in Table I. The results
are evaluated for a mismatch error of σ2

e = [0.5, 1, 2, 5]
degrees, P = 3; and averaged over 200 Monte Carlo runs
for each SNIR maximization trial.

TABLE I
PERFORMANCE DEGRADATION DUE TO POINTING ERROR

σ2
e = 0.5 σ2

e = 1 σ2
e = 2 σ2

e = 5
E[SNIR], αs error 11.3 11.2 11.1 10.5
E[SNIR], αj error 11.3 11.1 10.4 7.6

In Fig. 3 the normalized wideband antenna array beampat-
tern is illustrated. We define it as the sum over the frequencies
at an angle α, i.e. AP[α] =

∑N−1
m=0 |rα[m]|2, where α is

divided into α = [−90 . . . 90) grid points corresponding to
the angles of interest. As illustrated, there is no cancellation
in the direction towards the jammer. Thus, the jammer is
suppressed using the temporal properties of the waveforms.
However, the power directed against the target is increased,
though the power enhancement is not large enough to cancel
the effect of the jammer.

V. CONCLUDING REMARKS

In this paper, we have discussed the possibility to suppress
interference using the temporal properties of the transmitted
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Fig. 3. Wideband antenna array beampattern before and after optimization,
for individual power constraint on each subarray.

signals. By using tunable filters, two algorithms that maximize
the SNIR for a wideband MIMO radar system are formulated.
Numerical validation show that it is possible to suppress the
interference in the temporal domain instead of in the spatial
domain. The algorithms are formulated for two different power
constraints on the transmit filters: a total and an individual
power constraint. Worth noting is that this investigation is a
first step to reach a fully adaptive system, where the waveforms
are continuously optimized to a time-variant scenario. A
drawback of the proposed approaches is that prior knowledge
of the environment has to be known.
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