

Chalmers University of Technology

University of Gothenburg

Department of Applied Information Technology
Göteborg, Sweden, December 2011

Interface for a Railway Control System
Master of Science Thesis in the Programme Intelligent Systems Design

Monireh Sanaei

Akbar Abdi Azandaryani

Report No. 2011:078

ISSN: 1651-4769

Chalmers University of Technology

University of Gothenburg

Department of Applied Information Technology
Göteborg, Sweden, December 2011

The Authors grant to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non

purpose make it accessible on the Internet.
The Authors warrant that they are

does not contain text, pictures or other material that violates copyright law.
The Authors shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about t

Authors have signed a copyright agreement with a third party regarding the Work, the
Authors warrant hereby that
third party to let Chalmers University of Technology and University

the Work electronically and make it accessible on the Internet.

Interface for a Railway Control System

Monireh Sanaei, Akbar Abdi Azandaryani

© Monireh Sanaei, Akbar Abdi Azandaryani

Examiner: Claes Strannegård

Chalmers University of Technology
University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden

Telephone + 46 (0)31-772 6036

Department of Applied Information Technology

Göteborg, Sweden December

Chalmers University of Technology

Applied Information Technology
December 2011

to Chalmers University of Technology and University of Gothenburg

exclusive right to publish the Work electronically and in a non

purpose make it accessible on the Internet.
they are the authors to the Work, and warrant

does not contain text, pictures or other material that violates copyright law.
shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about this agreement. If the

signed a copyright agreement with a third party regarding the Work, the
hereby that they have obtained any necessary permission from this

third party to let Chalmers University of Technology and University of

the Work electronically and make it accessible on the Internet.

Interface for a Railway Control System

Monireh Sanaei, Akbar Abdi Azandaryani

Akbar Abdi Azandaryani, December 2011.

Strannegård

Chalmers University of Technology

Department of Computer Science and Engineering

772 6036

Department of Applied Information Technology

December 2011

to Chalmers University of Technology and University of Gothenburg

exclusive right to publish the Work electronically and in a non-commercial

d warrant that the Work

does not contain text, pictures or other material that violates copyright law.
shall, when transferring the rights of the Work to a third party (for example

his agreement. If the

signed a copyright agreement with a third party regarding the Work, the
obtained any necessary permission from this

of Gothenburg store

8 | P a g e

Abstract

Centralized Traffic Control, commonly named CTC, is the most common way nowadays
of controlling train traffic. It is based on the principle of centralizing all information
concerning railroad tracks over a given area and to control trains running on it by the
mean of a single person, the train dispatcher. This technology needs efficient

telecommunications as the employee who dispatches trains is not physically present at a
station but more commonly at a remote place, namely the CTC office. The CTC retrieves
railway signals and gives useful information to the train dispatcher.

Although it was a completely hardware device, CTC is now most of the times a software
which summarizes signals, headways and trains to allow the train dispatcher taking

good decisions, particularly when some trains stop or have delay. Some of CTC are even
partially automatic and can take routine decisions by themselves, letting only critical
decisions for human control. It also most of the times prevent human errors by avoiding

decisions which could result in train collisions.

This thesis objective is to design and development of sub-system CTC in the software

system InterFlow for Bombardier Transportation incorporation. In this context, the CTC

is the run time user interface and alarm handling facility for the stationary part of the

InterFlow system, subsystem for Centralized Traffic Control.

This thesis describes the process of design and implement a new interface to TCC server

in order to use XML formatted messages over a TCP/IP socket, and design and
implementation of new graphical user interface and integrate it with existing graphical

component which has been developed in Adobe Flex in another thesis project.

This report has been divided into five chapters. The first chapter provides the
background and motivation of the thesis. The second chapter describes the evaluation of

candidate frameworks considering the requirements in order to choose the most

appropriate framework for this application. The third chapter explains the design
process of different parts of the application. The fourth chapter explains the
implementation. At the end of each section within the chapters the results has been

explained. The final chapter provides the conclusion.

9 | P a g e

Acknowledgements

We would like to thank all the people who support us during this thesis, Martin Karlsson
our supervisor in Bombardier transportation and Olof Torgersson our supervisor for
Interaction Design and Claes Strannegård our examiner professor in Chalmers

University. Also we would like to thank our families and friends for their kind supports.

10 | P a g e

Table of Contents

Abstract .. 8

Acknowledgements .. 9

1 Introduction ... 1

1.1 Bombardier Transport ... 1

1.2 Context and motivation .. 1

1.3 Objectives ... 2

1.4 System Architecture .. 2

2 Framework Evaluation ... 4

2.1 Overview ... 4

2.2 Target Frameworks ... 4

2.2.1 Java .. 4

2.2.2 C#.NET ... 6

2.2.3 Power Builder ... 9

2.3 Requirements Analysis .. 11

2.3.1 Requirements Specification ... 11

2.3.2 Support for Local Languages ... 15

2.3.3 Socket Communication .. 16

2.3.4 XML Parsing .. 17

2.3.5 Database Connectivity .. 18

2.3.6 Integration with Adobe Flex .. 19

2.3.7 Portability.. 21

2.3.8 Ease of Use for Developer ... 21

2.3.9 Widely Common in Industry .. 22

2.3.10 Maturity ... 22

2.3.11 Maintainability in Future .. 22

2.4 Conclusion ... 23

3 Application Design .. 27

3.1 Overview .. 27

3.2 Model-View-Controller Design Pattern .. 27

3.2.1 Model ... 28

11 | P a g e

3.2.2 View ... 28

3.2.3 Controller .. 28

3.3 TCC Interface .. 29

3.3.1 Communication Protocol ... 30

3.3.2 Method .. 32

3.3.3 Results .. 38

3.4 Application Logic .. 39

3.5 Graphical User Interface ... 40

3.5.1 Design Theories and Methodologies ... 40

3.5.2 Method .. 43

3.5.3 Results .. 45

4 Implementation.. 46

4.1 Overview .. 46

4.2 TCC Interface .. 46

4.2.1 Protocol Handling .. 47

4.3 Application Logic .. 47

4.3.1 Model ... 47

4.4 Graphical User Interface ... 49

4.4.1 Functional Requirements .. 49

4.4.2 Results .. 50

5 Conclusion .. 63

Terminology .. 65

References.. 66

Appendix .. 70

1 | P a g e

1 Introduction

This chapter includes an overview of the thesis, background, context at the company and
objectives of the thesis as well as the method and limitation.

1.1 Bombardier Transport

Bombardier is a global transportation company with engineering and producing sites in
23 countries and worldwide service sites. This company is providing worldwide
leadership in Aerospace and Rail Transportation. Bombardier Transportation (BT) is a

worldwide leading supplier of equipment to railways. The Rail Control Solutions (RCS)
division within BT develops, installs and maintains system solutions for rail traffic
control and supervise, i.e. signaling systems. The Gothenburg office of BT/RCS is
specialized in systems based on radio communication, a leading edge technology within

the rail industry which reduces the need for physical installations substantially

compared to traditional systems.

1.2 Context and motivation

Bombardier’s solution contains many components, one of them is CMI, Controller

Machine Interface which is the interface to the system for dispatcher to control and

supervise the traffic. Its main feature is a graphic representation of the track layout, in

which positions of trains and states of objects are continuously updated. The dispatcher

can get access to command menus by clicking relevant objects in the layout.

The CMI is often subject to specific customer requirements, tradition and/or system

environment imposes different solutions, which may be provided by the customer,

another unit within Bombardier, or a third party. But there also exist a locally developed
alternative, branded EBIScreen 1400, which can be supplied to customers as a fall back

solution to keep the system operational in case of failure of the main CMI. The EBIScreen
1400 has not been part of any of our projects for several years, and is in many respects

based on obsolete technology.

The object of the thesis project is to transfer this product to a modern environment,
using state-of- the-art technologies. This transfer requires design and implements new

interface to Train Control Center or TCC and also new graphical user interface which can

be integrated with available graphical component representing the Track Layout.

2 | P a g e

1.3 Objectives

The first objective of this thesis is to evaluate candidate technologies considering the

requirements to observe which development environment fits better with the
requirements.

The second objective is to design the application, including design of the new interface
to TCC according to the available communication protocol using XML formatted
messages, as well as design of new graphical user interface considering the available

graphical user interface with the aim of improving it in order to make it more efficient
and user friendly. Also design the rest of the application’s logic which was the data and
logical parts to handle the logic of the application in connection with the two interfaces,
TCC interface and graphical user interface.

The third objective is to implement different parts of the application including logic, TCC

interface and graphical user interface using the suitable framework.

1.4 System Architecture

The CTC is the run time user interface and alarm handling facility for the stationary part
of the InterFlow system. CTC provides the train dispatcher with means of controlling

and supervising the system.

CTC communicates with RBC for all train control functions. Alarms are read from and

manipulated in the database, where they may be placed by any subsystem.

The CTC subsystem consists of two main functions, Run time MMI for the InterFlow

stationary system and Event logging facility. The MMI is a client process, using the RBC

subsystem as a server.

3 | P a g e

Figure1. System Architecture

4 | P a g e

2 Framework Evaluation

2.1 Overview

This chapter as explained earlier in the report is dedicated to the evaluation of

frameworks. According to the first objective of the thesis there was an evaluation on
different candidates for frameworks. The requirements to be considered includes
capability to meet the application requirements specification, support for local
languages, support for socket communication, support for XML parsing, support for

database connectivity (MYSQL), integration with available graphical component,
portability, ease of use for developer, being widely common in industry, maturity and
finally maintainability in future.

2.2 Target Frameworks

Main candidates for frameworks were Java and C sharp, besides the upgraded version of

PowerBuilder should be considered as well. In order to do the evaluation, first we

provide an overall description for each of these candidate frameworks considering their

advantages and drawbacks, and then provide analysis of the each framework remarking
the framework requirement for this thesis.

2.2.1 Java

Java platform and language has been started in December 1990 by Sun Microsystems

and for the first time it was released in 1994 and the current version is Java SE7 released
in July 2011. The target was as an alternative to available programming languages such

as C and C++ languages, while being object oriented language, get rid of memory
managing issues and being portable cross different platforms. 1

Java programming language is a general-purpose language and it gives the possibility to

write code on wide range of areas from a piece of code for mobile phones to enterprise
computer network applications, “expecting low level code which deals directly with

underlying hardware.” 2By the way it provides some mechanisms to perform platform-

dependent tasks, although Java is not made for this purpose. 2

5 | P a g e

There are several advantages which make Java one of the most common used

programming technologies in industry which some of the most important one are
explained here.

It is an object oriented language in which application components are treated as objects.
The developers need to understand the concept of object that is quite straight forward.

Then can start coding by creating objects and manipulating them and reuse the objects
in different pieces of code. Regarding the fact that The Java core libraries provide
programmers a well-designed and intuitive set of APIs containing well-known set of
classes with proper set of methods to manipulate common objects and perform common
tasks on them.

The other major advantage of Java is the portability. Put another way, Java is on a higher
level of abstraction in compare to many other languages in order to make it portable
regardless of underlying platform. This property enables the developers to create
software application once and run it on several different environments regardless of the

platform. The portability has been possible using software called Java Virtual Machine or

JVM which intermediates between Java program and underlying platform. It comes up
with some disadvantages as well for instance lower speed of execution although it has

been improved by introducing Just-in-time compiler later on. 2

Figure2. Java Code Cycle 5

6 | P a g e

The other major facility providing by Java for the developers is automatic memory
management using the Garbage Collector. It frees the memory from the created object
when they are no longer used which is a tough and error-prone task for developers in

some other languages like C or C++. Java is secure and highly reliable in the sense of
error detection providing in compile time and also try-catch facility in run time to help
the developer to point out the faults. These properties make Java an easy and elegant
language for programmers to be more efficient and productive, compare to other

programming languages. 2

Figure3. Java Architecture 5

2.2.2 C#.NET

C Sharp or C# programming language had been started in January 1999 by Microsoft for

.NET platform and for the first time published in 2000. The current version is C# 4.0
version released in April 2010.

7 | P a g e

C# is common to be a multi-paradigm programming language, covering the concepts of

object oriented, functional, component oriented paradigms and etc. C# is general-
purpose language which suited for developing a wide variety of robust applications for
.NET platform from Windows-based to Web-based applications, particularly suits to
develop software piece to use in distributed systems. 4

.NET Framework is a software component running on Microsoft Windows. This
framework includes two main components; a virtual execution system called the
Common Language Runtime (CLR) and a set of class libraries. Common Language
Runtime is in charge of handling the code execution issues such as memory
management, threading, exception handing and type safety. And the class libraries

which are organized in to namespaces are containing a comprehensive set of predefined
useful classes that enable developers to develop all kinds of applications ranging from
Consol to Web application. 3

Figure4. .NET Framework platform Architecture 5

8 | P a g e

C# is a modern programming language which among the other programming languages

is mostly compared with Java. The reason of this comparison is for having many
common features similar to Java programming language. But since C# has been invented
later than java, the creators have inspired from both the strengths and weaknesses of
Java.

C# is object oriented programming language with strong type checking. Therefore
developers can take advantage of creating reusable codes. One of the important design
goals of C# is to support internationalization. It supports automatic memory
management using Garbage Collector as well. 6

Despite the fact that C# source code is converted to an intermediate code called

 Microsoft Intermediate Language or MSIL which in runtime will be converted to
system-purposed code, but this intermediate code currently only runs on few operating
systems which the main one is Microsoft Windows platform. Therefore in the sense of
portability Java is preferred than C#.NET since it supported on more operating systems.4

9 | P a g e

Figurer5. C# Code Cycle 5

2.2.3 Power Builder

Power Builder was originally created by Powersoft in 1991. The first version was

released in July 1991. Powersoft later on acquired by Sybase. The current version is 12.5

but the major upgrade happened in version 12.0 released on April 2010. 7

PowerBuilder encompasses a scripting language called PowerScript, which is used for
application event handling. PowerBuilder includes a Foundation Class library (PFC)

which is based on object oriented design and contains a set of PowerBuilder libraries

(PBLs) including objects written in PowerBuilder. These libraries enable the developers
to create class libraries or applications by customizing them. 8

10 | P a g e

Figure6. PowerBuilder Application Architecture 9

PowerBuilder is an object oriented enable developer to develop reusable, robust and
maintainable codes. PowerBuilder is also event driven which events correspond to user

actions, such as clicking on components of the user interface, for instance buttons or
menu items. PowerBuilder can be used to develop desktop, Web, Rich Internet

Applications (RIA) or Windows Presentation Foundation (WPF) applications,
particularly suitable for developing business applications handling large amount of data

or including Graphical User Interface. 11

The most key component of PowerBuilder programming language is DataWindow object
which enables developers to specify and control user interface appearance and

behavior. This object also decreases the complexity of data access and manipulation by

facilitating the programmers to create, edit and display data from the database. 11

PowerBuilder is known to use Rapid application development (RAD) software

development methodology which consumes minimum time on planning in order to

starts developing the software rapidly. So it is quick and easy to develop. PowerBuilder
also has a high level of abstraction hiding programming complexities. Since
PowerBuilder version 12.0, in order to keep it in line among other available

competitors, there have been substantial efforts to make it back to the market. As a
major example of these efforts, one can point to provide the strategy to make

PowerScript compliant with common language specification (CLS) of .NET framework
which started in a version 9.0 and continued until current version. This facility enables

developers to develop applications that performs on several different platforms

provided by .NET Framework, including ASP.NET Web Forms, Windows Forms,
or Windows Presentation Foundation or WPF. 11

Since PowerBuilder 12.0, this strategy can make PowerScript language comparable with

C#, Java or VB.NET, in the sense of additional programming features supported by that

11 | P a g e

such as Arrays, Delegates, Parameterized Constructors, User-defined Enumerations and

Generics. In the current version PowerBuilder 12.5 adds support for some more new

features such as Multithreading. It has less flexibility, performance and more limitations
comparing for instance Java, by the way in current version of PB they overcame the
extensibility issue somehow. 10

2.3 Requirements Analysis

According to programming experiences, it is difficult to conclude which language is the
best and which one is the worst, because it pretty much depends on type of the target

application. For instance some experiences show that in the case of Graphical User
Interface development, C# Windows Forms are a lot better than Java Swing/AWT,
because it is faster to develop, the applications run faster and look better while for
developing Web application Java is great particularly on Linux servers.

In the following section this report takes a look at the requirements of this thesis and

then provides analysis of candidate frameworks’ capability to fulfill the requirements.

2.3.1 Requirements Specification

The requirements specification for the CMI application was the old version that has been
used for the earlier versions of the application. This specification mostly proceeds with
the CMI graphical user interface requirements and provides very detailed description of

interface components. After precise studies and considering the limited time, some parts

of it ignored through some revision for this thesis.

Graphical User Interface of the CMI is expected to be designed as Multiple Document
Interface or MDI.MDI is a Microsoft Windows programming user interface which enables
user to work with multiple documents at the same time. MDI encompasses a parent
window used as back or desktop window which can embed arbitrary number of child

windows, secondary windows can be added to provide additional information as well.
Through each window user can access different data through either menu bar or tool
bar or both of them and viewing some status regarding window via status bar.

12 | P a g e

Almost all graphical user interface APIs provide some components proper to develop

and manipulate MDI user interface. In the following part we provide an analysis of
available facility provided by the candidate frameworks to fulfill the requirement
specification.

Java Swing toolkit provides some components to implement multiple-document

interfaces, including JDesktopPane component proper to be used as the parent window,
JInternalFrame class as child windows and JDialog component as secondary windows.
Classes JDesktopPane and JInternalFrame provide many methods for handling child
windows.

Figure7. Java Multiple Document Interface Design 12

Here we explain a simple piece of Java code to indicate syntax for implementing
multiple-document interface.

To create MDI Parent window;

13 | P a g e

JFrame parentWindow = new JFrame ();

JDesktopPane desktop = new JDesktopPane ():

parentWindow.add(desktop);

And To create MDI Child windows;

JInternalFrame childWindow = new JInternalFrame ();

parentWindow.add(childWindow); 12

C#.NET programming language provides several properties through its graphical
interface component, Form, to create and manipulate multiple-document interfaces. As
we see in the following piece of code the C# solution is even shorter and straighter
forward than Java.

Figure8. C# Multiple Document Interface Design 14

14 | P a g e

To create MDI Parent window;

Form parentWindow = new Form ();

parentWindow.IsMDIContainer = true;

And To create MDI Child windows;

Form childWindow = new Form();

childWindow.MDIParent =
parentWindow;

And manipulating child windows for instance keep them focused, is performed using

ActiveForm property of an MDI Form. 13, 14

In PowerBuilder, to build multiple-document interfaces, either MDI Frame or MDI Frame

with Microhelp component are used as main or parent window.

Figure9. PowerBuilder MDI Application 15

15 | P a g e

The MDI frame window consists of three parts, Frame, Client Area and Sheets.

The Frame consists of components including menu bar, toolbar, window title and the
status bar to display Microhelp, a brief description of the current menu item or current
activity. Client Area is the area between MDI Frame title bar and the Microhelp status
bar in which the sheets are embedded. Sheets correspond to the child windows to

perform different user activities. These child windows are opened within the client area,
using OpenSheet() and OpenSheetWithParm() functions provided by PowerBuilder. 15

2.3.2 Support for Local Languages

The CMI application is often subject to specific customer requirements. One of these

requirements is the capability to adapt the application to different languages according
to customers around the world.

This process of adapting application is called Internationalization. In order to

internationalize an application, it required to be designed in such a way that enables the
user to change the language according to region, easily and quickly without software

engineering changes. The process of customizing the application to specific locale is

called Localization which is accomplished using locale and culture specific constituents

such as translated text, fonts, dates and currencies. Since the software applications

which only support English are getting old-fashioned, state-of-the-art software
technologies support internationalization.

Java SE platform fully supports internationalization within its libraries facilitating

language or culture-specific functionalities. A Java internationalization facility enables

developers to fast and easy development of multi-lingual applications. For instance in
java.text package, MessageFormat class provides local specific languages,

or SimpleDateFormat class supports calendar specific eras and date formats for calendar

systems different than Gregorian. 16

In .NET framework this language adaptation capability is called Globalization of which
both concept of Internationalization and Localization as explained above, are considered
as two aspects.

In C# System.Globalization namespace is dedicated to Globalization using
CultureInfo class. CultureInfo is the main class providing a set of different properties and
methods to customize the application according to specific cultures. 17

PowerBuilder internationalization support started with a translation toolkit in version
6.5. The Translation Toolkit is set of tools made by Sybase to localize PowerBuilder

16 | P a g e

applications. It supports language and culture specific data display for several different

languages such as French, German, Italian, Spanish, Dutch, Danish, Norwegian, and
Swedish using localized runtime files. After that by PowerBuilder 10 more complete set
of multi-lingual features has been added through Unicode support enabling developers
to build internationalized application. 18

2.3.3 Socket Communication

One of the main purposes of the CMI application is to connect to TCC server in order to
exchange data over TCP/IP socket. TCP/IP is complement suite of the Transmission
Control Protocol and Internet Protocol, providing a reliable ordered delivery of data

between computer applications on internet. It brings the requirement for the target
framework to support TCP/IP socket, application end-point for the communication over
internet using TCP/IP protocols.

Today in a world of connected computers is becoming more and more difficult to avoid

the need of communication in software applications. Therefore it is necessary to every
common programming language provides an API for socket communication.

Java facilitates socket communication through java.net package in which ServerSocket

and Socket classes are providing properties and methods to access and manipulate

socket for server and client applications, respectively. ServerSocket functionality is to

wait for client request over the network. Upon receiving such a request will process the

request by performing required operations and providing responses. The Socket

functionality is to try to initialize the communication by sending connection request to

server and then receives its response and so on. 19

C# programming language provides the socket communication through System.Net and
System.Net.Sockets namespaces, Socket class provides methods to create client and
server sides’ applications. Server program is listening to clients request using an

instance of TCPListener class and client program connects to server using an instance of

TCPClient class. 20

PowerBuilder provides socket communication through PowerSocket library, TCP/IP

Toolkit for PowerBuilder. The available source of this library is old and for 12 years ago,
so there is the probability that is no longer used. There is other solution, SocketWrench,

a software tool for network programming on Microsoft Windows platforms which can
be used with a range of programming languages including PowerBuilder. 21, 22

17 | P a g e

2.3.4 XML Parsing

As explained earlier, one of the objectives of this thesis is to design and implement the

communication protocol between CMI application and TCC server. The communication
protocol is an XML-based protocol or using XML-formatted messages. It requires that
both sides of the communication be able to do XML parsing.

Java provides several different libraries for applications in order to process XML

documents or messages, such as SAX; the Simple API for XML, DOM; the Document
Object Model API from W3C, XSLT; the XML Style Sheet Language Transformations from
W3C and etc. The most common of them are SAX and DOM. DOM parser creates a tree
structure of the XML source document in memory which enables random access to the
arbitrary nodes of the DOM tree. SAX parser works with event-driven fashion, tokens of

XML document are caught and thrown by the parser as events to be handled. 23

The .NET framework provides a wide variety of API options for reading and writing XML
documents which may offer different efficiency and productivity. To process XML

documents, C#.NET programming interface provides System.Xml namespace which is

built on key XML industry standards, such as DOM, XPath, XSLT, XML Schemas (XSD) and

etc. According to .NET framework, processing XML document is including several steps

or layers, as shown in the following figure. 24

Figure10. XML Processing Layers in .NET 24

18 | P a g e

XmlTextReader provides XML 1.0 byte stream functionality which is the most basic step

in processing XML documents. After this step, the higher layers are presenting XML APIs
choices in order to process the XML documents by treating them as logical tree
structures. The APIs performs with two main strategies, streaming and traversal-
oriented. The most common API for streaming strategy is SAX, but because of the

difficulties with SAX-based XML processing, it has been alternated by Microsoft with
simpler and more intuitive streaming API through the XmlReader class library. XML
schema and DTD validation facility is also provided through XmlValidatingReader class,
which can be used with XmlReader implementation including XmlTextReader. Provided

APIs for traversal-oriented strategy by .NET frameworks are including Document Object
Model or DOM and XPathNavigator. DOM is the most common traversal-oriented API
and is provided through the XmlNode class hierarchy. XPathNavigator API gives the
possibility to traverse XML logical tree using a cursor model. 24

The API provided by PowerBuilder to process XML documents is called PBDOM. This API

is quite similar to DOM library by the World Wide Web Consortium or W3C and also to
Java DOM or JDOM. It treats XML document based on tree model which can be traversed
and manipulated through provided methods within PowerScript code. 25

2.3.5 Database Connectivity

Besides providing the user interface, another facility of the CMI application is Alarm

Handling. Alarms are read from and manipulated in the database, where they may be

placed by any subsystem. In order to accomplish this facility the CMI application target

framework is required to support database connectivity for today common databases

particularly MySQL.

In Java platform, database connection facility is provided by Java Database Connectivity

or JDBC API through java.sql and javax.sql packages. JDBC makes it possible for Java

programs to virtually connect to any database such as MySQL, Oracle, postgresql, JavaDB
and etc, and then manipulates data using SQL queries. The only challenge left is to

connect with appropriate connection string. 26

In C# applications, database connectivity is performed by a set of components called
ADO.NET provided by Microsoft.NET framework. ADO.NET classes are contained in
System.data namespace, including System.Data.SqlClient, System.Data.Odbc,
System.Data.OleDb and System.Data.Oracle which are used to connect to different

databases. System.Data.Odbc class is used to communicate with the Sql Server database,
System.Data.SqlClient class is used to connect and manipulate MySQL

19 | P a g e

databases, System.Data.OleDb class is used to perform operations on the Access

Database and System.Data.Oracle class is used to perform operations on the Oracle
database. Another requirement for C# applications to connect to mysql database is a
small program called mysql connector .net which can be found in MySQL official website.
27

PowerBuilder can connect to most of major databases such as Sybase, IBM, Microsoft
and Oracle using its native driver which makes it faster and more efficient compares
using external drivers for instance Open Database Connectivity or ODBC. By the way it

also supports connectivity using ODBC, Java Database Connectivity (JDBC), Object
Linking and Embedding, Database (OLE-DB) and ActiveX Data Object for .NET
(ADO.NET) within Enterprise applications. 11

2.3.6 Integration with Adobe Flex

As mentioned before, one of the major parts of the graphical user interface which

presents the Track Layout has been developed in another project using Adobe Flex

technology. In this thesis is has to be integrated with rest of the CMI application user

interface, therefore it requires to consider the possibility and circumstances of

integration of Adobe Flex with the candidate frameworks. According to the structure of

graphical user interface of CMI application, integration should be carried out in such a

manner that embeds the Track Layout within the MDI interface. To consider the

feasibility and quality of this integration, first of all we provide an over view of Adobe

Flex technology and then proceed with the possible solutions to integrate it with each
candidate framework.

Adobe Flex is a free and open-source Software Development Kit or SDK by Adobe

Systems. The framework consists of a library of ActionScript classes and components
including wide variety of user interface controls enabling developers to build

applications containing user interface. It provides the option to execute graphical user
interface on the browser for Web applications using Adobe Flash Player, or on the
desktop using Adobe AIR.

The most common applications that are taking advantage of integrating Java with Adobe

Flex are Java server-side applications using Java Server Pages or JSP integrating with
Adobe Flex (desktop) as client side. The reason can be found in difficulties of developing

Java client-side applications that can be solved through Adobe Flex. For instance the
process of GUI development for client-side using Adobe Flex is more flexible and less

20 | P a g e

complicated than Swing development and would lead to more interactive and appealing

user interface.

Applications integrating Adobe Flex with Java can be a great solution for Rich Internet
Application or RIA while taking advantage of strong object-oriented principles of Java
such as abstraction, polymorphism, inheritance and etc, brings a highly interactive and

appealing graphical user interface for Java server applications. Today this solution
seems becoming more common, particularly with the help of available tools providing
easier way for development of Java and Flex together, such as the Eclipse integrated
development environment plug-in for Flex development. 28None of these solutions can
be used to embed Flex component in Java component. There are some libraries and

projects that are using this solution, such as The DJ Project, EasyJCom and JFlashPlayer
libraries. The NativeSwing library of DJ Project “allows an easy integration of some
native components into Swing applications, and provides some native utilities to
enhance Swing's APIs”. 29

EasyJCom and JFlashPlayer libraries enable the developers to embed swf into JFrame.

The problem with these libraries is that none of them are cross-platforms. EasyJCom
enables Java Swing to access COM/ActiveX components by embedding them. It requires

to built the Flash COM object (Flash.ocx)'s JNI DLL with EZ JCom using the package name

flashswf. 30 JFlashPlayer is a Flash Player API Java package that enables Java applications

to play and interact with Adobe™ Flash Player movies. Using this API enables to Call

Java methods from Flash and ActionScript functions from Java. 31

Available solutions in order to integrate .NET and Flex frameworks are based on the

communication between the libraries of the two frameworks. Put another way,

according to the integration answer for this application we considered the solutions to
embed the Flex component within Windows Form C# application.

There is a library called External API within ActionScript language which enables the

developers to interact with the container application. The container can be a web
browser or a desktop application, such as C# Windows Form. A prerequisite is to install

Flash Player to run the ActionScript compiled code or SWF file. Then the host application

only requires embedding SWF within Windows Form application and then can sending
and receiving data using the available methods within the API. 32 There is another

solution to integrate C# and Flex which is also based on the communication between the

frameworks libraries. This solution is used for client-server integration, through
remoting APIs, WebORB in .NET server side communicating with RemoteObject API in
ActionScript client side. 33

21 | P a g e

PowerBuilder enables the developers to embed Internet Explorer control within

windows in the applications. This may be probably solution in the case that Internet
Explorer is able to load Flex executable or SWF files. 34

2.3.7 Portability

As mentioned earlier, one of the most significant advantages of Java is portability,

provided by its virtual machine which takes care of the complexities between Java
applications and underlying operating system regarding to the type of operating system.
C# source code converts to a common intermediate language, CIL or MSIL which can be
performed on platforms supporting Common Language Infrastructure, such as the .NET

runtime on Windows, or the cross- platform using Mono runtime software.

PowerBuilder runs on different versions of Microsoft Windows platforms. According to

PowerBuilder 12.0 which is the latest stable version of PowerBuilder, it supports

Windows 7 Professional 32-bit platform, Windows XP (SP 3), Windows XP Tablet PC (SP
3), Windows Server 2003 (SP 2), and Windows Vista (SP 2). PowerBuilder 12.0

maintains support for deployment to Windows Server 2008 (SP 2). It also still supports

for deployment to Windows Server 2008 (SP 2), but no longer supports deployment to

Windows 2000. 35

2.3.8 Ease of Use for Developer

Providing facilities such as object oriented features, automatic memory management,
intuitive set of well-designed libraries, reusable codes, high level of abstraction hiding

the platform-dependency complexities besides plenty of available resources makes Java

programming language an elegant and easy target for developers in order to be more

efficient and productive.

C# programming language is an object-oriented language which compasses a bit more

complex features than Java. It is facilitating automatic memory management, high level

of abstraction, intuitive and comprehensive set of libraries, very expressive syntax
which makes it easy to learn and improves the developers’ productivity. 36

PowerBuilder is following object oriented paradigm with high level of abstraction. It is
taking advantage of Rapid application development (RAD) software development
methodology provides a quick and easy to develop applications.

22 | P a g e

2.3.9 Widely Common in Industry

According to the ranking provided by The TIOBE Programming Community index in

October 2011, Java is the most popular programming language with more than 17%
usage and C# with more than 6% is in the fifth rank among 20 first most popular
languages and Power Builder doesn’t exist even among first 50 programming languages.
It is remarkable that this ranking is based on the number of skilled engineers world-

wide, courses and third party vendors. 36

We pointed out the efforts to make PowerBuilder back to the market competing among
other available programming languages. One of the most major efforts was the effort to
make PowerScript compliant with common language specification (CLS) of .NET
framework and also enhancing PowerScript by adding new programming features such

as arrays, delegates and etc to make it comparable with Java or C#. By all these efforts,

according to the programming languages popularity ranking, PowerBuilder is not even
among the first 50 programming languages. 35

2.3.10 Maturity

There are some attributes that are predicated for a programming language as a mature

programming language. For instance the programming language should be in public

domain, it should be supported by a community such as forums. It should be used by
several groups to develop enterprise successful projects, and there should be set of

stable libraries or APIs and several other attributes which according to these attributes

all of the candidate frameworks are mature. 37

2.3.11 Maintainability in Future

Software maintenance is group of efforts to improve the software functionality, such as
debugging, improving performance, modifying current functionalities, adding new

functionalities and so on. Maintainability is not a standard and can be defined by
relatively different factors. Some of common factors counted as properties of
maintainable code are; clarity or readability of the code, modularity, being easy to

understand, less complexity, flexible in front of new changes and etc. 38

23 | P a g e

Considering the factors that improves Software maintainability and Java attributes, such
as object oriented paradigm which improves the modularity and understanding the
code, Garbage Collector which decreases the complexity and probable defect and etc, we

can conclude that Java is one of good option to have maintainable application.

The conditions are pretty much verifiable for C# programming language, even better by
having a very expressive syntax which improves readability of the code significantly.

PowerBuilder besides providing facilities to reuse codes, by minimizing the designing
time and maximizing the development time decreases the maintenance costs compared

to Java or C++.

Maintainability of an application developed in a specific programming language is

affected by popularity of the programming language in industry. In one hand as

explained earlier, there have been significant efforts in upgrading PowerBuilder in order

to keep it in track versus other popular technologies. In the other hand there are lots of

efforts encouraging industries to migrate their PowerBuilder applications to state-of-

the-art and reliable environment such as Java, VB.NET and ASP.NET, to decrease the risk

of getting pushed out the market completely by modern technologies.

The result of programming languages popularity ranking regarding PowerBuilder shows

that less people know or learn about this language which may cause trouble to

maintainability issues for PB applications in future.

2.4 Conclusion

The requirement analysis provided in this chapter enable us to conclude with one of
these candidates as the target framework. To accomplish the final evaluation we make a
summary of the result for each candidate framework as shown in table1.

Java framework fulfills the requirements specification. Java is fully supporting

application internationalization and localization facilities. Socket communication is
supported through Socket and Server Socket class hierarchies in Java API. It is providing
several APIs to process XML documents including Java DOM, SAX and StAX interfaces.

Java Database Connectivity or JDBC programming interface enables java applications to

connect to any database including MySQL. Integration with Adobe Flex component is

24 | P a g e

possible through several solutions which the appropriate one for the case of this

application is to embed compiled or SWF file of Flex component within Java component.
Java is portable, maintainable, mature and widely used in industry. Java providing object
oriented features, high level of abstraction and etc is an easy choice to for developers.

C#.NET meets the requirements specification. .NET framework provides

internationalization and localization facility through Globalization API. It supports
socket communication through System.Net and System.Net.Socket libraries. It provides
comprehensive set of API for XML processing through System.XML namespace.
Connectivity to MySQL database in .NET framework is offered through
System.Data.SqlClient class hierarchy. The integration with Adobe Flex component is

possible by embedding SWF within Windows Form application as well. C# applications
can be cross- platform using Mono runtime software. It is maintainable, mature and
widely used in software industry projects.

Power builder meets the requirement specifications as well. PowerBuilder facilitates

internationalization and localization through translation toolkit and Unicode support. It

supports socket communication through SocketWrench software component. PBDOM
application programming interface provides XML processing for PowerBuilder

applications. PB applications can connect to MYSQL database using ODBC connection. It

is may be possible to integrate Flex component with PB through loading Flex executable

or SWF file in Internet Explorer control embedded within PB window. Applications

developed in PowerBuilder are only supported by Microsoft Windows platforms. It has
not been commonly involved in industrial projects recently. It is mature programming

language but since it has not been state-of-the-art in recent years, it may affect the

maintainability.

The final conclusion we could come up with, considering all the requirements analysis,

PowerBuilder is not a suitable choice for the target framework since it doesn’t fulfill
some of the requirements. It is not cross-platform and widely used in industry, the

maintainability is with difficulties and the integration with Flex is not guaranteed. After

that, between Java and C#.NET frameworks, both of them seem appropriate for our
purpose. Considering and comparing more precisely indicates that portability and
connection to MySQL database for C#.NET is not as straight forward as Java which made
us to pick Java SE as the most suitable framework.

Requirements Java C#.NET Power Builder

25 | P a g e

Meet Requirements

Specification

Yes Yes Yes

Support for Local
Languages

Yes, Using Java
Internationalization

Java.Text.Message-
Format Library

Yes, Using
System.Globalization.

CultureInfo Library

Yes, It has been
available since

PowerBuilder v.6.5
and fully supported

since PowerBuilder
v.10

Support for Socket

Communication

Yes, Using

java.net.Socket and
java.net.ServerSocket

class hierarchies

Yes, Using

System.Net.Socket
class hierarchy

Yes, Using

SocketWrench
software component

XML Parsing Yes, Using Java DOM
SAX, StAX libraries

Yes, Using
System.XML

namespace

Yes, Using PBDOM
library

Database Connectivity
(MYSQL)

Yes, Using JDBC
library

Yes, Using
System.Data.SqlClient

class hierarchy
provided by ADO.NET

Yes, Using ODBC
library

Integration with

Adobe Flex

Yes, Possible by

embedding SWF file
of Flex component

within Java Swing

Yes, Using

ExternalInterface API
provided by

ActionScript and
through embedding
SWF within C#

Windows Form

Maybe, Using loading

Flex executable file in
Internet Explorer

control embedded
within PowerBuilder
window

Portability Yes Yes, Using
Mono runtime

software

No, Microsoft
Windows dependent

Ease of Use for
Developer

Yes, providing object
oriented features and

high-level of
abstraction

Yes, providing object
oriented features and

high-level of
abstraction

Yes, providing object
oriented features and

high-level of
abstraction

Widely Common in

Industry

Yes Yes No, has not been

state-of-the-art in
recent years

26 | P a g e

Maturity Yes Yes Yes

Maintainability in
Future

Yes Yes Problematic, less
people who learn and

know about it

Table1. Summary of Framework Evaluation

27 | P a g e

3 Application Design

3.1 Overview

This chapter describes the process of the CMI application design according to the second
objective of the thesis within four different sections. The first part is dedicated to overall
design of the CMI application, considering different modules. The second part describes

the design process of the new interface of CMI to TCC server based on the latest version
of the communication protocol using XML formatted messages. The third part describes
the design quality of the CMI application’s logic including the modules handling the data
and logical objects. The final section explains the design of new graphical user interface
considering the available version of the graphical user interface.

3.2 Model-View-Controller Design Pattern

Before proceeding with designing of individual modules, it is required to make an

overall view of the application to choose an overall strategy or pattern to design the

whole application. We can view the CMI application as an application encompasses

graphical user interface as one of its main facilities and logical modules to handle

application data as well. User interface and logical modules require interacting with each

other within the application but in an independent way. For this purpose, Model-View-
Controller or MVC design pattern has been used to decouple the data access and logic

handling from data presentation and user interaction of the application. Using MVC

pattern adds little more complexity to the code but provides some other benefits such as

improving the modularizing, usability and maintainability of the application. MVC

pattern decouples the application in to three different modules including model, view

and controller. 39

The pattern performs in such a way that whenever a user interacts with the application,

according to the interaction a proper event via the view is transferred to the controller.

Then, the controller will call proper method on the model to change its state (data). As
soon as the model changes its state will notify the concerning view (s) in order to get
updated state from the model and display it to the user.

28 | P a g e

3.2.1 Model

The model holds the data and logic of the application, so includes some objects with set

of public functions either to change the states of the models or get information about the
states. A model should be able to register view(s) and to notify them as well when its
state changes.

3.2.2 View

The view holds for data presentation and user interactions which includes all the

graphical user interfaces. A view would display and update the data by querying the
model which is displaying data for.

3.2.3 Controller

The controller acts as an intermediate between model and view modules. A controller

translates and transfers the user interactions such as button clicks, menu selection and
etc that happen in the views to actions that the models perform to update their states

according to the user interactions.

There are two types of MVC patterns. First the passive type in which the controller

informs the model to change its state and then informs the view of the change as well.

Second is the active type in which the controller only informs the model to change its
state, after is the model itself which notifies the view about change. In applications that
there is more than one source to change the data the active MVC should be used. In our

case, since the application shall run on different nodes of the network regarding the fact
that there is only one dispatcher in the network. The nodes connect to the dispatcher
which sends them information of the track layout objects and trains periodically and
they nodes can request changes on the data by sending messages to the dispatcher. 39

Whenever the user interacts with the application interface (view) the following
sequence occur, as the figure shows.

View realizes the interaction using the action listener registered for the interaction. For
instance every time that user pushes a button, action listener registered for the button is
being called.

29 | P a g e

View transfers the interaction to the Controller, through action listener that calls

appropriate method in Controller.

The Controller calls the appropriate method on model to update itself if required
according to the interaction.

As soon as the Model updates, notifies all its registered listeners of the change which can
be one or several views to get the latest changes in the data.

Figure1. MVC Design Pattern 40

3.3 TCC Interface

This part describes the process of designing the new interface between the CMI
application and the TCC server using the XML-based communication protocol. The first
step to design the interface was studying the communication protocol to understand the

content and structure of the protocol and message hierarchies. The next step was to

30 | P a g e

study Extensible Markup Language or XML technology considering available XML

facilities within the target framework to choose the most proper XML processing API.
The purpose of these studies is to find a way that leads us to the best facility which
provides the most simple and understandable implementation.

3.3.1 Communication Protocol

The communication protocol between CMI application and TCC server is an extensive
protocol with a hierarchical structure based on a specific general message format. The
general message format consists of three different sections, message head, message data
and message error check, as indicated in figure14. According to the protocol, every

message consists of message components which are either elements containing other
components or variables containing a value.

Message head consists of five components including receiver ID, sender ID, message

type, and time stamp and sequence number which are variables holding values of
receiver ID, sender ID, message type, time stamp and sequence number, respectively.

Message data consists of the message to be sent which is an element contains one of the
main message types out of the nine main categories of messages using in the protocol.

The main types of message is including ConnectionMessage, ControlMessage,

AlarmMessage, Indication, SystemCtrlMessage, SystemStatusMessage, CtrlResponse,

RefreshReady and AlarmAcknowledged messages.

Message error check consists of cyclic redundancy check or CRC which is an error

detecting code calculated for the message to detect accidental changes that may occur in
data while transferring through network. CRC32 is one of the most common variations
of CRC that has been used in this protocol.

31 | P a g e

Figure14. General Message Format

3.3.1.1 ConnectionMessage

ConnectionMessage contains seven sub categories of messages in order to handle all the

functionalities regarding connection procedure between the CMI and TCC applications.

The types of ConnectionMessage are including AcknowledgeConnection, ReqConnection,

Disconnect, Login, Logout, ContactRequest and ConfirmStartup messages.

3.3.1.2 ControlMessage

ControlMessage contains seven sub categories as well to send different commands from
CTC application to TCC server. The types of ControlMessage are including ObjectCtrl,
RouteCtrl, TrainCtrl, TSRCtrl, ESACtrl, AcknowledgeRequest and CommandAcknowledge

messages. These commands are used to handle different types of objects including
derailer, point, track and location objects through ObjectCtrl message, setting and
cancelation of the route objects through RouteCtrl message, different operations of the
train objects through TrainCtrl message, to handle TSRs through TSRCtrl command or to

handle emergency stop areas through ESACtrl message in the Track Layout.

ReceiverID

SenderID

MessageType

TimeStamp
MessageData

SequenceNo

MessageCRC32

GeneralMessage

MessageHead

32 | P a g e

3.3.1.3 Indication

Indication messages are sent from TCC to CTC spontaneously when changes in the
objects state occur in order to update the CTC information. This message can consists of
arbitrary number of three different components including Object, Train and TSR. Object

element can contain the information of different object including Derailer, Detector, ESA,
Point or Track in the Track Layout. Train and TSR elements respectively contain
information of Trains and Temporary Speed Restriction objects in the Track Layout.

The remaining messages are small messages which don’t contain more sub components.
These messages are including AlarmMessage which is sent from TCC to CTC to indicate

an alarm, or a status change of a previous alarm, SystemCtrlMessage to control
individual computers in the system, SystemStatusMessage to indicate status of
individual computers in the system, CtrlResponse to use as response to messages, and
RefreshReady to indicate that a requested refresh is ready. And AlarmAcknowledged

message is sent from CTC to TCC when operator has acknowledged an alarm, which is

identified by an AlarmInstance number.

3.3.2 Method

3.3.2.1 Extensible Markup Language

Extensible Markup Language or XML is an open and text formatted language made by

W3C organization which is an organization devoted for developing the Web and
standardizing protocols. Ease of use over internet, get supported by wide range of
applications, being human readable, Being easy to create and quick to design and being

easy to handle XML document through programs are some of the most important

considerations in design of XML. 41

This language has been originally intended for publishing large amount of electronic

data on the Web. Today XML is being used to exchange various types of data on the Web
and also communication between application programs. XML is a generic markup

programming language drawn from SGML. It is extensible knowing the fact that it is
possible to define different namespaces, namely different languages with their own
vocabulary. XML is easily recognizable by the usage of “<” and “>” signs framing

markups. The main objective of XML is to facilitate interoperability of heterogeneous
information systems. 41

33 | P a g e

XML 1.0 was published on February 10th 1998 by the W3C (World Wide Web
Consortium). This international organization, founded and in 1994 and still headed by
Tim Berners-Lee, the recognized inventor of Web was created in order to standardize

and promote compatibility between internet technologies such as HTML, RDF or CSS.
XML was originally a project intended to “enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with HTML” 41. This objective
has been completed as XML is now widely used to transfer information between

different languages, thanks to an easy implementation and standardized syntax and
tools.

The difference with HTML, which is also a markup language, is that XML can
theoretically use as many and as different markups as necessary. When HTML has
limited markups intended for a particular purpose (mainly orientated for document

presentation), XML can be considered as a meta language which allows inventing new
markups regarding which information the user wants to isolate and/or use. 41

However, XML differs from HTML in its usage, even if it is possible to present documents

with XML, it is mostly used in order to permit communication between languages, to

share information. XML is what we can consider as a simplification of SGML, the first

language for interoperability in the World Wide Web, way too difficult for a standard

user. Anyway, XML shouldn’t be considered as a language such as C or Java and is only
intended to structure data in a standard way. The strength of this language is to have

been able to federate the web community. Now plenty of languages gravitate around

XML which allow to manipulate XML documents (DOM, SAX), to describe them (DTD,

XML Schema), to format them (CSS), and so on. It is also now a standard document for

office tools like MS Office, OpenOffice or Apple’s iWork and is understood by most of

scripts and programming languages. 42

3.3.2.2 JAXP Technology

Java API for XML processing provides various libraries to process such as parse
transform or validate XML documents for Java applications. It consists of three different
XML processing interfaces, Document Object Model or DOM, Simple API for XML or SAX

and Streaming API for XML or StAX interfaces. Within the following section, we provide
an overview of all of these interfaces considering the properties offered by them.

3.3.2.3 DOM interface

34 | P a g e

Document Object Model or DOM interface builds an object representation of XML data.

DOM is the easiest XML API to understand use, since it represents XML data in familiar
tree structure. It is also more proper for interactive applications as the DOM parser
when parsing the data loads the whole data in memory that provides easy traversing
and manipulation. 43

Figure11.Java DOM Architecture 43

Java DOM API provides proper classes and methods to create and parse XML files. It

treats XML files as objects in memory.

3.3.2.4 Create DOM Objects

As mentioned before, DOM interface represents XML data in a tree structure in such a

way that there is a single root node at the top and different other nodes can be appended
to the root as its children. Attributes, text and comments can be added to any node

(element) as well.

In order to create XML documents, first of all is required to create a blank DOM object.
DocumentBuilderFactory class is used to create an instance of DocumentBuilder object.
Using the instance Document object can be created which is the DOM tree. After creating
the blank DOM object, using provided methods by Document interface mostly

createElement(String tagName)and appendChild(Node newChild) methods, different

elements and attributes can be created and get appended to the other nodes. 43

35 | P a g e

3.3.2.5 Parse XML Documents

The result of parsing will be Document object which can be traversed using provided
methods of the parsing API to arbitrary access the elements and their attributes. In this
application the methods that have been used the most are

getElementsByTagName(String tagname) to access specific elements by their names and

getChildNodes() to get child nodes of an specific element. 43

3.3.2.6 DOM Schema Validation

Using DOM schema validation, XML data after parsing and converting to Document
objects, can be validated according to a specific XML schema. In order to do the

validation, first of all is required to make an instance of Schema object to load the schema
in to it. Then multiple DOM objects can be validated using that. 43

Package Description

org.w3c.dom Defines the DOM programming interfaces for

XML documents, as specified by the W3C.

javax.xml.parsers Defines the DocumentBuilderFactory class and

the DocumentBuilder class, which returns an
object that implements the W3C Document

interface.

 javax.xml.validation Defines the Schema classes.

Table2. Java DOM Packages 43

3.3.2.7 SAX interface

SAX interface is called SAX parser. It provides a simple API for XML documents. It parses
the XML data as a stream of events and doesn’t make a representation of data on

memory, so it uses less memory and is faster. SAX API writes and reads the XML data to
and from a data repository or the web, and it provides serial access to the data. 44

36 | P a g e

Figure13. Java SAX Architecture 44

In order to process XML documents using SAX, first it requires creating an instance of

SAXParser using SAXParserFactory class. SAXParser includes a SAXReader which can be

configured using getXMLReader() method. The next step is to implement some callback

methods to be called when the parser fire the events. Then the SAX parser is ready to

parse the XML documents using a ContentHandler passed on it. ContentHandler

constitutes the parser to handle the document content including the methods
startDocument(), endDocument(), startElement(), and endElement() and etc.

ErrorHandler can be provided to the parser to handle parsing errors. EntityResolver is

used to located XML document identified by a URI or a public identifier. When a XML

document passed through a SAX parser, based on document features encountered it will

generate proper type of event such as element nodes, text nodes, comments and etc. 44

Package Description

org.xml.sax Defines the SAX programming interface.

org.xml.sax.ext Contains classes to handle more complex SAX

processing.

org.xml.sax.helpers Defines some helper classes.

javax.xml.parsers Includes the SAXParserFactory class and also

classes for exception handling.

Table3. Java SAX Packages 44

37 | P a g e

3.3.2.8 StAX interface

 StAX interface is the most recent XML API by JAXP as an alternative strategy to DOM and
SAX with the aim of improving their drawbacks such as complexity of SAX and memory

management in DOM. It implements the Streaming API for XML standard. It provides a
pull parsing API for streaming XML documents. StAX programming interface facilitates
two different strategies for XML processing including cursor strategy and iterative
strategies. 45

3.3.2.9 Cursor Interface

The cursor-based API provides the developer to moving forward through XML

documents using a cursor, through XMLStreamReader and XMLStreamWriter class
hierarchies. XMLStreamReader interface enable the user to read XML documents as
streams, one by one from the beginning forwards to the end. It provides a set of
appropriate methods to retrieve all required information from XML document elements.

XMLStreamWriter interface enable the users to write to a XML stream. 45

3.3.2.10 Iterator Interface

The Iterator API provides developers a representation of XML document as a set of

events, which are generated by the parser as they are read from the source document

and pulled by the application. The base library of the API is XMLEvent to handle the

event objects which contains other class hierarchies to handle different event types

similar to SAX, for instance StartDocument, EndDocument, StartElement, EndElement

and etc. The Iterator API offers XMLEventReader and XMLEventWriter respectively to
read and write events. XMLEventReader iterates over XML stream to allocate event

objects and can be extended to read customized event objects as well.
XMLEventWriter interface enables the developers to write events iteratively to an XML

stream without letting modification after writing them. 45

Package Description

javax.xml.stream Defines the StAX programming interface.

javax.xml.transform.stax Contains classes for handling StAX
transformations.

Table4. Java StAX Packages 45

38 | P a g e

Considering features of different XML parsing interfaces as shown in table5, DOM

interface provides all kinds of processing on XML documents using simple and intuitive
methods avoiding complexity of the two other interfaces.

Feature StAX SAX DOM

API Type Pull, streaming Push, streaming In memory tree

Ease of Use High Medium High

XPath Capability No No Yes

CPU and Memory Efficiency Good Good Varies

Forward Only Yes Yes No

Read XML Yes Yes Yes

Write XML Yes No Yes

Create, Read, Update, Delete No No Yes

Table5. XML Parser API Feature summary 45

3.3.3 Results

Studying the communication protocol and relevant methods led us to design the

tccInterface package, contains classes to handle the interaction between CMI and TCC
applications. The interaction can be including compose XML messages with all data
included and send them through the connection as well as receiving the messages and

parsing them.

Besides tccInterface, it was required to manipulate different types of XML messages with
all required information in such a way that respects the hierarchy of them as in the

communication protocol. This purpose was achieved by designing a set of protocol

handler packages. In order to make the design intuitive and easy to understand and
maintain, the class design hierarchy in these packages is following the hierarchical
structure of the messages in the communication protocol.

Protocol handling packages includes protocolHandler containing main types of
messages, and other protocol handler packages are dedicated to each main message

39 | P a g e

type which is containing other sub-categories. protocolHanler.connectionMessage

package is dedicated to manage all sub-categories of ConnectionMessage type.
protocolHandler.controlMessage has been designed to handle all types of
ControlMessage. And protocolHandler.objectCtrl and protocolHandler.trainCtrl are
respectively designed to manage different types of ObjectCtrl and TrainCtrl messages.

3.4 Application Logic

This part of the CTC application contains the modules handling the logic and data used
within the application. According to Model-View-Controller pattern, modules regarding

the application model are included in the application logic. In fact the other modules that
manipulate data including tccInterface and protocol handling modules are included in
application logic but based on thesis objectives and their functionality has been
discussed in earlier chapter.

In order to design model modules, classes have been designed to handle objects with

relevant functionalities based on object oriented design. For instance a set of classes has

been considered to handle logic of MDI parent window and its main components such as
menu bar, tool bar and so on, which are included in a package called model. The classes

are related using aggregation in such a way that MDI parent window is aggregates of the

classes regarding its components.

Furthermore, it was required to design classes to handle the data regarding the child

windows, the data which are accessed and manipulated through the child windows. For

instance Location class has been designed to provide appropriate properties and

methods to preserve the information regarding location objects and handle them in the

Track Layout. All these classes are included in model.MDIChildrenObjects package.

The other major part of application data is regarding the Track Layout. The Track Layout

contains several different objects such as Tracks, Points, Trains and etc, which need to
be considered as separate objects within the application. These objects share some
common properties considering that a general type of object called TrackLayoutObject

has been defined to hold the common properties. All other track layout object including
Derailer, Detector, ESA, Point and Track are inheriting this general type included in
model.trackLayoutObjects package.

40 | P a g e

3.5 Graphical User Interface

This section is dedicated to the Graphical User Interface design process according to the

requirements specification and considering the available version of the user interface.
The requirements specification has been considered during the first phase of the thesis
in order to accomplish the framework evaluation. The available version of the user
interface should have been considered as an example of CMI user interface which could
be inspiring for design of the new user interface.

3.5.1 Design Theories and Methodologies

As we mentioned earlier, at the beginning we had to consider the requirement
specifications which the previous version was designed based on. Later on some
modifications have been applied in the specifications to design the new version.

We did not have a finalized design for this project and one of our objectives was to

design a new graphical user interface (GUI) that can improve the interaction between
the users and the system in the sense of being user friendly. The steps involved within

the design process we followed to achieve this goal are explained here as indicated in

figure 14.

41 | P a g e

Figure14. Design Process

42 | P a g e

3.5.1.1 Data Collection

As we mentioned earlier at the beginning of this project the only thing that we had was a

specification which the old version of the project was designed by and there were some
changes on that to design the new one. Then we decided to categorize the data in
different groups such as Logic requirements, protocols and the graphical user interface
requirements.

3.5.1.2 Analysis of the data

After the data collection phase we had been able to define the related data for each part
and analyze the relations between them and gather the data for the new designs.

3.5.1.3 Focusing on users

The application must be understandable for all these different kind of users, the main

focus was on Controllers and as we did not have access to them. We did the observations

with the test engineers in the company who are testing the systems in different
manners. This phase had been held in a circle of analysis, observations and questioners

in order to define the things that we needed to avoid and the functions that we needed

to focus more.

3.5.1.4 Using Ideation and prototyping

When we finished doing the previous phase, it was time to come up with some solutions

through the brainstorming. And the next step is to design prototypes. Designing

different prototypes would lead us to get more close to the final solution. We started to
first design wire frames and again turning back to the latest phase which was focusing

on user groups. In this phase we came up with two different alternative designs.

The first alternative design was most related to the access procedure that user could
have to the system. At the two first steps, Login and MDI Parent Window, the toolbar is

invisible. Instead of opening the latest window, when the operator passes the login page
then in the MDI Parent Window, four thumbnails will be shown, which are the four latest
areas that the operator was involved with and will be sorted by date and time of
termination. Three menus considered for this design which are File, View and Help. The
items in tools and window (perspective) menu are accessible from two sub menus inside

of View menu and also all zoom and Tools items are accessible in the Toolbar. The name
of “Window” is changed to the “Perspective”.

The other alternative that we had was having multiple windows in tabbed system.

43 | P a g e

Instead of having different child window in the MDI we considered a tab system which

designed the most important child windows as some tabs that users can switch to them
by using arrow keys and other shortcut keys.

3.5.1.5 Usability Test

After designing the alternatives it was the time to have more observation that how the
users interact with the new designs and this phase could influence the designs in

addition and give us a better and closer image to the final solution. This phase again had
been done with mostly questioners about the features of the design and the user
experiences.

3.5.1.6 Final Solution

At the end we came up with one solution that was optimum comparing to the old

version of the application and many changes to the design standards which could satisfy
the client. In the bottom we explain the differences and changes that we have done in the
graphical user interface.

According to the requirements specification, the user interface should be following

Multiple Document Interface or MDI structure standard. MDI structure encompasses a

main or parent window which starts over after running the interface. The parent

window normally contains a menu bar and a tool bar at the top, a desktop in the middle

and a status bar at the bottom. The menu bar and tool bar enables the user to access the
application functionalities and manipulate the components within the application. MDI

parent window can contain arbitrary number of child windows which reside within the

desktop container. The child windows perform independently and can have their own

child windows or popup windows. By the way, all implementations provide some ways

for the main window to control or keep track of them.

The main advantage of Multiple Document Interface which has been considered for this
application as well is that user can access and manipulate data through several windows

simultaneously. This property fulfils the needs for CMI interface users which in many

cases may need to have several windows open at the same time to process data on them,
and it was the reason why MDI interface beat the tabbed interface alternative.

3.5.2 Method

 Abstract Window Toolkit or AWT and Swing libraries of Java programming language

have been used to design and implement the graphical user interface.

44 | P a g e

3.5.2.1 Java AWT and Swing

AWT is the core foundation of Java libraries that support graphical user interface
development. The API provides event driven user interface, including graphics, imaging,
fundamental user interface components including windows, buttons, and layout

managing and etc.

Swing is a platform independent API built on top of several Java desktop technologies
such as AWT, Java 2D and Java Internationalization. The framework contains more
comprehensive and flexible set of graphical user interface components which enable the
developer to build desktop and internet applications. Swing provides additional feature

for applications called “Look and Feel” which can be native to make the application look
as the underlying platform or pluggable to provide different look than the user current
platform. Swing architecture allows the user to override the default implementation of
the components in order to get their own customized features. Swing library has been

designed using Model-view-Controller software design pattern which is for decoupling

the data sections of the application from the interfaces. For instance the Swing
component for table called JTable has a model TableModel to manage the tabular data. 46

3.5.2.2 Swing GUI Building

Netbeans IDE provides a GUI building feature that enables user to create graphical user

interface by dragging and positioning the components from a palette containing

AWT/Swing components on to a canvas. Indeed using GUI Builder components with the

default setting are added to the interface and the user can easily edit the properties later
on. Besides GUI Builder takes care of the alignments and spacing of the components

which is complicated to set by manually coding. 47

The feature has been used to implement the new version of graphical user interface of

the application. There is such a feature in Eclipse IDE as well, but it was not as complete
and easily used as the one provided by Netbeans. The advantage of using this tool is that
the effort to arrange the components next to each other with proper properties such as
place, size, font and etc is not comparable with the way to do it by customizing them
from scratch. There are some disadvantages as well. The first disadvantages is that since

the code is added automatically by the IDE, is quite huge bulk of code which doesn’t look
human friendly, so it requires to get edited and kind of pruned in order to make it easier
to read and understand. The other disadvantage is that, the GUI Builder in fact just takes
care of the design and not the generated code and it doesn’t make any classification on

the components or objects, so every component that is added in a canvas they are part of
the same class. For instance when we create the menu bar, all the menu items added to it

45 | P a g e

belonged to the menu bar class which is not object-oriented designed anymore. Suppose

the case that later on they need to add one more menu item to the menu bar, in such a
case they have to make edition in the menu bar class which doesn’t seem good idea at
all. Thus the solution was to decouple the different components and dedicate a different
class to each of them to be able to treat them as separate and independent objects later

on. So in case of needing for changes like the example we explained, they can just add
one more menu item object to the existing set of classes.

3.5.3 Results

Graphical user interface classes, according to Model-View-Controller design pattern are

included in view module which are divided in to three packages, view,
view.MDIChildWindows, and view.secondaryWindows.

View package contains the components of the MDI parent window, including classes

that manipulating the MDI window, menu bar and its sub-components including file
menu, view menu, tools menu and help menu as well as the tool bar, status bar and also

the user login window.

The package view.MDIChildWindows is including the classes to handle MDI child

windows interfaces, that the user can have access to them through the view menu item

of the menu bar. The view.secondaryWindows package has been designed to manage

secondary windows which provide the user further information on different data or

objects. The user is able to update some of the information through them, as well. These

windows are accessible from the child windows which belong to.

46 | P a g e

4 Implementation

4.1 Overview

This chapter is dedicated to implementation results of CMI application, including
interface to TCC, application logic and user interface.

4.2 TCC Interface

 As explained in the design process, the tccInterface package contains classes to manage
interaction between CMI and TCC applications, such as send or receive messages as well

as processing the messages. These classes include CRC32Checksum,
FormConnectionMessage, FormControlMessage, FormObjectCtrl, FormTrainCtrl,
MessageFormer, MessageHandler, MessageParser, Startup, XMLInputStream,

XMLOutputStream, XMLSender, XMLReceiver and LifeSign.

The user interface interacts with tccInterface package within the application in order to

send and receive messages. The interaction is performed in this way that, according to

the user interactions the application requires to send appropriate XML messages to the
TCC; therefore it has to go through tccInterface classes to form the message using

MessageFormer class and then send it using XMLSender class.

The application creates the corresponding type of the message with given data and then

pass it to MessageFormer class as an object of general type of Message using the

polymorphism principle. MessageFormer reveals type of the message and build the

general format of the message and then based on the type passes it to a more specific
message former class such as FormConnectionMessage, FormControlMessage and etc to

complete body of the message. MessageFormer has been implemented using Java DOM

libraries and creates XML document objects messages based on the general message
format in the communication protocol.

Receiving the messages has a bit different scenario. After startup the connection, the

application is always waiting for messages through XMLReceiver object. Whenever it
receives an XML message, it will pass it to the MessageParser class in order to parse the
message according to its type, using DOM implementation and extract the included
information. After extracting the message’s information, the user interface gets updated
if required. For instance if the CTC receives indication message, the Track Layout or

child windows gets updated according to the new information of objects.

47 | P a g e

4.2.1 Protocol Handling

In the top level of protocolHandler class hierarchy implementation, there is a very

general class called Message from which all main categories of messages are inherited. It
only includes an enumeration of different message types and default constructor. In next
level of the design hierarchy there are the main types corresponding the nine categories
of messages in the protocol including ConnectionMessage, ControlMessage,

AlarmMessage, Indication, SystemCtrlMessage, SystemStatusMessage, CtrlResponse,
RefreshReady and AlarmAcknowledged, which all inherits the type Message. The next
level contains classes corresponding sub categories of the main message types included
in protocolHandler.connectionMessage, protocolHandler.controlMessage,
protocolHandler.objectCtrl and protocolHandler.trainCtrl packages.

4.3 Application Logic

As described in the design process, some of the main parts of CMI application, according

to Model-View-Controller design pattern are included in model packages.

4.3.1 Model

This package includes classes to handle the logic of the classes in view package which
are the main interface objects such as LoginView, MDIParentView class and its

components. This package includes LoginModel, MDIParentModel, MenuBarModel,

ToolBarModel, StatusBarModel, FileMenuModel, ViewMenuModel, HelpMenuModel and

ToolsMenuModel.

In the top level of the class hierarchy there exist LoginModel and MDIParentModel

classes. In the next, there are MenuBar, ToolBar and StatusBar which aggregate which

MDIParentModel is aggregate of them. At the bottom of the hierarchy there are
FileMenuModel, ViewMenuModel, ToolsMenuModel and HelpMenuModel aggregate in
to MenuBar.

48 | P a g e

Each class contains appropriate properties in form of variable or data structure to keep

track of the data relevant to the concerning view class, and proper methods as well to
perform required actions regarding the data held by the objects.

4.3.1.1 model.MDIChildrenObjects

This package contains classes handling the logical functionality of MDI child windows
including Alarm, Location, TrackLayoutModel, TrainControlModel, TrainListData,
TSRListData and User classes.

Alarm class is used to keep track of the alarms within the application. Whenever an

alarm is recognized by CTC it instantiates this class using the alarm properties. The
alarm instances are saved in an appropriate sort of data structure and are displayed in
AcknowledgeAlarmView window upon the user request.

Location class is used to handling location objects representing available locations in the

track layout. TrackLayoutModel class handles the logic of track layout object.

TrainControlModel class is used to perform provided actions on the trains when a train

is selected such as view the train information and unregister the train or view train

error.

TrainListData class is used to keep track of required information for trains within the

application in order to display in case of user request. This information is including train

name, status and destination in fact are collected from the list of train objects tracked by

CTCApplicationData.

TSRListData class is used to keep track of required information for available temporary

speed restrictions within the application. This information contains start track, end

track and speed of TSRs which are collected as well from list of TSRs tracked by
CTCApplicationData in order to display them upon the request.

User class is used to handle the users of the CTC application. This object keeps track of
user information including username, password and access level. When user is about to

login to the application, CTC makes an instance of the object with the user information
and send it to TCC for the validity check.

49 | P a g e

4.3.1.2 model.trackLayoutObjects

This package contains classes handling the logical functionality of Track Layout objects
including, Derailer, Detector, ESA, Point, Track, Train, TSR and their components

including TrainExtension, RouteExtension, Extension, TrainConfiguration, TrainIdentity,
TrainStaticData and TrainDynamicData.

Derailer, Detector, ESA, Point, Track, Train and TSR classes are used to manipulate data
regarding derailer, detector, ESA, point, track, train and temporary speed restriction

objects in the track layout respectively.

Train object is aggregation of three other objects including TrainIdentity,
TrainStaticData and TrainDynamicData. TrainIdentity class contains engine identity and
train number. TrainStaticData consists of static information of train object including
train configuration object, train category, length and etc. TrainDynamicData contains

dynamic information of train object including TrainExtension, RouteExtension objects,

speed, mode and etc.

4.4 Graphical User Interface

4.4.1 Functional Requirements

Beside the technical point of view and requirements that have been discussed in chapter

2, from the practical point of view the graphical user interface shall fulfill the following

functional requirements.

• The application shall enable the user to logs in or out the application.

• The functionalities shall be enabled for the users according to their access level.

• The application shall enable the user to view his last open viewed windows.

50 | P a g e

• The user shall be enabled to view the track layout with all available objects in it,

such as locations, trains and so on, and also to manipulate the objects as he is
privileged.

• The application shall enable the user to view unacknowledged alarms in the
database and acknowledge any of them, to view list of locations in the track

layout, to view list of trains in the track layout, to view list of temporary speed
restrictions, and update their information or remove them.

4.4.2 Results

4.4.2.1 View Module

According to the MVC pattern all objects (classes) regarding the graphical user interface

reside in view modules (packages), categorized in three different packages, view, view.
MDIChildWindows and view.secondaryWindows which are sub-packages of the view

package. The main view package contains classes regarding the MDI parent window and

login window as well, MDIChildWindows includes the MDI child windows classes and

secondaryWindows includes secondary windows classes.

4.4.2.2 View

This package contains the components of the MDI parent window, including classes that
manipulating the MDI window, menu bar and its sub-components including file menu,

view menu, tools menu and help menu as well as the tool bar, status bar and also the

user login window.

View package is containing LoginView, MDIParentView, MenuBarView, ToolBarView,
StatusBarView, FileMenuView, ToolsMenuView, ViewMenuView, HelpMenuView and

TimeDisplay classes.

4.4.2.3 User Authorization

In the old version the user authorization window was appearing inside the MDI parent

window while is not necessary to view the MDI parent window before log on to the

system.

51 | P a g e

The other drawback about the old design was that the User Authorization window was

not always on top and it might be hiding behind the MDI parent window and could
confuse the user.

In the new version, user authorization window will appear asking for the username,

password and access level as user information and gives the server name. The user
information will be sent by Login message as explained in communication protocol to
the TCC server, and then the validation will be checked in the database in TCC.

Several access levels have been defined to access the functionalities within the CTC
application including Controller, Signal Engineer, Track Maintenance, Staff,
Administration and Personnel. The application is supposed to allow different privileges
according to the access levels.

Figure15. User Authorization

4.4.2.4 MDI Parent Window

When user authorization is done, MDI parent window will appear and is supposed to

display the latest child windows open by the user by preserving their size and position.

MDI parent window provides user with a menu bar, tool bar, desktop and a status bar.

52 | P a g e

Figure16. MDI Parent Window

Menu bar control placed at the top of the MDI parent window enables. It the user to

manipulate commands regarding file saving and printing, different child windows

mainly the track layout and finally the help options, through four menu items, File, View,

Tools and Help.

By analyzing the old version of the application and comparing with the designing standards
we discovered weaknesses and tried to avoid them in the new design. For instance, in the old
version of the menu bar, there are many different menu items for each menu with
corresponding button in the toolbar which lead to information overloading or complexity.

Unsorted items are the other drawback in the old version. In menu designing the items should
be sorted in logical groups. For instance, it is clear that the item for terminating the
application should not be the first item in the menu.

The other problem with the menus was that many different items could be placed in sub
menus. Using sub menus would save the application’s graphical screen while viewing the
menu items by the user.

Using file menu, the user will be able to save the run time data, printing, logout and exit from
the system.

53 | P a g e

Figure17. File Menu

The view menu enables the user to view different child windows including the track
layout, Acknowledge Alarm, location list, train list, Temporary speed restriction and

system status, as well as the identities of available trains on the track layout and finally
the zoom functionality.

Figure18. View Menu

The tools menu enables the user to display the tool bar and run some commands on the
track layout including train destination commands and several other commands to

manipulate the track layout such as set temporary speed restriction.

54 | P a g e

Train destination commands include, setting a new destination for specific train, to

change the destination of specific train, and to shunt specific train. Then, to run the
command, user is able to confirm the request or cancel it at all.

Figure19. Tools Menu

The help menu provides a help content which enable user to look up through the

available subject and look up through web as well using the about menu item.

Figure20. Help Menu

55 | P a g e

The tool bar control placed below the menu bar in the MDI parent window. The tool bar

contains some command buttons to enable the user to run commonly used functions.

The toolbar is supposed to provide a quick and convenient access to the set of frequently
used commands or options. The typical toolbar contains iconic buttons but in some

cases it contains other components.

In the old version the icons were hard to remember using complex images for small

icons in the toolbar. In the new version we have replaced the icons by new icons. The
icons were not sorted properly; some of them were even irrelevant to the commands
(wrong Icons like alarm and logout).

Figure21. Tool Bar

The status bar control, placed across the bottom of the MDI parent window is to display

the application status information and status messages.

Figure22. Status Bar

4.4.2.5 MDI Child Windows

MDI child windows are the internal windows that the user can have access to them
through the view menu item of the menu bar. The child windows will provide available

data of the CTC application which has been received from TCC server and is supposed to
get updated regularly.

The package view.MDIChildWindows is containing classes handling MDI child windows
interface, including AcknowledgeAlarmView, LocationListView, TrainListView,
TSRListView and TrackLayoutView.

56 | P a g e

4.4.2.6 Track Layout

This window is supposed to represent graphic image of the actual track layout. The
components of track layout are including derailers, detectors, ESAs, points, tracks,

locations and trains.

4.4.2.7 Acknowledge Alarm

This window displays a list of unacknowledged alarms with their properties, as stored in
the database. User will be able to acknowledge any alarm that selects.

Figure23. Acknowledge Alarm

4.4.2.8 Location List

The location list window displays a list of all location with their properties, as available

in the track layout. The locations are supposed to be read from CTC configuration file.

57 | P a g e

Figure24. Location List

4.4.2.9 Train List

Train list window displays a list of registered trains with their information including

name or identity, status and destination. CTC receives this information from TCC
through indication messages.

58 | P a g e

Figure25. Train List

4.4.2.10 Temporary Speed Restriction

The Temporary Speed Restriction or TSR list window displays a list of all available TSRs

with their properties, as they have been set in the application. CTC receives this

information from TCC through indication messages.

59 | P a g e

Figure26. Temporary Speed Restriction

4.4.2.11 Secondary Windows

The secondary windows technically belong to MDI child windows which provide the

user further information on different data or objects. The user is able to update some of

the information as well. These windows are accessible from the child windows which

belong to.

The package view.secondaryWindows is containing classes handling the secondary

windows interfaces, including LocationInformation, TrackInformation, TrainControl,
TrainErrorIndication and TrainInformationView.

4.4.2.12 Location Information

This window is called from Location List window and provides additional information

on any location which is selected by the user on the list.

60 | P a g e

Figure27. Location Information Window

4.4.2.13 Track Information

This window is called from Track Layout window and provides information on any
selected track in the track layout.

4.4.2.14 Train Control

This window is called from Track Layout window and provides the user a menu with
options to be able to view the train information window, unregister the train, view the

61 | P a g e

train error indication to set or reset error for the train, and view locomotive control

window.

4.4.2.15 Train Information

This window is called from Track Layout window and provides additional information
on any train in the track layout which is selected by the user.

Figure28. Train Information Window

62 | P a g e

4.4.2.16 Train Error Indication

The Train Error Indication window is called from the Train Control window, providing
information on the error status of the train.

4.4.2.17 Locomotive Control

The Locomotive Control window is called from the Train Control window and provides

information on locomotive of any train on the track layout.

63 | P a g e

5 Conclusion

We have implemented the CMI application using Java framework as the most suitable
target framework. Considering all the requirements analysis provided in chapter 2,
PowerBuilder was not a suitable choice for the target framework since it doesn’t fulfill

some of the requirements, such as portability and being common in industry.
Furthermore, more precise considering and comparing between Java and C#.NET
frameworks indicated that portability and connection to MySQL database using Java is
pretty straighter forward than using C#.NET framework.

To design the CMI application, we considered it as an application encompasses graphical
user interface as one of its main facilities and logical modules to handle application data
as well. Considering that, Model-View-Controller or MVC design pattern has been used
to decouple the data access and logic handling from data presentation and user

interaction of the application. Using MVC pattern we decoupled the application in to
three different modules including model, view and controller. Furthermore within each

module there have been some divisions based on the functionality and class hierarchies
have been designed according to Object-Oriented design principles such as

polymorphism, inheritance and etc.

For the implementation we faced some issues. One of the main issues was integrating
different parts of the graphical user interface that we required in order to complete CMI

application. The Track Layout which already has been done as prototype version using

Adobe Flex technology and the rest of the user interface developed in Java Swing. The

SDK version used to develop track layout is the third version of Flex SDK which in fact

has been integrated with new Adobe product to support AIR or Adobe’s desktop
application runtime. The track layout has been developed using air libraries.

According to the solution for this project to embed Flex component within Java Swing

interface, we tried the available libraries. We have performed some tests using the DJ

Project through its NativeSwing Library. This library enabled us to embed swf or
compiled file of Flex component within Java Swing interface and invoke Flex code
methods. We tried to execute the Track Layout project swf file in our Java Swing
interface but it didn’t work. According to our studies on this subject, the only possibility

to embed Adobe Flex within Java Swing is in the case of using Flex Web API, which is not
the case here. The solution can be converting the existing code from air version to web.
We tried to do it but because of lack of good knowledge on Flex libraries we ran out of
the time.

64 | P a g e

The Remaining issues within the application are mostly related to the integration

problem, for instance the functionality of menu bar or tool bar on the track layout
objects, such as trains, locations and etc. Also some left issues are regarding the TCC
interface module within the application, caused by lack of a real server to test the TCC
interface with. On the other hand, there was not enough time to complete the

functionality of the TCC server we have created. For instance, the message validating
using the suitable XML schema is not performing in this version of the application.

65 | P a g e

Terminology

CTC Subsystem for Centralized Traffic Control.

InterFlow The name of the complete integrated train
control system, both InterFlow stationary and

train borne part.

RBC Radio Block Central. Sub-system which

handles e.g. train separation and route search.

TCC The Train Control Centre, which implements

Interlocking, RBC and limited TMS
functionality.

CMI The Controller Machine Interface, the systems
main user interface.

66 | P a g e

References

1. “Java Programming Language”, CBS Interactive, October 2005,

http://findarticles.com/p/articles/mi_hb3234/is_5_35/ai_n29240910/

2. D. Harms, “Industry Trends: How Important Is Java”, Clarion Magazine, September
1999, http://www.clarionmag.com/cmag/v1/v1n8understandingjava.html

3. “.NET Framework Conceptual Overview”, Microsoft, 2011,
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx

4. K. Radeck “C# and Java: Comparing Programming Languages”, Microsoft, October
2003, http://msdn.microsoft.com/en-us/library/ms836794.aspx

5. J. N. Kostaras, “Java vs C#” February 2008,

http://jkost.ergoway.gr/jnkjavaconnection/java_vs_csharp.html

6. “Introduction to the C# Language and the .NET Framework”, Microsoft, 2011,

http://msdn.microsoft.com/en-us/library/z1zx9t92.aspx

 7. P. Lannigan “PowerBuilder History, Powersoft History”, fall 2004

http://www.lannigan.org/powersoft_powerbuilder_history.htm

8. “PowerBuilder Foundation Class Library User’s Guide”, Sybase, March 2003

http://download.sybase.com/pdfdocs/pbg0900e/pfcug.pdf

9. “Technical Overview”, Techné Knowledge Systems Inc., 2003,

http://www.techne.ca/whitepaper.htm

10. B. Armstrong, “Say Hello to PowerBuilder 12.5”, PowerBuilder Journal, August 2011,

http://pbdj.sys-con.com/node/1955021

11. “PowerBuilder”, Sybase Inc., 2011,
http://www.sybase.com/products/modelingdevelopment/powerbuilder

12. M. Hall, “Internal Frames”, 1999, http://www.apl.jhu.edu/~hall/java/Swing-

Tutorial/Swing-Tutorial-JInternalFrame.html

13. G. Gnana Arun Ganesh, “Developing MDI Application in C#”, January 2002,
http://www.csharpcorner.com/UploadFile/ggaganesh/DevelopingMDIAppplicationsin
CSharp11272005225843PM/DevelopingMDIAppplicationsinCSharp.aspx

14. S. Rodriguez, “C# SDI/MDI Application Wizards”, November 2003,
http://www.codeproject.com/KB/macros/sdimdiwizards.aspx

67 | P a g e

15. “MDI Applications in PowerBuilder .NET”, Sybase, April 2010,
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc01261.1200/doc/

html/kwi1244748243372.html

16. “Java Internationalisation”, Oracle Corporation, 2010,

http://java.sun.com/javase/technologies/core/basic/intl/

17. Kumar, Ravikant, “Globalization, Internationalization, and Localization using C# and
.NET 2.0”, November 2009, http://www.codeproject.com/KB/locale
/Internationalization_I18N.aspx

18. “Building Internationalized Applications with Sybase PowerBuilder”, Sybase, 2005,
http://www.sybase.com/content/1036154/L02684_PB_InternationalizedApps_WP.pdf

19. A.P.Rajshekhar, “Socket Programming in Java”, April 2007,
http://www.devarticles.com/c/a/Java/Socket-Programming-in-Java/

20. A. Dhar, “Socket Programming in C#”, July 2003, http://www.devarticles.com/c/a/C-

Sharp/Socket-Programming-in-C-Part-I/

21. “The PowerSocket Library”, January 1999,

http://www.level5software.net/documents/Pslib21.htm

22. “SocketWrench Freeware Edition”, Catalyst Development Corporation, 2011,

http://www.catalyst.com/products/socketwrench/freeware/index.html

23. T. Violleau, “Java Technology and XML”, Oracle Corporation, November 2001,

http://java.sun.com/developer/technicalArticles/xml/JavaTechandXML/

24. A. Skonnard, “.NET XML Best Practices”, SoftArtisans, Inc., July 2003,
http://support.softartisans.com/kbview_673.aspx

25. “Using PowerBuilder XML Services”, Sybase Inc., 2007,
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.dc37774_1100/html/a

pptech/BABJBFGG.htm

26. “JDBC Overview”, Oracle, http://www.oracle.com/technetwork/java/overview-

141217.html

27. “Accessing Data with C#”, Exforsys Inc., March 2005,
http://www.exforsys.com/tutorials/asp.net/accessing-data-with-csharp.html
28. M. Pastore, “Java Developers Finding a Home at Adobe Flex”, QuinStreet Inc., November 2009

http://www.devx.com/HotList/HotList-Adobe/Article/42707

29. C. Deckers, “The DJ Project”, http://djproject.sourceforge.net/main/index.html

30. “Easy Java COM Connectivity”, University Blvd USA, http://www.ezjcom.com/

68 | P a g e

31. “JFlashPlayer”, VersaEdge Software, LLC, http://www.jpackages.com/jflashplayer/

32. G. Wishine, “Fun with C# and Flash Player 8 External API”, October 2005,
http://blog.another-d-mention.ro/programming/communicate-betwen-c-and-an-

embeded-flash-application/

33. M. Piller, “Introduction to Flex 4 and .NET Integration”, Adobe Systems Inc., March
2010, http://cookbooks.adobe.com/post_Introduction_to_Flex_4_and__NET_Integration

16930.html

34. “PowerBuilder-Internet Explorer OLE to display Flash charts”, November 2010,
http://anvil-of-time.com/wordpress/powerbuilder/powerbuilder-%E2%80%93-
internet-explorer-ole-to-display-flash-charts/

35. “PowerBuilder12.0 New Features”, Sybase Inc., 2010,
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00357.12
00/html/newfeat/BABICBGC.htm

36. “TIOBE Programming Community Index for November 2011”, TIOBE SOFTWARE,

2011, http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
37. M. Kosyakov, “Long way to Maturity”,

http://www.worksforweb.com/publications/PHP-mature-platform/

38. B. Cohen, “How to Write Maintainable Code”, March 2001,

http://www.advogato.org/article/258.html

39. “Model-View-Controller”, Microsoft Inc., 2011, http://msdn.microsoft.com/en-

us/library/ff649643.aspx

40. R. Eckstein, “Java SE Application Design with MVC”, Oracle Inc., March 2007,
http://www.oracle.com/technetwork/articles/javase/mvc-136693.html

41. T. Bray, J. Paoli, C. M. Sperberg-McQueen, “Extensible Markup Language (XML) 1.0”,
W3C Recommendation, February 1998, http://www.w3.org/TR/1998/REC-xml-

19980210

 42. B. Bos, “XML in 10 Points”, W3C, March 1999, http://www.w3.org/XML/1999/XML-
in-10-points.html.en

43. “Document Object Model APIs”, Oracle and/or its affiliates,
http://download.oracle.com/javase/tutorial/jaxp/intro/dom.html

44. “Simple API for XML APIs”, Oracle and/or its affiliates,
http://download.oracle.com/javase/tutorial/jaxp/intro/simple.html

69 | P a g e

45. “Steaming API for XML APIs”, Oracle and/or its affiliates,

http://download.oracle.com/javase/tutorial/jaxp/intro/streaming.html

46. “Java SE Desktop Overview”, Oracle Corporation and/or its affiliates, 2010,
http://java.sun.com/javase/technologies/desktop/

47. “Swing GUI Builder (formerly Project Matisse)”, Oracle Corporation and/or its

affiliates, 2011, http://netbeans.org/features/java/swing.html

70 | P a g e

Appendix

71 | P a g e

72 | P a g e

73 | P a g e

