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Sweden
Telephone + 46 (0)31-772 4000





Abstract

A constraint satisfaction problem involves the assignment of values to variables
subject to a set of constraints. A large variety of problems in artificial intelligence
and other areas of computer science can be viewed as a special case of the con-
straint satisfaction problem. In many applications, one example being product
design and configuration, user interaction is required to find a solution. This the-
sis project focuses on using CSP solver methods for configuration problems in the
automotive industry. The configuration problem encompasses a number of finite
variables, describing some variability of a vehicle such as the gearbox or the color
of the chassis. A number of restrictions of physical, legal, or strategic nature limit
the number of allowed combinations of these variables, lending CSP to be a natural
setting. Furthermore, design and configuration in a large scale involves breaking
down it into several small manageable design workflows, hence the requirement for
being able to design and configure partially. This can be considered a special case
of CSP, where partial configurations are solved which still satisfy all the constraints
in the bigger set.

Keywords: Constraint Satisfaction Problem, Automotive industry, Configuration
Problem, Partial Configuration
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1

Introduction

I
n the automobile industry, designers often require the flexibility of be-

ing able to quickly see the results of various individual changes in design.

For example, it would be really helpful for a designer if s/he could possibly

see what different types of engines could be used given the current chassis

and transmission selection. While given that an automobile can be designed with

different engines, transmissions and other various individual parts, all combina-

tions of the individual parts are not possible. This is due to the fact that for

example, not every engine works with every transmission. These rules in the form

of constraints express the relation between various individual parts. The cause

for these constraints may be due to, for example, engineering (e.g. geometrical or

strength), legal, or marketing considerations. Representation of such configuration

problems and problem solving strategies is surveyed in (Sabin and Weigel, 1998;).

A configurator is a software tool that is able to analyze the constraints in differ-

ent ways. The use of software configurators started within the computer industry
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with McDermott’s development of the R1 configurer (McDermott, 1982) and is

now widely used when the products are complex and can be configured in multiple

ways. Configurators are commonly used in the sales process (Haag, 1998), but

there is another type of configurators, engineering configurators (Tiihonen et al.,

1998). In sales, a customer or a salesman interactively composes a product, while

the configurator guarantees that an undeliverable product will never be configured.

Deliverable products are typically described using logic constraints over a set of

variables, where each variable has a given domain. The task of an engineering

configurator, on the other hand, is to create, debug and maintain configuration

constraints as a part of the product data.

This work concentrates on the use of configurators during product development.

For large scale organizations, like the automotive companies, multiple product

development teams are working on developing the product. Very few, if any, have

a complete overview of the full product and the constraints that must be satisfied.

Each product development team might only be interested in a small subset of

all variables used to describe the full product. One use of a configurator is to

compute the set of allowed combinations for such a subset of the variables. In

doing this the configurator must, in general, take all constraints into account.

This is a complicated task given the size of the problem. An example from the

car industry has 200 variables. Thus naive approaches to solve the configuration

problem will fail for all but the smallest problems. Another fact that contributes to

the complexity is that in large scale product development applications, constraints

are changing constantly; rules are added, deleted, and modified. Thus, a configurer

must be able to handle new situations without any manual tuning of its algorithms.
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1.1. PROBLEM FORMULATION

1.1 Problem formulation

This Master Thesis project focuses on using CSP solver methods for configuration

problems in the automotive industry. The configuration problem in consideration

encompasses a number of finite variables, describing some variability of a vehicle.

The variability could be explained by examples as in the type of the engine is use

or the color of the chassis. Furthermore, a number of restrictions are imposed on

the variables. These restrictions can be of of physical, legal, or strategic in nature

thus limiting the number of combinations possible within the variables. Hence the

presence of variables with domains and restrictions between the various possible

values automatically calls out for CSP solvers to be used as one of the natural

choices.

1.2 The Configuration Problem.

1.2.1 Configuration Problems in general

Configuration involves selecting combination of predefined components subject to

a number of problem constraints. Configuration problems may involve sales (sales

configuration), design, manufacturing, installation, or maintenance. The compo-

nents involved need not be physical but can also be paragraphs of a legal document,

financial services, actions in a plan, etc. The possibility to automate the product

configuration task using a configuration system was recognized in the 1980’s, and

is now a rapidly growing industry. A product configuration problem in design of

a car involves many customizable parts or features which can be modeled as a set

of variables. Different values can be assigned to each part or feature for a specific

3



1.2. THE CONFIGURATION PROBLEM.

Figure 1.1: Various parts are assembled together for a valid configuration

product. The set of all possible values of a variable forms its domain.

For example, cars can have engines, generators or type of seats. Then the

generator can have a power of 120, 140 or 150 AMP. Seats can have values ”sport”

or ”custom” and the engine could have a domain of values Engine Diesel, Engine

Gas 4 CYL, Engine Gas 6 CYL.

The rules that state which combinations of values are allowed and which cannot

go together in our case are represented by propositional formulas over assignments

of values to variables. These assignments, like, assigning a value Engine Diesel to

the variable engine is in fact a boolean variable or arom, which can be true or false.

It will be true if the engine was selected to Engine Diesel and false otherwise.
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1.2. THE CONFIGURATION PROBLEM.

Configuration rules are formed by combining such atoms in propositional for-

mulas. A propositional formula is constructed from simple propositions, such as

”engine is not selected to Engine Diesel”using connectives such as NOT, AND, OR,

and IMPLIES; For example, to express that Engine Diesel does not fit together

with sport seats, the rule can be constructed as follows:

(engine == Engine Diesel) IMPLIES NOT(seats == sport) AND (other options required).

This formulation of a Configuration Problem allows us to represent it as a

Constraint Satisfaction problem.

1.2.2 Elements of a Configuration System

At a high level, a constraint based configuration system is made up of two parts,

as shown in figure below.

Figure 1.2: A general view of configuration system

1. A modeling part where a configuration model is created. The model can be

created manually by a user, automatically by extracting data from various

enterprise systems or by a combination of the two approaches.
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1.2. THE CONFIGURATION PROBLEM.

2. A runtime part where the end users of the configuration system interact with

the configuration model to determine the configuration that suit their needs

(whether it is a product, a service, or something completely different). The

task of selecting the components is called the configuration task.

Creating a model involves specifying the components that are available and the

constraints between these components.

Changes to an already defined model involve changes in components (because

some components are no longer available or new features be come available to ex-

isting components) and/or changes to the constraints (because of new or changed

components or because market requirements cause some combinations to be in-

valid). These changes occur infrequently relative to the number of configuration

tasks carried out.

It is important from an algorithmic point of view because it allows us to justify

spending some time to preprocess a model to speed up the algorithms used during

the configuration task.

1.2.3 Currently existing popular configuration systems

There are various configuration systems that are currently being used in the in-

dustry. Based on different types of algorithms used they can mostly be categorized

under BDD, CSP and SAT techniques.

BDDs (Bryant, 1986; Jensen, 2004) is an abbreviation of Binary Decision Dia-

grams is one of the techniques in which the whole configuration space is compactly

represented in the memory. Because of this, the space can be quickly searched

for the properties required. However, the compaction and representation of the
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1.3. THE CONSTRAINT SATISFACTION PROBLEM.

space takes a significant amount of pre-processing. Furthermore, depending on

the dataset, huge amount of memory might be required as well.

SAT, also more formally known as Boolean Satisfiability is another technique

in which all variables involved have a Boolean domain. SAT solvers solve problems

that are written in Boolean expression using only AND, OR, NOT variables and

parentheses. Such and expression is then evaluated for possible states of different

variables to see if the results holds to be TRUE or FALSE. Contrary to BDDs,

this technique relies on searching the space for solution, which requires considerable

time.

CSPs that stands for Constraint Satisfaction Programming, on the other hand

might require less preprocessing compared to SAT or the BDD techniques. Prepar-

ing the correct model for the solution is the only preprocessing that is required

(excluding parsing the data). However, CSPs are often known for being rather slow

compared to their SAT counterparts. For a fair balance between preprocessing the

time required for a solution, CSPs might be one the best approaches if modelled

correctly.

1.3 The Constraint Satisfaction Problem.

The classic definition of a Constraint Satisfaction Problem (CSP) is as follows. A

CSP is a triple P = (X,D,C) where X is an n-tuple of variables X = (x1, x2, ..., xn),

D is a corresponding n-tuple of domains D = (D1,D2, ...,Dn) such that xi ∈ Di, C

is a t-tuple of constraints C = (C1,C2, ...,Ct). A constraint Cj is a pair (RSj
, Sj)

where RSj
is a relation on the variables in Si = scope(Ci). In other words, Ri is a

subset of the Cartesian product of the domains of the variables in Si.
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1.4. DEFINITION OF PARTIAL CONFIGURATION

A solution to the CSP is an n-tuple A = (a1, a2, ..., aN) where ai ∈ Di and each

Cj is satisfied in that RSj
holds on the projection of A onto the scope Sj.

In a given task one may be required to find the set of all solutions, sol(P ), to

determine if that set is non-empty or just to find any solution, if one exists. If the

set of solutions is empty the CSP is unsatisfiable.

The space of all solutions normally is large, but in a real life problems computing

all of them is usually not needed. More specific questions are rather interesting; for

instance, “If I set these variables to these values, is there still any solution?” And in

this project, more specifically, we are interested at only a few selected variables at

once, so we compute a subset of all solutions, which we call a partial configuration.

1.4 Definition of Partial Configuration

In large scale organizations, multiple product development teams are working in-

dividually on multiple features. Hence, it is very likely that each team will be

interested in only small amount of variables important to them, instead of consid-

ering all the variables in place. One can then use a configurator to compute the

set of allowed combinations but only for a subset of the whole variables. How-

ever, while doing this the configurator has to take in consideration all possible

restrictions as well. This technique of using a subset of variables for computing

the combinations while considering all the restrictions is what we have defined as

partial configuration during this thesis project.
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1.4. DEFINITION OF PARTIAL CONFIGURATION

Figure 1.3: A visual representation of partial configuration.
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2

Method

T
he configuration data considered is from an automobile company

which is presented in the VDS (Vehicle Description Summary) format.

The data is prepared as a standard spreadsheet (Excel) file. It contains

all the information required about options, families, models and restrictions on

option usage.

Options are parts or features of the car that can be selected. Families group

options and add a restriction that no more than one option can be selected from

a family. Models can be seen as a very influential high-level family, with different

body styles and series as options. Restrictions limit how options can be combined

with each other.

To manage some more complexities, families can further be of two types: reg-

ular and modular. Regular families have either zero or one option selected, while

modular families must have exactly one option selected.

After the basic explanation of data, the problem can be presented more con-
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2.1. MODELLING CONFIGURATION PROBLEM AS CSP.

cisely. The end user of the configurator in this case is a designer rather than a

vehicle customer. A designer is responsible for creating various designs and verify-

ing them. However, in a normal scenario of vehicle industry this means painstak-

ingly building a configuration which holds true to all the different restrictions of

all the parts involved. The configurator tends to solve this problem by correctly

generating the possible configurations for the parameter(family), that the designer

is interested in.

2.1 Modelling Configuration problem as CSP.

As defined in Section 1.3 on page 7, the main parts to a constraint satisfaction

problem are a set of variables X, a set of domains of values D and a set of con-

straints C. For every element in the set X, there is a corresponding domain of

values defined in the set D, such that the element belongs to the values within

domain D. Further, the set C defines constraints which constructs the relation be-

tween various variables in the set X. Solving the problem leads to a result which

satisfies all the constraint requirement and variable domain belongings.

In our case, the data is not a straightforward representation of a general CSP

problem. However, adding layers to manage the complexity results in a much

concise representation of the data.

Families bring together all the options that belong to it. Some self-contained

yes-no options are converted into modular families with selected and not-selected

as options. Every option has a set of models that it has been assigned to and a set

of restrictions that it is imposed. This forms the very basis of the task of modeling

the problem into a CSP problem.

11



2.2. GENERAL ALGORITHM FOR CSP SOLVER

Families are modelled as the variables X, which belongs to the set of options

modelled as the set D. Constraints between the options are modelled as the

variable C as mentioned above. Models are further imposed as another layer of

restriction between the options.

A valid solution to the problem would be a set of options, each belonging to

one particular family, which satisfies all the restrictions within the options as well

as in the models.

Furthermore, as the designer would most of the times be interested only in

the families that belong to his design necessities, s/he must be able to select the

families that interests him/her. In this case, the valid solutions will the ones that

contains the results that s/he is interested while still satisfying all the restrictions

within the options and the models.

2.2 General algorithm for CSP solver

2.2.1 Constraint Propagation and Search

Constraint satisfaction problems on finite domains are usually solved using a form

of search, and the most popular techniques are variants of backtracking, constraint

propagation, and local search.

In our case, we have chosen to use constraint propagation as the search tech-

nique. Our primary reason to select the technique was also based on the tool that

we chose to use. Gecode was the constraint programming framework that we chose

to use, as it has been proven robust in the industry for modeling and process-

ing constraint satisfaction problems. It searches through the solution space using

12



2.2. GENERAL ALGORITHM FOR CSP SOLVER

propagation and branching, and hence our technique selection.

Constraint propagation excludes those values from being assigned to a variable

which are incompatible with a solution. Values not yet excluded are stored in the

domain of a variable, also sometimes called as constraint variable. A propagator,

which represents an individual constraint over a number of variables, excludes

such incompatible values from the domains encapsulating an algorithm to filter

out incompatible values, using a filter algorithm.

Propagation is typically not able to exclude all but one value per variable and

thus, to produce an assignment for a given problem. Hence, constraint propagation

is complemented by search. As soon as constraint propagation stopped because

no further values can be excluded, search branches to different alternatives in a

speculative way excluding values and thus, triggering new constraint propagation

in the alternatives. A brancher determines the shape of the search tree, defining

what speculative ways the values should be further excluded while searching down

the tree.

Constraint propagation (with branching and search) is performed until a desired

solution is eventually found or all alternatives are explored.

2.2.2 Search strategies

A search engine performs search by computing spaces. A space implements a

constraint model on which the search operation is performed. The search operation

normally goes through the following process for each space it encounters.

It begins by trying to solve the space and then queries for the result. If the

space is fully solved, the solution is found and the search can terminate for that

13



2.2. GENERAL ALGORITHM FOR CSP SOLVER

Figure 2.1: Visual respresentation of workflow in the implementation of the con-
figuration

particular space.

If the solution is not found, then the engine finds the unsolved variables and

branches on it. But, before the engine can branch it has to clone its current space,

which is required so that the it can perform backtracking. By cloning its current

space, the engine can later come back to the same space in case the branch it

traveled down did not yield any results.

Furthermore, search engines can be equipped with special heuristics. Doing so

allows them to be further fine-tuned, for instance, they can determine the best

variables to branch on, keep track of the best solution found so far etc, and all

other customizable logic required in the relevant project more than a generic search

engine.

DFS, better known as Depth First Search is an algorithm for traversing a search

14



2.2. GENERAL ALGORITHM FOR CSP SOLVER

tree, a tree structure, or a graph. The search tree explained above performs search

in a tree structure, and DFS is one of the best algorithms that ensures proper

search results in a tree structure.

DFS in its simplest form can be defined as an uninformed search that progresses

by expanding the first child node of the search tree that appears and thus going

deeper and deeper until a goal node is found, or until it hits a node that has no

children. Then the search backtracks, returning to the most recent node it has not

finished exploring. DFS can be optimised further to give better results faster with

the addition of different search heuristics.

Because of the nature of the problem at hand, its representation as a tree

structure and the search engine’s requirement, DFS seems to be a natural choice

to start with. With further added heuristics, DFS can be improved to provide

quality results within acceptable time.

2.2.3 Search Heuristics

As we pointed out above, a CSP heuristic includes a variable/value selection pro-

cedure. Classical value ordering strategies can be summarized as follows: min-

value selects the minimum value, max-value selects the maximum value and mid-

value selects the median value in the remaining domain. Usually variable selection

heuristics are more important and comprehend more sophisticated algorithms.

Various heuristics are considered for the preliminary tests, and then these are

further benchmarked against each other to make the final selection. The heuristics

involved are explained further in the results with benchmark data.

15



2.3. PARTIAL CONFIGURATION

2.3 Partial configuration

The idea of partial configuration, as defined in Section 1.4 on page 8 is further

implemented as another layer on the top of the general CSP solver to obtain

concise results.

In this case, the families that are of specific interest to the designer is selected

and the solver is run to generate results only enumerating the ones in concern to

those families. Two approaches have been considered in our case, both of which

are explained below.

2.3.1 Enumerate and Query Search

The first approach is to enumerate all complete partial configuration and then ask

the solver if each of them are allowed. This process can also be listed a a brute-force

approach to finding all the solutions. In this approach, the configurator considers

all the variables in interest. After the necessary constraint propagation for all these

variables, the valid domain for each of these variables are enlisted. An enumeration

of all the possible combinations between the elements in the list of valid domains

is done. The configurator then queries for each enumeration to see whether it is a

valid result or not. The configurator has to traverse through the whole list before

providing complete solutions.

2.3.2 Dynamic Constraint Propagation and Search

Dynamic CSPs (DCSPs) are useful when the original formulation of a problem is

altered in some way, typically because the set of constraints to consider evolves

because of the environment. DCSPs are viewed as a sequence of static CSPs, each
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2.3. PARTIAL CONFIGURATION

Figure 2.2: Search flow for ’Enumerate and Query’ Search

one a transformation of the previous one in which variables and constraints can

be added (restriction) or removed (relaxation). Information found in the initial

formulations of the problem can be used to refine the next ones.

In this approach, initially the configurator considers all the variables in interest.

It then looks for the first solution possible. After finding the first solution, further

constraints are added to the configurator that specify the solution just found not

to be a solution. This process is repeated for every solution found, which forces

the configurator to look for new solutions.

17



2.3. PARTIAL CONFIGURATION

Figure 2.3: Search flow for ’Dynamic Constraint Propagation’ and Search
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3

Implementation

A
lot of libraries exist for modelling and solving CSP problems. The two

most popular frameworks among the ones we studied are Choco and

Gecode and they show almost the same results at CSP Solvers compe-

tition, but we choose Gecode as it provides more complete documentation.

Gecode is an open, free, portable, accessible, and efficient environment for de-

veloping constraint-based systems and applications. It is implemented in C++

and offers competitive performances w.r.t. both run-time and memory usage. It

implements a lot of data structures, constraints definitions, and search strategies,

allowing also the user to define his own ones.

3.1 Modelling in Gecode

Gecode models are implemented using spaces, space is the home(storage) for vari-

ables, propagators (implemented constraints), branchers (or labellings, describing
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3.1. MODELLING IN GECODE

the shape of the tree), and possibly an order - determining the best solution dur-

ing search. Therefore we need to define what is variables and constraints in our

problem and then define branchers for them.

Configuration data is exported in a specific industrial format. It contains in-

formation about options, families, models, and restrictions on option usage.

Options are parts or features of the car that can be selected. Families group

options and add a restriction that no more than one option can be selected from

a family. Models can be seen as a very influential high-level family, with different

body styles and series as options. Restrictions limit how options can be combined

with each other.

3.1.1 Creating variables.

Families of options we see as integer variables. Each variable has its own domain

which consists of options that can be selected in this family. Another variable is a

model with the domain of available models.

Options and families appear in the format in different flavors. Families can be

of two different family types: regular and modular. Regular families must have

either zero or one option selected from it. Modular families must have exactly one

option selected from it. Therefore we convert regular families to modular ones by

adding an extra option ”not selected” to the family.

Options can belong to a family or be self-contained yes-no options. Self-

contained yes-no options (they have no family associated with them) considered

as a modular family with options ”Yes” and ”No”.

All options and families have unique codes, respectively called option codes and
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family codes. Knowing this we can create a unique mapping of options and families

to the natural numbers, which allows us to deal with them as integer variables.

3.1.2 Posting constraints.

Each option has one or more restrictions or conditions that specify when the option

can be used.

OptionA -> (ConditionA1 and ConditionA2 and...

and ConditionAN) (1)

where a -> b = ((not a) or b).

Each condition consists of two parts. The first part, model part, describes the

models for which the condition applies. The second part, options part, describes

the options that have to be selected or not selected to satisfy the condition. The

model part can describe several models, which means that any of them can be

selected for this condition:

ConditionA1 = ((Model1 or Model2 or ... or ModelN) and

OptionsExpression) (2)

3.1.3 Model part

Model part describes brand, carline, model series and body style.
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3.1.4 Options part

Options part of the condition describes the options that have to be selected or

not selected. This part can be written on one or more lines and can be seen as a

boolean expression with regular operators - and, or, not.

3.1.5 Translating restrictions

Translating restrictions part of the string to the Gecode format is performed in 2

steps:

1. Parse restriction string to the abstract syntax tree, according to the grammar.

2. Traverse the tree recursively and create boolean expressions for every node.

Create boolean expression of the form :

Family Variable == OptionCode

for every option code leaf in the restriction.

After this process we have got one BoolVar, which is constructed as boolean ex-

pression in the string.

3.1.6 Translating models

All models are gathering from the string separately to get needed BoolVar with

expression of the following form:

Model1 or Model2 or ... or ModelN
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Between all these restrictions for one option there is an ”or” relation, either of

them can be true.

Hence, the final relation posted to the model, for every option derives from the

logic expressed below.

rel(*this, expr (*this,(families[cur_fam] == cur_opt)

>> restriction), IRT_EQ, 1)

3.2 Search

Search involves two techniques: branching and exploration. Branching defines the

shape of the search tree. Exploration defines a strategy how to explore parts of

the search tree and how to possibly modify the tree’s shape during exploration (for

example, in the partial configuration search by adding new constraints).

3.2.1 Branching

Gecode offers predefined variable-value branching: when calling Branch to post

a branching, the third argument defines which variable is selected for branching,

whereas the forth argument defines which values are selected for branching.

The posted brancher assigns all variables and then ceases to exist. If more

branchers exist, search continues with the next brancher.

We have two branchers - for family variables and for the model.

branch(*this, families, INT_VAR_SIZE_MIN, INT_VAL_MAX);

branch(*this, model, INT_VAL_MAX);
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Defining the optimal arguments to pass to the brancher, i.e. what heuristics to

use is the matter of experimentation.

3.2.2 Tiebraking

Usually tie-breaking for the variable selection chooses the first variable (the variable

with the lowest index in the array) that satisfyes the selection criteria. For many

applications that is not very sufficient behaviour, including our case. For integer

variables it is important to select the most constrained variable first (the variable

most propagators depend on, that is, with the largest degree). Then, among the

most constrained variables select the variable with the smallest size of the domain.

This can be achieved by using a tiebreak function:

branch(\*this, families, tiebreak(INT_VAR_DEGREE_MAX,

INT_VAR_SIZE_MIN),INT_VAL_MIN);

This technique could be useful in our case, so this kind of heuristic was also included

to the experiment.

3.2.3 Recomputation

For the backtracking search the most expensive operation is returning to the pre-

vious states: as spaces constitute nodes of the search tree, a previous state is

nothing but a space. Returning to a previous space of solutions is performed when

an alternative suggested by a branching did not lead to a solution.

Two spaces are equivalent if propagation and branching and hence search be-

haves exactly the same on both spaces. There are two techniques for restoring

spaces: recomputation and cloning.
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Cloning creates a clone of the space. A clone and the original space are equiv-

alent. Restoration with cloning is straightforward: before following a particular

alternative during search, a clone of the space is created and used later if necessary.

Recomputation remembers what has happened during branching: rather than

storing an entire clone of a space it saves just enough information to redo the effect

of a brancher. In Gecode this information stored is called a choice. Redoing the

effect is called commiting a space: given a space and a choice committing reexecutes

the brancher as described by the choice and the alternative to be explored (for

example, left or right branch).

Hybrid recomputation. The hybrid of recomputation and cloning works as

follows. For each new choice node, a choice is stored. Then, every now and then

search also stores a clone of the space (after every constant number of steps). Now,

restoring a space at a certain position in the search tree traverses the path in the

tree upwards until a clone is found on the path. Then recomputation creates a

clone of this clone. Then all choices on the path are committed on the found clone

yielding an equivalent space.

If only cloning but no recomputation is used, there is one clone operation, one

commit operation, and one status operation to perform constraint propagation.

With hybrid recomputation, one clone operation, three commit operations, and one

status operation to perform constraint propagation are needed (as shown above).

Commit operations are very cheap (most often, just modifying a single variable

or posting a constraint). What is essential is that in both cases only a single

status operation is executed. Hence, the cost for constraint propagation during

hybrid recomputation turns out to be not much higher than the cost without
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recomputation.

Adaptive recomputation. If a node must be recomputed, adaptive recompu-

tation creates an additional clone in the middle of the recomputation path. A

clone created during adaptive recomputation is likely to be a good investment.

Most likely, an entire failed subtree will be explored. Hence, the clone will be

reused several times for reducing the amount of constraint propagation during

recomputation.

Hybrid and adaptive recomputation can be easily controlled by two integers

Cd (commit distance) and Ad (adaptive distance). The value for Cd controls how

many clones are created during exploration: a search engine creates clones during

exploration to ensure that recomputation executes at most Cd commit operations.

The value for Ad controls adaptive recomputation: only if the clone for recompu-

tation is more than ad commit operations away from the node to be recomputed,

adaptive recomputation is used. Values for Cd and Ad are used to configure the

behavior of search engines using hybrid and adaptive recomputation. The number

of commit operations as distance measure is approximately the same as the length

of a path in the search tree. It is only an approximation as search engines use

additional techniques to avoid some unused clone and commit operations.

3.2.4 Parallel search

Gecode uses a standard work-stealing architecture for the parallel search: initially,

all work (the entire search tree to be explored) is given to a single worker for the

exploration, making the worker busy. All other workers are initially idle, and try

to steal work from a busy worker. Stealing work means that part of the search
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tree is given from a busy worker to an idle worker such that the idle worker can

become busy itself. If a busy worker becomes idle, it tries to steal new work from

a busy worker. As work-stealing is indeterministic (depending on how threads

are scheduled, machine load, and other factors), the work that is stolen varies

over different runs for the very same problem: an idle worker could potentially

steal different subtrees from different busy work ers. As different subtrees contain

different solutions, it is indeterministic which solution is found first.

Naturally, the amount of search needed to find a first solution might differ

both from sequential search and among different parallel searches. Note that this

might actually lead to super-linear speedup (for n workers, the time to find a first

solution is less than 1/n the time of sequential search) or also to real slowdown.

Using parallel search allows significantly improve search time for our problem

and was used in all experiments.

3.2.5 Partial configuration search

Both methods of partial search described in the Chapter 2 were implemented and

used in our experiments.

3.2.6 Previous solution reuse

Solution reuse for the partial configurations search was implemented using Restart

search engine available in Gecode. New constraints are posted for every next

solution search using the function constraint. First of all, those that make previous

found configuration not allowed and then those that help to narrow down the

solution space.
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Results

A
s described in the previous section, the configurator was suc-

cessfully developed to process the data that was obtained. The

sucess of the program and the algorithms in use were verified us-

ing the test data provided along. As the configurator was able to

present exactly the same solutions as required by the test data, it was considered

reliable to use for experimental inputs. After verifying the configurator, time was

spent on selecting the proper heuristics required for the search and speeding up

the search process.

Considerable amount of time was spent on speeding up the configurator after

which the results were then collected. This was done so as to be able to benchmark

the various algorithms considered as well as external tools built with the same

purpose. While one of the main goal of the project was to use CSP as the solver

for the problem in hand, the other goal was also to investigate whether it was

worthy enough of industrial usage in case the configurator could generate the
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solutions using CSP.

4.1 Selection of the Search Heuristic

After verifying the test cases, the next step involved the selection of proper heuris-

tics to speed up the search process algorithmically. Initially, a lot of different com-

bination of heuristics were tested for generation of the first result of the soltion

being tested. The time taken was considered and then 6 different heuristics were

selected finally for the best speed.

The heuristics named as Heuristics 0 to Heuristics 5 are described below.

1. Heuristic 0 : Branching over a tie-break of variables of largest degree and

smallest domains size with the largest values

2. Heuristic 1 : Branching over a tie-break of variables of largest degree and

smallest domains size with the smallest values

3. Heuristic 2 : Branching on variable of largest degree with smallest values

4. Heuristic 3 : Branching on variable of largest degree with largest values

5. Heuristic 4 : Branching on variable of smallest degree with smallest values

6. Heuristic 5 : Branching on variable of smallest degree with largest values

To investigate the performance of the configurator various datasets of different

complexity size was required. The official dataset had around 35000 constraints

to parse; the same dataset was further processed manually and constraints were

removed making sure that it would only simplify the data and not eventually break
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it. Datasets having around 12000 to the original 35000 constraints were created in

intervals of around 2000. Each heuristic was then run over the various datasets to

obtain the first valid solution, the runtime of which were measured. The results

thus obtained are presented on the following table with an accompanying plot.

The following table lists the time taken by each heuristic averaged over the

datasets with various number of constraints as represented in the plots.

Heuristic Used Time taken (Average)

(to find the first possible solution) (in milliseconds)

Heuristic 0 48.1269 ms

Heuristic 1 34.9702 ms

Heuristic 2 39.9842 ms

Heuristic 3 44.0886 ms

Heuristic 4 39.9693 ms

Heuristic 5 45.4055 ms

Table 4.1: Heuristics used and Time taken

The above table lists the time taken to obtain the first valid solution using

various heuristics, averaged over the datasets created.

Based on the results, it is clearly visible that Heuristic 1 takes the least amount

of time to solve the problem. The same conclusion can be reached by inspecting

the accompanying previous plots as well.

This clearly led to the usage of Heuristic 1 for further configurations in the

case of generating partial configurations.
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Figure 4.1: Benchmarking results for the selection of best heuristic.
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Figure 4.2: Averaged benchmarking results for the selection of best heuristic.32
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4.2 Benchmarking of Partial Configuration

Mentioned in the previous sections, two approaches were considered for the gener-

ation of partial configurations.

The first technique (Enumerate and Query Approach) enumerated all valid

combination and then the solver was asked to solve for each of the combination.

The second technique (Dynamic Search) involved the dynamic addition of con-

straints to the solver; every time a valid solution was found, the solution was

added as a further constraint hence asking the solver to search for another solu-

tion further.

From the results generated before, Heuristic 1 was chosed to be used in all

of the tests to benchmark the techniques. For each of the technique, the process

was the same. The test was run with inputs as the interesting variables and the

output was checked for as expected. To benchmark the solutions, the runtimes

were compared once again across the techniques and with the result obtained from

the external tool (SAT-based) as well. Based on the technique in use, the search

time was calculated differently, in the Enumerate and Query Approach the search

time was measured excluding the re/modeling time, while in the case of Dynamic

Search the re/modeling time was included as it was one of the main parts of

the search loop in itself. The results obtained from the benchmarking tests are

presented below.
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Variables All Combinations Valid Combinations Search Time

8 256 8 5391 ms

8 5760 498 92427 ms

11 103680 106 2181223 ms

Table 4.2: Results for CSP Solver (Enumerate and Query Approach)

Variables All Combinations Valid Combinations Search Time

8 256 8 87654 ms

8 5760 498 289417 ms

11 103680 106 204578 ms

Table 4.3: Results for CSP Solver (Dynamic Search Approach)

4.3 Explanation of the Partial Configuration Re-

sults

After obtaining the final benchmarking results as listed above, the comparision

between various systems could eventually be made.

For the first approach, that is the ”Enumerate and Query” approach, we can

see that the total search time increases propotionally to the number of total com-

binations to be enumerated and queried. The explanation for it is quite simple

Variables All Combinations Valid Combinations Search Time

8 256 8 150 ms

8 5760 498 3218 ms

11 103680 106 881 ms

Table 4.4: Results for external SAT solver (SAT constructive Search)
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as the design of the algorithm. In this approach, the configurator considers all

the variables of interest. After the necessary constraint propagation for all these

variables, the valid domain for each of these variables is enlisted. An enumeration

of all the possible combinations between the elements in the list of valid domains

is done. The configurator then queries for each enumeration to see whether it is a

valid result or not. The configurator has to traverse through the whole list before

providing complete solutions, hence the explanation for the time taken to find all

the results. Since the configurator queries all the possible combinations, the total

time taken directly is a summation of time taken for individual queries on all these

combinations.

For the second approach, that is the ”Dynamic Search” approach, the expla-

nation is not quite straightforward as above. In this approach, initially the con-

figurator considers all the variables of interest. It then looks for the first solution

possible. After finding the first solution, further constraints are added to the con-

figurator that specify the solution just found not to be a solution. This process is

repeated for every solution found, which forces the configurator to look for new so-

lutions. As we can see that while the search time does increase with the increased

amount of total combinations, they are rather proportional to the number of valid

combinations. We can see that, unlike in the previous approach the search time

actually is a function of valid solutions. However, during the test processes we also

came across the search behaviour of the configurator in which the first 50-70%

of the solutions took about 1/10,000 to 1/1,000 of the total search time, while

the rest of the solutions consumed the remaining time. Despite various debugging

sessions, we could not come to the conclusion for the displayed behaviour.

The search time for the SAT constructive search was taken from a separately
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developed configurator ; not a part of this project. The results were used to bench-

mark the developed CSP solution against the pre-existing SAT solution.

4.4 Conclusions

The above results points towards one conclusion univocally. While CSPs might be

easy to represent the data verbally and mentally, SAT solvers however beat CSPs

in terms of computation. One of the main goal of the project was to perform a

study on suitability of CSPs over SAT solvers. With the results presented above,

it clearly marks the poor performance of CSPs in comparision to SAT, in this

case. Despite the fact that there lies some room for improvement in the CSP

performance, the SAT solution looks much more capable than the one that was

developed for the project. Hence, it has been concluded that despite the richness of

CSP vocabulary in explaining the problem at hand, SAT seems to be significantly

better in terms of performance.
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A

List of Heuristics investigated

A.1 Available setting for branchers in Gecode

INT_VAR_NONE first unassigned

INT_VAR_RND randomly

INT_VAR_DEGREE_MIN smallest degree

INT_VAR_DEGREE_MAX largest degree

INT_VAR_AFC_MIN smallest accumulated failure count (AFC)

INT_VAR_AFC_MAX largest accumulated failure count (AFC)

INT_VAR_MIN_MIN smallest minimum value

INT_VAR_MIN_MAX largest minimum value

INT_VAR_MAX_MIN smallest maximum value

INT_VAR_MAX_MAX largest maximum value

INT_VAR_SIZE_MIN smallest domain size

INT_VAR_SIZE_MAX largest domain size
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A.1. AVAILABLE SETTING FOR BRANCHERS IN GECODE

INT_VAR_SIZE_DEGREE_MIN smallest domain size divided by degree

INT_VAR_SIZE_DEGREE_MAX largest domain size divided by degree

INT_VAR_SIZE_AFC_MIN smallest domain size divided by AFC

INT_VAR_SIZE_AFC_MAX largest domain size divided by AFC

INT_VAR_REGRET_MIN_MIN smallest minimum-regret

INT_VAR_REGRET_MIN_MAX largest minimum-regret

INT_VAR_REGRET_MAX_MIN smallest maximum-regret

INT_VAR_REGRET_MAX_MAX largest maximum-regret

INT_VAL_MIN smallest value

INT_VAL_MED greatest value not greater than the median

INT_VAL_MAX largest value

INT_VAL_RND random value

INT_VAL_SPLIT_MIN values not greater than mean of smallest and

largest value

INT_VAL_SPLIT_MAX values greater than mean of smallest and

largest value

INT_VAL_RANGE_MIN values from smallest range, if domain has

several ranges; otherwise, values not greater

than mean of smallest and largest value

INT_VAL_RANGE_MAX values from largest range, if domain has

several ranges; otherwise, values greater than

mean of smallest and largest value

INT_VALUES_MIN all values starting from smallest

INT_VALUES_MAX all values starting from largest
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