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Göteborg, Sweden, 2012



Implementation of a flexible fiber model in a general pur-
pose CFD code
JELENA ANDRIĆ
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Abstract

This work is related to the process of making pulp mats for use in hy-

gienic products. One part of that process is the transportation of flexi-

ble cellulose fibers suspended in flowing air. The fibers should be evenly

distributed on the substrate, and it is thus of high importance to avoid

the formation of fiber flocks during the transportation. The purpose

of the present work is to implement a flexible fiber model in a general

purpose Computational Fluid Dynamics (CFD) code, for detailed stud-

ies of fiber-fiber and fiber-flow interaction in real flow situations. The

fibers are modeled as chains of cylindrical segments, and the transla-

tional and rotational degrees of freedom of each segment are taken into

account. Each segment is tracked individually, using Lagrangian Par-

ticle Tracking (LPT), and the equations of fiber motion are derived from

the conservation of momentum for each segment. The segment inertia

is taken into account and the one-way coupling with the fluid phase is

considered. The fiber integrity is ensured through connectivity forces

acting between the adjacent fiber segments. The implemented model

has been applied both with imposed flow fields, and in a flow field si-

multaneously predicted by the CFD solver. The results show that the

fibers are transported by the flow and are deformed due to flow gradi-

ents. Further, a generic test case is described and used to validate the

energy conservation and response time of the fiber model concept.

This work is the foundation for further improvements of the fiber model

through the addition of bending and twisting forces, as well as the in-

clusion of interaction (e.g. collision) forces between individual fiber seg-

ments. These features, together with a two-way coupling with the flow,

will lead to a more complete fiber model.

Keywords: flexible fiber, LPT, CFD, OpenFOAM
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and support. Co-supervisors Alf-Erik Almstedt and Srdjan Sasic are

also acknowledged.

Thanks to Henrik Rusche, Wikki GmbH and Hrvoje Jasak, Wikki Ltd.

and FSB Zagreb, for their help with OpenFOAM during the NUMAP-

Foam Summer school in Zagreb.
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Nomenclature

Latin Symbols

d diameter [m]

l length [m]

r radius [m]

e aspect ratio [-]

m mass [kg]

I inertia tensor [kg m2]

İ inertia tensor time derivative [kg m2/s]

r position [m]

ṙ velocity [m/s]

r̈ acceleration [m/s2]

ω angular velocity [1/s]

ẑ orientation vector [-]

F h hydrodynamic force [N]

F w body force [N]

g gravitational acceleration [m/s2]

Xh connectivity force [N]

fh contact force [N]

T h hydrodynamic torque [Nm]

Y h bending and twisting torque [Nm]

υ fluid velocity [m/s]

Ω fluid angular velocity [1/s]

γ̇ strain rate tensor [1/s]

Aυ,Cυ,Hυ hydrodynamic resistance tensors [kg/s]

AI ,CI ,HI hydrodynamic resistance tensors [kg/s]

XA,Y A,XC ,Y C ,Y H hydrodynamic coefficients [-]

CD drag coefficient [-]

Res segment Reynolds number [-]

Ep potential energy [J]

Ekt translational kinetic energy [J]
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Ekr rotational kinetic energy [J]

Etot total energy [J]

a,b,c vectors [-]

P ,S,T second-order tensors [-]

A matrix [-]

T oscillatory period [s]

Greek Symbols

∆t time step [s]

δ Kronecker delta tensor [-]

ǫ permutation tensor [-]

ρ density [kg/m3]

η dynamic viscosity [kg/m s]

θ angle [rad]

Subscripts

i, j segment indexes

n time step index
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Chapter 1

Introduction

This work deals with the description and numerical implementation

of a model of fibers suspended in viscous, flowing fluid. Each fiber is

modeled as a chain of cylindrical segments that are tracked using La-

grangian Particle Tracking. The segments are subjected to forces that

make them stay attached, and drag forces that move and deform the

fiber. The model is implemented in the OpenFOAM, an open source

CFD tool, and is coupled with the imposed flow fields and a flow field

that is simultaneously predicted by the CFD solver. The model can

thus be used in different applications where flexible fiber suspensions

in complex flow play an important role.

The aim of this work is to apply the method in the absorbent hygiene

product industry, in applications such as the dry forming process of

pulp mats, where fibers are suspended in flowing air. Controlling the

fiber behaviour and interaction in these processes is essential in order

to achieve the desired spatial arrangements of fibers in the final prod-

uct. The development and the break-up of fiber flocks are of particular

interest. Since such phenomena occur at the scales of the fiber length,

it is difficult to study them experimentally. A particle-level simulation

technique, described in this work, is an alternative tool for studying

the fiber flow.

1.1 Background and Previous Work

The dynamic behavior of particles suspended in fluid flow is important

in many processes in modern technology. In many of those suspensions

nonspherical particles are present. One example is flexible fibers as

well as their clusters. When a fiber suspension is subjected to a flow

field, the fibers may translate, rotate and deform. In the case of the

production of fiber mats, these changes in the suspension microstruc-
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ture affect the produced material macroscopic properties, such as elas-

tic modulus, strength, thermal and electric conductivities. In pulp and

paper processing, fiber dynamics during the sheet forming process is

one of the most important factors that influence the sheet characteris-

tics [1, 2, 3].

Some of the current understanding of flexible fiber dynamics has its ori-

gin in experimental observations. Forgacs et al. [4, 5] identified differ-

ent regimes for fiber motion in shear flow. They observed that flexible

fibers subjected to shear flow move in a coloid regime with or without

entanglement. These studies show that the dynamics of flexible fibers

depend on the fiber stiffness, length, and the flow properties such as

shear rate and fluid viscosity.

Some numerical approaches have been developed to study flows with

particles. In the Eulerian-Eulerian approach, both the particle phase

and the fluid phase are treated as a continuum. The Lagrangian-

Eulerian approach treats particles as moving points in the fluid medium.

In the DNS approach, the particle geometries are resolved at differ-

ent levels of detail. In the microhydrodynamics approach many parti-

cles are combined in multi-rigid-body systems [6, 7]. Several numeri-

cal methods, which are using the microhydrodynamics approach have

been developed to simulate flexible fiber motion in shear and sedimen-

tation flows. Yamamoto and Matsuoka [3] developed a particle-level

simulation technique for simulating the dynamic behavior of rigid and

flexible fibers in a flow field. They regarded a fiber as a number of

spheres, lined up and bonded to each neighboring sphere. Ross and

Klingenberg [1] proposed a model similar to that of Yamamoto and

Matsuoka, except that they model a fiber as a chain of rigid prolate

spheroids. These numerical studies, both applied for two-dimensional

viscous shear flow, were in qualitative agreement with experimental

results for isolated fiber motion, reproducing the rigid, springy and

snake-like regimes of fiber motion [4, 5]. However, the coiled regime

of motion and the entanglment are three-dimensional phenomena and

cannot be studied using two-dimensional models. Schmid et al. [8] de-

veloped a particle-level simulation technique to study the flocculation

of fibers in sheared suspensions in three dimensions. They investigated

the influence of shear rate, fiber shape and flexibility, and frictional in-

terparticle forces on the flocculation phenomena. The fibers were mod-

eled as chains of massless, rigid, cylindrical segments interacting with

an imposed flow field through viscous drag forces and with other fibers

through contact forces. The model did not account for particle inertia,

hydrodynamic interactions or the two-way coupling between the fibers

and the flow. Lindström and Uesaka [7] developed further the model

2



CHAPTER 1. INTRODUCTION

of Schmid et al. in an attempt to deal with the full complexity of fiber

suspensions. The improved model accounts for the particle inertia and

the hydrodynamic interaction between the fibers. They derived the ap-

proximation of the noncreeping interaction between fiber segment and

the surrounding fluid, for larger segment Reynolds numbers, and took

into account the two-way coupling. Their simulations successfully re-

produced the different regimes of motion for threadlike particles rang-

ing from rigid fiber motion to complicated orbiting behavior, including

coiling with and without self-entanglement.

1.2 Aim and Limitations of the PresentWork

This work is a first step towards the implementation of the model for

flexible fibers in viscous fluid flow originally proposed by Schmid et

al. [8] and further developed by Lindström and Uesaka [7] in the Open-

FOAM, open source CFD software. The aim is to be able to obtain a

detailed resolution of the flow field of the carrier phase, which is the

main justification for the choice of software. The connectivity forces be-

tween adjacent fiber segments that ensure the integrity of a fiber are

taken into account. The bending and twisting torques are currently not

taken into account. The inter-segment interactions (e.g.collisions) and

the segment-wall interactions are not considered. The implemented

model is tested in different imposed flow fields as well as in the flow

field obtained while simultaneously predicting the 2D transient lami-

nar flow in a lid-driven cavity test case- a standard OpenFOAM tutorial

with flow features that are relevant for the present application. In all

the cases the one-way coupling is considered, i.e. the air flow is not

affected by the presence of the fibers in the simulations. Furher, the

energy conservation and response time of the fiber model concept is

validated using a generic test case, resembling a physical pendulum.

1.3 Outline of the Thesis

Here, a short summary of the chapters and appendices is provided.

Chapter 2 provides a theoretical background of this work. The fiber

model geometry and the governing equations are presented. The limi-

tations of the current implementation are pointed out as well. Chapter

3 summarizes the main results at the current stage of the work, con-

sidering both the imposed and the simultaneously predicted flow fields.

Chapter 4 describes a generic test case, resembling a physical pendu-
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lum, for validation of the energy conservation and response time of the

fiber model concept. Appendix A is a short summary of the main vec-

tor and tensor operators that have been used in the derivation of a set

of governing equations of motion for the fibers. Appendix B contains

the derivation of the inertia tensor for a cylinder. Appendix C gives an

overview of different numerical issues related to the model implemen-

tation, such as dimensional analysis and scaling, ill-conditioned lin-

ear systems and Tikhonov regularization. In Appendix D the complete

derivation of the dimensionless fiber equations is shown. Appendix E

describes the physical pendulum, which is used in Chapter 4 for vali-

dation purposes.
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Chapter 2

Methodology

In this chapter a fiber geometry is first described, based on the con-

cept of a chain of cylindrical segments. The dimensionless governing

equations are presented, including the forces that have been taken into

account in the current implementation. The numerical algorithms to

solve these equations in order to get the unknown connectivity forces

are also discussed.

2.1 Fiber Geometry

A fiber is in the present work modeled as a chain of N rigid cylindrical

segments [7, 8], see Fig. 2.1. The segments are indexed i ∈ [1,N ] and
their locations are specified with respect to a global Cartesian coordi-

nate system Γ. The axes of the global cooordinate system are defined
by the base vectors {x1,x2,x3} and its origin is denoted by O . A single

fiber segment has a diameter di, a length li, a start point Pi, a unit vec-

tor ẑi, which is aligned with the segment, and another unit direction

vector ŷi, which is perpendicular to ẑi. A local right-hand coordinate

system Γi is associated with each fiber segment. The axes of a local

coordinate system are defined by the orthonormal set x̂i, ŷi, ẑi and its

origin is Pi, which is the start point of segment i. The diameter and
length may differ between segments of the same fiber. For each fiber

segment the position vector ri =
−−→
OPi + liẑi/2 points out the fiber seg-

ment center of mass. The fiber segments rotate and twist about the

joints, replicating the fiber bending and twisting deformations, while

the fiber length remains constant. The bending and twisting torques

attempt to hold the fiber in a specified equilibrium shape.
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Figure 2.1: Fiber geometry definitions.

2.2 Equations of Motion

The equations of motion of a fiber represent the direct application of

Newton’s second law for each fiber segment i [7, 8]. The rate of change
of linear momentum of fiber segment i is the sum of all forces that act
on the segment, i.e.

mir̈i = F h
i + F w

i + X i+1 − X i (2.1)

Here mi is the mass of the segment, F
h
i is the hydrodynamic force act-

ing on the segment (see section 2.3), F w
i is the sum of body forces, ne-

glected in the present work except for the validation in Chapter 4 and

X i is the connectivity force exerted on segment i − 1 by segment i. For
the end segmentsX1 = XN+1 = 0.

The rate of change of angular momentum about the center of gravity of

the segment equals the moment of the external forces about that point,

i.e.
∂(I i · ωi)

∂t
= T h

i +
li
2
ẑi × X i+1 +

(

−li
2

ẑi

)

× (−X i) (2.2)

where I i is the tensor of inertia of segment i with respect to the global
coordinate system Γ, ωi is is the angular velocity, T h

i is the hydrody-

namic torque. The connectivity constraints between fiber segments re-

quire that the end-points of adjacent fiber segments coincide, i.e.

ri +
li
2
ẑi = ri+1 −

li+1

2
ẑi+1 (2.3)

6



CHAPTER 2. METHODOLOGY

The connectivity equation is then obtained by taking the time deriva-

tive of Eq. 2.3, i.e.

ṙi − ṙi+1 =
li
2
ωi × ẑi +

li+1

2
ωi+1 × ẑi+1 (2.4)

2.3 Hydrodynamic Forces

The hydrodynamic forces are taken into account in the equations as F h
i

and T h
i . The segment Reynolds number is defined as Res,i = ρdi(υ(ri)−

ṙi)/η, where di and ṙi are segment diameter and velocity, υ(ri) is the
fluid velocity at the segment center of gravity, and ρ and η are fluid
density and dynamic viscosity respectively. The hydrodynamic forces

are dominated by viscous effects for small segment Reynolds numbers,

and by inertia effects for large segment Reynolds numbers. It can be

assumed that the respective effects can be expressed as a sum of two

separable components. Lindström and Uesaka [7] numerically investi-

gated the consequence of this assumption, and found a good agreement

between the model, theory and experiments in the viscous flow regime

(Res . 10−1) as well as in the regime dominated by dynamic effects
(102 . Res & 3 × 105), while the highest discrepancy in drag coefficient
CD occured in the intermediate region and had a maximum of 42% at
Res ≈ 5.4. The total force and torque exerted on fiber segment i by the
fluid are then given by

F h
i = (Aυ

i + AI
i ) · [υ(ri) − ṙi] (2.5)

T h
i = (Cυ

i + CI
i ) · [Ω(ri) − ωi] + (Hυ

i + HI
i ) : γ̇(ri) (2.6)

HereAυ
i ,C

υ
i , andHυ

i are the hydrodynamic resistance tensors (see sec-

tion 2.3.1) and AI
i , C

I
i andHI

i are the dynamic drag resistance tensors

(see section 2.3.2). Ω = ∇ × υ/2 is the angular velocity of the fluid
and γ̇ = [∇υ + (∇υ)T ]/2 is the rate of strain tensor, where the gradient
operator ∇ and the curl operator ∇× are described in Appendix A. In
the following sections, the approximations of the viscous and dynamic

drag forces are described.

2.3.1 Viscous Drag Force

An analytical solution, described by Kim and Karilla [9], exists for the

viscous drag force for isolated spheroidal particles and laminar condi-

tions. According to the semi-empirical formula of Cox [10], a prolate

spheroid is hydrodynamically equivalent to a finite circular cylinder in
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the sense that their orbiting behavior in shear flow is the same if

re

rc

= 1.24 ln(rc)
−1

(2.7)

where re is a prolate spheroid equivalent aspect ratio and rc is a cylin-

der aspect ratio. Since a fiber segment i is a cylinder of diameter di and

lenght li its aspect ratio is rc = li/di. The hydrodynamically equivalent

prolate spheroid, whose major axis ai equals a cylinder length li, has
re = li/bi, where bi is a spheroid minor axis. From the Cox formula it

follows that a cylindrical fiber segment i is hydrodynamically equiva-
lent to a prolate spheroid whose minor axis bi if

2bi =
1

1.24
di

√

ln
li
di

(2.8)

The Cox formula is valid for isolated particles and slender body ap-

proximation. None of these assumptions is true for fiber segments.

However, Lindström and Uesaka [7] performed numerical experiments,

which have shown that the error in the model predictions of orbit be-

havior for rigid fibers in shear flow becomes less than 3.4% compared

to Eq.2.7 for rc ≥ 10 and when one-way coupling is considered. Thus,
the viscous drag force of a fiber segment is here approximated with

that of a prolate spheroid, in accordance to Kim and Karilla [9]. For

a given velocity field υ of the fluid, the viscous hydrodynamic force F h
i

and torque T h
i are defined by

F
h,υ
i = Aυ

i · [υ(ri) − ṙi] (2.9)

T
h,υ
i = Cυ

i · [Ω(ri) − ωi] + Hυ
i : γ̇(ri) (2.10)

The hydrodynamic resistance tensors Av
i , C

v
i andHv

i are defined as

Aυ
i = 3πηli[Y

A
i δ + (XA

i − Y A
i )ẑiẑi] (2.11)

Cυ
i = πηl3i [Y

C
i δ + (XC

i − Y C
i )ẑiẑi] (2.12)

Hυ
i = −πηl3i Y

H
i (ǫ · ẑi)ẑiẑi] (2.13)

where δ and ǫ are the unit and the permutation tensor, respectively and

η is the fluid dynamic viscosity. The parameters XA
i , Y

A
i , X

C
i , Y

C
i and

Y H
i are the hydrodynamic coefficients, which depend on the eccentricity

8
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ei = (1 − b2
i /a

2
i )

1/2
and are defined as [9]

L(ei) = ln
1 + ei

1 − ei

XA
i (ei) =

8

3
e3

i [−2ei + (1 + e2
i )L(ei)]

−1

Y A
i (ei) =

16

3
e3

i [2ei + (3e2
i − 1)L(ei)]

−1

XC
i (ei) =

4

3
e3

i (1 − e2
i )[2ei − (1 − e2

i )L(ei)]
−1

(2.14)

Y C
i (ei) =

4

3
e3

i (2 − e2
i )[−2ei − (1 + e2

i )L(ei)]
−1

Y H
i (ei) =

4

3
e5

i [−2ei + (1 + e2
i )L(ei)]

−1

2.3.2 Dynamic Drag Force

In this section the expressions for the dynamic drag force and torque on

a cylindrical fiber segment at segment Reynolds number 102 . Res .

3 × 105 are presented. In this range of segment Reynolds numbers

the drag force of cylinder in cross-flow is dominant compared to the

viscous drag in the axial direction. If ẑi is the cylinder orientation, then

only the flow components in the plane perpendicular to ẑi need to be

considered. The drag coefficient for cross flow over a circular cylinder is

CI
D = 1, for 102 . Res . 3 × 105 [11]. The total drag force and torque on

a cylindrical fiber segment are obtained through the integration over

the infinitesimal cylinder slices. The dynamic drag force and torque

are then given by

F I
i ≈ AI

i · [υ (ri) − ṙi] (2.15)

T I
i ≈ CI

i · [Ω (ri) − ωi] + HI
i : γ̇ (ri) (2.16)

where the dynamic drag resistance tensors are

AI
i =

1

2
CI

Dρdiliυ
∗

⊥,i[δ − ẑiẑi]

CI
i =

1

24
CI

Dρdil
3
i υ

∗

⊥,i[δ − ẑiẑi] (2.17)

HI
i =

1

24
CI

Dρdil
3
i υ

∗

⊥,i[(ǫ · ẑi) ẑi]

and υ∗

⊥,i is the cross-flow velocity of the fluid relative to the fiber seg-

ment. The relative cross-flow velocity is given by υ∗

⊥,i = | (δ − ẑiẑi) ×
[υ(ri) − ṙi]|.

9
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2.4 Discretization of Governing Equations

This section describes the discretization in time of the governing equa-

tions, starting with the linear momentum equation. The time step of

the discretization is ∆t. The subscripts n− 1 and n stand for the values
from the previous and the current time step respectively. An implicit

numerical scheme is used while calculating the segment velocity and

angular velocity, since it improves numerical stability. In all the equa-

tions that are presented in this section, the connectivity forces X i and

X i+1 are treated as unknowns. Using the expression for the hydrody-

namic force (see section 2.3) and assuming F w
i = 0, Eq. 2.1 can be

discretized as

m

∆t
(ṙi,n − ṙi,n−1) =

(

Aυ
i,n−1 + AI

i,n−1

)

· [υ (ri,n−1) − ṙi,n] + X i+1,n − X i,n

(2.18)

In the angular momentum equation the time differential term can be

discretized as

∂(I i,n−1 · ωi,n)

∂t
= İ i,n−1 · ωi,n + I i,n−1 · ω̇i,n

≈ İ i,n−1 · ωi,n +
1

∆t
I i,n−1 · (ωi,n − ωi,n−1) (2.19)

Using the expression for the hydrodynamic force (see section 2.3), Eq.

2.2 can thus be discretized as

İ i,n−1 · ωi,n +
1

∆t
I i,n−1 · (ωi,n − ωi,n−1) = (Cυ

i,n−1 + CI
i,n−1)·

(Ω (ri,n−1) − ωi,n) + (Hυ
i,n−1 + HI

i,n−1) : γ̇ (ri,n−1)

+
li
2
ẑi,n−1 × (X i+1,n + X i,n) (2.20)

Finally, Eq. 2.4 is discretized as

ṙi,n − ṙi+1,n =
li
2
ωi,n × ẑi,n−1 +

li+1

2
ωi+1,n × ẑi+1,n−1 (2.21)

The momentum equation, Eq. 2.18, the angular momentum equation,

Eq. 2.20 and the connectivity equation, Eq. 2.21 form the system of

equations, which can be solved for the unknown connectivity forces, ve-

locities and angular velocities at time n. The numerical issues related
to solving this system and the necessity to deal with a dimensionless

set of equations is disussed in the next section.

10



CHAPTER 2. METHODOLOGY

2.4.1 Dimensionless Equations

In the governing equations shown in section 2.4, the velocities, angular

velocities and connectivity forces are all treated as unknown. These

variables have different physical units and therefore different orders

of magnitudes. This will reflect in the coefficients of the linear system,

which may differ by many orders of magnitude and make the system

ill-conditioned. More details on ill-conditioned systems are given in

Appendix C. One possible way to avoid this problem is to consider a

dimensionless system of equations. In this section a short summary of

the dimensionless equations is presented, while the complete deriva-

tion is shown in Appendix D. It is assumed that all fiber segments have

the same diameter d and length l. The corresponding dimensionless hy-
drodynamic resistance tensors and dynamic drag resistance tensors at

time n − 1 are given by

Aυ∗
i,n−1 = [Y Aδ + (XA − Y A)ẑi,n−1ẑi,n−1]

Cυ∗
i,n−1 = [Y Aδ + (XA − Y A)ẑi,n−1ẑi,n−1]

Hυ∗
i,n−1 = −Y H (ǫ · ẑi,n−1) ẑi,n−1

AI∗
i,n−1 =

1
2
CI

Dρdυ∗

⊥,i

3πη
[δ − ẑi,n−1ẑi,n−1]

CI∗
i,n−1 =

1
24

CI
Dρdυ∗

⊥,i

πηγ̇
[δ − ẑi,n−1ẑi,n−1]

HI∗
i,n−1 = −

1
24

CI
Dρdυ∗

⊥,i

πηγ̇
[(ǫ · ẑi,n−1) ẑi,n−1]

The dimensionless discretized momentum, angular momentum and con-

nectivity equation then read

m∗

∆t∗
(ṙ∗

i,n − ṙ∗

i,n−1) = (Av∗
i,n−1 + AI∗

i,n−1) · [υ
∗(r∗

i,n−1) − ṙ∗

i,n] + X∗

i+1,n − X∗

i,n

(2.22)

(

İ
∗

i,n−1 +
1

∆t∗
I∗

i,n−1 + Cυ∗
i,n−1 + CI∗

i,n−1

)

· ω∗

i,n =
1

∆t∗
I∗

i,n−1 · ω
∗

i,n−1

+
(

Cυ∗
i,n−1 + CI∗

i,n−1

)

· Ω∗
(

r∗

i,n−1

)

+
(

Hυ∗
i,n−1 + HI∗

i,n−1

)

: γ̇∗
(

r∗

i,n−1

)

+
3

4rp

ẑi,n−1 ×
(

X∗

i+1,n + X∗

i,n

)

(2.23)

ṙ∗

i,n − ṙ∗

i+1,n + rp(ω
∗

i,n × ẑi,n−1 + ω∗

i+1,n × ẑi+1,n−1) = 0 (2.24)

where rP = l/2r = l/d is a fiber segment aspect ratio and the super-
script ∗ stands for the dimensionless quantities.

11
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The expressions for dimensionless velocity and angular velocity can be

obtained from Eqs. 2.22 and 2.23

ṙ∗

i,n =

(

m∗

∆t∗
δ + Aυ∗

i,n−1 + AI∗
i,n−1

)−1

·
( m∗

∆t∗
ṙ∗

i,n−1

+ (Aυ∗
i,n−1 + AI∗

i,n−1) · υ(r∗

i,n−1) + X∗

i+1,n − X∗

i,n

)

(2.25)

ω∗

i,n =

(

İ
∗

i,n−1 +
1

∆t∗
I∗

i,n−1 + Cυ∗
i,n−1 + CI∗

i,n−1

)−1

·

( 1

∆t∗
I∗

i,n−1 · ω
∗

i,n−1 + (Cυ∗
i,n−1 + CI∗

i,n−1) · Ω
∗
(

r∗

i,n−1

)

+
(

Hυ∗
i,n−1 + HI∗

i,n−1

)

: γ̇∗
(

r∗

i,n−1

)

+
3

4rp

C∗

z i,n−1
·
(

X∗

i+1,n + X∗

i,n

))

(2.26)

2.4.2 Connectivity Force Linear System

Substituting Eqs. 2.25-2.26 into Eq. 2.24 gives the dimensionless sys-

tem of vectorial equations

Q∗

i,n−1 · X
∗

i,n + S∗

i,n−1 · X
∗

i+1,n + T ∗

i,n−1 · X
∗

i+2,n = V ∗

i,n−1 (2.27)

where

Q∗

i,n−1 = −(
m∗

∆t∗
δ + Av∗

i,n−1 + AI∗
i,n−1)

−1 +
3

4rp

C∗

z i,n−1

S∗

i,n−1 = (
m∗

∆t∗
δ + Av∗

i,n−1 + AI∗
i,n−1)

−1 + (
m∗

∆t∗
δ + Av∗

i+1,n−1 + AI∗
i+1,n−1)

−1

+
3

4rp

C∗

z i,n−1
+

3

4rp

C∗

z i+1,n−1

T ∗

i,n−1 = −(
m∗

∆t∗
δ + Av∗

i+1,n−1 + AI∗
i+1,n−1)

−1 +
3

4rp

C∗

z i+1,n−1

V ∗

i,n−1 = −(s∗

i,n−1 − s∗

i+1,n−1 + rp(b
∗

i,n−1 + b∗

i+1,n−1))

s∗

i,n−1 = (
m∗

∆t∗
δ + Av∗

i,n−1 + AI∗
i,n−1)

−1 ·
( m∗

∆t∗
ṙ∗

i,n−1

+ (Av∗
i,n−1 + AI∗

i,n−1) · υ
∗(ri,n−1)

)

b∗

i,n−1 =
(

(I∗

i,n−1 +
1

∆t∗
I∗

i,n−1 + Cv∗
i,n−1 + CI∗

i,n−1)
−1 ·

( 1

∆t
I∗

i,n−1 · ω
∗

i,n−1+

(Cv∗
i,n−1 + CI∗

i,n−1) · Ω
∗(ri,n−1) + (Hv∗

i,n−1 + HI∗
i,n−1) : γ̇∗

i,n−1(ri,n−1)
)

× ẑi,n−1

where C∗

z i,n−1
is a second-order tensor, which is a function of tensor

(

İ
∗

i,n−1 + 1
∆t∗

I∗

i,n−1 + Cυ∗
i,n−1 + CI∗

i,n−1

)−1

and the orientation vector ẑi,n−1

12
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and its components are shown in Appendix D. After applying Tikhonov

regularization (see Appendix C) this system can be solved for the un-

known dimensionless connectivity forcesX∗

i,n, [2 ≤ i ≤ N ], whileX∗

1,n =
X∗

N+1,n = 0. In the present work each fiber consists of N = 7 segments
and the system has the form

















S∗

1,n−1 T ∗

1,n−1 0 0 0 0

Q∗

2,n−1 S∗

2,n−1 T ∗

2,n−1 0 0 0

0 Q∗

3,n−1 S∗

3,n−1 T ∗

3,n−1 0 0

0 0 Q∗

4,n−1 S∗

4,n−1 T ∗

4,n−1 0

0 0 0 Q∗

5,n−1 S∗

5,n−1 T ∗

5,n−1

0 0 0 0 Q∗

6,n−1 S∗

6,n−1

















·

















X∗

2,n

X∗

3,n

X∗

4,n

X∗

5,n

X∗

6,n

X∗

7,n

















=

















V ∗

2,n−1

V ∗

3,n−1

V ∗

4,n−1

V ∗

5,n−1

V ∗

6,n−1

V ∗

7,n−1

















(2.28)

2.4.3 Segment Position and Orientation Update

By substituting the computed dimensionless forces into Eqs. 2.25-2.26,

the dimensionless velocity and angular velocity for a segment i are ob-
tained. The dimensional velocities will then simply be obtained by scal-

ing with the factors reciprocal to those used to make them dimension-

less, i.e.

ṙi,n = rγ̇ṙ∗

i,n (2.29)

ωi,n = γ̇ω∗

i,n

Once the velocities have been calculated, the new positions and orien-

tations can be found for all segments. The updated segment position is

given by

ri,n = ri,n−1 + ṙi,n∆t (2.30)

The updated segment orientation reads

ẑi,n = ẑi,n−1 + ∆t (ωi,n × ẑi,n−1) (2.31)

Subscripts n−1 and n once again stand for the values from the previous
and the current time step respectively.
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Chapter 3

Case Descriptions, Results

and Discussion

The implemented fiber model has been tested in different types of flows.

The simplest flows are imposed velocity distributions where only the

fiber motion is simulated interpolating the required flow values from

the imposed flow field. A more advanced flow is the lid-driven cavity

case in two dimensions, where both the flow and fiber motion are solved

for simultaneously. The case is based on one of the standard tutorial

cases in OpenFOAM for simplicity. It has many of the flow features

that the fibers will encounter in the real applications. In all the cases

that are presented in this work the fluid is air, whose properties are

density ρ = 1.2 kg/m3 and kinematic viscosity ν = 1.5 · 10−5 m2/s. Re-

garding the fiber properties, each segment has diameter d = 50 µm,
length l = 1 mm and density ρ = 1380 kg/m3, which is the density of

a cellulose fiber. The fibers are set in the computational domain and

the initial positions and orientations an for all fiber segments for all

fibers are assigned. The fibers can have horizontal, vertical or zig-zag

shape. First, the simulation results for several different imposed flow

fields are analyzed. Secondly, the results for the coupled simulation are

analyzed.

3.1 Imposed Flow Fields

For the imposed flow fields, the computational domain is a box of side

0.1m, see Fig. 3.1(a). The domain is decomoposed into a Cartesian
mesh with 10 cells in each direction. The number of cells is choosen
to accurately resolve the imposed flow gradient, and to keep the fibers

away from the boundary cells. Each case includes 50 fibers, but may be
easily specified differently. The initial fiber positions and shapes are

15
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shown in Fig. 3.1.

(a) Time = 0s; Positions in the box (b) Time = 0s; Shapes in a z plane

Figure 3.1: Computational domain with fibers at their initial positions

and shapes, for the imposed flow studies.

3.1.1 Case u = (y, 0, 0)

The imposed velocity profile is a simple shear u = (y, 0, 0). The shear
rate is thus γ̇ = 1. Fig. 3.2 shows the result of the simulation. For the
horizontal fibers it can be seen that the fibers having higher y position
move faster, as they should. The vertical and zig-zag fibers respond

to the flow by moving and rotating according to the flow direction and

rotation. The fiber segments stay connected, but since the fiber model

does not include bending and twisting, it is not possible to draw any

further conclusion. However some observations can be pointed out.

It can be seen that in the case of the zig-zag fibers, the whole fiber

is deformed and it tends to stretch out in the flow direction. Thus,

the fiber shape evolution depends on its initial shape. Including the

bending force in the implementation would reduce this effect and keep

the fiber more similar to its equilibrium shape.

3.1.2 Case u = (10y, 0, 0)

In this test case the imposed flow field is again a simple shear flow,

with u = (10y, 0, 0) and the shear rate is thus γ̇ = 10. Fig. 3.3 shows the
result of the simulation. Conclusions similar to the previous test case

can be made. The fibers respond faster to the flow, as expected, and

reach the right end of the computational domain in approximately 0.1s.
At this time the horizontal and vertical fibers have the same pattern

as in case of shear rate γ̇ = 1, at time 1s. The zig-zag fibers do not
completely align with the flow. It can be seen that the first segment is

more bent with respect to the previous case.

16
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(a) Time = 0.01s (b) Time = 0.1s

(c) Time = 0.5s (d) Time = 1s

(e) Time = 1s; zoom-up

at vertical fibers

(f) Time = 1s; zoom-up

at zig-zag fibers

Figure 3.2: Fibers in a simple shear flow u = (y, 0, 0).

3.1.3 Case u = (100y, 0, 0)

The imposed simple shear is in this case u = (100y, 0, 0), with the shear
rate γ̇ = 100. The fibers are in this case approaching the right end of
the computational domain in 0.01s. The results are shown in Fig. 3.4
and it can be seen that the horizontal fibers have similar pattern as for

cases u = (y, 0, 0) at time 1s, and u = (10y, 0, 0) at time 0.1s. In the case
of initially vertical fibers it can be seen that the first and last segment

are slightly bent with respect to the remaining fiber. Those segments

experience only one connectivity force, since the forces at both ends

are zero, while the inner segments feel the connectivity force from both

sides. The balance between connectivity force and flow forces is caus-

ing the moment which causes those two segments to missalign with the

rest of the fiber. For the zig-zag fibers the different shape compared to

17
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(a) Time = 0.01s (b) Time = 0.1s

(c) Time = 0.1s; zoom-up

at vertical fibers

(d) Time = 0.1s; zoom-up

at zig-zag fibers

Figure 3.3: Fibers in a simple shear flow u = (10y, 0, 0).

the previous cases can be observed. The first segment of zig-zag fibers

is more bent and it almost overlaps the second one. The rest of the

fiber is deformed as well and does not align with the flow. The deforma-

tions seen for the vertical and zig-zag fibers are related to the segment

Reynolds number, which in this case becomes higher than 1 and the
inertial drag force becomes important. Thus, it can be concluded that

the fiber shape evolution depends on the shear rate.

3.1.4 Case u = (0, x, 0)

The imposed fluid flow field is in this case u = (0, x, 0). This is similar
to case u = (y, 0, 0), but with the flow in the vertical direction. The
results are shown in Fig. 3.5. The vertical fibers having higher x po-
sition move faster and remain straight. For the horizontal fibers the

segments experiencing higher velocity move upwards and rotate. The

zig-zag fibers stretch out in the flow direction as in the case u = (y, 0, 0).

3.1.5 Case u = (y, x, 0)

The imposed fluid flow field is in this case u = (y, x, 0). This case is
set up to test the model for a flow that has two non-zero components.
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(a) Time = 0.01s

(b) Time = 0.01s; zoom-up

at vertical fibers

(c) Time = 0.01s; zoom-up

at zig-zag fibers

Figure 3.4: Fibers in a simple shear flow u = (100y, 0, 0).

From the results shown in Fig. 3.6 it can be seen that the fiber motion

takes place in the xy plane, vertically upwards and to the right end of
the domain, which is reached in 0.7s. The vertical and horizontal fibers
keep their initial shape as in the cases u = (y, 0, 0) and u = (0, x, 0),
while the zig-zag fibers are completely stretched out and follow the

flow. Conclusions analogous to the previous cases apply here as well.

3.2 Simultaneously Predicted Flow Field

In order to show that the implemented fiber model can be coupled with

a solver for the fluid phase, the standard 2D, transient and laminar lid-

driven cavity OpenFOAM tutorial is used as an initial test case. The

case and the results of the simulation are described in section 3.2.1.

3.2.1 Lid-Driven Cavity

The lid-driven cavity computational domain is a square with sides 0.1
m. All the boundaries of the square are walls. The top wall has a

velocity of 0.1 m/s in the x direction, while the remaining three walls
are stationary. The flow is assumed to be laminar and it is solved using

a modified version of the original icoFoam solver in which calls to the

fiber model have been added. The icoFoam solver is implemented for
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(a) Time = 0.5s (b) Time=1s

(c) Time = 1s; zoom-up

at horizontal fibers

(d) Time = 1s; zoom-up

at zig-zag fibers

Figure 3.5: Fibers in a simple shear flow u = (0, x, 0).

laminar, isothermal, incompressible flow of Newtonian fluids. The flow

is in the present case regarded as two-dimensional. It should be noted

that the fiber model is always three-dimensional. A graded Cartesian

mesh with 100 cells in both x and y directions is used for this case. The
mesh is refined in the region close to the upper wall and to the right of

the computational domain. The purpose of using a graded mesh is to

avoid having fibers in the cell layers next to the top and right wall.

From the results shown in Figs. 3.7-3.10 it can be seen that the fibers

move with the developing flow field and that the fiber segments stay

connected. The zig-zag fibers straighten when following the flow, and

both, the horizontal and the zig-zag fibers align with the flow field.
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(a) Time = 0.3s (b) Time = 0.7s

(c) Time = 0.7s; zoom-up

at horizontal fibers

(d) Time = 0.7s; zoom-up

at vertical fibers

(e) Time = 0.7s; zoom-up

at zig-zag fibers

Figure 3.6: Fibers in a simple shear flow u = (y, x, 0).
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(a) Time = 0s

(b) Time = 2s

Figure 3.7: Fibers in cavity 2D flow
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(a) Time = 3s

(b) Time = 4s

Figure 3.8: Fibers in cavity 2D flow.
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(a) Time = 5s

(b) Time = 7s

Figure 3.9: Fibers in cavity 2D flow.
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(a) Time = 8s

(b) Time = 10s

Figure 3.10: Fibers in cavity 2D flow.
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Chapter 4

Validation of Energy

Conservation and Response

Time

4.1 Test Case Description

A simple mechanical system, consisting of two connected thin rods,

having massm and length l, is here considered. The rods are positioned
in the xy plane, such that the end point of rod 1 coincides with the start
point of rod 2. The position vectors for the centers of mass are r1 =
(−l/2 sin(θ), l/2 cos(θ), 0) and r2 = (l/2 sin(θ),−l/2 cos(θ), 0). The orien-
tation vectors are ẑ1 = (sin(θ),− cos(θ), 0) and ẑ2 = (sin(θ),− cos(θ), 0),
where θ is the angle between the rod orientation axis and the −y axis.
The body forces −F w and F w are applied at the centers of mass of rod

1 and 2, respectively, where F w = mg and g = (0,−9.81, 0). The use
of the acceleration g makes rod 1 resemble a physical pendulum, fixed
at the pivot point O, under gravitational acceleration. Rod 2 is thus a
mirrored version of rod 1, with the purpose of fixing the pivot point O
through the forced connectivity. Rod 1 exerts the connectivity force X

on rod 2, and consequently rod 2 exerts the connectivity force −X on

rod 1. It should be noted that the present fiber model treats segment
rotation about a point that is not coinciding with its center of gravity

as a sum of rotation about the center of gravity and translation. It

is therefore of interest to validate that this representation conserves

the energy, and gives the same period as a physical pendulum motion

about a pivot point.
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Figure 4.1: Two-rod mechanical system

4.2 Equations of Motion

The set of equations of motion for this mechanical system is a simpli-

fied version of the ones in Chapter 2. The flow interaction is here ex-

changed with a constant body force. The linear momentum equations

are written as

mr̈1 = −F w + X (4.1)

mr̈2 = F w − X (4.2)

The motion of the rods is, according to the fiber model, decomposed into

a rotation about the center of mass and a translation. The moment of

inertia is thus given by I = 1
12

ml2, i.e. is a scalar constant since the rods
are considered infinitely thin. Thus, the angular momentum equations

reduce to

Iω̇1 =
l

2
ẑ1 × X (4.3)

Iω̇2 =
l

2
ẑ2 × X (4.4)
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The corresponding equations in the discretized form read

ṙ1,n = ṙ1,n−1 + ∆t

(

−
F w

m
+

Xn

m

)

(4.5)

ṙ2,n = ṙ2,n−1 + ∆t

(

F w

m
−

Xn

m

)

(4.6)

ω1,n = ω1,n−1 + ∆t

(

l

2I

)

(ẑ1,n−1 × Xn) (4.7)

ω2,n = ω2,n−1 + ∆t

(

l

2I

)

(ẑ2,n−1 × Xn) (4.8)

The discretized connectivity equation is given by

ṙ1,n − ṙ2,n +
l

2
(ω1,n × ẑ1,n−1 + ω2,n × ẑ2,n−1) = 0 (4.9)

The subscript n − 1 stands for the values from the previous time step.
Substituting Eqs. 4.5-4.8 into Eq. 4.9 gives the system

An−1 · Xn = bn−1 (4.10)

where

An−1 =
2∆t

m
δ +

l2

4I
∆t (2δ − ẑ1,n−1ẑ1,n−1 − ẑ2,n−1ẑ2,n−1)

bn−1 = −

(

ṙ1,n−1 − ṙ2,n−1 − 2
F w

m
∆t +

l

2
(ω1,n−1 × ẑ1,n−1 + ω2,n−1 × ẑ2,n−1)

)

The connectivity forceXn is simply obtained by

Xn = A−1
n−1 · bn−1 (4.11)

Substituting the value for the force X into the Eqs. 4.5-4.8 yields the

translational and angular velocities, and consequently the updated rod

positions and orientations.

4.3 Numerical Test

The motion of the system is here numerically analyzed. For simplicity,

it is assumed that m = 1 kg and l = 1 m. Fig. 4.2 shows that the rods
stay connected and that the connectivity point remains fixed during

the pendulum motion. The whole sytem can be viewed as it oscillates

around the point connecting the rods.
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Figure 4.2: Two-rod system motion for different time steps; from left to

right Time = 0s, 0.23s, 0.47s, 0.70s, 0.94s, 1.17s, 1.41s, 1.64s

4.4 Energy Conservation Concept

The total energy of each rod is the sum of the potential energy and the

total kinetic energy. The total kinetic energy is the sum of translational

kinetic energy Ekt, and the rotational kinetic energy Ekr around the

center of gravity. The corresponding energies are thus for each rod

given by

Ep = mg
l

2
(1 − cos (θ)) (4.12)

Ekt =
1

2
mṙ2 (4.13)

Ekr =
1

2
Iω2 (4.14)

The total kinetic energy of each rod is

Etot = Ep + Ekt + Ekr (4.15)

The potential, kinetic and total energy for each rod are shown in Fig.

4.3. It can be seen that the total energy is transformed between the

potential and the kinetic energies and is conserved over time. The po-

tential energy is highest while the rod is at its largest angle θ, and the
lowest when it is aligned with the y axis. Vice versa for the kinetic
energy. The oscillatory period of the mechanical system, obtained from

the numerical test is Tnumerical = 1.64 s and it compares well with the
period of the analytical result for a pendulum, i.e. Tanalytical = 1.637 s.
The analytical expression is derived in Appendix E. A comparison be-

ween the rod translational and rotational kinetic energy is shown in
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Figure 4.3: Total energy conservation over time

Fig. 4.4 and it can be seen that the greatest part of the kinetic en-

ergy comes from the translational motion. This is different to the real

case of a physical pendulum with a moment of inertia about the pivot

point, where all the kinetic energy is in the form of rotational energy.

However, the present study verifies that the current concept yields the

same pendulum motion.
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Figure 4.4: Translational and rotational kinetic energy over time
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Chapter 5

Concluding Remarks and

Future Work

A flexible fiber model, based on the concept of a chain of cylindrical

segments, has been implemented in a general purpose CFD code. The

model takes into account for the translational and rotational degrees

of freedom of the segments, and ensures the fiber integrity. The model

has been coupled with both imposed and simultaneously predicted 2D

flow fields. The conclusions are that the fibers follow the flow and de-

form according to the flow gradients, and that the connectivity forces

ensure the fiber integrity. Due to the present simplifications in the fiber

model no further conclusions can be drawn at this time. A generic test

case that resembles physical pendulum validates the fiber model mo-

tion concept through the energy conservation and response time. The

on-going work is to couple the currently implemented fiber model with

3D flow fields. The next step is adding bending and twisting degrees of

freedom as well as taking into account the interaction forces to make

the fiber model more complete.
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Appendix A

Tensor Calculus

The purpose of this appendix is to give an overview of the main vec-

tor and tensor operations, which are used in the fiber model equation

derivation.

A.1 Vector and Tensor Notation

As it is well known in vector and tensor algebra a vector is represented

by an ordered set of components, which represent its projections on the

coordinate axes

a = [a1, a2, a3] (A.1)

Another way of representing a vector is by the sum of the magnitudes

of its projections on the three mutually perpendicular axes, i.e.

a = a1δ1 + a2δ2 + a3δ3 ≡ aiδi (A.2)

A second-order tensor is represented by an ordered array of nine com-

ponents, i.e.

T =





T11 T12 T13

T21 T22 T23

T31 T32 T33



 (A.3)

One special second order tensor is the unit tensor or the identity tensor,

i.e.

δ =





1 0 0
0 1 0
0 0 1



 (A.4)
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Its components can be defined using the Kronecker delta symbol as

δij =

{

1, if i = j

0, if i 6= j
(A.5)

A third-order tensor has 27 components and can be represented in in-

dex notation as Pijk. The third order permutation tensor, or Levi-Civita

tensor ǫijk is defined by

ǫijk =











+1 if (i, j, k) = (1, 2, 3), (3, 1, 2), or(2, 3, 1),

−1 if (i, j, k) = (1, 3, 2), (3, 2, 1), or(2, 1, 3),

0 if i = j, or j = k, or k = i

(A.6)

A.2 Vector and Tensor Operations

The dot product of two vectors results in a scalar

a · b = a1b1 + a2b2 + a3b3 ≡ aibi (A.7)

The outer product of two vectors results in a tensor as

ab =





a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3



 = aibj (A.8)

The dot product of a tensor with a vector is given by

T · a =





T11a1 + T12a2 + T13a3

T21a1 + T22a2 + T23a3

T31a1 + T32a2 + T33a3



 = Tijaj (A.9)

The dot product of a vector with a tensor is given by

a · T =





a1T11 + a2T21 + a3T31

a1T12 + a2T22 + a3T32

a1T13 + a2T23 + a3T33



 = ajTji (A.10)

In general a · T 6= T · a. If T is a symmetric tensor, a · T = T · a.
The dot product of two tensors T and S produces a tensor P = T · S,
whose components are

Pij = TikSkj (A.11)
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The dot product of two tensors T and S produces a tensor P = T · S,
whose components are given by

Pij = TikSkj (A.12)

The double inner product of two second-order tensors T and S produces

a scalar s = T : S, which is given as a sum of the nine products of the

tensor components

s = TijSij = T11S11 + T12S12 + T13S13

+T21S21 + T22S22 + T23S23

+T31S31 + T32S32 + T33S33 (A.13)

Another operation to be defined is the cross product. It is exclusive to

vectors only. For two vectors a and b, the cross product gives a vector

c = a × b, whose components are

c = ǫijkajbk = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) (A.14)

where ǫijk is Levi-Civita permutation tensor.

A.3 Differential Operators

In the Cartesian coordinate system, the nabla operator is defined as

∇ ≡ δ1

∂

∂x1

+ δ2

∂

∂x2

+ δ3

∂

∂x3

≡ δk
∂

∂xk

(A.15)

It can operate on any tensor field to produce a tensor field that is one

order higher. The gradient of a vector field a is a second order tensor

field, i.e.

∇a = δ1

∂a

∂x1

+ δ2

∂a

∂x2

+ δ3

∂a

∂x3

≡ δk
∂a

∂xk

(A.16)

The divergence of a vector field a, is a scalar field

∇ · a =
∂a1

∂x1

+
∂a2

∂x2

+
∂a3

∂x3

≡
∂ak

∂xk

(A.17)

The curl of a vector field a is a vector field defined as

∇× a = ǫijk∂jak =

(

∂a3

∂x2

−
∂a2

∂x3

,
∂a1

∂x3

−
∂a3

∂x1

,
∂a2

∂x1

−
∂a1

∂x2

)

(A.18)

where ǫijk is Levi-Civita permutation tensor.
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Appendix B

Inertia of a Rotating Cylinder

In this appendix the inertia of a rotating cylinder is discussed. Firstly,

the concept of the inertia tensor will be introduced, starting from an

expression for the angular momentum of a 3D rigid body. Then, the

derivation of the inertia tensor for a cylinder is presented.

B.1 Tensor of Inertia

The expression for the angular momentum of a system of particles

about their center of mass is given by [12]

L =
N

∑

k=1

(ri × mi(ω × ri)) (B.1)

The integral stands for a summation in the case of a continuum distri-

bution of mass and Eq.B.1 can be written as

L =

∫

m

r × (ω × r)dm =

∫

m

[(r · r) ω − (r · ω) r]dm (B.2)

where, r and ω are the position vector and the angular velocity vector

relative to the center of mass, respectively. In Cartesian coordinates,

r = xi + yj + zk and ω = ωxi + ωyj + ωzk, and the expression above
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yields

L =

(

ωx

∫

m

(

x 2 + y2 + z 2
)

−

∫

m

(ωxx + ωyy + ωzz ) xdm

)

i

+

(

ωy

∫

m

(

x 2 + y2 + z 2
)

−

∫

m

(ωxx + ωyy + ωzz ) ydm

)

j

+

(

ωz

∫

m

(

x 2 + y2 + z 2
)

−

∫

m

(ωxx + ωyy + ωzz ) zdm

)

k

= (Ixxωx + Ixyωy + Ixzωz) i

+ (Iyxωx + Iyyωy + Iyzωz) j

+ (Izxωx + Izyωy + Izzωz) k

(B.3)

The quantities Ixx, Iyy, and Izz are called moments of inertia with re-

spect to the x , y and z axis, respectively, and are given by

Ixx =

∫

m

(

y2 + z 2
)

dm, Iyy =

∫

m

(

x 2 + z 2
)

dm, Izz =

∫

m

(

x 2 + y2
)

dm

The terms Ixy, Ixz, Iyx, Iyz, Izx and Izy are called products of inertia and

are given by

Ixy = Iyx =

∫

m

(xy)dm, Ixz = Izx =

∫

m

xzdm, Iyz = Izy =

∫

m

yzdm

The quantity reflecting the rotational inertia I is a second order tensor.

In the notation of linear algebra Eq.B.3 reads





Lx

Ly

Lz



 =





Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz









ωx

ωy

ωz



 (B.4)

The components of the inertia tensor I have a physical meaning. For

example, spinning the object around the y axis, the x component of
angular momentum is Lx = Ixyωy. If the angular velocity has all three

components, the x component of L will equal Lx = Ixxωx + Ixyωy + Ixzωz.

B.2 Inertia of a Rotating Cylinder

A cylinder of constant radius R, length l and density ρ is here consid-
ered. The origin of the coordinate system is choosen at the center of

mass of the cylinder and the z axis of the coordinate system is parallel
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to the axis of the cylinder. The components of the inertia tensor can be

computed using polar coordinate system −→r = (r cos θ, r sin θ, z) in the xy
plane. The Ixx component of the inertia tensor is given by

Ixx = ρ

∫ l/2

−l/2

dz

∫ 2π

0

dθ

∫ R

0

r(r2 sin2 θ + z2)dr

= ρ

[

∫ l/2

−l/2

z2dz

∫ 2π

0

dθ

∫ R

0

rdr +

∫ l/2

−l/2

dz

∫ 2π

0

sin2 θdθ

∫ R

0

r3dr

]

(B.5)

The density is ρ = m/πlR2, thus

Ixx =
1

12
ml2 +

1

4
mR2 (B.6)

The two other moments of inertia are

Iyy =
m

πR2l

∫ l/2

−l/2

dz

∫ 2π

0

dθ

∫ R

0

r(r2 cos2 θ + z2)dr

=
1

12
ml2 +

1

4
mR2 = Ixx (B.7)

and

Izz =
m

πR2l

∫ l/2

−l/2

dz

∫ 2π

0

dθ

∫ R

0

r(r2 cos2 θ + r2 sin2 θ)dr

=

∫ l/2

−l/2

dz

∫ 2π

0

dθ

∫ R

0

r3dr =
1

2
mR2 (B.8)

The calculation of the products of inertia is analogous.

Ixy = Iyx = −
m

πR2l

∫ l/2

−l/2

dz

∫ 2π

0

dθ

∫ R

0

r3 sin θ cos θdr = 0 (B.9)

because
∫ 2π

0
cos θ sin θdθ = 0. Similarly

Ixz = Izx = −
m

πR2l

∫ l/2

−l/2

dz

∫ 2π

0

dθ

∫ R

0

zr2 cos θdr = 0 (B.10)

and

Iyz = Izy = −
m

πR2l

∫ l/2

−l/2

dz

∫ 2π

0

dθ

∫ R

0

zR2 sin θdr = 0 (B.11)
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Jelena Andrić, Implementation of a flexible fiber model in a general

purpose CFD code

because
∫ 2π

0
cos θdθ = 0 and

∫ 2π

0
sin θdθ = 0. The inertia tensor for a

cylinder, rotating around its center of mass can thus be written as [7]

I =
1

12
m

(

l2 + 3R2)
[

δ − ẑẑ] +
1

2
mR2ẑẑ (B.12)

The time derivative of the tensor of inertia is

∂

∂t

{

1

12
m

(

l2 + 3R2)
[

δ − ẑẑ] +
1

2
mR2ẑẑ

}

=
1

12
m

(

3R2 − l2
) ∂

∂t
(ẑẑ) (B.13)

A straight-forward differentiation gives the components of İ as

˙Iij =
1

12
m

(

3R2 − l2
) ∂

∂t
(zizj)

=
1

12
m

(

3R2 − l2
)

(żizj + ziżj)

=
1

12
m

(

3R2 − l2
)

[(ω × ẑ)i zj + zi (ω × ẑ)j]

=
1

12
m

(

l2 − 3R2
)

[(ẑ × ω)i zj + zi (ẑ × ω)j] (B.14)

Finally, the time derivative of the tensor of inertia İ is given by

İ =
1

12
m

(

l2 − 3R2
)

{

[(ẑ × ω) ẑ] + [(ẑ × ω) ẑ]T
}

(B.15)
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Numerics

This appendix discusses different numerical issues related to the im-

plementation of the fiber model. A short overview of dimensional anal-

ysis and scaling is first given. Ill-conditioned linear systems are then

discussed, followed by Tikhonov regularization as one possible method

to solve such systems.

C.1 Dimensional Analysis and Scaling

A mathematical model describes the behavior of a real physical sys-

tem in terms of mathematical equations. These equations represent

the relation between the relevant properties of the system under con-

sideration. The models include variables and parameters. If the vari-

ables or parameters in a model correspond to physical properties, they

have physical dimensions. The fundamental dimensions, introduced by

Maxwell include mass, length and time. The dimensions of any physi-

cal quantity can be expressed in terms of the fundamental dimensions.

In other cases the dimensionality of a quantity is deduced from the rule

that all terms in a particular equation must have the same dimension.

This rule is a consequence of the condition that the form of any equa-

tion in a mathematical model may not depend on the units used. For

example, the dimension of force directly follows from Newton’s second

law, which states that, for a single mass, the mass times the accelara-

tion equals the total force exerted on the mass. This means that the

dimension of a force F , denoted as [F ] equals the dimension [ma] of the
product of mass m and acceleration a. For any dimensionless quantity,
q, [q] = 1. The fact that the variables and parameters have physical
dimensions can be very useful. The techniques of dimensional analysis

and scaling are powerful tools to analyze the models. The basic idea

is to apply a transformation to the variables and parameters, that will
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result in simplified equations. Nondimensionalizing a mathematical

model is a constructive way to formulate the model in terms of dimen-

sionless quantities only. The basic idea is to apply a transformation

to the variables and parameters, that will result in simplified equa-

tions. Reduction of parameters has also the purpose of scaling. These

techniques can also provide the information on which combination of

parameters the system depends. The total number of variables and/or

parameters is minimal. However, dimensional analysis is more general

than scaling since it is based on the transformation of both variables

and parameters, whereas in scaling only the variables are transformed.

Another difference is that dimensional analysis starts basically from

the dimensions involved in the system and may predict some of its fea-

tures without knowing the model equations, while the scaling starts

from the governing equations.

C.2 Ill-Conditioned Linear System

An n × n linear system A · x = b is considered. The solution vector

x of this system is guaranteed to exist and to be unique if the coeffi-

cient array A is invertible. The solution vector x can be formulated in

terms of the inverse of the coefficient array A and the right-hand-side

vector b as x = A−1b. This relationship provides a concise mathemat-

ical representation of the solution, but it is seldom used in practice

since the array inversion is computationally expensive. An alternative

way to describe the existence of a solution is to say that the system

A · x = b is solvable if and only if the vector b may be expressed as a

linear combination of the columns of A. The invertability of the coeffi-

cient array A may ensure that a solution exists, but it does not help in

determining the solution. Some systems can be solved accurately using

numerical methods while others can not. In order to better understand

the accuracy of a numerical solution, the condition of the system can

be classified. Conditioning is a property of a matrix A that determines

whether it can be expected that any numerical algorithm can provide

numerical solution to a linear system involving A. Any linear system

represented on a computer has a certain error, since a fixed precision

is used. This means that a linear system A · x = b becomes a slightly

pertubed system Â · x̂ = b̂, when represented on a computer. When the

solution is highly sensitive to the values of the coefficients matrix A or

the right-hand-side vector b, meaning that small perturbations in b can

produce large changes in x, the equations are called ill-conditioned. In

order to investigate how a small change in b changes the solution vec-

tor x, let x + ∆x denote the solution when b changes from b to b + ∆b.
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It can be written as

A (x + ∆x) = b + ∆b ⇒ A∆x = ∆b ⇒ ∆x = A−1∆b

By using the norm property ‖A · x‖ ≤ ‖A‖ · ‖x‖ it follows

‖A−1∆b‖ ≤ ‖A−1‖ · ‖∆b‖ ⇒ ‖∆x‖ ≤ ‖A−1‖ · ‖∆b‖ (C.1)

Applying the same property to the original system gives

‖A · x‖ ≤ ‖A‖ · ‖x‖ ⇒ ‖b‖ ≤ ‖A‖ · ‖x‖ ⇔ ‖A‖ · ‖x‖ ≥ ‖b‖ (C.2)

Dividing EqC.1 by Eq C.2 leads to

‖∆x‖

‖A‖ · ‖x‖
≤

‖A−1‖ · ‖∆b‖

‖b‖
⇒

∆x

x
≤ ‖A‖‖A−1‖

‖∆b‖

‖b‖
(C.3)

⇔
∆x

x
≤ K (A)

‖∆b‖

‖b‖

where K (A) is called the condition number of the matrix A and is

defined as K (A) = ‖A‖‖A−1‖, where ‖A‖ = maxN
k=1{

∑N
j=1 |Akj|} and

provided A is nonsingular. When the condition number K (A) becomes
large, the system is regarded as being ill-conditioned. Matrices with

condition number 1 are said to be well-conditioned. However, there

is no clear threshold how large K (A) should be before a system is re-
garded as ill-conditioned. In order to assess the effects of ill-conditioning,

a rule of thumb can be used. For a system with condition number

K (A), a loss of roughly log10 K (A) decimal places in the accuracy of
the solution is expected.

C.3 Tikhonov Regularization

Tikhonov regularization is one of the common methods of regulariza-

tion of ill-posed problems. The purpose of this regularization is to im-

prove the conditioning of the problem and enable a numerical solution.

An explicit solution x̂ is given by

x̂ =
(

AT A + Γ
T
Γ

)−1
AT b (C.4)

In many cases, matrix Γ is choosen as the identity matrix in order to

give preference to the solutions with the smaller norms.
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Appendix D

Dimensionless Governing

Equations

This Appendix presents complete derivation of a dimensionless set of

governing equations for the fiber model described in Chapter 2.

D.0.1 Dimensionless Linear Momentum Equation

The discretized linear momentum equation reads

m

∆t
(ṙi,n − ṙi,n−1) = (Aυ

i,n−1 + AI
i,n−1) · [υ(ri,n−1) − ṙi,n] + X i+1,n − X i,n

(D.1)

All the forces are here scaled with the factor 3πηlrγ̇ [8], which has units
of force [kgm/s2] ≡ [N ], where γ̇ is a scalar related to the rate of defor-
mation tensor by γ̇ =

√

1/2(γ : γ) and : is the double inner product
operator described in Appendix A. The time is scaled with the inverse

of the shear rate 1/γ̇ [s], the velocities are scaled with rγ̇ [m/s] and the
hydrodynamic resistance tensors with 3πηl [kg/s]. The scale factor for
the mass is 3πηl/γ̇ [kg]. Applying the scaling to Eq.D.1 yields

m
3πηl

γ̇

1
∆t
1/γ̇

(ṙi,n − ṙi,n−1)

rγ̇
=

(Aυ
i,n−1 + AI

i,n−1)

3πηl
·
[υ(ri,n−1) − ṙi,n]

rγ̇

+
(Xi+1,n − Xi,n)

3πηlrγ̇
(D.2)
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The corresponding dimensionless variables are given as

X∗

i,n =
X i,n

3πηlrγ̇

m∗ =
m

3πηl
γ̇

; ∆t∗ =
∆t
1
γ̇

υ∗
(

r∗

i,n−1

)

=
υ (ri,n−1)

rγ̇
; ṙ∗

i,n−1 =
ṙi,n−1

rγ̇
; ṙ∗

i,n =
ṙi,n

rγ̇

Aυ∗
i,n−1 =

Aυ
i,n−1

3πηl
= [Y Aδ + (XA − Y A)ẑi,n−1ẑi,n−1]

AI∗
i,n−1 =

AI
i,n−1

3πηl
=

1
2
CI

Dρdυ∗

⊥,i

3πη
[δ − ẑi,n−1ẑi,n−1]

After replacing the dimensionless variables, the dimensionless discreti-

zed linear momentum equation reads

m∗

∆t∗
(ṙ∗

i,n−ṙ∗

i,n−1) = (Av∗
i,n−1+AI∗

i,n−1)·[υ
∗(r∗

i,n−1)−ṙ∗

i,n]+X∗

i+1,n−X∗

i,n (D.3)

The dimensionless translational velocity for segment i is then given by

ṙ∗

i,n =(
m∗

∆t∗
δ + Aυ∗

i,n−1 + AI∗
i,n−1)

−1 ·
( m∗

∆t∗
ṙ∗

i,n−1 + (Av∗
i,n−1 + AI∗

i,n−1)·

υ∗(r∗

i,n−1) + X∗

i+1,n − X∗

i,n

)

(D.4)

D.0.2 Dimensionless Angular Momentum Equation

The discretized angular momentum equation for fiber segment i is given
by

İ i,n−1 · ωi,n +
1

∆t
İ i,n−1 · (ωi,n − ωi,n−1) =

(

Cυ
i,n−1 + CI

i,n−1

)

·

[Ω (ri,n−1) − ωi,n] +
(

Hυ
i,n−1 + HI

i,n−1

)

: γ̇ (ri,n−1)

+
li
2
ẑi,n−1 × X i+1,n +

(

−li
2

ẑi,n−1

)

× (−X i,n) (D.5)

52



APPENDIX D. DIMENSIONLESS GOVERNING EQUATIONS

All the torques are scaled by the factor πηl3γ̇ [8] that has units of torque
[kgm2/s2] = [Nm], yielding

İ i,n−1

πηl3
·
ωi,n

γ̇
+

1
∆t
1/γ̇

I i,n−1

πηl3

γ̇

·
(ωi,n − ωi,n−1)

γ̇
=

(

Cυ
i,n−1 + CI

i,n−1

)

πηl3
·

[Ω (ri,n−1) − ωi,n]

γ̇
+

(

Hυ
i,n−1 + HI

i,n−1

)

πηl3
:
γ̇ (ri,n−1)

γ̇

+
l
2
ẑi,n−1 × (X i+1,n + X i,n)

πηl3γ̇
(D.6)

In analogy with the linear momentum equation the corresponding di-

mensionless variables are given by

ω∗

i,n =
ωi,n

γ̇
; ω∗

i,n−1 =
ωi,n−1

γ̇
; I∗

i,n−1 =
I i,n−1

πηl3/γ̇
; İ

∗

i,n−1 =
İ i,n−1

πηl3

Cυ∗
i,n−1 =

Cυ
i,n−1

πηl3
= [Y Aδ + (XA − Y A)ẑi,n−1ẑi,n−1]

CI∗
i,n−1 =

CI
i,n−1

πηl3
=

1
24

CI
Dρdυ∗

⊥,i

πηγ̇
[δ − ẑi,n−1ẑi,n−1]

Hυ∗
i,n−1 =

Hυ
i,n−1

πηl3
= −Y H (ǫ · ẑi,n−1) ẑi,n−1

HI∗
i,n−1 =

HI
i,n−1

πηl3
= −

1
24

CI
Dρdυ∗

⊥,i

πηγ̇
[(ǫ · ẑi,n−1) ẑi,n−1]

γ̇∗
(

r∗

i,n−1

)

=
γ̇ (ri,n−1)

γ̇

The discretized dimensionless angular momentum equation for a fiber

segment i can then be rewritten as

(

İ
∗

i,n−1 +
1

∆t∗
I∗

i,n−1 + Cυ∗
i,n−1 + CI∗

i,n−1

)

· ω∗

i,n =
1

∆t∗
I∗

i,n−1 · ω
∗

i,n−1

+ (Cυ∗
i,n−1 + CI∗

i,n−1) · Ω
∗
(

r∗

i,n−1

)

+
(

Hυ∗
i,n−1 + HI∗

i,n−1

)

: γ̇∗
(

r∗

i,n−1

)

+
3

4rp

ẑi,n−1 ×
(

X∗

i+1,n + X∗

i,n

)

(D.7)
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where rp = l/d is a segment aspect ratio. The dimensionless angular
velocity for segment i reads

ω∗

i,n =

(

İ
∗

i,n−1 +
1

∆t∗
I∗

i,n−1 + Cυ∗
i,n−1 + CI∗

i,n−1

)−1

·

( 1

∆t∗
I∗

i,n−1 · ω
∗

i,n−1 + (Cυ∗
i,n−1 + CI∗

i,n−1) · Ω
∗
(

r∗

i,n−1

)

+
(

Hυ∗
i,n−1 + HI∗

i,n−1

)

: γ̇∗
(

r∗

i,n−1

)

+
3

4rp

C∗

z i,n−1
·
(

X∗

i+1,n + X∗

i,n

))

(D.8)

where C∗

z i,n−1
is a second order tensor, which is a function of tensor

(

İ
∗

i,n−1 + 1
∆t∗

I∗

i,n−1 + Cυ∗
i,n−1 + CI∗

i,n−1

)−1

and the orientation vector ẑi,n−1.

Denoting C∗

I i,n−1
=

(

İ
∗

i,n−1 + 1
∆t∗

I∗

i,n−1 + Cυ∗
i,n−1 + CI∗

i,n−1

)−1

, the compo-

nents of C∗

z i,n−1
are

C∗

z i,n−1,11 = C∗

I i,n−1,22ẑ
2
i,n−1,3−C∗

I i,n−1,23ẑi,n−1,2ẑi,n−1,3−C∗

I i,n−1,32ẑi,n−1,3ẑi,n−1,2

+C∗

I i,n−1,33ẑ
2
i,n−1,2

C∗

z i,n−1,12 = −C∗

I i,n−1,21ẑ
2
i,n−1,3 + C∗

I i,n−1,23ẑi,n−1,1ẑi,n−1,3 + C∗

I i,n−1,31ẑi,n−1,2

ẑi,n−1,3 − C∗

I i,n−1,33ẑi,n−1,1ẑi,n−1,2

C∗

z i,n−1,13 = C∗

I i,n−1,21ẑi,n−1,2ẑi,n−1,3−C∗

I i,n−1,22ẑi,n−1,1ẑi,n−1,3−C∗

I i,n−1,31ẑ
2
i,n−1,2

+C∗

I i,n−1,32ẑi,n−1,1ẑi,n−1,2

C∗

z i,n−1,21 = C∗

I i,n−1,32ẑi,n−1,3ẑi,n−1,1−C∗

I i,n−1,33ẑi,n−1,1ẑi,n−1,2−C∗

I i,n−1,12ẑ
2
i,n−1,3

+C∗

I i,n−1,13ẑi,n−1,2ẑi,n−1,3

C∗

z i,n−1,22 = −C∗

I i,n−1,31ẑi,n−1,1ẑi,n−1,3 + C∗

I i,n−1,33ẑ
2
i,n−1,1 + C∗

I i,n−1,1ẑ
2
i,n−1,3

−C∗

I i,n−1,13ẑi,n−1,1ẑi,n−1,3

C∗

z i,n−1,23 = C∗

I i,n−1,31ẑi,n−1,1ẑi,n−1,2−C∗

I i,n−1,32ẑ
2
i,n−1,1−C∗

I i,n−1,11ẑi,n−1,2ẑi,n−1,3

+C∗

I i,n−1,12ẑi,n−1,1ẑi,n−1,3

C∗

z i,n−1,31 = C∗

I i,n−1,12ẑi,n−1,2ẑi,n−1,3−C∗

I i,n−1,13ẑ
2
i,n−1,2−C∗

I i,n−1,22ẑi,n−1,1ẑi,n−1,3

+C∗

I i,n−1,23ẑi,n−1,2ẑi,n−1,1

C∗

z i,n−1,32 = −C∗

I i,n−1,11ẑi,n−1,2ẑi,n−1,3+C∗

I i,n−1,13ẑi,n−1,1ẑi,n−1,3+C∗

I i,n−1,21ẑi,n−1,3

ẑi,n−1,1 − C∗

I i,n−1,23ẑ
2
i,n−1,1

C∗

z i,n−1,33 = C∗

I i,n−1,11ẑi,n−1,2ẑi,n−1,3−C∗

I i,n−1,12ẑi,n−1,1ẑi,n−1,2−C∗

I i,n−1,21ẑi,n−1,2

ẑi,n−1,1 + C∗

I i,n−1,22ẑ
2
i,n−1,1

D.0.3 Dimensionless Connectivity Equation

The discretized connectivity equation is given by

ṙi,n − ṙi+1,n +
l

2
(ωi,n × ẑi,n−1 + ωi+1,n × ẑi+1,n−1) = 0 (D.9)
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After scaling translational velocities with rγ̇ [m/s], angular velocities
with γ̇ [1/s] and length with r [m], the dimensionless discretized con-
nectivity equation reads

ṙ∗

i,n − ṙ∗

i+1,n + rp(ω
∗

i,n × ẑi,n−1 + ω∗

i+1,n × ẑi+1,n−1) = 0 (D.10)

where rP = l/2r = l/d is a fiber segment aspect ratio.
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Appendix E

The Physical Pendulum

This appendix gives an overview of the theory of a physical pendulum.

The purpose is to provide the basic theoretical support to Chapter 4,

which deals with the validation of energy conservation and response

time, in the terms of a pendulum period. The physical pendulum is a

system composed of a rigid body, which oscillates around an axis that

does not pass through its center of mass. A rigid body pivoted from

point O is shown in Fig. E.1. The center of mass is at a distance h

Figure E.1: Physical pendulum

from the point of suspension. The gravity causes a moment around the

axis through point O. The moment intensity is mgh sin θ, where θ is the
angle, from the vertical direction, as seen in Fig. E.1. The equation of

motion reads

Iθ̈ = −mgh sin (θ) (E.1)

For small angles θ, the approximation sin (θ) ≈ θ applies and the equa-
tion of motion becomes

θ̈ = −

(

mgh

I

)

θ = −ω2θ (E.2)
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Since this equation has the same form as a linear harmonic oscillator

equation, a physical pendulum motion represents a harmonic oscilla-

tion, and the solution is

θ = θmaxcos (ωt + ϕ) (E.3)

where θmax is a maximum pendulum angular elongation, and the an-

gular frequency is given by

ω =

√

mgh

I
(E.4)

Thus, the physical pendulum period is given by

T =
2π

ω
= 2π

√

I

mgh
(E.5)

A homogeneous rod of lenght l and mass m pivoted from one end is
shown in Fig. E.2.

Figure E.2: A homogeneous rod oscillating around end point O

The oscillatory period for the rod reads

T = 2π

√

1
3
ml2

mg 1
2

(E.6)

since its moment of inertia is

I =
1

3
ml2 (E.7)
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