
197 
 

A DESIGN ARCHITECTURE FOR SENSOR DATA FUSION SYSTEMS WITH 
APPLICATION TO AUTOMOTIVE SAFETY  

 
Fredrik Bengtsson, Lars Danielsson 

 
In this paper we present a modular sensor data fusion functional architecture, tailored for 
development of automotive active safety systems. The purpose of the fusion system is to 
provide active safety applications with accurate knowledge regarding the environment 
surrounding the vehicle. Our proposed functional architecture is designed in such way that 
the fusion system is easy to maintain, upgrade and re-use. These aspects are assessed by 
the use of a reference implementation which is evaluated in terms of tracking performance 
and scalability. Furthermore, the reference implementation demonstrates that a system can 
be implemented using rapid prototyping tools, from which we can automatically generate 
c-code. 

INTRODUCTION 

In order for automotive active safety applications to make decisions about when to warn or 
intervene in dangerous traffic situations, reliable information about the traffic environment 
surrounding the vehicle is needed. Measurements on the environment are typically 
supplied by sensors mounted on the vehicle, for example radar sensors and vision systems. 
In order to meet the challenging requirements posed by safety critical applications, it is 
increasingly common to use information from several on-vehicle sensors in a data fusion 
framework. The task of fusing sensor data is performed by a tracking system or perception 
layer (1). 

Tracking systems have been researched extensively and there is a significant amount of 
results available regarding system design, e.g. (2, 3). In this paper we have regarded the 
task of system design from an automotive safety system research perspective, which in 
some aspects differ from many other tracking applications; sensors or hardware are subject 
to change and multiple applications pose different requirements. At the same time, 
hardware and software should to a high degree be shared components. The result is a 
functional architecture that allows for robust, versatile implementations using known 
tracking strategies. 

The proposed architecture is used in a reference implementation to evaluate the design 
principles. Algorithms are implemented using Mathworks Embedded MATLAB, from 
which it is possible to generate c-code and demonstrate the system in real-time on 
prototype PC hardware. The work is supported by Swedish Intelligent Vehicle Safety 
Systems (IVSS) program and is a part of the Sensor Fusion for Safety (SEFS) project. 

PROBLEM FORMULATION 

The main objective for this paper is to describe a functional architecture that can be used 
when designing a fusion system, all the way from a research platform to the vehicle 
production system. In this section we discuss aspects that need to be considered in order to 
solve this task. 
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Fusion Architecture 

Active safety system research is aided by a perception layer where sensors can be 
exchanged and different tasks can be developed and evaluated separately. It is also 
desirable to have an architecture that allows code to be re-used through different 
development steps, i.e. it should be straightforward to go from the research system to an 
in-vehicle system. Embodiments intended for in-vehicle programs need to be developed in 
parallel with safety applications, while as long as possible keeping the door open for 
introducing new sensors or achievements regarding fusion methods. For these reasons, an 
architecture suitable for both research and embedded implementations, as illustrated in 
Figure 1, would be very useful. 

 
Figure 1: Fusion system components are used in multiple applications, ranging from sensor evaluation and 
research to embedded implementations in a vehicle program. A common architecture makes it possible for 
every application to make use of recent developments. 
 
Therefore we aim to present a modular architecture that facilitates fusion system 
development jointly with sensor evaluation and in-vehicle studies. 

Practical considerations 

In the most natural multi-sensor tracking scenario all sensors are synchronized and the 
complete state vector is updated using all available information simultaneously. However, 
in practice sensor data is delayed due to internal signal processing algorithms or limited 
communication bandwidth and will arrive to the fusion in an asynchronous manner. If this 
is not considered, performance will suffer, e.g. as shown in Figure 2.  

t
t1 t2 ¿1¿2tk¡1 tk  

Figure 2: During tk¡1tk¡1 to tktk a truck moves from left to right in the figure. Sensor one reports the position at 
time t1t1 and sensor two reports the position at t2t2. However, the detections are delayed until ¿1¿1 and ¿2¿2 
respectively. In this figure ¿1 > ¿2¿1 > ¿2, which implies that the vehicle moved forward in the time interval 
(tk¡1; ¿2](tk¡1; ¿2] and then backwards during (¿2; ¿1](¿2; ¿1]. 
 
The arrival order of measurements is generally unknown in advance, and in a system with 
delays it may happen that we receive a so called out-of-sequence measurement. As shown 
in Figure 3, it is possible for a measurement to arrive after the state vector has been 
updated with information from a newer measurement, i.e. out-of-sequence, in practice a 
problem which requires special treatment. 
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Figure 3: Sensor data measured at t(i;j)kt
(i;j)
k , arrive to the fusion at time tktk, where ii define the sensor and jj is a 

measurement counter for that sensor. The fusion system receives data at times (t0; t1; : : : ; tk; : : : )(t0; t1; : : : ; tk; : : : ) and 
must handle asynchronous measurements, some of which take longer time to reach the fusion system than 
others. One reason for such behaviour is that certain sensors transmit accumulated measurements in a burst, 
i.e. a list of measurements. Note that t(i;j)kt

(i;j)
k  may be smaller than tk¡1tk¡1. 

Filter technique and data association 

Algorithms typically make use of a Kalman filter (KF) framework, while sensor specific 
methods are used in pre-processing steps such as data association and track initialization. 
It is important that the architecture supports filtering techniques such as Extended Kalman 
filter, Unscented Kalman filter, multiple model frameworks and, to some extent, Monte 
Carlo methods. At the same time, sensor specific adaptations must be allowed. 

Modularity 

There is often an architectural conflict between a modular and re-usable system and the 
optimal signal processing algorithm, fully exploiting all the information in signals and 
models. To achieve the flexibility described above, processing should be performed in a 
certain order with limited information exchange between adjacent functional blocks. In 
other words it needs to be modular, which may lead to suboptimal processing.  

TRACKING SYSTEM 

The task of a tracking system is to, at a time tt, describe the measured environment as good 
as possible given all available data, including uncertainties. Here we introduce the 
discrete-time state vector xkxk to contain everything we want to know at time tk = kTs(k)tk = kTs(k), 
where Ts(k)Ts(k) is the system sample time and k 2 Nk 2 N a counter. Similarly, we introduce ykyk to 
be the vector of measurements on the surroundings received in the time period (tk¡1 ; tk](tk¡1 ; tk]. 
For a system with NN  sensors we form 

 yk = [(y1
k)

T (y2
k)

T : : : (yN
k )T ]Tyk = [(y1

k)
T (y2

k)
T : : : (yN

k )T ]T  (1) 
 
The task can now be formulated as to calculate the posterior density p(xk

¯̄
y1; : : :yk)p(xk

¯̄
y1; : : :yk). In 

order to do this, two statistical models are needed, a process model and a measurement 
model. Textbooks which thoroughly explain estimation and modelling are e.g. (4, 5).  

In an automotive context, a tracking system is responsible for refining the information 
supplied by onboard sensors to supply safety applications with information about the 
surrounding traffic situation. In Figure 4 this relation is depicted together with components 
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that are necessary in order to calculate p(xk

¯̄
y1; : : :yk)p(xk

¯̄
y1; : : :yk). This includes gating and data 

association, track management, measurement update and state prediction. More 
information about these different components can be found in e.g. (3, 6, 7). 

 

Figure 4: Schematic view of a tracking system and its components, in the context of typical automotive 
comfort or safety applications.  
 
In a multi-sensor system, as in Figure 4, depending on the update rate of the tracking 
system, the measurement vector from each sensor, yi

kyi
k, may be composed of several 

measurements of different age. In this case yi
kyi
k has the following structure  

 yi
k = [(°

(i;1)
k )T ¿

(i;1)
k (°

(i;2)
k )T ¿

(i;2)
k : : : (°

(i;Mi(k))
k )T ¿

(i;M i(k))
k ]Tyi

k = [(°
(i;1)
k )T ¿

(i;1)
k (°

(i;2)
k )T ¿

(i;2)
k : : : (°

(i;Mi(k))
k )T ¿

(i;M i(k))
k ]T  (2) 

 
where M i(k)M i(k) are all measurement lists from sensor ii received in the time period (tk¡1; tk](tk¡1; tk], 
with corresponding time stamps ¿ (i;0:M i(k))

k¿
(i;0:M i(k))
k . That is to say, °(i;j)

k°
(i;j)
k  contains all measurements 

received at time ¿ (i;j)
k 2 [¿ i;j¡1

k ; tk]¿
(i;j)
k 2 [¿ i;j¡1

k ; tk]. Note that ¿ i;0
k¿
i;0
k  is defined as the time sensor ii last 

delivered data prior to tk¡1tk¡1 and that M i(k) ¸ 0M i(k) ¸ 0, i.e. sensor ii can deliver zero or multiple 
measurements during an update cycle of the fusion system. If the sensor delays are known, 
the time for the actual measurement t(i;j)kt

(i;j)
k , can be derived from ¿ (i;j)

k¿
(i;j)
k . Thus it is possible for 

t
(i;j)
kt
(i;j)
k  to be smaller than tktk. Figure 3 shows how measurements from three different sensors 

fall in different measurement vector slots, for example f°(2;1)
k ;°

(2;2)
k ;°

(2;3)
k ; °

(3;1)
k g 2 ykf°(2;1)

k ;°
(2;2)
k ;°

(2;3)
k ; °

(3;1)
k g 2 yk. 

FUSION ARCHITECTURE 

A central requirement on the perception layer is a high degree of modularity, so that 
algorithm components can be continuously developed and sensors may be exchanged or 
added to the system. Further, it must be suitable for automotive safety systems regarding 
e.g. in- and output data, computational load and terms of robustness, etc. It is a challenge 
to design a system with these properties, but the work is aided by an appropriate high level 
functional design.  

Architecture outline 

Our goal is to treat perception layer functional tasks in a fashion that facilitate usage 
according to Figure 1. One important aspect is how to control the flow of information; the 
magnitude of data transfer easily grows during development. We suggest a one-way data 
flow where usage of internal variables is minimized and transferred variables are well 
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specified and available to modules in a predictable fashion. A well organised data flow 
that has grown during development can be slimmed at a later stage, depending on which 
methods are actually used. Functional tasks are grouped into modules, chosen to facilitate 
separate development and are shown in Figure 5, supporting a variety of state update 
methods to be used for each sensor individually. Models should be restricted to the class 
of models with the Markov property. However, usage of statistical linearization methods 
allow models to be readily exchanged – only the transformation function need to be 
defined – which further supports modularity. 

Functional modules 

A functional architecture supporting an asynchronous fusion scheme, as discussed in the 
problem formulation, is shown in Figure 5. The general idea is to have a common 
prediction and delay compensation block, run at each internal iteration in the fusion 
scheme, and to divide the subsequent processing modules by sensor data origin. A 
dedicated sensor processing module is used for each sensor, e.g. if internal sensor data is 
to be processed the filter internal sensors module is activated. After all data in a cycle has 
been processed, additional track handling strategies may be applied on a global level. It is 
recommended to treat all parameters needed in the fusion system as input and output 
signals, to avoid internal “global parameters”. 

The architecture is readily extended with new blocks, e.g. including data from an e-
horizon system or implementing an estimator to be used for complex posterior 
distributions. Adaptations such as performing e.g. track-to-track fusion, can be assigned to 
existing modules. 

...

Data association

Track handling

Measurement update

 Measurement 
prediction

FILTER 
EXTERNAL 
SENSORS

Measurement update

FILTER 
INTERNAL 
SENSORS

Measurement update

FILTER LANE 
TRACKER

Predict Tracked objects

Predict Road

Compensate delayed 
measurements

Predict Ego vehicle

PREDICTION
MODULE

GLOBAL 
TRACK 
HANDLING

Track handling

Measurement 
source

Measurement 
aggregation and sorting

Sensor 1 Sensor 2 Sensor N

 
Figure 5: Fusion algorithm functional architecture. The large block is called once for each received 
measurement, executing necessary prediction and filter modules in the correct order.  
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Measurement aggregation and sorting  

The information from each sensor arriving to the fusion system is stored until the 
beginning of the next system cycle, allowing e.g. platform specific conversions. The 
aggregated measurements are sent to the fusion system in a sorted manner; the 
measurement that occurred first is sent first, etc. Naturally, any knowledge regarding 
expected measurement delays should be incorporated in the sorting. 

Prediction module 

The prediction of the state is made in four basic components, predict ego vehicle, predict 
tracked objects, predict road and compensate delayed measurements. These components 
make sure that the measurements and state vector are aligned in time for the upcoming 
filter blocks. Typically this module is used to predict xk¡1xk¡1 to the time of the earliest 
measurement t·1 2 (tk¡1; tk]t·1 2 (tk¡1; tk] and subsequently with the next measurement at t·2 2 [t·1; tk]t·2 2 [t·1; tk]. 
The compensate delayed measurements block is called in the event of an out-of-sequence-
measurement, and several strategies can be used to process such data. If models allow, a 
so called retrodiction step can be incorporated in the update procedure, explained e.g. in 
(8). An optimal retrodiction increases system complexity as it requires us to store previous 
states, a problem which can be avoided using sub-optimal alternatives. Nevertheless, 
blocks in the corresponding filter external sensor module must support retrodicted state 
updates which in itself add complexity. A procedure that does not affect following 
modules is to disregard measurements deemed to old, and to adapt the measurement 
distribution accordingly for measurements actually used. 

Filter internal sensors 

The ego vehicle is often modelled in more detail than observed vehicles and 
measurements not available from other vehicles are typically obtained at a high rate. For 
these reasons it is suitable to perform the filtering of measurements from internal sensors 
in a separate module. 

Filter lane tracker  

Lane tracker measurements are often pre-processed and should if possible be treated using 
knowledge regarding internal filtering models. Nevertheless, this does not prevent rkrk from 
being updated with data from external sensors in another module. 

Filter external sensors 

Each sensor observing the environment outside the ego vehicle has a corresponding filter 
module. Sensors may observe the world quite differently and it is here detailed sensor 
models are used to perform measurement prediction, data association and state updates. 
Track management such as track initialization or calculating track score can be carried 
out, and in multiple model frameworks, model probabilities are updated. Note that the 
module input generally is an object list, which is required for efficient data association. 
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Global track management 

Track deletion, validation and merging of tracks can be done on a global level to 
complement the limited set of track management tasks done locally for each sensor. 
Strategies for object classification, for example during track validation, can be 
implemented here. 

IMPLEMENTATION 

We have implemented a simple, but fully autonomous, tracking system to be evaluated 
before proceeding to develop components further. It is based on the proposed architecture 
and runs on a platform that can be used in real-time in vehicle demonstrators (9). Detailed 
information regarding this particular implementation can be found in (6, 7). 

Parameterization 

For a total of ncnc tracked cars, the state vector xkxk is partitioned as 

 xk = [(zego
k )T (z1

k)
T (z2

k)
T : : : (znc

k )T rT
k ]Txk = [(zego

k )T (z1
k)

T (z2
k)

T : : : (znc
k )T rT

k ]T  (3) 
 
where zi

kz
i
k is the state vector for vehicle ii and rkrk describes the road.  The choice of states in 

zi
kz
i
k is directly affected by the choice of vehicle motion model. Similarly, the 

parameterization of rkrk is coupled with the choice of road process model.  

Sensor setup 

The evaluation sensor setup is limited to one radar, a lane tracker camera and internal 
sensors measuring ego vehicle states. 

Radar 

Delphi's ACC3.5, 77GHz Automotive Radar, with a detection range of approximately 150 
meters and an opening angle of 16±16± is mounted in the front of the vehicle. Up to 20 
unfiltered detections, each consisting of range (rr [m][m]), range rate ( _r_r [m

s
][m

s
]) and azimuth ('' 

[rad][rad]), grouped in an object list are reported every measurement cycle (100 ms). The j thj th 
object list1 is written 

 °(1;j) = [r1 '1 _r1 r2 '2 _r2 : : : r20 '20 _r20]
T°(1;j) = [r1 '1 _r1 r2 '2 _r2 : : : r20 '20 _r20]
T , (4) 

 
letting index one denote the radar sensor. 

Vision system 

A camera based lane tracking system provides measurements on the vehicle heading 
relative the road ªrelªrel [rad][rad], the distances to the left and right lane markings Ro®Ro® and Lo®Lo® 
[m][m] respectively, and the road curvature c0c0 [m¡1][m¡1]. The j thj th measurement in a fusion cycle is 

                                                 
1 for the j thj th object list in the k thk th iteration, but kk is left out at this point for clarity reasons 
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  °(2;j) = [ªrel Roff Loff c0]
T°(2;j) = [ªrel Roff Loff c0]
T , (5) 

 
if the vision sensor is indexed as sensor number two. 

Internal sensors 

Several internal sensors are available in modern vehicles. In this system the vehicle speed 
vv [m

s
][m

s
], acceleration aa [m

s2 ][m
s2 ] and yaw-rate _ª_ª [ rad

s
][ rad

s
] are used for ego vehicle tracking. 

Consequently, 

 °(3;j) = [v a _ª]T :°(3;j) = [v a _ª]T : (6) 

Filtering 

A statistical linearization algorithm (10) is used to estimate effects of nonlinear 
transformations, resulting in the so called Unscented Kalman filter (UKF). Effects of 
linear transformations are calculated analytically. The global nearest neighbour data 
association method is implemented using the auction algorithm (11) and unlikely 
associations are ruled out using ellipsoidal gates. Unassociated measurements yield new 
tracks, confirmed when associated with measurements n-times out of m possible. Track 
deletion occurs using a similar scheme, or when uncertainties are larger than a threshold. 
Measurement delays are estimated and assumed known and, when using a single radar, 
there are no problems with out-of-sequence-measurements.  

Vehicle motion model 

The same parameterization and dynamic model is used for other vehicles as well as for the 
ego vehicle. We include the global position (»x; »y)(»x; »y), heading ªª, velocity vv, yaw-rate _ª_ª and 
acceleration aa in the vehicle state vector: 

 zk = [»x »y Ã v _Ã a ]Tzk = [»x »y Ã v _Ã a ]T . (7) 
 
The motion model is derived from the continuous-time model 

 _z(t) = [v(t)cos(Ã(t)) v(t)sin(Ã(t)) _Ã(t) a(t) 0 0]T + [0 0 0 0 v ÄÃ(t) v _a(t)]
T_z(t) = [v(t)cos(Ã(t)) v(t)sin(Ã(t)) _Ã(t) a(t) 0 0]T + [0 0 0 0 v ÄÃ(t) v _a(t)]
T . (8) 

 
v ÄÃ(t)v ÄÃ(t) and v _a(t)v _a(t) describe modelling errors and are continuous time Gaussian stochastic 
processes. Both are zero mean and white, with intensity q ÄÃq ÄÃ and q _aq _a, respectively. A fixed 
step-length discrete model is used, a derivation of which is presented in (12). 

Road process model 

We follow suggestions from e.g. (13) and use a clothoid model to make a local 
approximation of the road curvature around the ego vehicle. The curvature c0c0 changes as a 
linear function, so at distance ´́ ahead of the ego vehicle, the curvature is written 

 c0(´) = c0(0) + ´ c1c0(´) = c0(0) + ´ c1, (9) 
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The road state vector contains ego vehicle heading angle relative the road, distances to 
the lane markings and the curvature parameters (c0c0, c1c1). Apart from c0c0 described in (9), all 
states are modelled as constants influenced by zero mean white Gaussian noise (WGN). 

Measurement models 

The radar sensor model is kept fairly simple, which is sufficient for this evaluation. It is 
assumed that the vehicle can be modelled as a point target, i.e. at most one measurement 
may originate from each vehicle. The measurement equation for one radar detection 
(i = 1i = 1), is 

 °1;j
k =

24 r
_r
'

35 + w1;j
k ;°1;j

k =

24 r
_r
'

35 + w1;j
k ; (10) 

where, omitting the time dependency (kk) and assuming the detection originates from 
vehicle ll, 

 

r =
q

(»l
x ¡ »ego

x ¡ ²x)2 + (»l
y ¡ »ego

y ¡ ²y)2

_r = vl cos(¡(Ãl ¡ Ãego) + ')¡ vego cos(')

' = tan¡1(
»l
y

»l
x

)¡ Ãego ¡ ²Ã

r =
q

(»l
x ¡ »ego

x ¡ ²x)2 + (»l
y ¡ »ego

y ¡ ²y)2

_r = vl cos(¡(Ãl ¡ Ãego) + ')¡ vego cos(')

' = tan¡1(
»l
y

»l
x

)¡ Ãego ¡ ²Ã . (11) 

(²x; ²y; ²Ã)(²x; ²y; ²Ã) represent the sensor mounting position and orientation in the local ego vehicle 
coordinate system. The ego vehicle motion is considered a deterministic control signal and 
measurement noise, w1;j

kw1;j
k ,  is WGN with known covariance.  

Measurement models for the ego vehicle sensors and the vision system are linear. The 
vision system sensor model (i = 2i = 2), using the identity matrix II, becomes 

 °2;j
k =

£
I4x4 0

¤
rk + w2;j

k°2;j
k =

£
I4x4 0

¤
rk + w2;j

k , (12) 
 
and the sensor model for internal sensors (i = 3i = 3) is written 

 °3;j
k =

£
03x3 I3x3

¤
zego
k + w3;j

k°3;j
k =

£
03x3 I3x3

¤
zego
k + w3;j

k . (13) 

EVALUATION 

It is hard to assess and quantify architecture performance. In this section we aim to 
demonstrate that the purposed fusion architecture is capable of producing a functional and 
processing efficient perception layer, using rapid prototyping tools. This is accomplished 
by evaluating the estimation accuracy of the reference implementation and by making 
predictions of the computational load when additional sensors are included.  

Performance comparison and evaluation 

We compare the estimates from the reference implementation with that of a sensor 
specific tracker used in active safety systems already on the market, relative ground truth 
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data. The aim is to show that our modular system is capable of performing on par with or 
better then a dedicated sensor tracker based on the same data, and that estimates are 
sensible relative ground truth data.  

The comparison is limited to two scenarios. Scenario 1 involves the lead vehicle making a 
hard braking manoeuvre whereas in scenario 2, the host vehicle is accelerating towards the 
target vehicle. Sensor data from the described sensor setup is collected together with 
highly accurate differential global positioning system (DGPS) measurements of the 
position of both the host and the tracked vehicle. Using these DGPS position 
measurements we estimate the quantities needed to evaluate the tracking performance. 
Note that only the position is measured directly and that other states are calculated using 
the motion model derived from (8) and a UKF filter. Hence, the estimates of the other 
states can mainly serve as an indication of the magnitude of the true errors. The 
parameters in the implementation have been tuned to cover common scenarios, and the 
same setup is used for scenario 1 and scenario 2. 
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Figure 6: Evaluation of estimation accuracy for scenario 1 (left) and scenario 2 (right) using DGPS position 
measurements as reference. In the figures are the Euclidean error shown for all the states in the state vector 
for the target vehicle using the reference implementation (black) as well as for the sensor specific tracker 
(red), for applicable states. 
 
Results, shown in Figure 6, indicate that a tracking system implemented using the 
proposed architecture is capable of delivering sensible estimates and that performance is 
comparable with that of a dedicated sensor tracker. 

Processing time evaluation 

The second aspect of our fusion architecture to be evaluated is it's scalability in terms of 
processing time for the multi-sensor system. As shown in Figure 5, adding a sensor does 
not affect the content of other modules. Hence, we can imitate a multi-sensor system by 
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independently duplicating both the prediction for the tracks and the filtering module for 
the external object sensor, i.e. simulating additional radar sensors. This way it is possible 
to simulate a larger number of simultaneous tracks, and multiple sensors.  

In Table 1 the mean and maximum processing time for a system with 1 – 5 simulated 
external object sensors is shown. Simulated sensors deliver data simultaneously, which in 
corresponds to a “worst case” scenario. The processing times are measured running the 
algorithm in MATLAB on a laptop PC (Intel Pentium M 1,66 GHz). Initial tests indicate 
faster processing when running algorithms on a dedicated development hardware, i.e. xPC 
or dSPACE autobox (14, 15). 

 

Table 1: Mean and maximum processing time for a system based on data from 1 - 5 sensors. 
 

Processing time [s] DF1 DF2 DF3 DF4 DF5 

Mean 0,0049 0,008 0,0110 0,0141 0,0171 

Maximum 0,0123 0,0191
(+55%) 

0,0284
(+48%) 

0,0367
(+29%) 

0,0462 
(+20%) 

 
The measured processing times indicate that this implementation can run at least in 20 Hz 
incorporating data from 5 sensor similar to the forward looking radar. 

CONCLUSIONS 

We have proposed a fusion functional architecture that is modular in nature and support 
code and component re-use through different incarnations of the system. The architecture 
supports rapid prototyping tools, from which code suitable for production projects can be 
automatically generated. Sensor specific filter components with well defined input and 
output signals allow a high degree of adaptation while maintaining the general filtering 
framework. Several filtering techniques, such as the KF, UKF and EKF, are supported and 
can be used jointly in a single system. A reference implementation of the system based on 
standard methods run in real-time and performs on par with, or better than, a sensor 
specific tracker when using the same input data. We conclude that the proposed fusion 
architecture facilitates technology transfer and enables us to research and develop high-
performing multi-sensor tracking systems for automotive safety systems in a structured, 
non-limiting, fashion. 

REFERENCES 

(1)  A. Polychronopoulos, A. Amditis, U. Scheunert, and T. Tatschke, Revisiting JDL 
model for automotive safety applications: the PF2 functional model, in The 9th 
International Conference on Information Fusion. 2006: Florence. 

(2)  Y. Bar-Shalom and W. Dale Blair, Multitarget-Multisensor Tracking Volume III: 
Applications and Advances, Artech House, 2000. 



208 
 

(3)  S. Blackman and R. Popoli, Design and analysis of modern tracking systems, Artech 
House, 1999. 

(4)  Y. Bar-Shalom, X. Rong Li, and T. Kirubarajan, Estimation with applications to 
tracking and navigation. 2001, John Wiley & Sons, Inc.: New York, NY. 

(5)  B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman filter: particle filters 
for tracking applications. 2004, Artech House: Norwood, MA. 

(6)  F. Bengtsson, Models for tracking in automotive safety systems. Institutionen för 
signaler och system, Chalmers tekniska högskola, 2008. 

(7)  L. Danielsson, Tracking Theory for Preventive Safety Systems. Institutionen för 
signaler och system, Signalbehandling, Chalmers tekniska högskola, 2008. 

(8)  Y. Bar-Shalom, "Update with out-of-sequence measurements in tracking: exact 
solution". Aerospace and Electronic Systems, IEEE Transactions on, 2002. 38(3): p. 769-
777. 

(9)  F. Bengtsson, L. Danielsson, and J. Gunnarsson, D1.41 Definition of project 
demonstrators. 2006: SEFS Deliverable D1.41. 

(10)  S.J. Julier and J.K. Uhlmann, "Unscented filtering and nonlinear estimation". 
Proceedings of the IEEE, 2004. 92(3): p. 401 - 22. 

(11)  D.P. Bertsekas, "The auction algorithm for assignment and other network flow 
problems: a tutorial introduction ". Interfaces, 1990. 20(4): p. 133 - 49. 

(12)  J. Gunnarsson, L. Svensson, L. Danielsson, and F. Bengtsson. Tracking vehicles 
using radar detections. in Intelligent Vehicles Symposium, 2007 IEEE. 2007. 

(13)  E.D. Dickmanns and A. Zapp, A curvature-based scheme for improving road vehicle 
guidance by computer vision, in Proceedings of the SPIE Conference on Mobile Robots. 
1986. 

(14)  dSPACE AutoBox. Available from: 
http://www.dspace.com/ww/en/pub/home/products/hw/accessories/autobox.cfm. 

(15)  xPC Target. Available from: http://www.mathworks.com/products/xpctarget/. 

 




