Component sizing of a plug-in hybrid electric powertrain via convex optimization
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Abstract

This paper presents a novel convex modeling approach which allows for a simultaneous optimization of battery size and energy
management of a plug-in hybrid powertrain by solving a semidefinite convex problem. The studied powertrain belongs to a city
bus which is driven along a perfectly known bus line with fixed charging infrastructure. The purpose of the paper is to present the
convexifying methodology and validate the necessary approximations by comparing with results obtained by Dynamic program-
ming when using the original nonlinear, non-convex, mixed-integer models. The comparison clearly shows the importance of the
gear and engine on/off decisions, and it also shows that the convex optimization and Dynamic Programming point toward similar
battery size and operating cost when the same gear and engine on/off heuristics are used. The main conclusion in the paper is that
due to the low computation time, the convex modeling approach enables optimization of problems with two or more state variables,
e.g. allowing for thermal models of the components; or to include more sizing variables, e.g. sizing of the engine and the electric

machine simultaneously.
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1. Introduction

Hybrid Electric Vehicles (HEVs) are widely regarded as one
of the most promising means for achieving a near-term reduc-
tion of emissions and energy consumption from the transporta-
tion sector. HEV powertrains include an internal combustion
engine (ICE), one or more electric machines (EMs), and an en-
ergy buffer, typically a battery and/or a super capacitor, which
depending on their configuration are commonly divided in three
different topologies: series, parallel and series-parallel. The
powertrain topologies mainly differ in the available degree of
freedom in choosing the ICE operating point, but their capabil-
ity to improve energy consumption can be generally described
by 1) the possibility to recover braking energy by using the EMs
as generators and storing the energy in the buffer, 2) ability to
shut down the ICE during idling and low load demands and 3)
the possibility to run the ICE at more efficient load conditions
while storing the excess energy in the buffer. For a detailed
overview on hybrid vehicles, see e.g. [1].

The so-called plug-in HEVs (PHEVs) are equipped with a
charging connector (typically an on-board charger), which al-
lows the PHEVs to charge the electric buffer from the grid.
PHEVs are designed to be charged either by a standard house-
hold electric power infrastructure or at stations installed on, e.g.
parking lots, shopping malls, or other locations.
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In recent years, PHEVs have been considered for use in pub-
lic transportation by equipping high traffic bus lines with a
charging infrastructure [2, 3], offering a flexible crossbreed be-
tween an HEV city bus and a trolley-bus. In [2] the PHEV city
bus is, while driving, inductively charged from underground ca-
bles that have been buried along sections of the bus line. In [3]
the PHEV is equipped with a super capacitor which is charged
at bus stops through a docking station. Since the PHEVs are
to be charged at relatively high power, the energy buffer makes
it possible to drive a significant part of the bus line on elec-
tric power even though the charging infrastructure might be
sparsely distributed.

The cost optimal sizing of the energy buffer, i.e. determining
power rating and energy capacity of these PHEVs, is heavily
dependent on the charging infrastructure, the drive pattern and
the topography along the bus line. The solution to this opti-
mization problem, however, depends not only on the city bus
system configuration and the cost of the on-board electric com-
ponents, but also on changing factors such as fuel and electricity
prices. Moreover, a complicating issue when evaluating HEV
city buses is that the energy efficiency of the powertrain depends
on how well adapted the energy management strategy is to the
bus line [4]. For PHEV city buses the energy management strat-
egy decides the operating point of the ICE and thereby when
and at which rate the energy buffer is to be discharged. When
optimizing the PHEV public transportation system based on a
dynamic model of the powertrain, a badly tuned energy man-
agement may lead to a non-optimal sizing of the energy buffer

[5].

There are two main approaches to the problem of optimal siz-
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Vehicle frontal area.

Specific energy.

Force.

Rotational inertia.

Cost function.

Efficiency matrix for feasible gears.
Number of time samples.

Power.

Battery cell capacity.

Energy content of the fuel.
Ah-throughput of the cell.

Battery cell resistance.

Set of real numbers.

Wheel radius.

Torque.

Open circuit voltage of the battery cell.
a; Parameters describing the EGU efficiency.
by, by, b, Parameters describing the EM efficiency.
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co,c1,cy Parameters describing the ICE efficiency.
Chs Che Battery cost.

cd Drag coefficient.

Cel Electricity price.

cy Fuel price.

cr Rolling resistance coefficient.

dom f  Domain of f.

e Engine state.

g Gravitational acceleration.

h Sampling interval.

i Current in the battery cell.

m Mass.

n Quantity.

)4 Yearly interest rate for the battery payment.
r Gear ratio.

s Average distanced traveled in one year.
soc Battery state of charge.

t Time.

u Control input.

v Velocity.

w Penalty coefficient.

Xxcs  PHEV charging rate.

Vb Battery calendar life.

Yp Battery payback period.

At Time interval.

a Slope of the road.

B1,B> Parameters shaping the EGU efficiency.

y Gear.

n Efficiency.

Pair  Air density.

w Angular velocity.
Subscripts

0 Initial value.

DP  Dynamic Programming.
EGU Engine-generator Unit.

EM  Electric Machine.
ICE Internal Combustion Engine.
aux Auxiliaries.

b Battery.

base Baseline powertrain.
bc Battery cell.

brk  Brakes.

cs Charging station.
dem Demanded.

dg Differential gear.

f Fuel.

fl Final value.

fric Friction.

grid Electric grid.

idle  Engine idling.

loss Power loss.

on Engine on/off.

s Crankshaft.

up  Engine start-up (cranking).
veh  Vehicle.

w Wheels.

ing and control of HEVs. The first approach relies on heuristic
algorithms [6—13], while the second approach uses optimal con-
trol methods which give opportunity to evaluate various config-
urations on the basis of their optimal performance when sim-
ulated along one or several drive cycles (e.g. speed vs. time
profiles).

From the optimal control methods, Dynamic Programming
(DP) [14] is the most commonly used [15-20]. The main ad-
vantage with DP is the capability to use nonlinear, non-convex
models of the components consisting of continuous and inte-
ger (mixed integer) optimization variables. Another important
advantage is that the computation time increases linearly with
the drive cycle length. However, DP has two important limi-
tations when sizing powertrain components. The most serious
limitation is that the computation time increases exponentially
[14] with the number of state variables. As a consequence, the

powertrain model is typically limited to only one or possibly
two continuous state variables [6—13]. More than three state
variables would be highly impractical requiring a dedicated op-
timization code and a computer cluster. Moreover, since DP
operates by recursively solving a smaller subproblem for each
time step, the second limitation of DP is that it is not possible
to directly include the component sizing into the optimization.
Instead, DP must be run in several loops to obtain the optimal
control over a grid of component sizes.

The underlying research question in this paper is to investi-
gate which approximations are needed in order to formulate the
powertrain sizing and the corresponding optimal control prob-
lem as a convex optimization problem. The interest in convex
modeling and optimization as a method for powertrain sizing
is to avoid the limitations of DP and thereby to allow simulta-
neous optimization of parameters deciding the component sizes



(e.g. engine, battery, electric machine, ...) for models with sev-
eral state variables. This paper focuses only on the battery siz-
ing problem although the long term research goal is to include
the sizing of more powertrain components into the convex op-
timization problem.

Studying a PHEV city bus based on either a series or a paral-
lel topology, this paper describes the modeling steps needed to
formulate the energy management and battery sizing problem
as a semidefinite convex problem [21]. This convex problem
can then be efficiently solved for a global optimum using gen-
erally available solvers, SeDuMi [22], SDPT3 [23].

In the optimization approach the power characteristics of
the engine, the engine-generator unit and the electric machines
are approximated by a convex second order polynomial, and
the convex battery model assumes quadratic losses. The only
heuristic choice in the optimization is the gear selection and
the engine on/off operation which are tuned in an outer opti-
mization loop. The heuristics serves two purposes: it removes
the need for solving a mixed integer problem; and at the same
time it allows for a flexible approach to model the performance
of the gearshift strategy which makes it possible to incorporate
both physical constraints and limitations imposed by drivability
considerations.

Two examples illustrate the methodology for the optimal
PHEV battery design for a bus line with fixed charging infras-
tructure. The first example investigates if the convex problem
results in a similar battery design compared to the non-convex
mixed integer problem solved by DP. The results indicate that
both optimization problems point toward a similar solution.
The second example studies a PHEV city bus equipped with
a dual battery comprised of both energy optimized cells and
power optimized cells; a problem that can be solved in minutes
with the convex optimization approach, but would require a sig-
nificant computational effort with the DP approach. Besides
demonstrating the utility of the convex modeling approach the
example clearly shows the sensitivity of battery sizing with re-
spect to battery prices and charging power.

The paper is outlined as follows: background on convex
optimization is given in Section 2, the studied bus line and
charging infrastructure are discussed in Section 3; the PHEV
powertrain model is described in Section 4; problem formula-
tion and optimization method are given in Section 5 and 6; the
studied problem is formulated as convex in Section 7; heuristic
decisions are described in Section 8; examples of battery sizing
for a single and double buffer system are given in Section 9
and 10; and the paper is ended with discussion and conclusion
in Section 11 and 12.

2. Background on convex optimization

This section gives a brief overview on convex optimization.
The notation dom f meaning domain of f is adopted from [21].
The sets of real numbers is denoted by R.

Definition 1. The set C € R” is convex if the line segment
between any two points x,y € Cliesin C,i.e. Ox+ (1 =0y € C
for any 6 with0 <6 < 1.

Definition 2. A function f : R” — R is convex if dom f is a
convex set and f(6x + (1 — 0)y) < 6f(x) + (1 — 6)f(y) for all
x,y € dom f and any 6 with0 <6 < 1.

The function f is said to be concave if —f is convex. The
following remarks follow directly from Definition 2.

Remark 1. An affine function f(x) = gx + r is both convex and
concave.

Remark 2. A quadratic function f(x) = px*> + gx + r with
dom f C R is convex if p > 0.

Remark 3. A quadratic-over-linear function f(x,y) = x*/y with
dom f = {(x,y) € R?|y > 0} is convex.

Remark 4. A product f(x,y)
function.

xy is generally not a convex

Definition 3. The problem

minimize fy(x)

subjectto  fi(x) <0, i=1,..,
hix) =0, j=1...p
xeX

is convex if X C R" is convex, f;(x),i =0, ...,m are convex and
hj(x), j=1,..., p are affine.

The following theorems, which proof can be found in [21],
describe some of the operations that preserve convexity of sets
and functions.

Theorem 1. An intersection S = (N S;, of convex sets S;, is a
convex set.

Theorem 2. A nonnegative weighted sum f = Y w; f; withw; >
0, of convex functions f;, is a convex function.

This property can be extended to infinite sums and integrals.
For example if f(x,y) is convex in x for each y € A, then g(x) =

fﬂ w() f(x,y)dy is convex in x if w(y) > 0.

Theorem 3. A pointwise  maximum  f(x) =
max{fi(x), ..., fu(x)}, of convex functions fi(x),i = 1,....,m, is a
convex function.

3. Bus line and charging infrastructure

The driving cycle used to evaluate the PHEV powertrain
originates from a real bus line in Gothenburg, see Fig. 1. The
bus line is completely described by demanded velocity v, (t)
and road slope a(?) as functions of time. The reason Fig. 1
shows velocity and road altitude as functions of distance is for
illustrative purposes.

It is assumed that there are n., charging stations placed on
bus stops that are on similar distance to each other. At the
charging stations the bus can dock on or pick up electric power
inductively to charge its battery.

The charging stations are generally classified into two
groups: 1) conductive charging or wire coupling and 2) induc-
tive charging or wireless coupling. Most conductive chargers
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Figure 1: Driving cycle. The top plot shows demanded velocity and position of
the bus stops. The bottom plot shows the road altitude.

presently deployed have efficiencies above 7., = 92 %, and are
able to maintain high efficiency at low power levels. Inductive
chargers may have a peak efficiency of up to 92 %, but this effi-
ciency drops off substantially with power level [24].

Significant drop in power, hence drop in efficiency at induc-
tive chargers, takes place when batteries finish charging after
being charged for long time periods [24]. For the problem in
study the charging lasts for several seconds while the bus waits
at the bus stop. Hence, it is reasonable to assume that the bus
will charge mainly with high power at which constant average
efficiency can be considered for both conductive and inductive
chargers.

As aresult, at the jth charging station the bus can be charged
with ¢y, Pes max; Usable power for the duration of the stop lasting
At.; seconds. Hence, the electric power that the whole charging
infrastructure provides can be expressed as

P (t) — ncs_,-Pcs,max_,-, t € [tCS," t{,‘XJ + At{,‘Sj]
“ 0, otherwise ’ 1)

where 7., is the time when the bus arrives at the jth charging
station.

The electric power, Pgq(t), that the PHEV takes from the
grid can be expressed as

Pgrid(t) = Xes(DP(2) (2a)
xcs(1) € [0,1] (2b)

where x.4(?) is a decision variable that determines at which rate
the energy buffer is to be charged when coupled to a charging
station.

Note. For didactic reasons decision variables are marked in
bold.

4. PHEV powertrain model

In this section, inverse simulation, quasi-stationary models
are presented for both the series and the parallel powertrain.
In the inverse simulation models the required power from the
powertrain is determined by the driving cycle without using a
driver model. This reduces the computational burden in simu-
lations by removing vehicle velocity from the state vector [25].
The models are quasi-stationary, where inputs and outputs are
related by static relations. This level of details is often used
when deciding control strategies or comparing different vehicle
concepts [17, 25-27].

4.1. Series powertrain

The system architecture for the series PHEV is shown in Fig.
2. The series powertrain includes an internal combustion en-
gine (ICE), two electric machines and an energy buffer. The
ICE together with the first electric machine (GEN) are used to
supply electric energy to the energy buffer and to the second
electric machine (EM) which is directly attached to the wheels.
The ICE and GEN are not mechanically coupled to the wheels
and are therefore considered as one unit, i.e. engine-generator
unit (EGU).

The powertrain satisfies the power balance equations

Paem(t) = TEm(Owemu(t) + Ppri(t) (3a)
Pemei(t) = Pp(t) + Pgria() + Pegu(t) — Paux (3b)

where Pg,,,(1), detailed below in (5), is power required by the
driving cycle, Ppqr(t) is power dissipated at the friction brakes,
wem(t), Tem(t), and Pgpe(t) are speed, torque and electri-
cal power of the EM, Py(f) is power of the energy buffer and
Pry(?) is electric power delivered by the EGU. For simplic-
ity, the power used by the auxiliary devices, P, is assumed
constant.

The energy buffer can be composed of any number of batter-
ies

Py(t) = ) Py, (1) @
J

but typically not more than two batteries are used, where one
has high power density and the other high energy density. The
batteries are constructed by connecting cells in parallel and se-
ries. Detailed model for the battery is further explained in Sec-
tion 4.4.

The demanded power

Paen(®) = Faem(D)Viem(t)

4% em (! . air
Faon(® = 2220 4 (00 + P2 e (5)

w

+ m(t)gc, cos a(t) + m(t)g sin a(r)

is uniquely determined by the driving cycle, where F e, (1) is
demanded force, Ay is vehicle frontal area, c; is drag coeffi-
cient, ¢, is rolling resistance coefficient, p,;, is air density, g is
gravitational acceleration and R,, is wheel radius. The vehicle
rotational inertia, /, is cumulative inertia seen at the wheels and
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Figure 2: Series PHEV powertrain model.

includes the inertia of the wheels, the differential and the EM.
The model does not account for the EGU inertia.
The total vehicle mass m(t) can be found as

m(e) = Moen(t) + ) Mpe, My, ©)

J

where ny, is number of cells and m;,; is mass of each of the
cells in the jth battery. The mass of the vehicle without the
batteries, m,.(f), can vary in time due to the varying number of
on-board passengers between bus stops.

4.2. Parallel powertrain

The system architecture for the parallel PHEV is shown in
Fig. 3. The parallel powertrain includes an ICE and an EM
mounted on the same shaft, delivering power to the wheels via
a transmission unit. The powertrain satisfies the power balance
equations

Paem(t) = Fy(t)vdem(t) + Pyri(2) (7a)
Ts(Dws(t) = TEmOwem(?) + Tice(Dwice(r) (7b)
PEM,el(t) = Pp() + Pgrid(l) = Poyx (7¢)

where F,(?) is force at the wheels generated by the ICE and/or
EM, T(¢) and w,(f) are the torque and speed of the crankshaft,
Tem(t), wem(t) and Pipe(t) are the torque, speed and electri-
cal power of the EM, and Tycg(f) and w;cg(t) are torque and
speed of the ICE.

The demanded power and the rest of the variables in (7) are as
described in Section 4.1. The vehicle rotational inertia includes
the inertia of the wheels, the differential, the EM, the ICE and
the transmission. It is time varying, as it depends on the choice
of gear.

4.3. Transmission

The transmission is given by a static model

n,(yO)Ts(t), F, (1) =0
ClyM)Fy(1) = )
’ {777(':’([)) Is(n), Fy(n)<0
1
oo Vaem(®) = wy(t),  y(©) € {0, 1, ..., Yimax} (8b)

Electric grid
fEung,
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L 4

Py
=
®
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Figure 3: Parallel PHEV powertrain model.

where C(y(1)) = Ry,/(ragry(y(1))), and 1, (y(1)) and r, (y(1)) are
constant efficiency and gear ratio for gear y(¢). The transmis-
sion consists of y,,,, gears in addition to a final differential gear
with ratio rg,.

Assumption 1. The gear y(t) is determined prior to the opti-
mization.

Based on the demanded vehicle velocity and traction force,
heuristic rules are used to decide gear that permits the ICE and
EM to operate with high efficiency. This is discussed in detail
in Section 8.2.

4.4. Battery

The battery pack consists of n, strings connected in paral-
lel with each string consisting of ng identical battery cells con-
nected in series, see Fig. 4. The power of the battery pack
with the cells modeled as simple resistive circuits [1], can be
computed as

Py(t) = (Voe(s0c(t)) — Ri(1))i(t)np, (9a)
npe >0 (9b)

where i(?) is the current in each of the strings, V,.(soc(?)) is the
open circuit voltage of the battery cell, R is the cell resistance
and ny. = ngn, is the total number of cells. The state of charge
(SOC) of the battery cell is defined as

soc(t) = socy — é f i(t)dr (10)

where Q denotes the battery cell capacity and socy is the SOC
at the initial time #y. The SOC and cell current are limited by

(11a)
(11b)

SOC(I) € [Socmin’ socmax]

l(t) € [imim imax]

where (11a) is imposed to extend the battery cycle and calendar
life.

Additional possible constraints are starting at desired SOC
value, preserving charge sustain operation, or limiting the Ah-
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Figure 4: Equivalent battery circuit. The model of the battery cell is illustrated
in the left side. The battery pack, illustrated in the right side, consists of n,
strings connected in parallel, with each string containing n identical cells con-
nected in series.

throughput of the cell

soc(ty) = socy

soc(tg) = soc(tys)

111 (12)
f Ol < O,

The Ah-throughput associated to the driven cycle can be ob-
tained from the maximum allowed Ah-throughput Qapmay in
the entire battery life of y;, years, as
!
ﬁofl Vdem(t)dt

QAh = QAh,max—

Yb S
where s is the average distance traveled by the bus in one year.

4.5. Engine-generator unit (EGU)

The EGU is represented by a static model relating the fuel
power Py(2) to the electric power

Preu(t) = necu(Pr())Ps(1) 13)

by an efficiency model

necu(Pr(t)) =m (1 - e‘ﬁl(Pf’(’)‘P"'”f))

_ 2
+1pe Ba(Pp()-P7)

(14)

that captures the essential EGU characteristics and compares
reasonably well to manufacturer data [28]. Due to internal fric-
tion, the efficiency approaches zero at power lower than P;g,.
Then, as Py(z) increases, the efficiency increases with rate 3 to
a value close to 1y, see Fig. 5. The maximum EGU efficiency is
about 71 + 77, centered around Pj;. The parameter 3, determines
the bulginess of the efficiency peak. Low 3, value gives flatter
curve around P}, while higher 8, gives a prominent peak.
The electric power is limited by

Prcu(®) € [0, PeGumax] (15)

and no electric power is generated when the ICE is idling or
off. During cranking (starting-up the ICE before fuel has been
injected) the ICE is modeled with a constant friction which in

100 150 200 250
Py kW]

0
100 200 300 400 50
PrlkW]

Figure 5: Model of two different EGUs. The EGU in the left plot has high 3>
value, while the EGU in the right plot has low 3, value.

turn requires certain electric power P, < 0 from the GEN.
Thus, the total EGU electric power is

Prgy(t) = eon(t)i)EGU(t) + eup(t)Pfric (16)

where the ICE on/off e,,(f) and start-up state e,,(¢) are binary
signals. The state e,,(f) in (16) also ensures that no power is
generated when the ICE is off.

A simple decision for e,,(?) is to crank the ICE for Az, sec-
onds before turning it on (injecting fuel). With a slight abuse
of notation, by considering the binary as Boolean variables and
reading 1 as true and O as false, e,,(¢) can be obtained from

eup(t) =ep(t + Atup) A —eo(2). a7

This requires a constraint that prevents more than one change
in e,,(?) in less than At,, seconds, i.e. the logical expression

= (eon(t) # €,,(t1) A eon(t2) # €,,(12)) (18)

needs to be true for all 1,1, € [fo, tpl Aty # 1 Aty — 11| < Atyp.
The notation e}, (r) in (18) is the on/off state at the next time
instant.

Assumption 2. The ICE on/off state is determined prior to the
optimization.

The on/off state is found as any heuristic function of the
speed profile, topography, distance to a charging station, time,
etc., but the parameters governing the heuristics are kept con-

stant during the optimization. A specific heuristic rule is dis-
cussed later in Section 8.

4.6. Internal combustion engine (ICE)

The ICE model relates the consumed fuel power to the deliv-
ered mechanical power

wiceOTrce(t)

P:(t) = ,_
0 nice(wice®), Tice(?))

19)

by a static efficiency map n;ce(wice(?), Tice(D), see the left
plot of Fig. 6.

The ICE torque is limited by a torque limit dependent on the
ICE speed

Tice() € [0, Tice max(@ice(®)] (20)
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Figure 6: Model of an ICE (left) and an EM (right). The thin lines represent
the efficiency of the components, the thick solid line is the maximum motoring
torque and the dashed line is friction torque of the ICE and maximum generat-
ing torque of the EM, respectively.

where it is assumed that no mechanical power is generated
when the ICE is idling or off. During cranking the ICE is mod-
eled by a speed dependent friction torque 7T'fyic(wice(f)) < 0,
yielding the total ICE torque

Tice(t) = eonT1ce®) + €upy(DT fric(wice (1)) (21)

with on/off and start-up state decided as in Section 4.5.

Under Assumption 1 that gear is decided a priori, the ICE
speed is directly obtained from v,,,(7) and it is not decided by
the optimization. Hence, the speed constraint

wice(t) € [0, wicE max] (22)

is applied prior to the convex optimization. In the following
section it will be shown that similar constraint holds for the
EM. If these two constraints are violated then the problem is
infeasible and there is no need for optimization. More details
can be found in Appendix A.

4.7. Electric machine (EM)

The EM model, part of both the parallel and the series pow-
ertrain, relates the electrical to mechanical power by a static
power loss map, Py ioss(Wem(t), TEm(2)) (for illustrative pur-
poses, Fig. 6 depicts the efficiency map). This yields

Perei() = wpmu(OTEMm () + Perioss(weEm(D), TEM(D)).
(23)

The EM torque is limited by torque limits dependent on the
EM speed

TEM(t) € [TEM,min(wEM(t))’ TEM,max(U-)EM(Z))] (24)
where wgy(¢) is uniquely determined from the crankshaft speed
wem(t) = repws(1) (25)

given the ratio of the EM reduction gear rgy;. Since transmis-
sion gear is decided a priori, see Assumption 1, the EM speed
is obtained directly from v,,,(f) and is not decided by the opti-
mization. Therefore, the physical speed limit

wem(1) € [0, WEM max] (26)

is applied prior to the optimization.

5. Problem formulation

The studied sizing problem is formulated to minimize a cost
function J consisting of cost for consumed fuel and electricity
and cost for energy buffer

. 111 . 1 f1 P i t
J= C_ff Py(n)dt + Cel 6f £ d()dt
Or Ji, 3.6 x10° J;, Nes(t)

+ Zcbejnbc,-
J

where c; is fuel price [currency/l], Oy is energy content of the
fuel [J/1], ¢y is electricity price [currency/kWh], fo and t; are
initial and final time of the driving cycle, and 7.4(¢) is charging
efficiency which at each time instance may differ if the infras-
tructure consists of different charging stations. The cost of the
battery cells Cpe; [currency] is an estimate based on the actual
market cost of the battery (including cost for materials, manu-
facturing, packaging and circuitry), normalized by driven dis-
tance.

The optimization is subject to the constraints (1-26) and in-
volves both time dependent and time invariant variables. Time
dependent variables common to both the series and the par-
allel powertrain are Pgrig(t), Xes(t), Paem(®), Faem(t), Ppri(2),
Teu(t), Pepmer, Py(t), Py, (1), Pp, (1), i1(2), i2(2), socy (1), soca (1),
Ps(t) and m(t); common time invariant variables are ny,
and ny.,. Additional variables for the series powertrain are
Preu(t) and Pggy(1), and for the parallel powertrain F, (1),
T(1), Trce(t) and Tycg(2).

Note. The high number of optimization variables is only for
didactic purposes to easily explain the remodeling of the prob-
lem into a convex form, which is the topic of Section 7. The
problem can be rewritten in a more compact form, with less
variables and constraints, as in Table 1.

27)

6. Optimization method

This section shows a general framework of the algorithm that
will be used for solving the battery sizing problem.

The cost function (27) is a nonnegative weighted sum of
optimization variables, hence convex by Theorem 2. For the
problem to be convex, recall Definition 3, the functions in the
inequality constraints should also be convex and the equality
constraints should be affine. The underlying series and parallel
PHEV powertrains consist of components that introduce con-
straints which do not comply to this requirement.

Section 7 will describe the necessary approximations for a re-
formulation of the original problem into a convex optimization
problem. The convex problem can then be solved using gen-
erally available solvers, such as SeDuMi [22], or SDPT3 [23].
The investigation of the constraints involving time dependent
variables is carried out at each specific time instance 7. Then,
the feasible set of the problem obtained by intersecting convex
sets for all the time instances ¢ € [fy, 5] is convex by Theorem
1.

The ICE on/off and gear heuristics may require the convex
problem to be solved in several nested loops. Then, the steps
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Figure 7: Model of the battery open circuit voltage. The solid lines represent the
original models and the dashed line is the approximation. Good fit is expected
in the allowed SOC range represented by the shaded region.

taken to solve the problem of battery sizing can be summarized
as follows:

1. Define desired vehicle performance by deciding the driv-
ing cycle, as in Fig. 1.

2. Define a charging infrastructure by deciding on charging
stations, their distribution on the driving cycle and charg-
ing interval per station.

3. Loop 1: Decide e,,(t).

4. Loop 2 (for parallel powertrain only): Decide y(¢).

5. In each iteration of the nested loops solve a convex prob-
lem.

7. Convex modeling

Starting from the convex cost function, this section augments
the minimization problem by sequentially including the con-
straints from the powertrain components while describing ap-
proximations and remodeling of the constraints such that prob-
lem convexity is preserved.

7.1. Battery

The battery model described by the constraints (9-12) in-
volves three time varying variables, Pp(?), i(f) and soc(¢), and
one time invariant variable, np.. The variable Py(¢) is also in-
volved in (4) as the power of one of the energy buffers in the
double buffer system. By relaxing np, to a real number, it is
clear that from these constraints only (9a) may lead to a non-
convex problem, due to the non-convex voltage-SOC depen-
dency, see Fig 7, and the product of two variables, recall Re-
mark 4.

To preserve the problem convexity, the following four steps
are taken. First, the battery open circuit voltage is approximated
as constant, i.e. V,.(soc(?)) = V,.. Fig. 7 shows that the approx-
imation gives good fit in the allowed SOC range for the 44 Ah
and 10 Ah cells? used in the examples in Section 9 and 10.

2The cells, high energy 44 Ah and high power 10 Ah LiFePOy lithium-
ion, are manufactured by Saft (http://www.saftbatteries.com, October 4, 2011)
and can be found under the names Super-Phosphate VL 45E Fe and Super-
Phosphate VL 10V Fe, respectively.

Second, the following variable changes
i(1) = nyi(r)
soc(t) = nypesoc(t)

are introduced; third, (9b) is restricted to permit strictly pos-
itive number of battery cells; and fourth, (9a) is relaxed with
inequality. Then (9-12) can be rewritten as

)
-~ t
Py(t) < Vit - =2 (282)
Ry
Npe > 0
1 ("«
50c(t) = npesocy — — f i(t)dr
0 Js
sﬁc(t) € [SOCm,'n, Socmux]nbc
¥(t) € Limins imax]Mpe (28b)

soc(ty) = soconp,

sdc(ty) = soc(t )

1
f [E(Dldt < Qannpe.
4]

These constraints preserve the problem convexity since they
include only affine functions, except (28a) which has a nonlin-
ear term. The nonlinearity is a quadratic-over-linear function,
hence convex for np. > 0, see Remark 3.

The relaxation (28a) intuitively looks like a bad idea, since
it means that there is a possibility of throwing electric energy
away, which consequently will decrease the overall system ef-
ficiency. This is easier to observe if the constraint is rewritten
as

Py(t) = V,ol(£) = Phoss(1)
(1)
Ry

Pb,loss(t) >R

where Py, j,55(?) is the power lost in the battery. It is easy to see,
however, that the optimal solution will satisfy (28a) with equal-
ity, hence it will be optimal for the non-relaxed problem as well.
For example, suppose that the optimal solution of the relaxed
problem does throw power away at some time instant #;, i.e.
Pb,loss(tk) = Riz(tk)/nbc + AP(t), with AP(t;) > 0. Next, a new
trajectory can be constructed where at the exact time instant the
extra power AP(t;) is not thrown away, and instead, it is used
to power the wheels and hence reduce the ICE torque Tjcg(t)
or EGU power Pggy(). This decreases the fuel power P (t;),
hence it decreases the cost (27), which shows that the solution
could not have been optimal.

Note. With this problem formulation only the total number of
battery cells can be obtained. For a more detailed battery de-
sign the number of cells in the string (or the number of strings)
could then be uniquely determined by the terminal voltage of
the whole pack.

Note. An integer solution for the number of battery cells, which
is not part of this study, will need to rely on other optimiza-
tion techniques (for a background, see, e.g. mixed integer non-
linear programming [29]). This, however, is a minor problem



due to two reasons. First, if the battery is composed of smaller
cells/modules that are not custom made for vehicle applications,
then the battery may need many cells/modules and the round-
ing error has limited influence. Second, if the cells are custom
made to be larger (or flat modules) the optimization gives an
indication of what the total capacity should be. So in both cases
there is not much need for an integer solution.

7.2. Engine-generator unit (EGU)

The EGU model described by (13-18) will lead to a non-
convex problem due to the non-convex efficiency model (13,
14). This can also be seen by graphically inspecting Fig. 8.

The problem convexity can be preserved in two steps. First
(14) is substituted in (13) and the resulting equation is approx-
imated by a second order polynomial. Then the equality is re-
laxed to comply with the definition of a convex problem yield-
ing

Ps(1) > (ao P, (1) + a1 Prgu(®) + Piaie)eon(t) (29)

where ap > 0 and a; are found by least squares. The on/off
state in (29) ensures that no fuel power is consumed when the
ICE is off. The constraint (29) will preserve the problem con-
vexity as its right hand side is convex by Remark 2. It is easy
to see, however, that at the optimum (29) will indeed hold with
equality, since otherwise fuel will be wasted unnecessarily.

Models of two EGUs and their corresponding approxima-
tions are given in Fig. 8. The EGU model without prominent
efficiency peak, see the right column of the figure, can be ac-
curately approximated within the whole operating range. As
the efficiency peak becomes bulgier, see the left column of the
figure, the region in which the approximation error is small de-
creases and the approximation is not as good for high fuel pow-
ers. This, however, is not a major problem, because by mini-
mizing fuel consumption the optimal solution will run the EGU
mainly at high efficiency; hence, a bulgier efficiency peak will
cause the ICE to operate closer to P;. and mainly in the region
where the approximation is valid. This is also confirmed by the
example in Section 9.

7.3. Transmission

The transmission model described by constraint (8) involves
two time dependent variables, T(¢) and F,(¢), which are also
part of (7a, 7b). The constraints preserve the problem convexity,
although recognizing this may not be obvious. For this reason,
(8a) is rewritten as

Cly())F, (1)

Ts(t) > max{
1y (y(1)

,CyY(OF. y(t)ny()'(t))} (30)

where the pointwise maximum is convex by Theorem 3 and the
constraint is relaxed with inequality to comply with Definition
3.

At the optimum (30) will be satisfied with equality. More-
over, since 77,(y(¢)) < 1 the shaft torque will be equal to the
first input of the max function when demanded power is posi-
tive. Otherwise, the powertrain would produce more power than
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Figure 8: Original and approximated EGU models. The solid line represents
the original function, while the dashed line is the approximation. The shaded
region shows the interval in which good fit is to be expected.

needed which consequently would increase the total cost. Simi-
larly, for negative power demands the shaft torque will be equal
to the second input of the max function as otherwise the pow-
ertrain would not recuperate the available and free of charge
braking energy.

Note. Some tools for solving convex problem, such as CVX
[30], or YALMIP [31], directly recognize max as a convex func-
tion. Otherwise, an equivalent convex problem can be obtained
by replacing (30) with inequalities where the left hand side is
greater than or equal to all the inputs of the max function.

Note. With the same reasoning as above, it follows that the con-
straints (3a, 7a) for the series and parallel powertrain, respec-
tively, can be relaxed to

Paen(t) < Tepy(Owepm(t)
Paem(t) < Fy(t)Viem(?)

where the braking power has been taken out of the convex prob-
lem. Inequality in these equations, assuming the problem is
feasible, will hold only when braking energy cannot be regen-
erated after the power limit of the generator (or a battery limit)
has been met. This does not have any implication on the opti-
mal results as the optimal braking power can still be obtained
after the optimization has finished, from

Py (0= P ()= T}y (D)
PZrk(t) = P:iem(t) - F;(t)vdem(t)

where * stands for the optimal value.

7.4. Internal combustion engine (ICE)

The ICE model described by (19-22) will lead to a non-
convex problem due to the non-convex efficiency map given in
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Figure 9: Fuel power of the original and the approximated ICE model for sev-
eral ICE speeds. The shaded region, where good fit is to be expected, covers
entirely the ICE operating range enclosed by solid lines.

(19). The problem convexity can be preserved by first approx-
imating (19) with a second order polynomial and then relaxing
it with inequality

Py(t) 2 (colwrce )2, (1)

+e1(@ice)Tice(®) + cxwice () eon(?)

€2y

where the coeflicients co(w;ce(®)) = 0, ci(wice(t)) and
cx(wicp(t)) are found by least squares for a number of grid
points of wjcg. For speed values not belonging to the grid
nodes, the coefficients are obtained by linear interpolation.
Similarly as with the EGU, it can be easily shown that at the
optimum (31) will be satisfied with equality.
An example of the original and the approximated ICE model

is illustrated in Fig. 9.

Note. Similar ICE representation, also known as Willans lines
[32, 33], approximates the ICE model by affine relations. The
approximation is a fairly accurate representation of actual en-
gine data and has been verified on many different types of en-
gines, from conventional spark ignition to compression ignition
direct injection [34, 35].

7.5. Electric machine (EM)

The EM model described by (23-26) will lead to a non-
convex problem due to the non-convex power loss map in (23).
The problem convexity can be preserved by approximating (23)
with a second order polynomial and then relaxing it with in-
equality

Pipmer() = bo(wem ()T, (1)

(32)
+ b(wem®)TEM(®) + by(wem()

where the coefficients bo(wgp(t)) = 0, bi(wgu(t)) and
by(wgpu(t)) are found by least squares for a number of grid
points of wgy. For speed values not belonging to the grid

nodes, the coefficients are obtained by linear interpolation.
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Figure 10: Electric power of the original and the approximated EM model for
several EM speeds. The shaded region, where good fit is to be expected, covers
entirely the EM operating range enclosed by solid lines.

It is easy to see that at the optimum (32) will hold with equal-
ity as otherwise electric energy will be thrown away unneces-
sarily.

The original and the approximated EM model are illustrated
in Fig. 10.

8. Heuristic decisions

The engine on/off and transmission gear can be defined as
any function independent on the variables decided by the con-
vex optimization. This section describes heuristic decisions
based on demanded power and speed.

8.1. ICE onjoff

A typical control of HEVs when user comfort and drivability
are not the main objectives is running the ICE in on/off mode.
The strategy is common for both, the series [36, 37] and the
parallel [38, 39] powertrains and relies on finding a threshold
above which the ICE is turned on. In [39] a velocity threshold
is used that minimizes fuel consumption on the studied driving
cycle. In [38] the ICE is turned on when demanded power is
above an optimal threshold and it has been shown that engine
on/off improve fuel economy not only at low speeds and during
decelerations, but also during highway cruising. Moreover, in
[38] it is theoretically proven that this operation mode is indeed
locally optimal using Pontryagin’s minimum principle.

Likewise, the heuristic on/off decision used in this study turns
on the engine when the demanded power Py, (f) exceeds the
threshold P,

(N = N
eon - 0,

The power Py, (t) is obtained by zero-phase moving average
filtering of the demanded power of the so called baseline”
powertrain. For the series PHEV the baseline powertrain is the

if Ppase(t) = P},

33
otherwise. (33)



powertrain without batteries. For the parallel PHEV the base-
line powertrain also excludes the inertia of the ICE, the EM and
the transmission.

The power P;,, is the optimal threshold that results in a feasi-
ble solution and minimizes the cost (27). It is obtained by first
gridding the power P,,; € [0; P,,,] and then solving the convex
problem for each gridded value P,,; as a switching threshold.
The upper limit P,,,, is the maximum power the powertrain can
deliver.

8.2. Gear selection

The heuristic gear selection used in this paper, and detailed
in Appendix A, decides gear from the demanded power and
speed of the powertrain with some initially guessed battery size.
At each time instance gear is selected to optimize the EM effi-
ciency when the ICE is off. If the ICE is on, the selected gear
gives the optimal ICE efficiency of the feasible power split com-
binations that satisfy the demanded power.

In order to more accurately model the performance of, e.g.
an Automated Manual Transmission [40] where during high
torque transfer a gear shift might take up to 1-2 seconds to ex-
ecute [41], two additional actions are taken: a moving average
filter is used to remove too frequent gear shifts, see Appendix
A; and no gear shifts are allowed during brake regeneration as
the resulting torque interrupt would be too costly in terms of
lost brake regeneration.

After the convex optimization has finished, the demanded
power is recomputed with the recently obtained optimal battery
size and the gear selection is repeated until no decrease in cost
is detected. Experiments showed that the gear selection proce-
dure usually ends in not more than three iterations even when
the initial guess of battery size is far from the optimal.

9. Example 1: Single energy buffer

This section gives an example of optimal battery sizing of
series and parallel plug-in hybrid electric bus. The purpose of
the example is to investigate whether or not the solution of the
convex problem will point toward a similar battery design as the
solution of the non-convex problem which is to be solved by DP.
By comparing the solutions conclusions can be drawn on the
validity of the convex modeling approximations and heuristic
decisions.

9.1. Problem setup

The vehicle includes one battery consisting of lithium-ion
44 Ah identical cells with specifications listed in Table 2. It
is assumed that cell packaging and circuitry account for 12.3 %
of the total mass of the battery pack [42]. The bus line, see
Fig. 1, is equipped with seven charging stations installed on ap-
proximately equal distance to each other. All charging stations
are Level 3 chargers (see [43] for background) with efficiency
of 92 % and provide 100kW continuous power. It is also as-
sumed, for simplicity, that the vehicle charging interval is 10s
at each station.
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The battery cost of ¢, = 178 €/kWh, an optimistic sugges-
tion by [42], includes cost for materials, manufacturing, pack-
aging and circuitry. Its payment is equally divided iny, = 2
years with p = 5 % yearly interest rate, yielding total cost

J Vaen(tydt

Yp S

p yptl
e = CpEpmp. |1 + —
Che = Cb bmb( 100 2 )

(34)

where E;, [kWh/kg] is specific energy determined from the en-
tire energy content of the battery cell.

The series powertrain includes 150 kW EGU as in Fig. 13(a),
and 180 kW 2400 rpm EM which is a scaled version of the EM
in Fig. 13(c). The parallel powertrain includes 130 kW ICE
and 100kW EM as in Fig. 13(b) and 13(c), respectively, and
12 gear transmission. Both vehicles have identical chassis and
total mass of 14t excluding the battery. It is assumed, for sim-
plicity, that there is a constant number of passengers on board.
The values for the rest of the parameters are given in Table 3.

The initial battery state is free, but charge sustaining opera-
tion is maintained, requiring the initial and final battery state to
be equal. The assumption means that immediately after the final
stop, the bus may start the route in opposite direction without
waiting for more than the 10 s charging interval.

9.2. The convex problem

The convex problem written in a compact form, with lower
number of variables and constraints, is summarized in Table 1.
Before passing the problem to the solver, SeDuMi, the variables
are rescaled and discretized with zero order hold. For a chosen
sampling time A, the discretization will give k = 1,.., N time
instances. Hence each time dependent variable in the convex
problem is actually a vector of N = ty/h + 1 variables (with
abuse of notation, the name of the discrete variables in Table 1
is kept the same as the name of the corresponding continuous
variables). This will give large number of variables, e.g. solving
the dual® problem required calling SeDuMi with 28277 vari-
ables and 8438 equality constraints, for the series, and 28941
variables and 8224 equality constraints for the parallel power-
train.

The problem can also be rewritten in a conic form with a lin-
ear objective function and linear matrix inequalities, and it can
therefore be recognized as a semidefinite program (SDP), see
[21] for background. In this study, however, the problem is not
manually transformed to the general SDP form, but a tool is
used, CVX [30], to do this automatically. This allows writing
the problem in its natural, more readable form, as in Table 1.
To enhance readability even further, the problem in Table 1 is
written using expressions, also supported by CVX. The expres-
sions are described by symbols, e.g. m in Table 1, which hold
an operation over variables, e.g. m = m,, + RpcMp, With np,
being the variable. Before passing the convex problem to the
solver, CVX replaces the expressions with the corresponding
mathematical operations.

3For improved efficiency SeDuMi is solving the dual problem. The problem
conversion from its standard form to a Lagrangian dual is done automatically
by the solver. See [21] for background on duality.



Table 1: Convex problem for a PHEV with a single battery.

Series powertrain

Parallel powertrain

variables  the number in parentheses is the vector length
PEGU(N)a SbC(N + ])9 i(N)s TEM(k)7 xCS(N)a nbc

(GOPZEGU(/C) + a1 Prgu(k) + Pigie)eon(k)

m = Myep + NpcMpe

Faon(k) = (7 + m) vaen(k) + 3pairA v, (k)
+mgc, cos a(k) + mg sin a(k)

Pgrid(k) = xcs(k)Pcsh‘(k)

Py(k) = V,ci(k) - REL

Piyei(k) = Py(k) + Pgrig(k) + en(k) Prgy (k)

expressions Py(k) =

Tice(N), Tem(N), s8¢(N + 1), i(N), X5 (N), np.

expressions Pg(k) = (CO(WICE(k))T?CE(k)

+er(wice () Tic(k) + cx(wice(k)))eon(k)
m = Myep + RpeNipe

Faem(k) = (52 + m) vaon(6) + 1pairA ravl,, (k)
+mgc, cos a(k) + mg sin a(k)

Pgrid(k) = xcs(k)Pcs"(k)

Py(k) = Voei(k) - RER

PEM,el(k) = Py(k) + Pgrid(k) — Paux

variables

*eup(Pric = Paus Ty(K) = renTem(®) + en(0Trcu)
.. crh — c —1 Pgrialk Cric
minimize Q’—f Sy Pr(k) + #ﬂfm o ;?]E)) + Choflpe : +eup(K)T fric(wice (k) _—
e crh < N-1 Coth N-1 rid
subject to  Prager(k) 2 bo(wem(kNT2, (k) minimize 5= 22 Pr(k) + 5576 2izo a0 T Chelbe
+b1(w£M(k))TEM + by(wem(k)) subject to  Pgpe(k) > bo(wEM(k))TfE M)
Ten®) 2 7 Fam®) +h1(wen )Ty + ba(wr (k)
soc(k + 1) = soc(k) — gi(k) T,(k) > {C(k)F,;em(k)
> max | ===, C()ny (Y (k)F dem(k)
Ten(k) € [Termin(@em (), Temma@em ()] . e ”'”
Pru(k) € [0, Prcuma] sde(k + 1) = sde(k) = 5ik)
FK) € [imins imax]Mpe Tem(k) € [Temmin(@em(K)), Termmax(@En (k)]
sﬁc(k) € [50Cmin, SOCmax|Mpe TICE(k) € [0, TICE,max(wlCE(k))]
56¢(0) = soc(N) i(k) € [imins imax]Pbe
npe > 0 s0c(k) € [SOCin, SOCax e
xc5(k) € [0, 1] s0c(0) = soc(N)
- npe >0
constraints apply tok =0,1,...,N -1 xes(k) € [0, 1]
Note. The expressions are not equality constraints, but are just 52-
used to render the problem more readable. 51 -
X9 50 -
9.3. Results from the convex optimization <49,
The optimal operating points for both the series and the par- 2 a8 series powertrain
. . . . . . . — — — parallel powertrain Pl
allel powertrain are given in Fig. 13. It can be noticed in Fig. a7l charging from electric grid V/
1‘3(a) Fhat the EGU', Wh?Ch has peen kept on for 2.3.4 % of 'the 0 500 1000 1500 2000 2500 2000
time, is operated Wlth high efficiency and malnly. in the region 60 ‘ ‘ —
where the approximated model fits well the original model. 40 Iy “ W “‘ L
Similarly, the ICE and EM in the parallel powertrain are also = 20 | [ | ]l AL o | il
operated with high efficiency which can be seen in Fig. 13(b) - 0 | | | Ul
and 13(c). The parallel powertrain is driven mostly in high gear _20 ‘ ‘ ‘ |
keeping the ICE on for 18.3 % of the time and in gear not lower 0 h ‘ ‘ J ‘ !
than 5, see Fig. 12 0 500 1000 1500 2000 2500 3000
’ ower t sl

The series powertrain consumes 19.271/100km diesel, which
is higher than the consumed 16.88 1/100km by the parallel pow-
ertrain. Moreover, due to the bigger battery, 489 cells (3.48 %
of the total vehicle mass) for the parallel and 394 cells (2.82 %
of the total vehicle mass) for the series powertrain, the parallel
powertrain can afford charging from the grid with in average
99.22 % of the maximum charging rate and with only 22.8 %
non-recuperated braking energy. The average charging rate for
the series powertrain is 98.4 % with 26.6 % non-recuperated
braking energy.

With both powertrains, the battery SOC is relatively far from
the limits, but the cell current is often at the limit of +50 A,
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Figure 11: Battery state of charge and cell current along the bus line.

see Fig. 11. Moreover, since for a certain demanded power
the cell current does not depend on the configuration of cells
(series/parallel), recall (9), it can be concluded that the battery
size is mainly influenced by its specific power. For this reason,
in the example in Section 10 the powertrains are equipped with
an additional battery with high specific power.
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Figure 12: Gear distribution: left plot, from all time instances; right plot, only
from times instances when the ICE is on.

9.4. Dynamic programming (DP)

DP uses Bellman’s principle of optimality [14] to solve the
problem via backwards recursion handling nonlinearities and
constraints in a straightforward way. Denoting by x(¢) and u(z)
the states and control inputs, respectively, the problem of bat-
tery sizing is solved by running DP at gridded values of the
battery size. For each grid value of np, the algorithm finds the
optimal power-split that minimizes the cost

Jpp(x(t), 1) = H}}I;{J;)P(x(tkﬂ), frs1) + 0(x(te), X(er1))
u(ty
Cel

cr ftm ftm Pgri d(t)
+ = Ps(t)dr + dt}
ordy 7 3.6 %100 J,  nes(0)

weT, ut)eU, x(y)elX
where 1, and f,; are consecutive time instances and
J5p(x(%), ) is a cost matrix holding the optimal cost-to-go
from state x(#) at time #; to the desired final state at time 7.
The function 6(x(#;), x(x+1)) is used by the parallel powertrain
to penalize gear shifts while braking.

The cost function (matrix) J},, is calculated over a grid of
the time, the state and the control signals, i.e. the sets 7, U
and X are discrete. The grid resolution determines the accuracy
of the solution. For state values not belonging to X, the cost is
obtained by linear interpolation in J7, .

The optimization is subject to the constraints described in
Section 4. From these, the constraint for ending at the desired
SOC state socy; is active only at the final time and it is formu-
lated as a soft constraint

Trp(X(t 1) tf1) = Weoe(s0€(t 1) — soc )

where deviations from the final state are penalized by a large
positive number wy,.. The desired final state is chosen equal to
the optimal final state obtained by the convex optimization.

To validate the solution of the convex optimization, DP is
evaluated in three configurations which depending on the di-
mension of the state vector are named DP1, DP2 and DP3. DP1
has one state, soc(f;), and is used to validate the approximations
in the convex modeling for both the series and the parallel pow-
ertrain. The integer variables in this case are found by the same
heuristics used by the convex optimization. DP2 and DP3 are
used to simultaneously validate the convexifying approxima-
tions and the heuristic decisions for the series and the parallel
powertrain, respectively. States in DP2 are soc(#;) and e, (f;),
while DP3 additionally has gear, ¥(#), as a third state.
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Figure 13: Optimal operating points from the convex optimization and DP. The
distribution of the points, excluding zero power, is projected parallel to the axes.

The number of control inputs is decreased by substituting
variables involved in equality constraints and by logical reason-
ing that the powertrain will try to recuperate as much braking
power as possible and will try to charge from the grid with as
high rate as possible. Control input in DP1 is Pggy(#;) at the se-
ries and Tycg(t;) at the parallel powertrain. DP2 and DP3 have
an additional binary control for deciding the ICE on/off state,
while DP3 also has a third control input for shifting gears.



9.5. DP vs. convex optimization

The results from the convex optimization and DP are com-
pared in Fig. 14. Although given in the same figure, these
results are obtained in a different manner to better serve the
validation purposes. The results from the convex optimization
are obtained by varying the power threshold used in the en-
gine on/off heuristics. For each threshold a unique on/off and
gear decision is obtained which when used in the convex op-
timization will give cost and battery size, plotted in the figure,
that are optimal for the used heuristics. The same on/off and
gear heuristics are then employed in DP1, but using the orig-
inal PHEV models without the convexifying approximations.
The results show that the error due to the approximations is very
small. Both algorithms indicate the same optimal battery size
and similar fuel consumption, thus increasing the confidence
that the approximations proposed in the convex modeling are
acceptable for the PHEV powertrain sizing problem.

The results from DP2 and DP3 are obtained by varying the
number of battery cells. Then, for each battery size DP finds the
optimal on/off and gear that minimize fuel consumption. The
results point to similar battery sizes to those obtained by convex
optimization, but apparently there is difference in optimal fuel
consumption. This is especially evident at the parallel power-
train where two heuristic choices had to be made and it shows
that the heuristics have significant influence on the result and
need to be improved.

It is important to note that the results of DP3 represent the
best possible gear and on/off which are not easily obtained in re-
ality. This is because the DP optimization exploits the fact that
the future driving is perfectly known, although in reality there
are driving uncertainness that heavily influence the decisions
for the integer variables [44]. The gear heuristics proposed in
this study decide gear at some time instance using information
given only at that time instance. Hence, if the vehicle starts to
brake at the next time instance it will need to stay at the pre-
viously decided gear. On the contrary, DP will decide the best
gear before braking such that the powertrain efficiency is opti-
mized during the upcoming braking period. As a consequence,
DP is exploiting the EM more efficiently, e.g. by operating the
EM at higher speed, see Fig. 13(c).

The optimal operating points obtained by DP are plotted in
Fig. 13, together with the optimal points from the convex opti-
mization. It can be noticed that due to the on/off heuristics the
convex optimization avoids ICE (EGU) operation at low power.
Fig. 13(a) also shows that the convex optimization avoids EGU
operation at very high power, due to the approximation that
lowered the EGU efficiency at the high power region. Neverthe-
less, the operating points from both the algorithms are mainly
scattered in the same region where the ICE and the EGU are
most efficient.

One execution of the convex algorithm required about 18.2 s
for the series and 21.4 s for the parallel powertrain*. The com-
putation time for one execution of DP1 was about 35 min for

4 All investigations are carried out on the same computer with 2.67 GHz dual
core CPU and 4 GB RAM.
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Figure 14: Cost vs. battery size obtained by convex optimization, and DP with
one, two and three states, denoted by DP1, DP2 and DP3, respectively. The star
indicates the optimal value.

both the powertrains. This long computation time is partly due
to the solver which is generic and not dedicated to this type of
problems. However, the main reason for the long computation
time is the high grid resolution, 1000 grid points for SOC and
500 for the continuous inputs, needed to obtain accurate results
(in some cases the cost changed very little with the number of
battery cells, see the dashed line in Fig. 14). DP2 required
even longer time, 1.7 h, while DP3 was solved using a cluster
of computers to keep computation time within reasonable lim-
its.

Both algorithms need to be run several times, where the con-
vex optimization iterates for finding the heuristic decisions and
DP iterates on grid over the battery size. By using 50 grid points
for the power threshold in the on/off heuristics, it was found that
the whole procedure of battery sizing can be solved by convex
optimization in 15.2 min for the series and 31 min for the paral-
lel powertrain.

10. Example 2: Double buffer system

This section presents an example where the convex model-
ing approach enables an efficient solution of a sizing problem
with two state variables and two sizing variables. The example
studies how battery prices influence the battery sizes in a dou-
ble buffer PHEV for fixed Level 2 and Level 3 infrastructure.
The charging stations are all assumed to provide the same mag-
nitude of power, which is 10kW for Level 2 and 100 kW for
Level 3 stations. The vehicle charging interval is 10s at each
station.

The vehicle setup for both the series and the parallel power-
train is as in Section 9, except that the powertrains are equipped
with an additional Lithium-ion battery consisting of high-power
10 Ah cells, see Table 2. The payment for both batteries is
equally divided in 2 years with 5 % yearly interest rate yield-
ing total battery cost computed as in (34). The available SOC
range for both batteries is 25-75 %.

We let the price for the 44 Ah cell take values of 502, 178
and 107 €/kWh, where the highest price is the estimated sales
price in year 2000, the second price is an optimistic cost, and
the third price is the goal of the United States Advanced Battery
Consortium for high-energy cells [42]. The price for the 10 Ah



cell is allowed to be 5, 20, or 30 times the price of the 44 Ah
cell.

10.1. Optimization results

The optimal number of battery cells is given in Fig. 15. The
plots are organized in two rows and three columns, where the
top row shows results for the series and the bottom row for the
parallel powertrain. The three columns show results for the
three different battery prices. From the results, the following
conclusions can be drawn.

When the price of the high-power cells is 5 times the price
of the high-energy cells, the high-power cells are dominant in
the energy buffer. At a price ratio of 20 the buffer is made of
similar number of the two types of cells, while at price ratio
of 30, the high-energy cells become dominant. Yet, even the
small number of high-power cells makes significant difference
to the optimal number of high-energy cells. For example, the
489 high-energy cells found in Section 9 for the single buffer
parallel powertrain will decrease to 357 by adding only 7 high-
power cells (see solid line and triangle at the bottom row and
middle column of Fig. 15). This number further decreases to
60 when there are 59 high-power cells in the buffer. In other
words, the optimal buffer mass decreases from 504 kg of the
single high-energy buffer to 102 kg of the double buffer with 60
high energy and 59 high-power cells.

The results also show that Level 3 infrastructure typically de-
mands larger battery than Level 2 infrastructure when the 44 Ah
cells cost not more than 178 €/kWh. This is because the to-
tal cost for battery and used electricity is lower than the cost
for used diesel, hence it is optimal to increase the battery size
with the charging power to make room for storing the relatively
cheap electric energy from the grid. The increase in number of
cells, however, is very sensitive to the battery price and type.
For example, the buffer size of the powertrain equipped with
mainly high-power cells (see circles) is not significantly influ-
enced by the charging power when the price is rather high, i.e.
5 x 502€/kWh. However, it is visibly sensitive to charging
power for lower battery prices. On the contrary, the buffer size
of a powertrain containing mainly high-energy cells is more
sensitive to charging power for high battery prices (compare
2nd and 3rd column, triangles).

11. Discussion

This section points out the strengths and weaknesses of the
proposed methodology and discusses possible enhancements of
the model descriptions.

11.1. Pros and cons of convex optimization and DP

The main reason of using convex optimization is the rela-
tively short computation time with regard to the problem di-
mensionality (number of states). Moreover, generic solvers and
parsers exist, [22, 23, 30, 31], which allow the problems to be
written in a very readable and easily extendable form. There is
also vast amount of literature on both convex optimization and
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Figure 15: Optimal number of battery cells: top row, series powertrain; bottom
row, parallel powertrain. The battery size at price ratio 10 Ah cell/44 Ah cell
€ {5,20, 30} is illustrated by {circle, square, triangle}, respectively.

on techniques to distribute the optimization over several com-
puters [45]. This would allow, e.g. optimization of charging
infrastructure in an entire city and simultaneous battery sizing
of several buses driven on several bus lines.

This study showed that the problem of battery sizing can be
considered as convex where for certain powertrain components
the convexifying approximations have small influence on the
optimal result. Using other powertrain components, such as
super-capacitors, or batteries with visible voltage-SOC depen-
dency, requires further studies as they cannot be used directly
by the proposed methodology. Further studies are also needed
to improve the heuristics for the integer variables since these
can influence the optimal result more visibly. Nevertheless, the
convex optimization may give significant contribution to prob-
lems which DP may have difficulties to solve, such as sizing the
double buffer system.

For one-dimensional problems DP may still be the most at-
tractive choice. Some of the reasons are that the problems can
be non-convex, nonlinear, mixed-integer; DP problems can be
easily parallelized on multiple processors; stochastic informa-
tion can be easily included, but at the expense of increasing the
size of dynamic states [46]. Furthermore, DP is widely used
for HEV powertrain assessment and sizing, with high amount
of academic literature and dedicated solvers to speed up com-
putation time, [47, 48]. Yet, even for one-dimensional prob-
lems, some possibilities that are straightforward in the convex
optimization are difficult to implement in DP, or will signifi-
cantly decrease its performance. For example, having free final
state in DP, but still maintaining charge sustain operation (as
used in Example 1 when solved by convex optimization), will
require running DP iteratively for each grided SOC as a final
state value. Moreover, the constraint on the Ah-throughput of
the battery (12) that is straightforward to include in the convex
problem, will require an additional state in DP.



11.2. Enhanced models

Although the proposed methodology was applied on fairly
detailed models, there are possibilities to enhance the vehicle
and infrastructure models without compromising the problem
convexity. For example, the constant losses of the charging sta-
tions in (1) can be replaced with any nonlinear losses that are
convex on charging power. Similarly, the losses of the power
electronics that were not considered in this study, can be mod-
eled as any convex function on i(r) by still preserving the prob-
lem convexity. Furthermore, the inertial effect of the EGU (in
terms of increase in demanded power), which was not consid-
ered due to the EGU model that does not give information of its
speed, can be included as long as it can be approximated as a
convex function on the EGU power.

The proposed methodology can also be used to simultane-
ously maximize payload (amount of mass the vehicle can carry)
as long as the cost can be expressed as a convex function on the
carried mass.

Other more subtle modeling details that require further stud-
ies are simultaneous optimization of the ICE, EM, EGU sizing
and the possibility to include thermal models of the powertrain
components.

12. Conclusion

This paper presented a method for simultaneous optimization
of power management control and battery sizing of series and
parallel PHEV powertrains. The optimization problem is ap-
proximated by a nonlinear convex problem, using heuristics for
the ICE on/off operation and gear selection.

This study also showed an example of battery sizing for a
powertrain with a single battery and complete code was pro-
vided as it can be implemented in CVX. The result indicated
that the convexifying approximations have small influence on
the optimal solution, but higher attention is required to improve
the on/off and gear heuristics.

An additional example solved the problem of battery sizing
for a powertrain with two different batteries. The result showed
that the sizing of the energy buffer is a delicate problem, where
the optimal buffer size is not only sensitive to battery price, but
also to charging power. This motivates further investigations
for simultaneous optimization of powertrain sizing and charg-
ing infrastructure design.

Appendix A. Gear selection

The gear selection procedure is carried out in six steps:

1) The demanded force by the powertrain with some initially
guessed number of battery cells, Fjq4(f), is computed.

2) The shaft speed and torque for gear ¥ at time instant ¢ are

16

Table 2: Battery cells.

44 Ah cell
Nominal voltage Voe =33V
Specific energy E, = 155 Wh/kg
Specific power 0.18kW/kg
Max. continuous current Imax = Imin = S0A
Mass mpe = 0.9kg

10 Ah cell
Nominal voltage Ve =33V
Specific energy E, = 55Wh/kg
Specific power 5kW/kg
Max. continuous discharge current | i,,,, = 1750 A
Max. charge current Imin = 300 A
Mass my. = 0.6kg

found as
o 1
s() = ) Vaem(1)
I.9) = {% ~ eupOT ric@1cE @), Frase(t) 2 0
T min(¥), Fhase(t) <0

Ts,min()_/) = max{c(?)ny(y)Fbase(t) - eup(t)Tfric(a)ICE()_/))s

remTEMmin(@EM(Y))}
where it is reasonably assumed that the powertrain attempts to
recuperate as much braking energy as possible. To simplify the
derivations that follow, the ICE friction torque during start up
is accounted within T(y) above. The EM speed is &gy (¥) =
rem@s(¥) and the ICE speed, when the ICE is on or at start up,
is Wce(¥) = ws(¥). Then, the time-dependent set of feasible
gears G, at time instant ¢, is

G =¥y €{0, 1, ... Yimax}
A OEM(Y) £ WEMmax
A =(eon(t) A O1ce(Y) < Wigle)
A =(eon(®) A Ty(¥) > TicEmax(@ice(F))
+ rEMT EMmax(@EM(Y)))
A =(=eon(t) A Ts(¥) > Tepma(@en()))}

(A.1)

where wjq, is the idling speed, and it is assumed that the ICE
and EM are sized for equal speed range, i.e. Wgpmax/TEM =

(’-)ICE,map
3) For each ¥ € G; a set of feasible ICE torques is obtained

Tice,; = {Tice() | eon(?)
ATice@) + remTen @) = To(9)
A Tice®) € [0, TicEmax(@ice(F))]
A Tem®) € [Termminl@er@)s TEMmax(@Em (7)1}

(A.2)



Table 3: Parameter values.

Parameter Value Parameter | Value

As 8 m? Ny=1:5 0.97

Cyq 0.7 Ny=6:11 0.98

Ccr 0.005 Ny=12 0.99

R, 047m || pgir 1.293 kg/m’
Igy (100kW) | 1.3kgm? || g 9.82 m/s?
Iey (180kW) [2.1kgm? || A 2s

Iice 2.1kgm?||N 1520

I, 10kgm? ||cs 1.34€/1

I, 1.8 kgm? || ¢y 0.1€/kWh
I1.12 1 kgm2 s 50000 km/year
Aty 2s SOCpin 0.25

P 16 kW SOCpax 0.75

which is gridded with 100 grid points to obtain the discrete set
Tick,- Efficiency is assigned to each grid value that gives the
following set

Nice, = Mice(@ice@). Tice(®)) | eon(t)
A Tice¥) € Tick,}-

4) The efficiencies for each of the N time instances and each
gear are arranged in a two-dimensional matrix M € RNX0nat1)
such that

n¥), vye€G: Acond
M(5.7) = g(y) ;ggl 1
B t

condy = (en(t) A (y) = max{Nick,})
V (meon(t) AT1(¥) = nem(@em @), Ts(F)/rEM))

where zero efficiency has been assigned to infeasible gears. At
a given time instance, feasible gear, and ICE off, the assigned
matrix efficiency is the EM efficiency, while for the ICE turned
on, the assigned matrix efficiency is the maximum efficiency of
the grided torque split values in (A.2).

5) Gear is selected that maximizes ICE efficiency when the
ICE is on, or otherwise it maximizes EM efficiency. During
braking, gear is not changed, unless the previously selected
feasible gear becomes infeasible at the current time instance.
Mathematically, this can be expressed as

2 7(y) = max{M(1,%)} A cond,
Y@, Frase® <OAY (D) €G;
condy = (Fpase(t) 2 0) V (Fpase(t) <OAY (1) € G1)

y(@) =

where y~(¢) is the gear selected at the previous time instance.
To prevent frequent gear shifts, instead of M, a filtered matrix
M is used, obtained by filtering the efficiency matrix with a
two-dimensional moving average filter.

6) After gear has been selected at each time instance along
the bus line, the convex problem is solved and the optimal en-
ergy buffer size is obtained. The powertrain is updated with the
optimal buffer size, the demanded force Fj,(?) is computed
and the procedure is repeated from 2) until the improvement in
cost is smaller than some small positive number e.

Experiments showed that the gear selection procedure with
€ = 1 x 1073 usually ends in 2-3 iterations.

Note. The set of feasible gears G(¢) in (A.1) must not be empty
at any time instance, since otherwise the problem is infeasible.
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