
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Virtual Texturing with WebGL
Master’s Thesis in Computer Science: Algorithms, Logic and
Languages

SVEN ANDERSSON
JHONNY GÖRANSSON

Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden, January 2012

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of
Gothenburg store the Work electronically and make it accessible on the Internet.

Virtual Texturing with WebGL
SVEN ANDERSSON
JHONNY GÖRANSSON

©SVEN ANDERSSON, 2012.
©JHONNY GÖRANSSON, 2012.

Examiner: Ulf Assarsson

Department of Computer Science & Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover:
A 3D scene rendered using Virtual Texturing in WebGL, with visible page borders.

Department of Computer Science and Engineering
Göteborg, Sweden January 2012

Abstract

Until recently, achieveing hardware accelerated 3D content on web sites have only been
accessible through third party plugins. The new HTML5 standard eliminates this re-
striction by adding native 3D rendering through the WebGL API. This technology brings
established desktop applications online, bridging the gap between software platforms.

This thesis investigates how to implement Virtual Texturing for web browsers using
WebGL and how to maintain high performance. Virtual Texturing is a recent approach
to texture mapping that enables support for theoretically infinite image dimensions. In
this thesis, Virtual Texturing is implemented with the help of several elements new to the
HTML5 specification, such as Web Workers and Web Sockets. The thesis provides an
introduction to the required browser features, an overview of relevant WebGL features,
as well as a performance analysis. Results show that Virtual Texturing in WebGL is a
viable approach for websites with high resource demands.

Acknowledgements

Thanks to our families for their support throughout the development of this thesis.

We would like to acknowledge Meindbender for their support, providing us with
locale and benchmarking workstations during the development of the prototype and this
thesis. We would also like to thank our supervisor at Chalmers, Ulf Assarsson.

Further appreciation is extended towards the author and contributors of the Three.js
3D WebGL framework, for their support on the work performed with their engine.
Three.js was used as the base for the prototype created for this thesis.

Sven Andersson & Jhonny Göransson, Göteborg, January 30 - 2012

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem statement . 3

2 Previous Work 4
2.1 Mipmaps . 4
2.2 Clipmaps . 5
2.3 Texture Streaming . 5
2.4 Texture Atlases . 6
2.5 Virtual Texturing . 7

2.5.1 MegaTextures . 7
2.5.2 Sparse Virtual Textures . 8

2.6 Sparse Voxel Octrees . 8

3 Virtual Texturing 9
3.1 Overview . 9
3.2 Implementation Details . 11
3.3 Pre-Processing . 12
3.4 Page Determination . 12

3.4.1 Render Needed Pages . 14
3.4.2 Read Out Pixel Data . 15
3.4.3 Process Pixel Data . 16
3.4.4 Requests Pages . 18

3.5 Page Streaming . 18
3.5.1 Simple Page Streaming . 18
3.5.2 Streaming using Web Workers . 19
3.5.3 Streaming using Web Sockets . 19
3.5.4 Base64 Encoded Images . 20
3.5.5 Manual PNG and JPEG Decompression 20

3.6 Page Cache . 21

i

CONTENTS

3.7 Indirection Table . 21
3.8 Blending Texture . 22
3.9 Filtering . 23

3.9.1 Bilinear . 23
3.9.2 Trilinear . 23
3.9.3 Filtering in the Virtual Texture . 24

3.10 Texture compression . 24
3.11 Texture sizes . 25

3.11.1 Virtual Texture size . 25
3.11.2 Indirect texture size . 26
3.11.3 Page Cache size . 26
3.11.4 Page size . 26

4 Results 28
4.1 Streaming Methods . 31
4.2 Page and Cache Sizes . 35
4.3 Page Determination . 36
4.4 Miscellaneous Optimizations . 37

5 Discussion 40
5.1 Browsers . 40
5.2 Streaming Methods . 41
5.3 Image Formats and Page Sizes . 41

6 Future Work 43
6.1 WebCL . 43
6.2 Texture Compression & Sending Raw Data 43
6.3 Object Multi-Texturing . 44

References 45

ii

1

Introduction

1.1 Background and Motivation

With the advent of the new HTML 5 standard, web developers are now equipped with
powerful tools to create interactive multimedia content directly from a universal API
without external plugins or third-party tools. Several new elements have been intro-
duced with the new version, such as the video, audio and canvas elements, which enables
support for embedded media components in HTML. While the audio and video com-
ponents are the most interesting for common media use, the canvas element opens up
new possibilities for a richer web experience by giving access to new rendering contexts.
The HTML5 specification* identifies these as 2D and webgl respectively. WebGL is a
web standard for a low-level 3D graphics based on OpenGL ES that extends the current
javascript API with direct GPU hardware interaction, exposing the OpenGL drivers
through the HTML5 Canvas object.

At the moment, high-end consumer graphics hardware is equipped with limited
amount of memory to store geometry, textures, shader programs and other assets needed
in a scene. Virtual Texturing (along with its geometrical relative, Sparse Voxel Octree),
aim to circumvent these restrictions which enables artists to use extremely large texture
maps. The underlying idea of virtual texturing stems from the concept of virtual mem-
ory [SGG11], a memory management technique implemented in operating systems to
deal with limited physical memory. Virtual memory expands the address space beyond
the range of addresses within the physical memory that a given process can utilize, thus
enabling a program to reference more memory than what is available. Virtual memory
is divided into blocks of data called pages. When addressing virtually mapped mem-

*http://www.w3.org/TR/html5/

1

http://www.w3.org/TR/html5/

1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

ory, the application is unaware of the location of the pages and can reference these as
a continuous block of data regardless. Similarly, a page in a virtually textured system
contains a segment of texture data that can reside on either main memory or a stor-
age device locally, or distributed over a network. While Virtual Texturing and similar
texture streaming techniques are common in desktop applications with heavy resource
demands, it is also a good candidate for web applications for several reasons:

� Reduced load times

Before an image can be used by the GPU, it must be downloaded from a web
server to main memory and then uploaded from main memory to the GPU. This
is a lot of data transfer for large images, which could cause the user to wait for a
long period of time before anything is shown on screen. With Virtual Texturing, it
is possible to show the image with lower quality while a better version is currently
downloading.

� Avoiding file size restrictions

Web browsers normally restrict resource file sizes. A large image compressed in
a lossless format might not be eligible to load by certain browsers. As Virtual
Texturing segments images into smaller blocks, large images can be streamed part
by part over time.

� Less intermediate storage needed

When loading large amounts of images on devices with limited main memory, the
memory footprint quickly rises, which can cause a browser to become unresponsive
or even crash. Virtual pages are dynamically loaded and unloaded in run-time,
and only the active set of pages exist in memory. While Virtual Texturing requires
more storage space server-side, the memory usage will be spread out over time
instead of when the page is loaded.

� Support for extremely large textures

While a browser can typically rasterize arbitrarily sized images, WebGL can only
use textures with dimensions supported by the GPU profile. Virtual Texturing
enables textures of theoretically unlimited size.

� Less wasted pixels

Depending on texture mapping layout, a texture map for an object might contain
a lot of unused areas. When batching textures together in a single unified texture
map, this area can be covered by other objects, effectively minimizing wasted space.

2

1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

� Fewer state changes

Using a Virtual Texture for most, or even all, geometry in the scene will dramat-
ically reduce state changes in the rendering loop, since the Virtual Texture only
needs to be bound once per frame.

There exist several texture techniques that deal with these restrictions in various
ways. Tiling is a texture mapping technique in which the texture is repeated continuously
across the surface of an object. This technique has low memory costs, and is specifically
useful when rendering large, open surfaces with seemingly repetitive patterns. However,
in natural environments, such scenery contain almost infinite amounts of unique details,
shaped by centuries of varying weather conditions and other factors contributing to
decay. Texture Splatting [Blo00], a common technique for adding variety and details,
diminishes the repetitiveness of large textured areas by blending between two or more
images. Virtual Texturing removes these concerns altogheter, as an artist can create a
uniquely detailed surface with an extremely large texture map.

Although virtual texturing requires extra overhead in terms of stream maintenance,
server-side storage and real-time texture decompression, implementations have shown
that the benefits of visual quality as well as fewer state changes overshadow the processing
costs. Furthermore, Virtual Texturing is well suited for existing rendering pipelines and
lighting solutions in a game engine or a 3D framework.

1.2 Problem statement

The goal of this research is to successfully implement Virtual Texturing in WebGL, and
to study the restrictions of developing and displaying 3D content, with extreme texture
sizes, in a web environment. Furthermore, this thesis will conduct a market review of
the capabilities of WebGL, and the viability of Virtual Texturing usage in modern web
browsers.

The purpose of this thesis is to provide a comprehensive overview of the ideas behind
Virtual Texturing and to evaluate this technique in a web environment. Virtual Textur-
ing is a relatively new approach to texture mapping, and a rather unexplored subject in
terms of web development.

3

2

Previous Work

2.1 Mipmaps

Williams et al. [Wil83] presented a new principle for texture filtering to reduce the
number of texture samples needed to correctly map textured pixels covering multiple
texels. A mipmapped texture consist of a pyramidic layout of textures with descending
sizes of the original image down to 1 by 1 pixels, Figure 2.1.

Figure 2.1: The pyramidic structure of a mipmap chain.

4

2.2. CLIPMAPS CHAPTER 2. PREVIOUS WORK

2.2 Clipmaps

Clipmaps [TMJ98] extends on the idea of mipmaps, making it possible to map a larger
than otherwise possible texture into memory. This is accomplished by only loading a
subset of the higher detailed mipmap levels, called the clipping region. The clipping
region is usually positioned in correlation to where the camera is located in the scene,
and adjusted according to camera movement, resulting in new parts of the clipmap being
streamed in. With this appoarch, geometry close to the camera will strive to have the
highest resolution texture compared to geometry further away. This technique works
well for landscapes, where the geometry is mapped to a large surface that cannot fit in
main memory. The downside of clipmaps is that high resolution samples can only be
gathered locally inside the clipmap region.

Figure 2.2: Clipmap with an example clipping region marked in red. All the mip map
levels below 1/2 in this example exist fully in memory.

2.3 Texture Streaming

To avoid excessive loading times when increasing the amount of textures and texture
sizes in a scene, as well as the GPU memory restriction, a technique called Texture
Streaming [Wav06] [Has07] is often used. The basic concept of Texture Streaming is to
initially only load the lowest mipmap levels of a texture, and stream the higher levels on
demand depending on the camera position. To reduce the storage amount needed and
the bandwidth requirements of the requested texture, the images are usually compressed
and must consequentially be decompressed in real-time, causing varying performance
depending on image format. Van Waveren evaluates and describes several different real-

5

2.4. TEXTURE ATLASES CHAPTER 2. PREVIOUS WORK

time decompression algorithms and formats for rendering textures from large texture
databases [Wav06].

2.4 Texture Atlases

A common problem with game development and real-time rendering is reducing render
state changes to a minimum [NVI04]. To avoid excessive amounts of state changes,
render calls are normally batched together into groups that share the same render state.
However, one of the biggest problems with state batching is that several texture changes
must still occur to render objects with different textures. One efficient way to decrease
the amount of texture changes is to copy textures into one large, unified texture, called
a Texture Atlas. As several models share the same texture space in an atlas, texture
coordinates must be modified so that a texture sampler within a shader program can
address the correct sub-rectangle within the texture atlas. While this process can be
done manually in modeling software, it is generally easier to incorporate a tool or script
that performs this task in the content creation pipeline as models and assets can be
produced by different people in different files.

One inherit problem with a texture packing scheme is that bilinear sampling at the
border between two subtextures or mipmap levels causes bleeding. This problem exists
with Virtual Texturing as well, but can effectively be avoided by adding a border around
the texture pages (page borders are discussed further in 3.9.1) without compromising
texture filtering. Another problem inherit to the texture atlas approach, is when a
model contains texture coordinates beyond [0,1]. This is usually the case with edge
sampling techniques such as clamp-to-edge, repeat and mirror when sampling outside
the texture. The different texture modes can still be achieved, but require extra effort in
terms of specialized shader programs that produce the same result as a native API that
handles sampling outside edges. With this added overhead, the performance might vary
irregularly, causing the gain of less state changes to be mitigated by the processing cost
of this approach. Another possible workaround to this, NVIDIA mentions, would be to
replicate a wrapped texture across the texture atlas in order to simulate wrapping. This
technique is more wasteful with space, and restricted by texture size and the amount of
wrapping. Virtual Texturing on the other hand, does not suffer from this restriction as
one of the major benefits from this technique is that a surface can be uniquely textured
down to every single texel that covers it. This means that wrapping is not explicitly
supported in a Virtual Texturing pipeline, on the other hand it is not necessary.

6

2.5. VIRTUAL TEXTURING CHAPTER 2. PREVIOUS WORK

Figure 2.3: A cube with three textures, one for each side. To render the cube, three state
changes are needed.

Figure 2.4: The cube in Figure 2.3 rendered using a single texture atlas. To render the
cube, only one state change is needed since all sides of the cube are mapped with one single
texture. The black area in the texture altas indicates wasted texture space. It is generally
good practice to minimize wasted space by carefully considering atlas generation algorithms.

2.5 Virtual Texturing

Virtual Texturing combines ideas of mipmapping, clipmapping, texture streaming and
texture atlases into a single complex texturing system that implements the advantage
of each technique. The Virtual Texturing approach used in this thesis is mostly based
on the work done by Sean Berret on Sparse Virtual Textures [Bar08], and Albert Julian
Mayer in Virtual Texturing [May10]. This paper presents the structure of a Virtual
Texturing system, as well as the specific details regarding a WebGL implementation.

2.5.1 MegaTextures

MegaTextures is an implementation of clipmapping, developed by John Carmack of id
Software for the Splash Damage title Enemy Territory: Quake Wars. As with clipmap-
ping, the purpose of MegaTextures was primarily focused on rendering texture mapped

7

2.6. SPARSE VOXEL OCTREES CHAPTER 2. PREVIOUS WORK

outdoor terrain geometry. No official documents exist that describe the in-depth details
regarding the MegaTexture implementation, but the gathered pieces of public informa-
tion is the basis for the Sparse Virtual Texturing developed by Sean Berret [Bar08]. The
MegaTexture pipeline was later redesigned and generalized to handle arbitrary geometry
as well as terrain, together with the id tech 5 engine for the ID Software titles Rage and
the upcoming Doom 4.

2.5.2 Sparse Virtual Textures

Sparse Virtual Textures, developed by Sean Berret [Bar08], is based primarily on publicly
available information gathered from online discussion boards and email correspondence
between Sean Berret and John Carmack on the subject of the MegaTexture implemen-
tation. Sparse Virtual Texturing is inspired by the concept of Virtual Memory, an Op-
erating System technique that enables a process to address memory as if it was present
in main memory at all times. Similarly, Sparse Virtual Textures enables 3D applications
to address every texture, or rather one large texture, as if it had access to all textures
stored in GPU memory at all times.

2.6 Sparse Voxel Octrees

Sparse Voxel Octrees [LK10] represents geometry as voxels, stored in a hierarchical
octree of axis-aligned cubes that encapsulates a volumetric portion of the model. Voxel
technology is traditionally used in the field of medicine together with various 3D scanners,
such as MRI and x-rays, that generate spatial information from real objects. In order to
achieve high quality rendering, an extremely large data set is required which is similar
to Virtual Texturing in the sense that the data can thus be streamed in to main memory
on a need basis (determined by Level-of-Detail distance).

Rendering a voxel model is performed by a ray tracing algorithm that performs
intersection tests against the nodes of the tree. Laine et al. performed tests of using
traditional rasterizing rendering, but concluded that it not only performed worse than
ray casting, but also led to inexact solutions when voxels that did not map to one pixel
or smaller were used. While Voxel Octrees are best suited for static data, it is still
possible to use a mix of raster graphics and voxel traversal depending on application.
Voxel technology could potentially be the next evolutionary step in rendering technology,
and is an interesting candidate for next generation rendering engines such as ID Tech 6
[Shr08] of ID software.

8

3

Virtual Texturing

3.1 Overview

The Virtual Texturing pipeline is divided into several individual parts that performs a
specific task. Each part can be executed out-of-order and infrequently over time, which
yields a more stable framerate with comparable visual quality. The process starts with
the Page Determination stage, where the virtually textured geometry is rendered to a
Frame Buffer Object (FBO) and analyzed by a shader program that outputs the active
set of pages used within that frame. Since the FBO is only accessible on the GPU, it
must be copied to main memory so that the needed pages can be signaled for streaming
in later stages of the pipeline.

The page data, i.e. the texture segments, are copied from an external location to a
physical texture located in the GPU. This texture is called the page cache, and is used by
the virtually textured geometry in the final render pass. Because incident segments in the
page cache are not necessarily neighbors in the virtual texture, unwanted bleeding can
occur across the borders when utilizing hardware filtering. These artifacts are removed

This Thesis Mayer [May10] Mittring [MG08]

Virtual Texture Physical Texture Tile Cache

Indirect Texture Pagetable Texture Indirect Texture

Page Determination Tile Determination Computing Local LOD

Table 3.1: Different terminology for each Virtual Texturing part in different papers.

9

3.1. OVERVIEW CHAPTER 3. VIRTUAL TEXTURING

by applying a one pixel border to the pages. Borders are explained in more detailed in
the filtering section 3.9.1.

After the set of needed pages has been determined, the page data must be compared
to the contents of the page cache so that missing pages can be identified. In order to
cover as many pixels as possible with new data while still minimizing page requests, this
stage makes sure that the most referenced page is prioritized when the streaming begins.

The page streaming is performed asynchronously behind the scenes, which enables
the system to maintain full interactivity with the user. When a page is loaded into main
memory, the new texture data must be uploaded to the page cache texture. Depending
on the current streaming method, the compressed image data is decoded in real-time
either by the browser, or by third-party libraries in JavaScript. Three different streaming
methods are covered in this thesis; simple streaming (3.5.1), streaming with web workers
(3.5.2) and streaming with web sockets (3.5.3). If the cache is full, a page-replacement
algorithm is executed which finds a suitable candidate to swap with the new page. When
this process is complete, the page cache and page cache texture are updated accordingly.

An overview of the pages and the layout of the Virtual Texture on the web server is
displayed in Figure 3.1. An overview of the different parts of the technique client side,
is displayed in Figure 3.2.

Figure 3.1: Virtual Texture overview. Each image block represents one page in memory.

10

3.2. IMPLEMENTATION DETAILS CHAPTER 3. VIRTUAL TEXTURING

Figure 3.2: Browser data and structure overview.

3.2 Implementation Details

The prototype was developed using Three.js [Cab10], an open-source 3D framework for
WebGL, which supports scene loading (represented in the JSON* file format), manage-
ment as well as common vector mathematics. The scene used in performance testing,
”The Bedroom”, was originally modeled by David Vacek and was part of a lighting chal-
lenge on Cgsociety in late 2009. The scene was exported in Blender 3D to JSON by using
a slightly altered exporting script provided by the Three.js library. A virtual texture
generation tool, VTGen, was developed in Python with a mix of common libraries for
image manipulation, data encoding and OS functionality.

*JavaScript Object Notation

11

3.3. PRE-PROCESSING CHAPTER 3. VIRTUAL TEXTURING

3.3 Pre-Processing

After the textured scene has been properly exported to a JSON file, it must be passed
through an offline virtual texture generator that constructs the virtual texture pages from
the original texture maps. The virtual texture generator iterates over all the unique tex-
tures used in the scene and packs these into a virtual space defined by the specified
virtual texture dimensions. The texture packing is implemented with a greedy texture
atlas generation algorithm that splits the virtual texture space recursively into a binary
tree. Every leaf in the tree ultimately contains one unique texture. When the algorithm
has finished executing, the textures in the leaves have been rendered with trilinear fil-
tering onto page-sized squares and saved to compressed image files by using the Python
Image Library*. Every mipmap level in the mipmap chain is generated in this process
as well, all the way down to the coarsest mip-map (covering the entire Virtual Texture)
contained in one single page.

Currently, VTGen assumes that geometry is UV mapped before processing. While
this approach is simple and gives perfectly good results, a mesh parameterization [HLS07]
[Fen04] scheme that automatically unwraps the geometry and renders the texture maps
to the Virtual Texture accordingly, could be a possible future addition. This technique
would give more tightly packed virtual textures than pre-mapped UV, since empty tex-
ture space around isolated objects could be shared by several objects. This approach is
explained in [MG08].

3.4 Page Determination

As all pages from the virtual texture cannot fit in the page cache at the same time, it
has to be determined which pages needs to be in the cache at a given time, and which of
these that get priority in the page request queue. This process can be divided into four
separate steps:

� Render Needed Pages

� Read Out Pixel Data

� Process Pixel Data

� Request Pages

There is an expected latency from demand to delivery of page requests, which stems
from the combined latency in all steps of the page determination pass as well as the
latency added by the different streaming methods. This combined latency will result
in pages taking several frames to appear in the page cache from the initial request. It

*http://www.pythonware.com/products/pil/

12

3.4. PAGE DETERMINATION CHAPTER 3. VIRTUAL TEXTURING

Figure 3.3: Workflow of the rendering loop. An important thing to note is that not every
step has to be executed each and every frame. For example, the steps can be divided such
that only one step is executed each frame. This will however increase the time it takes from
determining that a page needs to be streamed in, to where the page is finally streamed and
uploaded to the page cache. Careful consideration has to be taken when balancing this, so
that the CPU/GPU usage is maximized while still having a stable framerate.

would be beneficial to know the exact pages that are needed in advance, so that they
could be requested and streamed before they are visible in the viewport.

An exact page prediction is generally hard to conduct, but can be approximated in
scenes where the camera path is either known in advance or restricted to certain areas of

13

3.4. PAGE DETERMINATION CHAPTER 3. VIRTUAL TEXTURING

the scene at a given point in time. A realistic scenario of this behavior could be a racing
game or an indoor first-person-shooter, where the location of the player is restricted
by linear gameplay. In scenes with fast and virtually unbounded movement, designing
a preloading scheme is less intuitive due to non predictive user navigation. However,
[Neu10] suggests several prediction schemes based on heuristics, that mitigates the effects
of this latency in various scenarios. This thesis explores an exact determination algorithm
with only a slight modifcation to the page determination rendering by increasing the field
of vision (FOV) of the scene camera. This means that since areas around the current
camera position are visible in the viewport, more pages can be considered for streaming
in this pass. This idea is based on the notion that pages in close proximity of the current
camera are likely to be visible in the frame in subsequent frames.

3.4.1 Render Needed Pages

The first step of the page determination process is to find out which pages are visible in
the current frame. This is accomplished by rendering the scene to an offscreen buffer with
a fragment shader that outputs the information that is needed to calculate visible pages
in later stages. The rendered per-pixel data consists of an estimation of the mipmap
level (similar to how OpenGL performs this task internally) and the texture coordinates
of the Virtual Texture for the given pixel.

The size of the render buffer is an important aspect to consider. The preferred
solution in this case, would be to use the same size as the view buffer, which would
result in a ratio of pixel count to page need count of 1:1. Mayer shows that the minimal
buffer size for correct page determination is a 1/8 of the view buffer [May10].

One issue with WebGL development in its current state, is that established OpenGL
extensions are not implemented in all WebGL enabled browsers. One such extension is
the GL_OES_standard_derivatives, which enables the derivative functions dFdx and
dFdy in GLSL shaders. Mayer also supplies shader code that utilize this extension for
the page determination rendering pass, which is also the approach used in this paper
[May10]. This extension is currently only available in Google Chrome and the alpha
release of Mozilla Firefox (See Table 4.2).

However, by using hardware texture filtering, local derivatives can still be achieved in
browsers without extension support. Pharr describes how encoding increasing mipmap
levels into a small lookup texture can be used to perform these calculations when ren-
dering [Pha04]. Every pixel in each mipmap level of the lookup texture is assigned a
number representing its actual level in the mipmap chain. When sampling this texture
with hardware filtering, the interpolated value between two mipmaps is retrieved. This
floating point value is discretisized into the correct mipmap level by using the GLSL
function floor. This method was tested in this implementation, and can be used as a
fallback method for browsers that lack this support in future versions.

14

3.4. PAGE DETERMINATION CHAPTER 3. VIRTUAL TEXTURING

Listing 3.1 shows the modified fragment shader code used in this implementation.

Listing 3.1: Page Determination pass fragment shader

#extension GL_OES_standard_derivatives : enable

/*

* Page Determination fragment shader , based on code by

* Albert Julian Mayer presented in Virtual Texturing (2011) ,

* which in turn is based upon Barretts SVT demo shader.

*/

const float readback_reduction_shift = 2.0;

const float vt_dimension_pages = 128.0;

const float vt_dimension = 32768.0;

const float mip_bias = 0.0;

varying vec2 vUv;

// analytically calculates the mipmap level similar to what OpenGL

does

float mipmapLevel(vec2 uv, float textureSize)

{

vec2 dx = dFdx(uv * textureSize);

vec2 dy = dFdy(uv * textureSize);

float d = max(dot(dx, dx), dot(dy, dy));

return 0.5 * log2(d) // explanation: 0.5* log(x) = log(sqrt(x))

+ mip_bias - readback_reduction_shift;

}

void main()

{

gl_FragColor.gb = floor(vUv.xy * 255.0) / 255.0;

float miplvl = clamp (8.0 - mipmapLevel(vUv.xy, vt_dimension), 0.0,

8.0);

gl_FragColor.r = miplvl / 255.0;

gl_FragColor.a = 1.0;

}

3.4.2 Read Out Pixel Data

The next step is to transfer the rendered pixels from the GPU to main memory. In the
standard OpenGL API, there are two ways of doing this: glReadPixels and glGet-

TexImage. Mayer performed benchmarking of both methods, which showed that using
glReadPixels on a FBO is the fastest method [May10]. No such comparison can cur-
rently be conducted with the WebGL API, as readPixels is the only function supported
of these two according to the specification [Gro11b].

15

3.4. PAGE DETERMINATION CHAPTER 3. VIRTUAL TEXTURING

Since the rest of the application is halted until all of the data has been copied to
main memory, the pixel read out step is one of the most critical performance bottlenecks
in the page determination pass. It is preferred to do memory download asynchronously,
so that the CPU can continue executing operations while the download occurs. This can
be accomplished by using Pixel Buffer Objects (PBO), which is an extension to OpenGL
making it possible for both asynchronous upload and download to and from the GPU.
However, as PBOs are not supported by OpenGL ES / WebGL, other optimizations had
to be evaluated.

To reduce the time it takes to read out the image data, a minimum amount of read
out data is preferred. In the current implementation, only three components are needed
to reference a page in the shader, which fits perfectly for image formats with three color
channels such as RGB. However, the current specification of WebGL only allows a texture
read back with four channels (the RGBA format). This indicates a data waste of 25%,
which could lead to a measurable increase in read out latency. Hopefully this will be
addressed in future versions of the WebGL specification.

3.4.3 Process Pixel Data

When the pixel data has successfully been read back to main memory, the information
in each pixel need to be converted into actual page indexes. Listing 3.2 displays the
essential steps of the pixel to list conversion used in this prototype.

Listing 3.2: PD pass list conversion

// Loop all pixels in the page determination texture

var needed_pages = {};

for (var i = 0; i < pixels.length; i+=4) {

var indx_mip = pixels[i]; // R = Mipmap level

var indx_x = pixels[i+1] / 256.0; // G = s texture coordinate

var indx_y = pixels[i+2] / 256.0; // B = t texture coordinate

// A = unused

indx_x = Math.floor(indx_x * __mipSizes[indx_mip]);

indx_y = Math.floor(indx_y * __mipSizes[indx_mip]);

[...]

// calculate VT page index from pixel data

var index = __mipOffsets[indx_mip] + indx_y * __mipSizes[indx_mip] +

indx_x;

if (needed_pages[index] != undefined)

{

// increase hit count for the page

needed_pages[index].hit += 1;

}

else

16

3.4. PAGE DETERMINATION CHAPTER 3. VIRTUAL TEXTURING

{

// first time we needed this page ,

// set hit count to 1

needed_pages[index] = {};

needed_pages[index].hit = 1;

needed_pages[index]. miplvl = indx_mip;

needed_pages[index].x = indx_x;

needed_pages[index].y = indx_y;

}

[...]

}

/*

* needed_pages now contains a list of pages needed.

*

* We still need to check which of these already exist

* in the page cache.

*/

Furthermore, it is also required to identify if the needed pages already exist in the
page cache in order to avoid redundant page requests. This would be possible to do in
the same loop that converts the pixel information to a list, or in a separate loop operating
just on the resulting list. Performing this check for every pixel in the conversion loop
would result in pages of the same index to be checked multiple times each frame. Instead,
it would be better to only do this check on the resulting list, since this list is much smaller
in size than the copy of pixel data gathered from the read out step.

This method is a straight forward solution, and depending on the amount of pixels
that needs to be converted, might vary in processing time. Mayer presents an alternative
way of processing the pixel data into a needed pages list by using the OpenCL* framework
[May10]. This approach would decrease the amount of data needed to be read back to
the CPU, and would help decrease the transfer time.

While a web-based equivalent of the OpenCL framework, WebCL, is currently un-
der development by the Khronos Group, Nokia� and Samsung� has already released
prototype extensions for the Firefox browser and the WebKit layout engine. Even if
it is possible to utilize these libraries to implement a WebCL version of the OpenCL
approach, the need for third-party plugins is undesirable in the current state.

*Open Computing Language
�http://webcl.nokiaresearch.com/
�http://code.google.com/p/webcl/

17

http://webcl.nokiaresearch.com/
http://code.google.com/p/webcl/

3.5. PAGE STREAMING CHAPTER 3. VIRTUAL TEXTURING

3.4.4 Requests Pages

When a list of needed pages has been created, a loop iterates through the list and requests
the page with the highest reference count. The page is requested via one of the three
streaming methods presented below (see 3.5). The selected page is removed from the
list of needed pages so that it is ignored the next time a stream candidate is selected.

Depending on the requirement of request-to-delivery and need for smoother updates
of visual quality, more sophisticated page selections can be used. One addition featured
in this paper, is the option to force loading of the mipmap parents of a page before the
actually needed page was loaded. This resulted in a smoother quality stepping, but did
not fully eliminate ”pop in” artifacts*.

3.5 Page Streaming

When a new page candidate has been selected for a request, the current page streaming
method processes these requests thereafter. In a desktop setting, these requests would
be handled by low level calls that load the pages from a local medium as hard drives,
optical disks or even main memory. In WebGL, the image data of the virtual texture
is located on a remote web server and will have to be streamed over a computer net-
work. Asynchronous loading is a crucial feature to avoid major stalls in the render loop.
Ideally, the streaming would be performed in a separate thread and processor, utilizing
multiprocessing functionality. While concurrency is easily achievable in modern operat-
ing system APIs, developing for a web platform is fairly restricted in this area but still
possible with the help of HTML5 Web Workers (see 3.5.2).

3.5.1 Simple Page Streaming

JavaScript browser APIs provides asynchronous remote file loading capabilities through
the Image object that loads the images over a network connection transparently. Im-
age objects have the advantage that they can be passed directly to WebGL for easy
texture creation, utilizing fast internal image decompression in the web browser. The
main disadvantage of standard image loading via JavaScript is that it is not executed
concurrently, which causes stalls in the render loop, leading to lower framerate.

*A ”pop in” is a visual phenomena that the user experience when a geometry/texture noticeably
changes level of detail.

18

3.5. PAGE STREAMING CHAPTER 3. VIRTUAL TEXTURING

3.5.2 Streaming using Web Workers

Web Workers* is a feature in HTML5, that allows JavaScript code to be executed con-
currently in the browser. However, Web Workers does not have direct access to the
DOM� Tree, and supports only a limited amount of functionality compared to the main
execution script. Communication between the main thread and web workers is per-
formed by event-driven message passing. Web Workers does not share memory with
other threads, which means that messages must be serialized at both sides of the com-
munication channel. Depending on browser, the data in a message can contain strings,
structured data such as JSON dictionaries or binary data arrays.

Loading an image with a Web Worker requires the raw image data to be passed back
to the main thread once loading is done, since Web Workers cannot create Image objects
by themselves. However, to create Image objects from raw image data, the data has
to be encoded with base64 using the Data URI Scheme�, see 3.5.4. The object would
have to be allocated in the main thread explicitly, using the data streamed via the Web
Worker. The image data, if decompressed manually in JavaScript, can also be loaded
directly into WebGL. This eliminate the need to create Image objects in the main thread
when the data has arrived.

The latter was implemented in this thesis by using third party libraries to decompress
JPEG and PNG encoded files inside the Web Worker script, before passing the data back
to the main thread. The option involving base64 encoded files was also evaluated. A
performance comparison can be examined in Figure 4.11 of Section 4.4.

3.5.3 Streaming using Web Sockets

The Web Socket§ interface enables data transfer by opening a single bi-directional com-
munication channel between client and server without the use of a standard HTTP
connection. This means that a server can feed any data through this channel, bypassing
the HTTP overhead with each page request. The Web Socket protocol, currently at
draft 17 [Gro11a], is under constant development and is not uniformly supported by all
web browsers¶.

The socket is initiated with an authentication handshake, that validates the safety
and correctness of the proposed connection. Initially, the client sends a data header that
contains information about the host, protocol version and a security key. On the server
side, the data fields in the header is parsed in several steps to ensure the validity of the

*http://dev.w3.org/html5/workers/
�Stands for Document Object Model and is a platform independent way of interacting with the web

page data in JavaScript.
�Stands for Uniform Resource Identifier, and is a way to represent and identify web page resources

on the internet
§http://dev.w3.org/html5/websockets/
¶An unofficial list of web socket, as well as other web features, can be found at http://caniuse.com

19

http://dev.w3.org/html5/workers/
http://dev.w3.org/html5/websockets/
http://caniuse.com

3.5. PAGE STREAMING CHAPTER 3. VIRTUAL TEXTURING

client. When the server has finished this task, a response message with a modified key
based on the security key found in the data header is sent back to the client, finalizing
the connection.

In the last stages of the prototype development, a successful implementation of the
Web Socket protocol was integrated into the Virtual Texturing page request module.
For this purpose, a special purpose web socket server was built to service the page data
through the connection. While increasing the complexity of the solution as well as the
need for access to a dedicated machine to run the server software on, the advantages of
the socket approach are beneficial. First of all, removing the need for several HTTP con-
nections enables more data throughput between client and server, which ultimately leads
to more serviced page requests and better overall quality. Secondly, a special purpose
server enables more creative ways of data management server-side. One such feature
tested in this prototype was naive page caching functionality, that stored referenced
pages in memory. This data is shared between threads server side, and helps reduce
the request-to-arrival time for pages often referenced. Non-web based Virtual Texturing
approaches normally stores the entire texture sequentially in a binary blob, which is not
preferable memory-wise in a normal web server. A web socket server on the other hand,
could manage the Virtual Texture similarly, enabling functionality such as transmitting
large image blocks containing several pages or full/partial mipmap chains.

3.5.4 Base64 Encoded Images

To create Image objects dynamically using image data, the data has to be encoded
as a base64 encoded string using the aforementioned Data URI Scheme. This makes
it possible to stream pages in Web Workers, transmitting the base64 encoded image
data to the main thread where it can be used to create Image objects on the fly. The
benefits of this approach is that threaded page loading is achieved without custom image
decompression.

The base64 streaming method requires that each page in the Virtual Texture is
base64 encoded before loading begins. This can be performed offline in the preprocessing
tool VTGen, or in a separate script when all the pages have been stored. The drawbacks
of using base64 encoded images is that they require not only 30% more disk space but also
need one more decode pass from string to binary data, which could possibly significantly
affect rendering framerate since it is done in the main thread.

3.5.5 Manual PNG and JPEG Decompression

One problem encountered when utilizing JavaScript Image objects, was that the memory
footprint steadily increased during the lifetime of the session and ultimately caused a
page crash. Due to the nature of Virtual Texturing system, thousands of page requests
will occur during run-time, and as web browsers normally cache Image objects, main

20

3.6. PAGE CACHE CHAPTER 3. VIRTUAL TEXTURING

memory is bound to fill up eventually. To deal with this problem, the image data would
have to bypass browser image handling and instead be processed and loaded directly
into WebGL with JavaScript only.

Decompression was also done in the Web Worker as soon as the compressed image
was streamed, and the decompressed data was sent back to the main thread where it
could be loaded into textures directly.

3.6 Page Cache

The page cache is a large texture that contain the set of pages that have been streamed
from a storage unit. When rendering, the page cache texture is only bound once for all
virtually textured object in the scene, effectively reducing the amount of state switches
that normally occur with individually textured objects. The cache texture is sampled
with point sampling and contains no mipmaps. Each cache cell is updated by calling
subTexImage2D on the texture region that should be updated with new image data.

When the cache is full, a pseudo least-recently-used (LRU) page replacement scheme
is executed that finds a suitable candidate to swap with an incoming page. The cache
is represented in main memory by an array of JavaScript objects for every page. Every
object in this structure contains state information for each page, such as cell position in
the cache, page index, mipmap information and a counter that indicates the last frame
a page was referenced. The page replacement algorithm iterates over these pages in the
cache and compares their frame reference to current frame counter and discards the first
candidate that fails this comparison. The next time the page cache is full and a new
page needs to be inserted, the page loop will start from the last position and continue
iterating, wrapping around to the beginning when the end has been reached. For every
page that is either removed or added from and to the cache, the indirection table and
the indirection texture must be updated accordingly.

3.7 Indirection Table

The indirection table is an array representation of all the available pages in the virtual
texture hierarchy. Each element represents one page with information on where to find
the corresponding page in the page cache. If a specific page is missing from the page
cache, the indirection table element instead points to a page in the page cache with a
lower mipmap level as a fallback mechanism. This means that a surface with pages that
are not availible in the page cache texture yet, will be mapped with a lower quality page.
Therefore, the page that covers the entire Virtual Texture is always availible in the page
cache so that no unmapped surfaces are rendered.

As soon as a new page has been successfully streamed in to the page cache, the

21

3.8. BLENDING TEXTURE CHAPTER 3. VIRTUAL TEXTURING

indirection table updates the affected elements. Each element stores x, y and mipmap
level information where the page can be found in the page cache. The table has to be
uploaded into GPU memory so that the shader program used in the final render pass
can use it to find the location of a specific page in the page cache. The indirect table is
managed in such a way that its elements map directly to RGB values and can thus be
copied to GPU memory in a single call.

3.8 Blending Texture

When new pages are available in the page cache, the user might experience a sudden
change in texture quality, commonly known as a ”pop in”. This sudden change in quality
could be distracting for the user, and should be minimized as much as possible. There
are ways to minimize the amount of quality difference with each change, covered in
3.4.4, by making sure the parent (i.e. the page that covers this page, but in a higher
mipmap level) is loaded before each requested page. However, this will only decrease the
magnitude of change, a pop in can still be noticed. To avoid a very noticable pop in,
each new page can be gradually blended with the current page in the page cache. One
way to do this, presented in [Wav09], is to upscale a previously used page as soon as a
better page is a available, and then continuously update the page cache with blended
data of the new and previous pages. This could possibly lead to high bandwidth usage
to the GPU, depending on implementation. An alternative way is to do the blending
manually in the final texturing shader*. A blending value for each entry is stored in the
indirect texture/table corresponding to a blend amount for each page in the page cache.
These values are subsequentally updated in each frame, until they are fully blended in
the page cache.

In this paper, a modification of the second alternative that uses a separate texture
with blending information for each page in the page cache is implemented. This reduces
the number of entries that needs to be updated each time a page blend value changes,
compared to updating each affected entry in the indirect texture.

Figure 3.4: A simple example of a new page with better quality being gradually blended
in over lower quality pages. With blending disabled, the intermediate states between the
first and last would be skipped, and the newly streamed page would appear to ”pop in”.

*i.e. the shader that uses the page cache and indirect table to texture everything in the scene.

22

3.9. FILTERING CHAPTER 3. VIRTUAL TEXTURING

3.9 Filtering

This section describes how to deal with different texture filtering techniques and issues
inside the Virtual Texturing pipeline.

3.9.1 Bilinear

To get good looking filtering on the rendered scene, using the page cache as texture
source, at least bilinear filtering (LINEAR inside OpenGL/WebGL API) can and should
be enabled. However, since pages in the page cache very rarely will be ordered close to
their original adjacent pages in the physical texture, filtering errors will occur on page
edges, causing page bleeding.

To overcome artifacts caused by page bleeding, Barret proposes that a small one- or
two-pixel border with pixels from adjacent pages should be added to each page [Bar08].
This feature requires more data for each page, which will increase the page size. To
maintain power-of-two dimensions, the pre-processing tool performs a slight downsample
on each page to support this added border. It is important to notice that the shader
that samples the page cache has to compensate for the added border.

Figure 3.5: Example of a Virtual Texture without page borders, and where pages in the
page cache are positioned in such a way to demonstrate color bleeding between pages. 1)
A bilinear sample inside the page cache, on the edge of page 1. 2) The incorrect resulting
color sample, due to color bleeding from page 4. 3) The correct expected color.

3.9.2 Trilinear

With only bilinear filtering of the page cache, filtering artifacts can still occur where the
sampling changes from one mipmap level to another. Ideally, the standard mechanisms

23

3.10. TEXTURE COMPRESSION CHAPTER 3. VIRTUAL TEXTURING

in WebGL for trilinear filtering would be used to perform this task, as in the bilinear
filtering case. However, this would require rebuilding the mipmap chain every time
the page cache is updated. But, as Mayer points out, since the page cache already
contains pages from different mipmap levels, a full mipmap chain is not needed – only
one extra level [May10]. This thesis explores a second trilinear approach, where filtering
is accomplished inside the shader using only the pages available in the page cache (i.e.
without any extra mipmap levels added). This is performed by figuring out which pages
(of different mipmap levels) that are ”needed”, and then interpolating them as closely as
possible to the WebGL trilinear filtering. To get an interpolation value between these
two mipmap levels, a trilinear filtered sample is taken from a look-up-texture (Figure 3.6)
with different values for each mipmap level. Two different entries from the indirect table
and their corresponding page cache are then linearly mixed with the previously gathered
interpolation value.

Figure 3.6: Content of a mipmap look-up-texture. Sampling from the texture with trilinear
filtering will provide interpolated values between the different shades of gray. This value is
used as a bias value when mixing between two pages of different mipmap levels, enabling
trilinear filtering.

3.9.3 Filtering in the Virtual Texture

The selected filtering method for generating the different mipmap levels in the virtual
texture has great influence on the final visual quality in the scene. This thesis generates
the Virtual Texture pages by utilizing trilinear filtering from the standard OpenGL
API. However, since generating the physical texture is done in a pre-processing step,
more sophisticated ways of performing downscale filtering could be implemented.

3.10 Texture compression

A common practice in desktop usage of the standard OpenGL implementation, is to use
a special group of texture compression algorithms called DXT* which can reduce the
size to a ratio of 4:1 for images with alpha channel or 6:1 for images with three color

*Also known as S3 Texture Compression (or S3TC for short)

24

3.11. TEXTURE SIZES CHAPTER 3. VIRTUAL TEXTURING

channels. While the compression ratio is quite low for applications that require large
amounts of storage space, the benefits of DXT is that it is supported directly by modern
graphics hardware, and no decompression has to be done on by the CPU.

Unfortunately, WebGL does not have any support for loading images compressed in
DXT in its current version. It is still possible to transfer compressed images in such
formats from the server and decompress them in JavaScript before uploading to GPU
memory. However, decompressing such formats before uploading them to the GPU would
defeat the purpose, as the data is then uncompressed in the GPU memory and would
take as much space as any other uncompressed texture.

3.11 Texture sizes

Many of the essential components in the Virtual Texturing pipeline are implemented
with various two-dimensional textures. This section describes how the size and format
of each texture may impact other parts of the system as well as the overall performance.

3.11.1 Virtual Texture size

Theoretically, a virtual texture is unrestricted in size. Practically, on the other hand,
factors exist that affects the maximum size of the Virtual Texture, which in turn regulates
the size of the pages.

One of the most crucial aspects regarding texture size is the format of the page
determination read out. Since the page determination needs to be able to represent
the index of every available page in the virtual texture, stored in the RGB channels, the
format and type of the page determination texture plays a big part on performance. The
most frequently used format for internal storage of textures is unsigned byte, which
would give each channel a maximum of 256 different values. With this in mind, storing
x and y coordinates in two channels each, the page determination can index up to 256
by 256 pages at lowest mipmap level. It would be possible to index more than 256 values
in each channel if a floating point texture is used instead. This type of texture is only
available in browsers with the WebGL extension OES_texture_float enabled. However,
due to the added storage size when using floating point textures (64 bits for FP16, 128
for FP32 and 32 for UINT), the read out latency increases.

The execution of this module can also be distributed over several frames, performed
by only copying parts of the buffer at a given frame. While this feature reduces the data
amount to transfer between GPU and main memory during each read out, profiling this
stage in the prototype showed a constant latency regardless of the amount of the data
that was copied (See 4.10).

Using a maximum of 2562 pages (in the highest mipmap level) in the virtual texture

25

3.11. TEXTURE SIZES CHAPTER 3. VIRTUAL TEXTURING

gives the actual size as virtualtexturesize = 256 ∗ pagesize (assuming the use of an
unsigned byte texture).

3.11.2 Indirect texture size

The indirect table and the virtual texture has a correlation in size, since every entry in
the indirect table and texture will reference a corresponding page in the virtual texture.
The size of the indirect table texture will be exactly the amount of pages possible to
index, i.e. 256 by 256 pixels if an unsigned byte texture is used.

3.11.3 Page Cache size

The page cache texture could be any size between the size of a single page and the
maximum amount of page cache cells the indirect table can index. If using a unsigned

byte texture, the maximum page cache would be the same as the size of the virtual
texture. Naturally this would not be possible, as the purpose of virtual texturing is to
overcome the memory restrictions posed by the GPU hardware.

The page cache size can be calculated as pagecachesize = pagesize ∗ 256 (assuming
the use of unsigned byte texture), as long as it is equal or below the maximum texture
size the GPU accepts.

3.11.4 Page size

The page size of the Virtual Texture can vary from as small as one by one pixels up
to the size of the maximum texture dimension supported by the GPU. The page size
must be carefully selected before generating the texture pages, as it heavily impacts the
performance of the streaming in the real-time application. There are several arguments
that can be considered when determining page sizes:

� Small Pages

– Less sensitive to fast camera movement
In applications with a dynamic camera, its likely that requested pages are
loaded into the page cache at a time where they are no longer visible in
the scene, wasting execution time and space in the page cache on redundant
pages. As the ratio between serviced page requests and page sizes increases
with smaller page sizes, more visible pages can be stored in the page cache.

– Increased total page count
When decreasing the page size, one more level is needed in the mipmap gen-
eration which produces four times as many pages as the previous level. With
this in mind, the required storage space for the page data increases rapidly

26

3.11. TEXTURE SIZES CHAPTER 3. VIRTUAL TEXTURING

with smaller page sizes and, depending on server access and storage availabil-
ity, could potentially be a restricting factor.

– Reduces wasted space
With pre-UV unwrapped geometry, texture maps of individual objects will
most likely contain areas that are not mapped to any geometry. This will
cause wasted pixels in all the mipmapped levels of the texture and, more
importantly, in the page cache of the Virtual Texture. With smaller page
sizes, a higher number of pages are more likely to contain such empty areas
and can be completely excluded from the page generation.

� Large Pages

– More data per page
Evidently, more data has to be streamed and decoded per page in relation to
page sizes, which increases execution per page request.

– More page swaps
The amount of pages one page cache can store is directly related to the size
of one page. Using large pages reduces the amount of pages that fit into the
page cache. The fewer number of pages the page cache can store will increase
the frequency of replacing older pages in the cache with newer ones, even if
the replaced pages are currently in use.

– Less overhead
Large pages require less pages to map a textured surface with the correspond-
ing section in the virtual texture.

– Less space needed
As previously mentioned, the size of the complete virtual texture and its
mipmap chain is directly dependent on the size of the dimension of one page.

To gain the most performance out of Virtual Texturing, finding a good balance
between these components is very much dependent on the needs of the application.
The most common dimensions for page sizes range from 642 to 2562. Benchmark data
gathered from this prototype shows how these factors affect the various parts of the
pipeline (see Chapter 4).

27

4

Results

Since the scene is required to have extremely large textures to utilize the virtual texturing
technique, all the objects in the test scene are textured individually with color maps of
up to 81922 pixels each. This is a perfect example of a scene that normally would not
be able to be rendered in real time under most circumstances. Even with all the objects
in the scene textured, there is still roughly two thirds space left unused in the Virtual
Texture, showing that even larger textures could possibly be used (see Figure 4.1).

Each test case consisted of several consecutive benchmarking runs that took roughly
two minutes to execute. During the benchmark runs, the scene camera was animated
along a predetermined path, as to ensure a level of consistency between tests. All tests
were conducted with a page cache size of 40962, and PNG compressed pages of size 1282,
unless specified otherwise. Page blending (3.8) was disabled to maximize the amount of
pages that was requested, since this would otherwise hinder pages from being requested
until other pages had been fully blended in. Google Chrome was chosen as the testing

Processor AMD Opteron 6128 2GHz (2 processors)

CPU Memory 32 GB

Graphics Card NVIDIA GeForce GTX 560 Ti

GPU Memory 1 GB

Screen Resolution 1920 x 1080

Web Browser Chromium 17.0.914.0 (Developer Build 106280)

Table 4.1: Benchmark Computer

28

CHAPTER 4. RESULTS

browser since it supports every main feature needed in its current stable release*. The
three different streaming methods evaluated are Simple, Worker and Socket. These
are explained more in detail in Table 4.3.

Figure 4.1: Benchmarking scene and its Virtual Texture. Note that only a one third of
the available texture space was used.

*Google Chrome 15.0.874.106

29

CHAPTER 4. RESULTS

Browser W
e
b
G

L
1
.0

W
e
b

W
o
rk

e
rs

W
e
b

S
o
ck

e
ts

D
e
ri

v
a
ti

v
e
s

E
x
te

n
si

o
n

Notes

Google Chrome 15.0 X X X X Supports every feature needed in current stable re-
lease.

Mozilla Firefox 10* X X X X Support for standard derivatives extension has been
added to the nightly builds and will be available
with the release of Firefox 10.�

Opera 12� X X X Opera’s next big release will have WebGL support,
while the current stable release does not support it.

Safari 5.1 X X X Latest version of Safari has WebGL support, but is
disabled by default and has to be manually enabled
via a menu option.

Internet Explorer 10§ X X Microsoft researchers have labeled WebGL as a
harmful technology in its current state, and are not
planning on adding support for their web browser
Internet Explorer.[Def11]

Table 4.2: Browser Features

Simple Standard/simple page streaming uses the JavaScript calls to load the images
dynamically, and native browser decoders for texture decompression. This
is the most typically used method to load images dynamically in HTML/-
JavaScript. (See 3.5.1)

*WebGL, Web Workers and Web Sockets are all supported in the stable release version 8, but the
standard derivatives extension is only available in alpha releases of Firefox 10. http://nightly.mozilla.
org/

�https://bugzilla.mozilla.org/show_bug.cgi?id=684853
�Opera’s beta/alpha builds are called Opera Next, http://www.opera.com/browser/next/
§Preview release 10, http://ie.microsoft.com/testdrive/

30

http://nightly.mozilla.org/
http://nightly.mozilla.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=684853
http://www.opera.com/browser/next/
http://ie.microsoft.com/testdrive/

4.1. STREAMING METHODS CHAPTER 4. RESULTS

Worker Uses multiple Web Workers and AJAX* to dynamically load the images and
then decompress then manually with JPEG/PNG decompression libraries
written in JavaScript. The uncompressed image data is then sent back to
the main thread were it can be loaded into GPU and texture objects directly.
(See 3.5.2)

Socket An alternative to the Web Workers implementation. Instead of AJAX calls
to load the compressed images (which will create a new HTTP connection
for each call), it uses a technique called Web Sockets to establish a persistent
connection that is valid throughout whole page visit. (See 3.5.3)

Table 4.3: Streaming Methods

4.1 Streaming Methods

The two most important aspects of the performance of a streaming method, is how fast
it can handle pages from request to delivery and how much it impacts the framerate.
Even if a specific streaming method is extremely fast but has a very low average fps,
the speed of streaming will not matter much if the simulation is lagging due to bad or
unstable fps.

The load time for a page is calculated as the time difference from when a page
is initially requested by the page determination, to when it is fully uncompressed and
ready to be uploaded into GPU memory. Figures 4.2 and 4.3 show the load times for all
streaming methods using different page sizes, PNG and JPEG files respectively.

Looking at these figures, the simple streaming method is clearly the fastest method
in all cases. Even between the different page sizes it is always the lowest and has a
consistently low increase. Both Socket and Worker methods have significantly higher
load times than Simple streaming (while Socket in most cases have a slightly lower load
time compared to the Worker method). Worker takes the longest time to process a
request, and approximately twice as slow at loading pages. However, the average fps
must also be taken into account before ruling out any streaming method.

When comparing the JPEG and PNG image formats, JPEG generally takes longer
to load than PNG. This might seem odd since JPEG files are much smaller compared to
PNG encoded files. Smaller image size per page should result in a lower loading time. A
closer comparison shows that the JPEG files is marginally faster than the PNG files, but
only for Simple streaming. However, both Worker and Socket methods have much higher
load times than Simple streaming, even compared to PNG files. One of the reasons that
could be the cause of longer streaming for Worker and Socket methods, is the fact that

*http://www.w3schools.com/ajax/default.asp

31

http://www.w3schools.com/ajax/default.asp

4.1. STREAMING METHODS CHAPTER 4. RESULTS

Figure 4.2: Average load times (ms) for PNG compressed images, comparing different
streaming methods.

Figure 4.3: Average load times (ms) for JPEG compressed images, comparing different
streaming methods.

the image is decoded inside the Web Workers using a third party JavaScript library. This
is also the case with PNG files, but with library developed by a different third party,
which could be the reason why PNG files with Worker/Socket is faster. Switching to an
alternative JPEG decoder could possibly speed things up.

Lastly, even with the highest loading times (2562 JPEG pages with Socket stream-
ing), the delay is still only 0.367 seconds for a page request to delivery, which depending
on the application could very well be acceptable.

32

4.1. STREAMING METHODS CHAPTER 4. RESULTS

Figure 4.4: Comparison of fps between different page streaming methods.

Looking at the fps (Figure 4.4), there is a similar trend where Worker and Socket
methods give comparable results. However, the Simple streaming method has a severe
dip in FPS compared to the other two, most noticeably for the largest page sizes. One
of the reasons for this could be that the page loading and decompression is done in the
same thread as the main rendering loop. Furthermore, the Simple method loads each
page faster than other methods and thus will try to load more pages per second, which
in turn could choke the fps since it has to decode and upload more pages each second.

33

4.1. STREAMING METHODS CHAPTER 4. RESULTS

Figure 4.5: Average fps count for different streaming methods and page sizes, of JPEG
format.

Figure 4.6: Average fps count for different streaming methods and page sizes, of PNG
format.

34

4.2. PAGE AND CACHE SIZES CHAPTER 4. RESULTS

4.2 Page and Cache Sizes

When comparing page misses (Figure 4.7), using different page sizes, results show that
large pages result in fewer page misses. This is expected, since large pages cover a greater
area compared to small pages. Comparably, to cover the same area of a 2562 page with
642 pages, 16 pages are required.

Figure 4.7: Average page misses for different page sizes and streaming methods.

However, depending on the application, streaming more pages to cover a large area
might be a good thing. For example, if the scene has a fast moving camera, the required
set of pages will change more often compared to a slow moving camera. A small page
size would mean that the most crucial pages would have time to be streamed in, whereas
bigger pages with longer request-to-arrival times might arrive too late to be of use. This
too could happen in the case that a user has moved the camera from the area where
the requested page is no longer visible in the viewport. However, this behavior is highly
dependent on the implementation and could sometimes be acceptable. For example, in
the case of an First Person Shooter game, it is likely that the now redundant page could
soon be referenced again.

Depending on how much memory and the maximum texture size the client has
support for, maximizing the page cache size is generally the best approach in terms
of page misses. Ideally, the page cache would be the same size as the whole Virtual
Texture. However, depending on the scene and application, most of the frequently used
pages could fit into the page cache, and eventually the number of page requests per
second could approach zero if a large enough page cache is used. In the test scene (4.1),
this can be shown in Figure 4.8 where the two biggest page caches show a decline in
page misses over time.

Page and Virtual Texture sizes have the biggest impact on indirect table updates,

35

4.3. PAGE DETERMINATION CHAPTER 4. RESULTS

Figure 4.8: Missing pages (i.e. pages that need to be streamed in) over time, comparing
different page cache sizes (10242, 20482, 40962 and 81922).

since they directly correlate to the size of the indirect texture size. A larger indirect
texture means that updates/changes higher up in the mipmap levels has to recursively
update more levels and a larger data set compared to a smaller indirect texture. The
increase of data that needs to be sent to the GPU each update could possibly add to
the total update time. Figure 4.9 shows a large difference in average update time for
page sizes of 128 and 64. To keep a stable 60 fps, each frame cannot take longer than
16.6 ms to complete. This means that an indirect texture update taking almost 12 ms
will leave 4 ms for other essential parts to execute (i.e. page determination, page cache
update and scene rendering).

4.3 Page Determination

Preferably the size of the page determination texture would be the same size as the
viewport, giving a 1:1 correlation of pages needed to pixels visible. However, for higher

36

4.4. MISCELLANEOUS OPTIMIZATIONS CHAPTER 4. RESULTS

Figure 4.9: Average indirect table update time (ms) for different page cache and page
sizes.

viewport sizes, the amount of data needed to be downloaded from the GPU is too high to
do in real time. This can be seen in Figure 4.10 where the largest tested size of 10242 has
the lowest amount of overwrites but provides read out times of almost 100ms. However,
as mentioned in Section 3.4.1, a small page determination size still produces satisfiable
results, down to a 1/8 of the viewport size. Looking at the lowest size in Figure 4.10,
which is roughly a 1/8 of the viewport size in the tests, read out latency was measured
at 17ms. This is still a bit too high to keep a steady fps of 60, and could result in fps
drops and ultimately be distracting for the user.

4.4 Miscellaneous Optimizations

Instead of using JavaScript libraries to decode images during streaming with Web Work-
ers, native image decoding can still be achieved by loading the image data as a base64
encoded string. Figure 4.11 compares two test runs, one with base64 encoded images
streamed via Web Workers and decoded in the main thread, and the other with sim-
ple streaming (which performed worst in terms of fps compared to Socket and normal
Worker methods, see Figure 4.4). This shows that moving the loading to a Web Worker,
while letting the browser handle the decoding can be worse than letting the browser
take care of both natively. Base64 images take up 30% more space and causes message
passing overhead in terms of data copy and serialization between the worker and main
thread. These factor influences the stream latency negatively, and could be the reason
why this approach gives poor results.

37

4.4. MISCELLANEOUS OPTIMIZATIONS CHAPTER 4. RESULTS

Figure 4.10: Comparing different page determination texture sizes.

38

4.4. MISCELLANEOUS OPTIMIZATIONS CHAPTER 4. RESULTS

Figure 4.11: Comparing streaming of Base64 encoded PNG (via Web Workers) to the
simple method streaming PNG compressed files.

39

5

Discussion

5.1 Browsers

Virtual Texturing using WebGL is a viable alternative to texture mapping, and can be
used in a wide range of applications. Further advancements in WebGL, Virtual Tex-
turing and browser support might even decrease the number of required features for
the technique to work, as well as boosting performance of page streaming and decom-
pression. Furthermore, WebGL support for browsers is definitely maturing, considering
that necessary features in the WebGL and HTML5 specifications have been continously
added throughout development of this thesis. Almost all browsers have support for the
concepts described in this paper in upcoming alpha and beta versions. The main rea-
sons holding back a stable platform independent implementation of Virtual Textures in
WebGL, is mostly related to the speed of JavaScript engines and specific WebGL related
commands between browsers.

Google Chrome is the only browser that, in its latest public release, has support
for every feature that is needed in each streaming method presented in this thesis even
though certain WebGL specific functions such as readPixels and texSubImage2D have
been shown to perform worse in Chrome compared to other browsers*. One specific
problem encountered with using Firefox is that Firefox performs premultiplied alpha
when executing texture updates, even for textures where an alpha channel is present.
As a result, ugly texture artifacts occur when rendering and must be handled explicitly
when developing for the Firefox browser. Fortunately, the artifacts produced with pre-
multiplied alpha have been reported to the web development team at Mozilla�, which

*http://jsperf.com/webgl-teximage2d-vs-texsubimage2d/7
�https://bugzilla.mozilla.org/show_bug.cgi?id=698169

40

http://jsperf.com/webgl-teximage2d-vs-texsubimage2d/7
https://bugzilla.mozilla.org/show_bug.cgi?id=698169

5.2. STREAMING METHODS CHAPTER 5. DISCUSSION

shows a good example of the current state of the web browser market where rapid devel-
opment cycles and a good consumer relationship are key factors for successful integration
of new web technology. The rest of the market is not far behind, with most future alpha
and beta versions supporting all needed features. The only browser lagging behind is
Internet Explorer, which lacks support for WebGL and will most likely not support it
in the nearest future. Third-party workarounds exist, such as IEWebGL* and Chrome
Frame� , that enables WebGL support for Internet Explorer.

5.2 Streaming Methods

Simple Page Streaming is trivially the best supported streaming method since it utilizes
the native image loading and decompression capabilities exposed through JavaScript
Image objects. This is also the method that has proven to give the fastest loading times
(see Figure 4.2 and Figure 4.3). However, the disadvantages with simple streaming is
that it gives the worst average fps and supports only a limited amount of image formats.

Web Workers is a new technique introduced with HTML5 that enables the Virtual
Texturing pipeline to stream pages in paralell to the main rendering thread. The results
of using the Web Worker streaming method show slower page loading speeds, partially
due to relying on decompressing image data using JavaScript instead of the browser, but
a much better average fps than the simple method. Furthermore, Web Workers provide
general purpose functionality for things other than just page loading. For example, the
pixel processing in the page determination (Section 3.4.3) can be executed in a web
worker, which unburdens the main thread.

Web Sockets enables data communication between the web page and a web socket
enabled server by using the standardized socket interface. The Web Socket streaming
method is shown to have the marginally best average fps (Figure 4.4), and only a slightly
better loading time (Figure 4.2) than the worker method. However, socket streaming
have only been tested with one Web Socket server written in Python specifically for
this thesis. Faster page loading might be achieved with a more advanced and optimized
server.

5.3 Image Formats and Page Sizes

The choice of page size is highly dependent on the application and user navigation.
Scenes with rapid moving cameras could benefit of smaller page sizes, as discussed in
Section 3.11.4. But as seen in Figure 4.9, smaller page sizes can lead to lower performance

*http://iewebgl.com/
�http://code.google.com/chrome/chromeframe/

41

http://iewebgl.com/
http://code.google.com/chrome/chromeframe/

5.3. IMAGE FORMATS AND PAGE SIZES CHAPTER 5. DISCUSSION

when updating the indirect table. This is something that might change in the future
with better performance on specific WebGL functions.

When considering image formats, the choice depends on wether the application needs
lossless compression with a higher bandwidth demand but with a better visual quality, or
lossy compression with a lower bandwidth demand for source images but a lower visual
quality. The decompression times of JPEG and PNG seem equal when using the inter-
nal decompressions the browser supplies, but differ greatly when using the JavaScript
implementations of the image decompressors. For the sake of performance, it would be
most beneficial to access native browser decompression functions directly from a Worker
thread instead of unpacking them explicitly in JavaScript routines. An alternative so-
lution would be if WebGL could accept compressed images directly without the need of
Image objects.

42

6

Future Work

6.1 WebCL

Mayer presents a different way of performing the page determination in order to increase
performance of this pass [May10]. Instead of generating a list of needed pages on the
CPU side in the Process Pixel Data 3.4.3 step, the list generation is executed directly in
the GPU. This is accomplished by utilizing relatively new features that makes it possi-
ble to perform more general calculations on the GPU via the OpenCL API. Currently,
no official version of a web-based equivalent has been released, but the Khronos Group
confirmed in March 2011 that an API definition of the WebCL* interface is under devel-
opment. However, two prototype implementations, developed by Nokia� and Samsung�

respectively, are already available as browser extensions, but due to the non-matureness
of their API, they were not evaluated in this paper. Implementation WebCL-based list
conversion will be looked at in the future when the upcoming official specification has
been released.

6.2 Texture Compression & Sending Raw Data

Very few compressed image formats were investigated in this paper. Bandwidth usage
per requested page is a critical performance issue, both internally from CPU to GPU
as well as over the network connection. The current streaming methods in the Virtual
Texture pipeline only support the two most common image formats JPEG and PNG,

*http://www.khronos.org/webcl/
�http://webcl.nokiaresearch.com/
�http://code.google.com/p/webcl/

43

6.3. OBJECT MULTI-TEXTURING CHAPTER 6. FUTURE WORK

but may very well be extended and tested with other techniques with better compression
ratios or decompression performance.

An even simpler alternative way of sending pages would be to send uncompressed
images. This would mean that decompression could be skipped inside the browser, and
the data could be uploaded to the GPU directly. This means more storage requirements
on the server side and an increased bandwidth usage between the browser and server for
each page download, but could perhaps be sacrificed in return for a performance gain.

6.3 Object Multi-Texturing

In the last stages of development, several test scenes included objects that referenced
multiple textures used in rendering that all map to the same UV coordinates, such as
normal, specular and environment maps. In the current implementation, these special
maps cannot be trivially merged and stored into virtual texture pages, and requires
either more intelligent page design or separate virtual textures and page caches.

An additional problem when using several textures per object is that the current
implementation of page determination can only handle one virtual texture coordinate
per read out pixel. A proposed approach dealing with this limitation was to alternate
the needed texture coordinates in two or more different page determination passes. The
page determination is currently performed once every 1/16th frame. A secondary page
determination pass could be executed in between these passes, which calculates the co-
ordinates for special maps. However, this could result in a delay for high-priority pages,
such as pages containing normal maps for example. Another approach would be to al-
ternate the page determination pixels, such that even pixel outputs the standard texture
coordinates while the odd pixels output the environment map texture coordinates.

44

Bibliography

[Bar08] Sean Barrett. Sparse Virtual Textures. 2008. url: http://www.silverspaceship.
com/src/svt/.

[Blo00] Charles Bloom. Terrain Texture Compositing by Blending in the Frame-Buffer
(aka ”Splatting” Textures). 2000. url: http://www.cbloom.com/3d/techdocs/
splatting.txt.

[Cab10] Ricardo Cabello. Three.js. 2010. url: https://github.com/mrdoob/three.
js/.

[Def11] Microsoft Security Research & Defense. WebGL Considered Harmful. 2011.
url: http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-
considered-harmful.aspx.

[Fen04] Wei-Wen Feng. Notes On Mesh Parametrization. 2004. url: http://mgarland.
org/class/geom04/material/param-notes.pdf.

[Gro11a] IETF HyBi Working Group. The WebSocket protocol draft-ietf-hybi-thewebsocketprotocol-
17. 2011. url: http : / / tools . ietf . org / html / draft - ietf - hybi -

thewebsocketprotocol-00.

[Gro11b] The Khronos Group. WebGL Specification. 2011. url: http://www.khronos.
org/registry/webgl/specs/latest/.

[Has07] Al Hastings. “Presentation: Texture Streaming - Everything you care to know
and more”. Insomniac Games. 2007. url: http://www.insomniacgames.
com/tech/articles/1107/files/texture_streaming.pdf.

[HLS07] Kai Hormann, Bruno Lévy, and Alla Sheffer.“Mesh Parameterization: Theory
and Practice”. In: ACM SIGGRAPH Course Notes. 2007.

[LK10] Samuli Laine and Tero Karras.“Efficient sparse voxel octrees”. In: Proceedings
of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and
Games. I3D ’10. Washington, D.C.: ACM, 2010, pp. 55–63. isbn: 978-1-60558-
939-8. doi: http://doi.acm.org/10.1145/1730804.1730814. url: http:
//doi.acm.org/10.1145/1730804.1730814.

45

http://www.silverspaceship.com/src/svt/
http://www.silverspaceship.com/src/svt/
http://www.cbloom.com/3d/techdocs/splatting.txt
http://www.cbloom.com/3d/techdocs/splatting.txt
https://github.com/mrdoob/three.js/
https://github.com/mrdoob/three.js/
http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-considered-harmful.aspx
http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-considered-harmful.aspx
http://mgarland.org/class/geom04/material/param-notes.pdf
http://mgarland.org/class/geom04/material/param-notes.pdf
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-00
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-00
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/
http://www.insomniacgames.com/tech/articles/1107/files/texture_streaming.pdf
http://www.insomniacgames.com/tech/articles/1107/files/texture_streaming.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/1730804.1730814
http://doi.acm.org/10.1145/1730804.1730814
http://doi.acm.org/10.1145/1730804.1730814

BIBLIOGRAPHY BIBLIOGRAPHY

[May10] Albert Julian Mayer. “Virtual Texturing”. Master‘s Thesis. Favoritenstrasse
9-11/186, A-1040 Vienna, Austria: Institute of Computer Graphics and Al-
gorithms, Vienna University of Technology, Oct. 2010. url: http://www.cg.
tuwien.ac.at/research/publications/2010/Mayer-2010-VT/.

[MG08] Martin Mittring and Crytek GmbH. “Advanced virtual texture topics”. In:
ACM SIGGRAPH 2008 classes. SIGGRAPH ’08. Los Angeles, California:
ACM, 2008, pp. 23–51. url: http://doi.acm.org/10.1145/1404435.

1404438.

[Neu10] Andreas Neu. “Virtual Texturing”. Bachelor‘s Thesis. RWTH Aachen Univer-
sity, Computer Graphics & Multimedia, 2010. url: http://arxiv.org/abs/
1005.3163v1.

[NVI04] NVIDIA. Improve Batching Using Texture Atlases. 2004. url: http : / /

developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/

src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/Batching_

Via_Texture_Atlases.pdf.

[Pha04] Matt Pharr. “Fast Filter-Width Estimates with Texture Maps”. In: GPU
Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics.
Ed. by Randima Fernando. Pearson Higher Education, 2004. Chap. 25. isbn:
0321228324.

[SGG11] Abraham Silberschatz, Greg Gagne, and Peter B. Galvin. Operating System
Concepts. Wiley, 2011, pp. 315–365. isbn: 1118112733. url: http://www.
amazon.com/Operating-System-Concepts-Abraham-Silberschatz/dp/

1118112733.

[Shr08] Ryan Shrout. John Carmack on id Tech 6, Ray Tracing, Consoles, Physics
and more. 2008. url: http://www.pcper.com/reviews/Graphics-Cards/
John-Carmack-id-Tech-6-Ray-Tracing-Consoles-Physics-and-more?

aid=532.

[TMJ98] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. “The
clipmap: a virtual mipmap”. In: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques. SIGGRAPH ’98. New York,
NY, USA: ACM, 1998, pp. 151–158. isbn: 0-89791-999-8. url: http://doi.
acm.org/10.1145/280814.280855.

[Wav06] J.M.P. van Waveren. Real-Time Texture Streaming & Decompression. id Soft-
ware. 2006. url: http://software.intel.com/file/17248/.

[Wav09] J.M.P. van Waveren. id tech 5 challenges - from texture virtualization to mas-
sive parallelization. id Software. 2009. url: http://s09.idav.ucdavis.edu/
talks/05JP_id_Tech_5_Challenges.pdf.

[Wil83] Lance Williams. “Pyramidal parametrics”. In: SIGGRAPH Comput. Graph.
17 (3 1983), pp. 1–11. issn: 0097-8930. url: http://doi.acm.org/10.1145/
964967.801126.

46

http://www.cg.tuwien.ac.at/research/publications/2010/Mayer-2010-VT/
http://www.cg.tuwien.ac.at/research/publications/2010/Mayer-2010-VT/
http://doi.acm.org/10.1145/1404435.1404438
http://doi.acm.org/10.1145/1404435.1404438
http://arxiv.org/abs/1005.3163v1
http://arxiv.org/abs/1005.3163v1
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/Batching_Via_Texture_Atlases.pdf
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/Batching_Via_Texture_Atlases.pdf
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/Batching_Via_Texture_Atlases.pdf
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/Batching_Via_Texture_Atlases.pdf
http://www.amazon.com/Operating-System-Concepts-Abraham-Silberschatz/dp/1118112733
http://www.amazon.com/Operating-System-Concepts-Abraham-Silberschatz/dp/1118112733
http://www.amazon.com/Operating-System-Concepts-Abraham-Silberschatz/dp/1118112733
http://www.pcper.com/reviews/Graphics-Cards/John-Carmack-id-Tech-6-Ray-Tracing-Consoles-Physics-and-more?aid=532
http://www.pcper.com/reviews/Graphics-Cards/John-Carmack-id-Tech-6-Ray-Tracing-Consoles-Physics-and-more?aid=532
http://www.pcper.com/reviews/Graphics-Cards/John-Carmack-id-Tech-6-Ray-Tracing-Consoles-Physics-and-more?aid=532
http://doi.acm.org/10.1145/280814.280855
http://doi.acm.org/10.1145/280814.280855
http://software.intel.com/file/17248/
http://s09.idav.ucdavis.edu/talks/05JP_id_Tech_5_Challenges.pdf
http://s09.idav.ucdavis.edu/talks/05JP_id_Tech_5_Challenges.pdf
http://doi.acm.org/10.1145/964967.801126
http://doi.acm.org/10.1145/964967.801126

	Introduction
	Background and Motivation
	Problem statement

	Previous Work
	Mipmaps
	Clipmaps
	Texture Streaming
	Texture Atlases
	Virtual Texturing
	MegaTextures
	Sparse Virtual Textures

	Sparse Voxel Octrees

	Virtual Texturing
	Overview
	Implementation Details
	Pre-Processing
	Page Determination
	Render Needed Pages
	Read Out Pixel Data
	Process Pixel Data
	Requests Pages

	Page Streaming
	Simple Page Streaming
	Streaming using Web Workers
	Streaming using Web Sockets
	Base64 Encoded Images
	Manual PNG and JPEG Decompression

	Page Cache
	Indirection Table
	Blending Texture
	Filtering
	Bilinear
	Trilinear
	Filtering in the Virtual Texture

	Texture compression
	Texture sizes
	Virtual Texture size
	Indirect texture size
	Page Cache size
	Page size

	Results
	Streaming Methods
	Page and Cache Sizes
	Page Determination
	Miscellaneous Optimizations

	Discussion
	Browsers
	Streaming Methods
	Image Formats and Page Sizes

	Future Work
	WebCL
	Texture Compression & Sending Raw Data
	Object Multi-Texturing

	 References

