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Abstract
The use of multi-antenna technology, also referred to as multiple-input multiple-
output (MIMO), has been shown to improve both the achievable data rates and
the link reliability in single-cell wireless systems without a need for extra power
or bandwidth. The promised gains of MIMO techniques are, however, severely
degraded in a multicell environment due to the presence of intercell interference,
especially for users at the cell edge. One efficient technique to combat intercell
interference is via exploiting coordination among multiple base stations, which is
known as multicell processing or simply base station coordination.

This thesis investigates the design and the performance of practically imple-
mentable base station coordination schemes. The main contribution of this thesis
is to formally study different types of coordination, to develop analytical tools for
their performance evaluation, and to propose simple algorithms for their imple-
mentation.

First, we focus on the most complex form of coordination, namely the network
MIMO. In this scheme all coordinating base stations share the data and the chan-
nel state information of all users, and act as a single distributed multi-antenna
transmitter to serve them. We develop an analytical framework to facilitate the
ergodic rate analysis of such a system under linear precoding. We also propose
a simple scheduling algorithm, which only requires the knowledge of long-term
channel statistics.

In the next stage, we consider a simpler form of coordination in which the
data of each user is served only by one base station. The scheduling and beam-
forming design, however, can be shared among the coordinating base stations.
For this scheme, we propose a low-complexity joint user scheduling and beam-
forming strategy selection which requires a limited level of inter-base station in-
formation exchange, while providing significant performance improvement over
non-coordinated systems.

Finally, we investigate the effect of the antenna elevation tuning parameter,
referred to as antenna tilt, on the performance of multicell multiple-input single-
output (MISO) systems. We propose a framework in which multiple base stations
jointly adjust their tilt angles based on the location of the scheduled users to
maximize their sum throughput. We also provide an analytical expression for
the sum throughput, enabling the decentralized implementation of the proposed
scheme at each base station.

Keywords: Antenna tilt, base station coordination, beamforming, intercell in-
terference, scheduling.
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Chapter 1

Overview

The convergence between mobile and data access services has caused an
increasing demand for high data rate wireless communications. The avail-
ability of affordable notebooks, tablet computers, smartphones, etc. as well
as a wide range of services including web browsing, streaming, and inter-
active file transfer has resulted in a significant growth in the mobile data
traffic recently. This growth is continuing rapidly such that a typical sub-
scriber is expected to consume 1 gigabyte of data per month by 2014, while
the today’s average figure is about a few hundred megabytes per month [1].
So, eventually the current 3G network will not be able to support the traffic
demand and, hence, a more advanced and efficient wireless technology is
needed to provide the required services. This technology should also pro-
vide a seamless experience with a guaranteed minimum quality of service
to all the users irrespective of their location in the network.

To this end, the third generation partnership project (3GPP) has been
developing a new mobile communication standard, referred to as long term
evolution (LTE). Its aim is to provide true 4G broadband mobile access,
i.e., to fulfill the international mobile telecommunication advanced (IMT-
Advanced) requirements as defined by the international telecommunication
union (ITU)–such as peak data rate up to 1 Gbits/s [2]. The first release of
LTE (release 8) is labeled as 3.9G (beyond 3G but pre-4G) as it does not
meet the IMT-Advanced requirements for 4G. However, Release 10 of LTE,
also referred to as LTE-Advanced, is considered as a true 4G evolution step.
The first commercial LTE networks were launched in Sweden and Norway
in December 2009 followed by the United States and Japan in 2010.

The use of orthogonal frequency division multiplexing (OFDM) and
multi-antenna technology, commonly referred to as multiple-input multiple-
output (MIMO), has enabled the emerging wireless standard (including
LTE) to achieve a significant spectral efficiency within one cell. In a mul-
ticell network, however, the presence of intercell interference, caused by
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the transmission of neighboring cells on the same time-frequency resource
block, prevents these technologies to approach the theoretical rates of mul-
ticell networks. Intercell interference especially affects the performance of
users at the cell boundaries. Compared to users in cell-center region, users
in the cell-edge region are subject to a weaker desired signal from their serv-
ing base station, while experiencing a stronger intercell interference from
the neighboring cells.

One of the promising approaches to combat intercell interference is to
exploit coordination among multiple base stations, a.k.a. multicell process-
ing. This technique is currently under investigation in the emerging wireless
standards such as LTE-Advanced, under the name of coordinated multipoint
transmission (CoMP). The main idea of CoMP is to either mitigate or ex-
ploit the intercell interference in order to improve the cell-edge and average
data rate. Under ideal conditions, in which the channel state information
(CSI) and the data of all users is fully shared among all the base stations,
coordinated multicell transmission have been shown to provide a remarkable
throughput gain compared to the conventional non-coordinated systems [3].

Implementation of base station coordination in practice faces some major
challenges concerning complexity and overhead. Users’ CSI at all the coor-
dinating base stations needs to be obtained through some form of training,
channel estimation, and feedback. The acquired CSI is usually imperfect
as the estimation and feedback incurs error. Furthermore, the acquired
CSI and the data needs to be shared among the coordinating base sta-
tions through finite-capacity backhaul links which are subject to both error
and delay. These challenges prevent the base station coordination to reach
its promised theoretical gains over the conventional non-coordinated sys-
tems [4, 5].

In this thesis, we investigate different methods of coordinated transmis-
sion from multiple base stations. The aim is to reduce the complexity and
overhead, while keeping the performance as close to the theoretical limit as
possible. The general methodology followed throughout this thesis is the
development of mathematical tools that can be used to simplify the analysis
of coordinated schemes. In addition, new algorithms are also proposed to
reduce the complexity and overhead for different coordinated transmission
schemes.

Research Project

The research project in this thesis is part of the MIMO system projects in
Chalmers strategic research center on microwave antenna systems (CHAR-
MANT) and Chalmers antenna system excellence center (CHASE) at Chalmers
University of Technology. The project has been done in collaboration with
Ericsson AB and Qamcom AB.
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Outline of the Thesis

The thesis is divided into two parts. Part I gives a quick introduction to
the main topic of the thesis to facilitate the understanding of the included
contributions in Part II. This part is organized as follows. In Chapter 2,
the traditional single-antenna mutlicell wireless networks are discussed, and
several methods for intercell interference mitigation in such networks are
presented. Chapter 3 gives an overview of multi-antenna transmission tech-
niques in multicell wireless networks and discusses the motivation behind
multicell coordination. In Chapter 4, different multicell coordination strate-
gies and the corresponding practical challenges are described. Finally, Chap-
ter 5 briefly describes the purpose and the contributions included in Part
II of the thesis. Some open problems in the field as well as a list of related
contributions not included in this thesis are also presented in this chapter.





Chapter 2

Conventional
Single-Antenna Cellular
Networks

This chapter gives a brief introduction to the operation of conventional cel-
lular networks consisting of single-antenna transmitters and receivers. The
concepts of fading and intercell interference as two fundamental challenges in
these networks are discussed and traditional methods to deal with them are
presented. The purpose of the chapter is to provide sufficient background
to motivate the use of multiple antennas and base station coordination in
cellular networks.

2.1 Wireless Channel

In wireless systems, transmission of data from a transmitter to a receiver
is performed via propagation of electromagnetic waves over an unguided
environment, referred to as the wireless channel. The propagated waves are
reflected, scattered, and diffracted by walls, buildings, trees, and other ob-
jects as they travel from the transmitter towards the receiver. Such a prop-
agation results in the arrival of multiple replicas of the transmitted signal at
the receiver, each with different characteristics (delay, gain, phase, etc.), as
illustrated in Fig. 2.1. Hence, the wireless channel is sometimes referred to
as a multipath channel. The detailed description of this propagation can be
obtained through solving Maxwell’s equations [6]. However, this description
would be very difficult in general, as many of the required parameters are
not available. Furthermore, the wireless channel varies with time as either
the transmitter or the receiver, or both change position. To deal with this
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Figure 2.1: A schematic illustration of multipath propagation in wire-
less channel.

difficulty, statistical models have been developed to characterize the time-
varying behavior of the wireless channel (see [7] and the references therein).
In these models, the wireless channel variation is described at two different
time-scales as follows:

• Large-scale fading: Slow channel variations as the distance between
the transmitter and the receiver changes significantly over a time-scale
on the order of tens of seconds [8]. The variations in large-scale fad-
ing are mainly due to pathloss and shadowing. Pathloss describes the
decay in the received signal power owing to the distance between the
transmitter and the receiver. Shadowing is the attenuation in the re-
ceived signal power as a result of absorption, reflection, scattering, and
diffraction of the transmitted signal through large obstacles between
the transmitter and the receiver.

• Small-scale fading: Fast channel variation due to small changes
in the relative spatial position of the transmitter and the receiver
over a time-scale on the order of a few milliseconds [8]. Small-scale
fading channel variations result from the constructive and destructive
addition of multipath signal components.

It is normally assumed that the large-scale fading is known for all the users
in the network. This is a reasonable assumption as the large-scale fading
changes very slowly so that it can be accurately measured by each user and
fed back to the base station. We next provide a short review of different
phenomena in a wireless channel. For more detailed information, the in-
terested reader is referred to traditional wireless communication text books
such as [6, 7].



2.1 Wireless Channel 9

2.1.1 Pathloss

Pathloss in wireless channel refers to the received signal power attenuation
as a result of distance between the transmitter and the receiver. Pathloss in
linear scale is defined as the ratio of the transmitted power to the received
power, i.e.,

PL =
Pt

Pr

, (2.1)

where Pt is the transmitted power, while Pr denotes the received power.
The path gain is defined as the inverse of pathloss, i.e., PG = 1/PL. Note
that the pathloss is greater than 1 and hence, the path gain is always less
than 1. The pathloss in free space is given by the Friis formula as

PL =
λG

(4πd)2
, (2.2)

where λ is the wavelength, G is the product of antenna gains at both the
transmitter and the receiver, and d is the distance between the transmitter
and the receiver. It is observed that free space pathloss falls off in inverse
proportion to the square of the distance. This model is only valid when
there is one direct path (a.k.a. line-of-sight) between the transmitter and the
receiver. To capture the pathloss in a cellular environments with multiple
signal paths between the transmitter and the receiver, several deterministic
and statistical models have been developed [7, Chapter 2.]. A simplified
pathloss model commonly used in wireless system design is given by

PL = ξd−υ. (2.3)

Here, ξ is a constant that depends on the antenna characteristics and the
average channel attenuation, and υ is the pathloss exponent. The value of
υ changes between 2 and 6, depending on the propagation environment.

2.1.2 Shadow Fading

In a multipath wireless channel, the transmitted signal will experience block-
age from large objects and reflecting surfaces in the signal path. This results
in random variation in the received signal power at a given distance. As
the size, shape, and location of these objects are usually unknown, an easy
way to model these variations is via statistical methods. The most common
model is the log-normal shadowing. This model has been empirically con-
firmed to accurately represent the received signal variations both in outdoor
and indoor environments [7, Chapter 2]. The probability density function
(PDF) of a log-normal random variable x is given by

p(x) =
10

xσxdB
ln(10)

√
2π

e
−

(10 log10 x−µxdB
)2

2σ2
xdB , x > 0. (2.4)
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Here, µxdB
and σxdB

denote the mean and the standard deviation of x in dB
scale, which is computed as xdB = 10 log10(x).

2.1.3 Small-Scale Fading

Small-scale fading refers to the microscopic changes in the signal amplitude
due to constructive and destructive addition of multipath components over
a time-scale on the order of a few milliseconds. These small variations,
which occur on top of the variations introduced by shadowing, result from
small changes in the spatial position between the transmitter and the re-
ceiver in the range of a few wavelengths. The impact of multipath fading on
the received signal depends on the spread of delays associated with multi-
path components. Let τi denote the delay of the i-th multipath component,
then the delay spread of the channel is defined as Tds = maxi,j(τi − τj). If
this delay spread is much smaller than the inverse of the signal bandwidth,
then the multipath components are considered as nonresolvable, leading to
a single-tap channel. On the other hand, if the delay spread is comparable
or larger than the inverse of the signal bandwidth, the multipath compo-
nents become resolvable, giving rise to a multi-tap channel. Such a channel
causes a form of distortion in the received signal, known as the inter-symbol
interference, owing to the delayed replicas of the past symbols interfering
with the current one. Methods to combat inter-symbol interference will be
discussed later in this chapter. First, we describe three commonly used
distributions for single-tap fading channels.

Rayleigh Fading

This is a valid model for scenarios where there is no line-of-sight path be-
tween the transmitter and the receiver, and there is a large number of
independent scattered signal components. Under these conditions, using
the Central Limit Theorem, the channel gain is modeled as a zero-mean
complex-valued Gaussian process z ∼ CN (0, σ2). The PDF of the envelope
of the channel gain, i.e., r = |z|, is given by

p(r) =
2r

σ2
e−

r2

σ2 , r > 0, (2.5)

where σ2 = E[r2] is the average received power.

Rician Fading

This model is used when there is a fixed line-of-sight path between the
transmitter and the receiver. The received signal is composed of a large
number of complex Gaussian components plus a line-of-sight component.
In this case, the signal envelope is well modeled with a so-called Rician
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distribution. In Rician fading, the severity of fading model is measured
with a fading parameter K, which is the ratio of the power of the line-of-
sight component to the power of the other multipath components. The PDF
of the signal envelope with Rician distribution is given by

p(r) =
2r(K + 1)

σ2
e(−K− (K+1)r2

σ2 )I0

(

2r

√

K(K + 1)

σ2

)

, r > 0, (2.6)

where σ2 = E[r2] is the average received power and

I0(r) =
1

2π

∫ 2π

0

e−x cos θdθ (2.7)

denotes the modified Bessel function of zero-th order.

Nakagami Fading

Rayleigh and Rician fading are obtained based on mathematical modeling
of the underlying physical phenomena in the wireless channel. Hence, some
experimental data does not fit with either of these distributions. Nakagami
fading is a more general fading distribution that could be adjusted to fit
with empirical measurements. The PDF of a signal envelope with Nakagami
distribution is given by

p(r) =
2mmr2m−1

Γ(m)σ2m
e−

mr2

σ2 , r > 0, (2.8)

where σ2 = E[r2] is the average received power, Γ(m) is the Gamma func-
tion, and m determines the severity of fading. For m = 1, the Nak-
agami distribution reduces to the Rayleigh distribution, while for m =
(K + 1)2/(2K + 1) it reduces to the Rician distribution with parameter
K.

2.1.4 Coherence Bandwidth and Frequency Selectivity

The behavior of small-scale fading in the frequency domain can be charac-
terized through a parameter called coherence bandwidth. This parameter
is a statistical measure for the range of frequencies over which the channel
is considered “flat”, i.e., constructive and destructive addition of multi-
path signals does not vary over this frequency range. The coherence band-
width Wc of a channel is related to the delay spread Tds of that channel
as Wc ∝ 1/Tds. When the signal bandwidth is smaller than the channel
coherence bandwidth, the channel behaves like an ideal filter with a con-
stant gain over the whole signal bandwidth. Such a channel is commonly
known as a flat-fading channel and the corresponding transmission over
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this channel is classified as a narrowband transmission. To enable higher
data rate transmission, one technique is to increase the bandwidth of the
transmitted signal. However, when the bandwidth of the transmitted signal
becomes larger than the coherence bandwidth of the channel, different parts
of the signal bandwidth will be treated differently by the channel, giving
rise to a so-called frequency-selective fading channel. The corresponding
transmission over such a channel is considered as a wideband transmission.
Noting the coherence bandwidth relation with the delay spread, it follows
that frequency-selective fading results in inter-symbol interference discussed
in Section 2.1.3.

To combat this problem, most of the emerging wireless standards such as
LTE, have adopted OFDM. In this technique, a wideband high-rate trans-
mission is divided into many parallel narrowband low-rate transmission,
thereby eliminating the inter-symbol interference [9]. Hence, it is common
to focus on a narrowband transmission over a frequency-flat fading channel
and to assume that the wideband transmission can be treated by apply-
ing the provided analysis to each of the narrowband frequency blocks in an
OFDM symbol.

2.1.5 Coherence Time and Time Selectivity

The small-scale fading variations in the time domain are caused by the
relative mobility of the transmitter and the receiver and are characterized
through a parameter called coherence time. This parameter represents the
time interval over which the small-scale channel variation is negligible as the
relative position of the transmitter and the receiver changes. The coherence
time Tc of the channel is connected to the Doppler spread fD as Tc ∝ 1/fD,
where fD is equal to the maximum Doppler shift and is given by

fD =
v

λ
. (2.9)

Here, v denotes the relative speed of the transmitter and the receiver and
λ is the carrier wavelength. The shorter the coherence time, the faster
the channel changes with time. The channel is considered as time-selective
when the coherence time is much smaller than the symbol duration Ts, i.e.,
Tc ≪ Ts, and is considered as time-flat otherwise.

2.2 Cellular Architecture

The basic idea behind the cellular network is to reuse the same frequency
band at different locations of the coverage area. This idea relies on the fact
that the signal power decays with distance. In a conventional single-antenna
cellular architecture, the coverage area is divided into non-overlapping cells
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Figure 2.2: An illustration of downlink and uplink in a single cell mul-
tiuser system.

which operate independently, i.e., with no cell cooperation. Each cell has a
single-antenna base station in the center and multiple single-antenna users
distributed randomly over the cell area. Two typical scenarios at each cell
are downlink transmission, which indicates the transmission from base sta-
tion to users, and uplink transmission, which represent the transmission
from users towards the base station. This is illustrated in Fig. 2.2.

At each time-slot, the base station in each cell communicates only with
one user in that cell. As a result, there is no intracell interference. How-
ever, since the wireless channel is a shared medium and cells operate inde-
pendently, the transmissions in the neighboring cells on the same frequency
band act as interference to each other. Such an uncoordinated interference
is known as intercell interference. The intercell interference in the downlink
is explained for a three-cell network in Fig. 2.3.

Let Rk(t) denote the instantaneous rate of user k in bits/s/Hz at time-
slot t. This instantaneous rate is a function of signal-to-interference-plus-
noise ratio (SINR) defined as

SINRk =
Pds(t)

Pnoise(t) + PIUI(t) + PICI(t)
. (2.10)

Here, Pds(t), PIUI(t), PICI(t), and Pnoise(t) denote the power of the desired
signal, the inter-user interference (or the intracell interference), the intercell
interference, and the noise, respectively, at time-slot t. One commonly used
instantaneous rate function is the so-called Shannon capacity formula given
by [10]

Rk(t) = log2(1 + SINRk(t)). (2.11)

Note that in (2.11), a sub-optimal receiver is assumed which treats the
interference as Gaussian noise. In a conventional single-antenna cellular
network, PIUI(t) is zero since there is only one user communicating with
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Figure 2.3: Schematic illustration of intercell interference in a 3-cell
network.

the base station at each time-slot. However, PICI(t) is non-zero and could
have large values, especially for users at the cell edge. In fact, in a real-
istic propagation scenario, where users are subject to distance-dependent
pathloss and shadowing, cell-edge users experience a weaker desired signal
power and a stronger intercell interference power, compared to users close
to base stations, resulting in low SINR values for these users. Therefore,
intercell interference is mainly a problem for the users at the cell edge and
less of a problem for the cell-center users. This calls for efficient intercell
interference mitigation techniques.

2.3 Intercell Interference Mitigation Techniq-

ues

As mentioned in the previous section, intercell interference could be a severe
problem in cellular networks especially for the users close to the cell edge.
In this section, we discuss some important techniques such as frequency
reuse, cell sectoring, and cell densification, to mitigate this deteriorating
phenomenon.

2.3.1 Frequency Reuse

Frequency reuse is one of the traditional techniques to control the level of
intercell interference experienced by different users in the cell. In one way of
implementing frequency reuse, known as static frequency reuse, the available
bandwidth is divided into a number of disjoint subchannels each assigned to
one of the neighboring cells. In this way, the interfering cells for any given
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Figure 2.4: An example of static frequency reuse with reuse factor 3.

cell can be shifted away, thereby lowering the level of intercell interference
power experienced by the users in that cell. This is illustrated in Fig. 2.4
for a frequency reuse factor of 3, where each of the three adjacent cells is
assigned a different subchannel. The interfering cells are separated away by
one-cell spacing. Note that, although static frequency reuse increases the
SINR, it does not necessarily increase the achievable rate of all users. In this
scenario, the instantaneous rate expression in (2.11) should be multiplied
by 1/F , where F is the reuse factor. For F > 1, some users, who gain less
from intercell interference mitigation, might experience a lower data rate
compared to universal frequency reuse (F = 1). This issue has motivated
the proposal of fractional frequency reuse schemes in order to shift the
effective reuse factor towards 1 [11].

Fractional frequency reuse is based on the idea of reuse partitioning [12],
where a lower reuse factor is used in high SINR regions in the cell, while a
higher reuse factor is used in low SINR regions. With universal frequency
reuse, the highest throughput is provided to users in the cell-center who
are experiencing a high SINR. With frequency reuse larger than 1, cell-
edge users will experience the highest relative increase in the throughput
as a result of intercell interference mitigation, compared to other users in
the cell. The fractional frequency reuse scheme is actually a combination
thereof where, for example, frequency reuse 1 is used for cell-center users
while a frequency reuse larger than 1 is used for the cell-edge users. This
is shown in Fig. 2.5, where the total frequency band is divided into four
subchannels, namely f1, f2, f3, and f4. The subchannel f1 is used in all the
cells to serve users with high SINR. A frequency reuse of 3 is implemented
at the cell edge on the remaining three subchannels. Note that in fractional
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Figure 2.5: An example of fractional frequency reuse.

frequency reuse, the subchannels used at the edge of a given cell, are left
empty in the neighboring cells. This results in the effective frequency reuse
factor to be still less than 1, as it is not possible to transmit over the whole
bandwidth in each cell. Soft frequency reuse is an attempt to address this
problem [11].

In soft frequency reuse, it is possible to transmit over the whole system
bandwidth, but with a non-uniform power spectrum. Figure 2.6 shows the
power spectrum assignments in different cells of a system with soft frequency
reuse. Notice that in the power spectrum there is one high-power region
and three low-power regions. High-power regions are preferably assigned
to the cell-edge users, while cell-center users are typically served in the
low-power regions. As the high-power regions in the neighboring cells are
non-overlapping, intercell interference at cell-edge users is received from
the low-power regions in the neighboring cells. This improves the cell-edge
SINR, while degrading SINR for users at the cell-center. Since a cell-edge
user typically experiences a low SINR, its data rate would increase almost
linearly with SINR. On the other hand, the degradation in SINR for a high
SINR user would only result in a logarithmic reduction of its data rate
(see (2.11)). Note that, soft frequency reuse is considered as a universal
frequency reuse scheme as it is possible to transmit over all the bandwidth
in each cell.

2.3.2 Cell Sectoring

Another well-known method to mitigate the intercell interference is via cell
sectoring. This is achieved by using several directional antennas instead of
a single omni-directional antenna in each cell. Dividing the cells into sectors
actually reduces the network capacity because the available subchannels in
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Figure 2.6: An example of soft frequency reuse.

Figure 2.7: An example of cell sectoring with 120◦ sectors.

each cell are now divided among different sectors (similar to static frequency
reuse). The gain in network capacity is, however, achieved by reducing the
number of interfering cells. If the same subchannels are assigned to a fixed
sector position in all cells, each sector causes interference to the cells that
are in its transmission angle only. With no sectoring, intercell interference is
received from six neighboring cells in the first tier, while with 120◦ sectoring,
only two neighboring cells interfere with any given sector. This is illustrated
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in Fig. 2.7, where Sector 1 receives interference only from Sectors 6 and 7.

2.3.3 Cell Densification

Another efficient approach to combat the intercell interference and meet
traffic and data rate demands in cellular networks is through increasing the
number of cells per unit area. Assuming the number of users in the coverage
area remains unchanged, deploying a larger number of base stations will
increase the system capacity. This happens because of two main reasons:
1) with more base stations, each user is more likely to find an idle base
station to connect to. In other words, each base station has to share its
resources with fewer users; 2) as the coverage area of each cell is reduced,
the transmit power from base stations can be lowered, resulting in a reduced
intercell interference. Denser base station deployment, however, comes at
a cost of installing extra towers and backhaul connections as well as extra
signaling to support for handoff. Hence, cell densification is sometimes
referred to as a hardware approach to increase the system capacity. A
software solution is implemented via multicell coordination, in which the
neighboring base stations jointly coordinate the transmission to mitigate or
even exploit the intercell interference [13]. This technique is known as base
station coordination and will be explained in Chapter 4. Before that, we
provide a brief introduction to the use of multiple antennas in conventional
non-coordinated networks in Chapter 3.



Chapter 3

Multi-Antenna Cellular
Networks

The traditional way of increasing the data rate in cellular networks with a
single antenna at each end of the communication link, a.k.a. single-input
single-output (SISO), is to increase either the power or the bandwidth or
both. However, there are some constraints on the amount that the trans-
mit power and the bandwidth can be increased, which limits the achievable
spectral efficiency in SISO networks. From one hand, the data rate of SISO
wireless networks can not be increased unboundedly by just increasing the
transmit power as these networks are interference-limited. On the other
hand, this data rate can not be increased by using a larger bandwidth either,
since the spectrum is a limited and expensive resource. The idea of using
multiple antennas at both the transmitter and the receiver, referred to as
MIMO, serves as an alternative way of increasing the data rate without the
need for extra power or bandwidth. The key feature of MIMO techniques is
to exploit the degrees of freedom provided by the multipath fading channel,
which deteriorates the quality of transmission in traditional SISO networks,
to increase the spectral efficiency, suppress interference, and improve the re-
liability of wireless transmission. In this chapter, a brief overview of different
methods to deploy multiple antennas in a cellular network is presented and
the performance gain of each method is discussed.

3.1 Single-User MIMO

In a single-user MIMO (SU-MIMO) link, a.k.a. point-to-point MIMO link,
one transmitter equipped with multiple antennas communicates with one
multi-antenna receiver, as illustrated in Fig. 3.1. In the pioneering work
by [14,15,16], it was shown that the use of Nt transmit antennas and Nr re-
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Figure 3.1: Illustration of a point-to-point MIMO link.

ceive antennas can result in a capacity that scales linearly with min(Nt, Nr)
relative to the SISO case. This capacity increase is achieved under suffi-
ciently rich scattering environment, so that independent transmission paths
can be created from each transmit antenna to each receive antenna [17].

3.1.1 MIMO Leverages

In this subsection, we discuss the leverages of SU-MIMO transmission in
two different signal-to-noise ratio (SNR) regimes, namely low SNR and high
SNR.

• Low SNR Regime: The use of multiple antennas provides an op-
portunity for beamforming in order to improve the SNR at the receive
side. An increase to the average SNR, called array gain, as well as
a reduction in the SNR fluctuations, known as diversity gain, can
be made through beamforming at the transmitter or the receiver or
both. Beamforming at the transmitter (receiver) requires the CSI to
be available at the transmitter (receiver). However, diversity gain at
the transmitter can be achieved in the absence of CSI at the trans-
mitter by using a technique known as space-time coding [18, 19]. In
contrast to beamforming, space-time coding just reduces the varia-
tions in the received SNR and does not improve the average SNR.

• High SNR Regime: The use of multiple antenna techniques to
improve the received SNR, allows for an increase in the achievable
data rates only as long as the data rates are power-limited rather
than bandwidth-limited. Therefore, at high enough SNR levels the
achievable data rates start to saturate, giving diminishing returns for
further increase in the SNR unless the bandwidth is also increased.
This can be better understood by considering the basic expression of



3.1 Single-User MIMO 21

channel capacity1 [10]

C = log2 (1 + SNR) . (3.1)

It can be observed from (3.1) that for large values of SNR, the ca-
pacity grows logarithmically with the SNR. However, in the case of
multiple antennas at both sides of the communication link, it is possi-
ble to create multiple parallel data pipes (under certain condition) to
share the SNR and avoid the saturation problem. The capacity will
grow essentially linearly with the minimum of the number of transmit
and receive antennas, i.e., we have C = min(Nt, Nr) log2(SNR)+O(1).
This linear increase in capacity resulting from employing multiple an-
tennas at both ends of the communication link is usually referred to
as spatial multiplexing gain [17].

3.1.2 Capacity of MIMO Channels

In this subsection we investigate the capacity of single-user MIMO channels.
We begin by introducing the system model.

System Model

The flat-fading channel matrix between a transmitter with Nt antennas and
a receiver with Nr receive antennas is represented by a matrix H ∈ CNr×Nt .
The received signal y ∈ CNr×1 can be expressed as

y = Hx+ n, (3.2)

where x ∈ CNt×1 is the transmitted signal vector, and n ∈ CNr×1 is the
additive white Gaussian noise (AWGN) vector with the elements that are
distributed as CN (0, σ2

n). We consider a total average transmitted power
constraint as E[tr{xxH}] ≤ P , where E[·] denotes the expectation operator
and tr{·} is the trace operator.

Capacity of Constant MIMO Channels

The capacity of a single-user time-invariant channel is defined by Shannon’s
capacity theorem to be the maximum data rate that can be transmitted over
the channel with arbitrarily small error probability [17]. Channel capacity
is defined with no limits on computational complexity or delay, and thus
is a fundamental measure of the performance limits of any communication
system. It was shown in [16] that if perfect CSI is available both at the
transmit and the receive sides, the MIMO channel can be transformed into

1For notational convenience, we drop the time-slot index t temporarily until Sec-
tion 3.2.2.
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parallel sub-channels by using singular value decomposition (SVD) of the
channel. The capacity of the constant MIMO channel is given by

C = max
Q:tr{Q}≤P

log2 det

(

INr
+

1

σ2
n

HQHH

)

, (3.3)

where Q is the covariance matrix of the input signal, i.e., Q = E[xxH]. As-
suming the CSI is available at the transmitter, we can use the eigen value de-
composition to diagonalize the Hermitian matrix HHH as HHH = UHΛU.
Here, U is a unitary matrix and Λ = diag(λ1, . . . , λNr

) is a non-negative
diagonal matrix, with λi, for i = 1, 2, . . . , Nr, being the i-th eigenvalue
of HHH. Now, using the matrix identity det(I + AB) = det(I + BA)
twice, (3.3) can be rewritten as [17]

C = max
Q:tr{Q}≤P

log2 det

(

INr
+

1

σ2
n

Λ1/2UQUHΛ1/2

)

. (3.4)

Note that Q̃ = UQUH is non-negative definite if and only if Q is non-
negative definite. Furthermore, tr(Q̃) = tr(Q), which means that the max-
imization over Q can be done equally well over Q̃. We next use the matrix
identity det(B) ≤∏iBii, for every non-negative definite matrix B, to write

det

(

INr
+

1

σ2
n

Λ1/2Q̃Λ1/2

)

≤
∏

i

(1 + piλi), (3.5)

where pi denotes the i-th diagonal element of Q̃. Notice that the equality
in (3.5) occurs when Q̃ is diagonal. In this case, the optimal power allocation
matrix is found through waterfilling as

pi =

(

µ− σ2
n

λi

)+

, (3.6)

where x+ is defined as max(x, 0), and µ is the waterfill level chosen such
that the total power constraint is satisfied, i.e.,

Nr∑

i=1

(

µ− σ2
n

λi

)+

= P. (3.7)

Acquiring CSI at the transmitter is not easy in general. Assuming no CSI
at the transmitter, a natural choice for the input covariance matrix would
be Q = (P/Nt)INt

, meaning that the signals transmitted from different
antennas are independent and have equal power.



3.1 Single-User MIMO 23

Capacity of Time-Varying MIMO Channels

In the case of a time-varying channel, definition of the capacity depends on
the availability of CSI at either the transmitter or the receiver or both. In
low mobility scenarios, it can be assumed that the fading is slow enough
such that the channel can be estimated reliably at the receiver and fed back
to the transmitter with negligible delay. In moderate to high mobility sce-
narios, however, the channel changes might not be tractable anymore. A
common model is to assume a block-fading channel model [20]. Accord-
ing to this model, the channel coefficients are constant over a so-called
fading coherence block with length of ∆ complex dimensions (or channel
uses) and changes independently from one block to another. The fading
coherence block length ∆ in the time-frequency domain is proportional to
the product WcTc, where Tc, measured in seconds, denotes the channel
coherence time, and Wc, measured in Hertz, is the channel coherence band-
width [21]. In particular, the high-SNR capacity of a single-user MIMO sys-
tem with Nt transmit antennas and Nr receive antennas over a block-fading
channel with coherence block of length ∆ complex dimensions, scales as
C = min{Nt, Nr,∆/2} log(SNR) +O(1) [22, 23]. Therefore, even when the
number of transmit and receive antennas grows very large, i.e., Nt, Nr ≫ 1,
the available degrees of freedom are eventually limited by the fading coher-
ence block length ∆. Note that, the coherence block length is usually as-
sumed to be large enough such that very powerful capacity-achieving codes
can be used. Depending on the length of the transmitted codeword two
different capacity measures can be defined as follows.

• Ergodic Capacity: If the transmitted codeword span an infinite
number of fading blocks, then the ergodic capacity is a suitable per-
formance metric. In this scenario, assuming the availability of perfect
CSI at both the transmitter and the receiver, the ergodic capacity is
defined as the average of the capacity achieved for each realization of
the channel explained in the previous section, i.e.,

C = EH

[

max
Q:tr{Q}≤P

log2 det(INr
+

1

σ2
n

HQHH)

]

. (3.8)

On the other hand, if H contains i.i.d. elements and is only known to
the receiver but not to the transmitter, it is shown in [24,16] that the
optimum input covariance matrix that maximizes the ergodic capacity
is the identity matrix scaled by the transmit power divided equally
among all transmit antennas.

• Outage Capacity: If the transmitted codeword spans a single fading
block and CSI is perfectly available at the receiver, but not at the
transmitter, outage capacity is a relevant measure. In this situation
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the Shannon capacity is zero due to the fact that no matter how small
the rate at which the communication is performed, there is always a
nonzero probability that the given channel realization will not support
this rate [9]. The b% outage capacity Cb

out, is defined as the rate that
is guaranteed for (100− b)% of the channel realizations [20, 25], i.e.,

Pr(C < Cb
out) = b%. (3.9)

3.2 Single-Cell Multiuser MIMO Communi-

cations

Although SU-MIMO techniques have shown to achieve a capacity that scales
linearly with min(Nt, Nr), this gain is based on some premise such as rich-
scattering propagation environment. Furthermore, in a cellular system, it
is possible to deploy a large number of antennas at the base station, while
user terminals usually have a smaller number of antennas due to constraints
on size and cost. Therefore, in transmission schemes such as time division
multiple access (TDMA), where only one user communicates at each time-
slot with the base station, the multiplexing gain min(Nt, Nr) = Nr is limited
by the number of antennas at the user terminals. An alternative to SU-
MIMO is the multiuser MIMO (MU-MIMO). In this technique, the spatial
degrees of freedom provided by multiple antennas at the base station can be
exploited to simultaneously serve multiple users, each with single or multiple
antennas, over the same time-frequency resource. Several key advantages
of MU-MIMO over SU-MIMO are as follows:

• In MU-MIMO the multiplexing gain2 is achieved without the need for
multi-antenna terminals, thereby allowing the development of small
and cheap terminals. This allows to keep the intelligence and cost on
the infrastructure side.

• MU-MIMO is more immune to the limitations imposed by the propa-
gation environment such as poor scattering. As a matter of fact, line-
of-sight condition which completely degrades the multiplexing gain in
SU-MIMO is no longer a problem in MU-MIMO.

In MU-MIMO transmission, a new form of interference resulting from si-
multaneous transmission to/frommultiple users over the same time-frequency
slot emerges. This form of interference is commonly referred to as inter-user
interference (or intracell interference in cellular context). As in MU-MIMO
communication no coordination is assumed among users, inter-user inter-
ference mitigation is different in uplink and downlink.

2Note that the multiplexing gain in MU-MIMO is sometimes called multiuser multi-

plexing gain.
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In the uplink transmission, there is little to be optimized at the user
side due to the lack of coordination among the users. Therefore, the chal-
lenge is for the base station to separate the signals transmitted by different
users. This can be easily attained assuming the base station has perfect
CSI knowledge of all users and implements a classical multiuser receiver to
separate the signals of different users.

In the downlink transmission, on the other hand, inter-user interference
mitigation at the user side is too complicated due to limitations such as
size and power at user terminals (which do not exist at the base station).
Hence, in the downlink, it is preferred to move the inter-user interference
mitigation to the base station side [26]. This is a challenging task since it
requires the knowledge of CSI of all users at the base station to properly
serve spatially multiplexed users. Note that in the extreme case of no CSI
at the base station and identical fading statistics at all receivers, the mul-
tiuser multiplexing gain will be lost [27]. Therefore, although not necessary
for SU-MIMO transmission, CSI has a cardinal role in inter-user interfer-
ence mitigation techniques for MU-MIMO transmission. Hence, we only
focus on the downlink in the rest of the thesis, where base stations are the
transmitters and users are the receivers.

We consider a base station equipped with Nt antennas communicating
with K ≥ Nt users, each with Nr antennas. The received signal at the k-th
user in such a system can be expressed as

yk = Hkx+ nk, (3.10)

where yk ∈ CNr×1 is the received signal vector of user k, Hk ∈ CNr×Nt

denotes the downlink channel matrix between the base station and user k,
x ∈ CNt×1 is the transmit signal vector, and nk ∈ CNr×1 denotes the AWGN
vector at user k. The transmit signal vector x is in general a function of
each user k’s data signal vector xk, for k = 1, . . . ,K. The covariance matrix
of user k transmit signal vector is given by Qk = E[xkx

H

k ]. Furthermore, we

assume a total power constraint of P at the base station, i.e.,
∑K

k=1 tr(Qk) ≤
P .

In a SU-MIMO system, the capacity of the system is characterized by
one single number. In a MU-MIMO system with K users, however, the
capacity of the system is characterized by a region ofK dimensions, denoted
as the capacity region, in which each K-dimensional vector represents the
achievable rates by all K users. A rate vector is said to be achievable if there
exists a coding scheme for which the joint probability of error for all users
can be made arbitrarily small as the code block length becomes sufficiently
large. Hence, in a MU-MIMO system with homogenous users, i.e., users
with the same average SNR, one common performance metric to optimize
is the sum rate of all users.

It has been shown that the optimal transmission strategy for a single
base station to serve multiple users simultaneously (a.k.a. MIMO broad-
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cast channel) is through a coding scheme known as dirty paper coding
(DPC) [28]. This coding scheme is based on interference pre-subtraction
combined with an implicit user scheduling and power loading algorithm.
In particular, it can be shown that when the number of users K is larger
than the number of base station antennas Nt, capacity scales linearly with
Nt using DPC. The concept of DPC was first introduced by Costa [29].
He showed that for a scalar AWGN channel with an interfering Gaussian
signal known non-causally at the transmitter (but not at the receiver), the
capacity is the same as if there was no additive interference, or equivalently
as if the receiver also had the knowledge of interference. In other words,
if the interference is known non-causally, it can be pre-subtracted at the
transmitter with no increase in the transmit power. This idea was extended
to the MIMO case later and in [28] it was shown that DPC is in fact the
capacity-achieving transmission strategy in the MIMO broadcast channel.
Although theoretically optimal, DPC is very difficult to implement in prac-
tical systems due to high computational burden of successive encodings and
decodings, especially when the number of users K is large.

To operate at a point on the capacity region boundary, the base station
needs to serve all K users simultaneously. Note that the allocated resources
to each user, e.g., power, depends on the instantaneous channel conditions
and may vary greatly from user to user. Furthermore, the multiplexing gain
is limited by the number of antennas at the base station. Hence the number
of users that are effectively served with non-zero power at any given instant
of time is directly related to Nt. This number can be considerably less
than the total number of users K. Studies have shown that the maximum
number of users with non-zero allocated power at any given realization of the
channel is upper bounded by N2

t [30]. Users with non-zero allocated power
at each time-slot are usually referred to as active, scheduled, or selected
users. The complexity of DPC implementation from one side and the issue
of the optimal number of users to serve on the other side, motivate the need
for more practical transmission strategies and user scheduling algorithms.

3.2.1 Linear Precoding

The operation of precoding at the transmitter side is similar to that of
equalization at the receiver side. As a result, precoding requires an accu-
rate estimate of CSI at the transmitter. Several low-complexity linear and
non-linear precoding schemes have been proposed that when combined with
single user encoding and decoding, can achieve near capacity performance.
In particular, it has been shown that linear beamforming schemes asymp-
totically approach DPC performance [31]. For a MU-MIMO system with
homogeneous users this means that the sum-rate scales as Nt log(SNR) for
SNR approaching infinity with fixed K ≫ Nt, and scales as Nt log logK for
K going to infinity with fixed SNR. Linear precoding, however, might per-
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form far from DPC when the number of users is small. Non-linear precoding
techniques such as vector perturbation [32] and Tomlinson-Harashima [33]
can perform closer to DPC even when the number of users is small by per-
forming additional signal processing at the transmitter. In this thesis, we
assume the number of users is much larger than the number of transmit
antennas whenever we consider user scheduling. Moreover, we only focus
on linear precoding techniques for simplicity. In the rest of this subsec-
tion, we provide an overview of three popular linear precoding techniques,
namely zero-forcing (ZF), minimum mean square error (MMSE), and block
diagonalization (BD).

In the classical space division multiple access (SDMA) scheme with
single-antenna users, as illustrated in Fig. 3.2, each user’s stream is encoded
independently and multiplied by a so-called beamforming (BF) weight vec-
tor for transmission through multiple antennas. This will reduce (or elim-
inate) the interference among different streams due to spatial separation
of users. Linear precoding is a generalization of SDMA, where each user
is equipped with multiple antennas and therefore is assigned a precoding
matrix instead of a BF vector. For the MU-MIMO system under considera-
tion, define sk ∈ CNt×1 to be the transmitted signal vector for user k. This
signal vector is multiplied by a precoding matrix Tk ∈ CNt×Nr and sent to
the base station antennas for transmission. The transmit signal from Nt

antennas at the base station is therefore given by

x =

K∑

k=1

Tksk. (3.11)

The received signal vector in (3.10) can then be rewritten as

yk = HkTksk
︸ ︷︷ ︸

desired signal

+

K∑

j=1,j 6=k

HkTjsj

︸ ︷︷ ︸

inter-user interference

+nk, (3.12)

where, in the right hand side of the equality (3.12), the first term is the
desired signal and the second term denotes the inter-user interference. The
precoding matrices are designed jointly based on a number of optimization
criteria and the availability of CSI from all users. Under single-user de-
tection, where each user only decodes its own data signal, while treating
inter-user interference as part of the background noise, the achievable rate
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Figure 3.2: Schematic illustration of SDMA.

of user k is given by [34]

Rk = I(sk;yk)

= log2 det
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I+
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H
j H

H
k





−1

HkTkQkT
H
k H

H
k




 ,

(3.13)

where I(sk;yk) denotes the mutual information between sk and yk. An
example of an optimization criterion for designing precoding matrices is to
maximize the sum rate of all users subject to a total power constraint at
the base station. In this case, one should maximize Rsum, given by

Rsum = max
Tk,Qk

K∑

k=1

Rk, (3.14)

subject to:

K∑

k=1

tr(TkQkT
H

k ) ≤ P. (3.15)

Channel Inversion

Channel inversion, or ZF, is a sub-optimal precoding strategy that can be
implemented easily in practice with a performance comparable to that of
DPC in some cases. In linear precoding the number of users which can be
served simultaneously is limited by the number of degrees of freedom, which
is equal to Nt. Usually a subset S of users is selected for transmission by
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the scheduler at each time-slot (This will be explained in more detail in the
next subsection). For ease of exposition, we focus on Nr = 1 and denote the
channel and the BF vector of user k as hk and tk, respectively. To satisfy the
dimensionality constraint of linear precoding we should have |S| ≤ Nt. Let
H = [hH

1 . . .hH

K ]H denote the aggregate channel matrix, and T = [tH1 . . . tHK ]H

be the aggregate precoding matrix of all users. For the scheduled users
in S, denote H(S) and T(S) as the corresponding submatrices of H and
T, respectively. The ZF precoding is found by finding the Moore-Penrose
pseudo inverse of H(S) as [31]

T(S) = H(S)† = H(S)H
(
H(S)H(S)H

)−1
. (3.16)

The achievable sum rate is given by

Rsum = max
pk∑

k∈S
ηkpk≤P

∑

k∈S

log(1 + pk), (3.17)

where pk is the allocated power to the k-th user and

ηk =
1

[

(H(S)H(S)H)−1
]

k,k

(3.18)

denotes the effective channel gain for user k. The transmit power allocation
depends on the optimization criterion, e.g., for sum rate maximization the
optimal power allocation is achieved via a waterfilling algorithm as explained
in Section 3.1.1. In general, ZF is not power efficient since the weight vector
of each user does not match its channel vectors. In other words, when the
channel is rank-deficient, it causes signal attenuation at the base station
side. As a result, the capacity of channel inversion does not increase linearly
withNt. However, if the number of users, i.e., K, is asymptotically large and
user selection is performed, the sum rate of ZF precoding approaches that
of DPC [31]. This is due to multiuser diversity, which is a form of selection
diversity that gives the opportunity to the base station to select a subset
of users with favorable channel conditions. There are two major benefits
provided by multiuser diversity, namely increased channel magnitudes and
abundant channel directions. As an example of the former benefit, consider
a set of K homogeneous users. The channel gain of the best user is then
roughly logK times higher than the average channel gains, resulting in the
multiuser diversity to increase the SNR by the same factor. Furthermore,
the provided abundant channel direction enables the base station to choose
a user group with good spatial separations, which minimizes the signal
attenuation problem in ZF.
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Regularized Channel Inversion- MMSE Precoding

Similar to minimum mean square error (MMSE) equalization, regularized
channel inversion adds a regularization vector to the ZF precoder, to reduce
the signal attenuation problem, i.e.,

T(S) = H(S)† = H(S)H
(
H(S)H(S)H + εI

)−1
. (3.19)

Here, ε is the regularization factor, which is usually determined heuristically
to obtain a good tradeoff between the numerical conditioning of the chan-
nel inversion and the amount of residual interference [32]. In contrast to
the channel inversion scheme, regularized channel inversion leads to linear
capacity growth with the number of transmit antennas. Furthermore, the
performance of MMSE is much better at low SNR and converges to that of
ZF at high SNR. However, it does not completely eliminate the inter-user
interference, thus optimal power allocation can not be performed easily.

Block Diagonalization (BD)

When each user has multiple antennas, inversion of the aggregate channel at
the transmitter is sub-optimal, since some level of coordination is allowed
among the antennas of each user. Let us re-define the aggregate users’
channel and precoding matrices as

H = [HH

1 HH

2 · · · HH

K ]H, (3.20)

T = [TH

1 TH

2 · · · TH

K ]H. (3.21)

The optimal design for zero inter-user interference is obtained when HT is
block diagonal [35]. In order to achieve this property, the precoding matrices

{Tj}Kj=1 are chosen such that HkTj = 0, ∀k 6= j. Let H̃k ∈ C(K−1)Nr×Nt

be defined as

H̃k = [HH

1 · · · HH

k−1 HH

k+1 · · · HH

K ]H. (3.22)

Then the zero inter-user interference is obtained by forcing Tk to lie in the
null space of H̃k. It reveals that the necessary condition to accommodate
all users under a zero-interference constraint is that the null space of H̃k

has a dimension greater than zero, i.e., rank(H̃k) < Nt. Let the SVD of H̃k

be
H̃k = ŨkΣ̃k[Ṽ

(1)
k Ṽ

(0)
k ]H, (3.23)

where Ṽ
(1)
k consists of the principal ℓ̃k = rank(H̃k) right singular vectors,

corresponding to non-zero singular values. On the other hand, Ṽ
(0)
k contains

the last Nt− ℓ̃k right singular vectors corresponding to zero singular values,
and thus forms an orthonormal basis for the null space. Let ℓk denote the
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rank of the effective channel matrix for user k, i.e., HkṼ
(0)
k . A sufficient

condition to make the transmission to user k feasible, i.e., to have ℓk ≥ 1, is
that at least one row of Hk is linearly independent of the rows of H̃k [35].
The channel of user k after projection to the null space of H̃k becomes inter-

user interference free. Therefore, the effective channel HkṼ
(0)
k is similar to

a SU-MIMO channel, for which the optimal transmission strategy is the one
based on SVD precoding and waterfilling over its singular values [16] (see
also Section 3.1.1). Define the SVD of the effective channel for user k as

HkṼ
(0)
k = Uk

[
Σk 0
0 0

]

[V
(1)
k V

(0)
k ]H, (3.24)

where Σk contains the ℓk non-zero singular values and V
(1)
k the correspond-

ing ℓk singular vectors. The precoding matrix Tk can then be chosen as the

product of Ṽ
(0)
k and V

(1)
k .

3.2.2 Downlink Resource Allocation

Resource allocation techniques play an important role in efficient utilization
of the scarce radio resources and provision of the quality of service in the
downlink of multiuser MIMO networks. In a very general sense, a downlink
resource allocation policy is defined by a physical (PHY) layer signaling
P and a MAC layer scheduling algorithm ω. The PHY layer signaling
determines the type of coding used for transmission, such as superposition
coding, spatial precoding, etc. The MAC layer scheduling at each time-slot
t decides which user must be served and with what rate, by choosing a rate
K-tuple R(t) = [R1(t) · · ·RK(t)]. This rate vector is a function of CSI and
some other fairness criteria (more details will be specified later). Let RP (t)
denote the instantaneous rate region during time-slot t. For all rate vectors
R(t) ∈ RP (t), communication to all users is performed with vanishing error
probability. A feasible scheduling algorithm for the signaling scheme P is
one that chooses R(t) ∈ RP (t) for all t.

Let R̄k denote the long-term average rate (a.k.a. throughput) of a user
k in bits/s/Hz, defined as

R̄k = ηkRk. (3.25)

Here, ηk denotes the fraction of time-slots on which user k is served, referred
to as the activity fraction, and Rk is the average rate of user k if it was served
at all time-slots, nicknamed as net average rate hereafter. The value of ηk is
determined by the scheduling algorithm in the MAC layer, while the value of
Rk depends on the SINR experienced by the user. The achievable ergodic
rate region (or the throughput region) for a given signaling scheme P is
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defined as

RP = coh
⋃

ω∈ΩP

{

R̄ ∈ R
K
+ : R̄k ≤ lim inf

τ→∞

1

τ

τ∑

t=1

Rk(t), ∀k
}

, (3.26)

where “coh” denotes the “closure of the convex hull” and ΩP is the set of
all feasible scheduling policies under the signaling scheme P . The goal of
downlink scheduling is to make the system operate at a desired point on the
ergodic rate region for a given PHY layer signaling scheme. This is achieved
by solving the following optimization problem

max U(R̄)

subject to: R̄ ∈ RP , (3.27)

where U(·) is a continuous, strictly concave, and component-wise increasing
utility function, reflecting some suitable notion of fairness [36].

In high-rate data-oriented downlink systems, two specific settings are of
particular interest: 1) systems with random data arrivals and transmission
queues; 2) systems with infinite backlog. In the former, the scheduling algo-
rithm should adapt to both the channel and the data traffic variations. The
main goal in this case is to achieve stability of the transmission queues, such
that they all have a finite average buffer size [37]. In the latter, however,
users’ data are already available at the transmitter and only the channel is
varying. The main objective here is to share the channel among the users
to maximize the average throughput subject to some fairness constraint.
Note that in a system with homogeneous users, scheduling algorithms that
maximize the sum rate (i.e., pick up the users with the best channel con-
ditions) at each time-slot turns out to also maximizes the throughput of
individual users. When realistic distance-dependent pathloss and shadow-
ing are taken into account, the average SNR of users are not necessarily
equal. In such a scenario, the scheduling strategy that maximizes the sum
rate might result in serving the users close to the base station in most of
the time-slots, leaving the users with a larger pathloss unserved for a long
time. This makes the notion of fairness particularly important in scenarios
including realistic distant-dependent pathloss. A simple scheduling algo-
rithm, which has been used in 1xEV-DO and the data-oriented downlink
schemes of CDMA2000 [38], to address the fairness issue is the proportional
fairness scheduling (PFS). In this approach, the scheduling optimization
problem is formulated as

max

K∑

k=1

log(R̄k)

subject to: R̄ ∈ RP . (3.28)
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It is well known that the solution to (3.28) is achieved by a dynamic policy
that at each time-slot t selects a rate vector R∗(t) such that

R∗(t) = arg max
R(t)∈RP(t)

K∑

k=1

Rk(t)

R̄k
, (3.29)

whereRP (t) denotes the instantaneous achievable rate region for PHY layer
signaling P . Note that the ergodic rates R̄k, for k = 1, . . . ,K, are generally
not known a priori. Hence, an adaptive method is used to estimate these
values recursively as [38]

R̄k(t) = (1− 1/T )R̄k(t− 1) + (1/T )Rk(t), (3.30)

where R̄k(t) denotes the average rate until time-slot t, and 1/T is a constant
that governs the size of a exponential moving average window. Note that
R̄k(t− 1) is used in (3.29) in place of R̄k at each time-slot t. Furthermore,
it is known that the adaptive algorithm approaches the exact PFS rates in
the limit of very small 1/T .

Under PHY layer signaling based on linear precoding and assuming
single-antenna users, the optimization problem in (3.29) is solved via finding
a subset of users that maximize the weighted sum rate. This can be done
with a brute-force complete search over all possible combinations of users.
When the number of users is large, however, the computational complexity
of the brute-force approach becomes prohibitive. As a result, low-complexity
greedy user selection schemes have been proposed in [39,31,40]. For exam-
ple, in the capacity-based greedy user selection algorithm, the transmitter
chooses the single user with the highest rate. Then, it finds the next user
among the remaining unselected users that provides the maximum sum rate
(or weighted sum rate) with the previously selected users. The algorithm is
repeated until either there is no more improvement in the sum rate or the
number of selected users is equal to the number of transmit antennas.

To clarify the operation of PFS for homogeneous and heterogeneous
users, we consider two cases where a base station with 2 antennas serves
4 single-antenna users using ZF beamforming. In the first case, all users
have an equal average SNR of 15 dB. In the second scenario, all 4 users are
placed over a line at distances of 100, 400, 700, and 1000 m from the base
station, respectively. The pathloss model for user k is given by (dk/D0)

−υ,
where dk is the distance of user k to the base station, D0 = 1000 m denotes
a reference distance, and υ = 3.5 is the pathloss exponent. Furthermore,
the transmit power at the base station in this scenario is chosen such that
the farthest user experiences an average SNR of 15 dB. Figure 3.3 shows
the user throughput estimates R̄k(t) in (3.30) versus the time-slot index
for both the homogeneous (Fig. 3.3(a)) and the heterogeneous (Fig. 3.3(b))
cases. It is observed that the limiting throughput for all homogeneous users
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is the same. This means that PFS in this case is reduced to sum rate
maximization. For heterogeneous users, however, the limiting values are
different depending on the location of the users.

3.2.3 CSI Acquisition at the Base Station

Resource allocation for MU-MIMO systems requires the CSI of all users
to be available at the base station. In practice, CSI is usually obtained
through some form of training, estimation, and feedback, and is usually im-
perfect. In time-division duplexing (TDD) systems, uplink and downlink
transmissions are performed over the same channel coherence bandwidth.
In such systems, CSI can be acquired in the so-called open-loop mode via
training pilots transmitted by users and employing the reciprocity of the
uplink and downlink channel. In frequency-division duplexing (FDD) sys-
tems, however, uplink and downlink transmissions take place in different
widely separated frequency bands. In this scenario, CSI at the base station
is obtained in a so-called closed-loop mode, where each user estimates its
CSI using the training pilots transmitted over the downlink channel, and
then feeds this information back to the base station either in quantized (dig-
ital) or unquantized (analog) form over the uplink feedback channel [41,42].
The quality of the CSI at the base station depends on the amount of signal
dimensions dedicated to training and feedback. It follows that there is an
inherent tradeoff between the advantages of improving the CSI quality and
the amount of signal dimensions allocated for CSI estimation and feedback.

In this thesis, we focus on FDD systems, where we assume that there
exists error- and delay-free feedback links that convey the user CSI to the
base station. Note that in practice, feedback links are subject to both delay
and error, which can degrade the performance severely. Analysis of the effect
of feedback imperfections are, however, beyond the scope of this thesis. The
interested readers are referred to recent works in [43,44,45,46,47,48,49] and
the references therein.

3.3 MU-MIMO in Multicell Environment

The predicted gains of MU-MIMO is significantly deteriorated when em-
ployed in a multicell environment due to the presence of intercell inter-
ference. Note that a multicell MU-MIMO network can be looked at as a
conventional cellular network with increased antenna density. The num-
ber of antennas in such a system can potentially be equal to that in a cell
densified network explained in Section 2.3.3, but with the extra antennas
installed in the existing towers instead of new towers (see Fig. 3.4). Assum-
ing the number of users in a given area to remain unchanged, the activity
fraction of each user in a multicell MU-MIMO network is increased due to
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Figure 3.3: User throughput estimates vs. time-slot index for homo-
geneous (a) and heterogeneous (b) users.
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the increased antenna density. The SINR distribution for users is, however,
different in such a network compared to that in a cell densified network. Al-
though it is possible to fully coordinate the antennas at each base station in
multicell MU-MIMO networks, the users in such networks suffer from intra-
cell interference, which does not exist in cell densified networks. Mitigation
of intracell interference at the base station using the techniques discussed
in the Section 3.2.1 consumes degrees of freedom, thereby reducing the de-
sired signal level for each user. Furthermore, as the coverage area of each
cell is not changed in multicell MU-MIMO networks, the transmit power
from base stations can not be lowered as in cell densified networks. There-
fore, assuming the same transmit power as in conventional single-antenna
networks, the intercell interference power is not reduced in this scenario.
However, due to the increased number of interfering signals, the statistical
distribution of intercell interference is changed.

We highlight that intercell interference has a fundamental difference from
intracell interference caused by other users in the same cell or from inter-
stream interference caused by spatial multiplexing of data streams of a single
user. In a network where cells operate independently and concurrently,
intercell interference is a non-causal quantity which can not be known prior
to transmission. The scheduler at each base station performs user scheduling
based only on the CSI knowledge of the users in its own cell (denoted as
the local CSI), and without any knowledge about the intercell interference.
The intercell interference power observed at each user changes from time-
slot to time-slot in a random and unpredictable manner, depending on the
scheduling decision made by neighboring cells. Therefore, the instantaneous
SINR at each user in the system is a random variable (see eq. (2.10)). Even
if MU-MIMO techniques minimize the inter-user interference power using
the local CSI, intercell interference power could be large for cell-edge users,
resulting in a low SINR values at these users. Hence, although the use
of multiple antennas at the base stations can increase the activity fraction
of cell-edge users, their performance could still be very poor due to low
SINR values. This problem calls for efficient intercell interference mitigation
techniques.

In a system with NI interfering base stations, each with Nt antennas,
each user will need Nr ≥ (NI + 1)Nt antennas to suppress the spatial inter-
ference from the neighboring base stations and decode parallel data streams
from its serving base station using linear processing. This is almost impos-
sible to implement in the small size unit at the user side [50]. Therefore, the
intercell interference mitigation must be performed at the transmitter side,
which does not have such user side constraints on size and power. One of
the candidate techniques for this purpose is to exploit or mitigate the inter-
cell interference via coordination among base stations, which is explained
in the next chapter.
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(a)

(b)

Figure 3.4: An example of a cell densified network with single-antenna
base stations (a) and a conventional cellular network with
multi-antenna base stations (b).





Chapter 4

Multicell Coordination

As mentioned in the previous section, the performance of MU-MIMO sys-
tems in a multicell environment is degraded by intercell interference, es-
pecially for users close to the cell edge. One of the efficient techniques
to combat the deteriorating effect of intercell interference is to exploit the
coordination among base stations. The basic idea behind coordination tech-
niques is to coordinate the transmission to the users in the adjacent cells
among their corresponding base stations. This requires the CSI and the
user data to be exchanged among these base stations over the backhaul
links. Depending on the amount of signaling overhead that can be placed
over the backhaul links and the feedback channels, different levels of co-
ordination are defined. Note that the idea of base station coordination is
not totally new. In fact, one form of base station coordination already ex-
ists in today’s 3G network, denoted as soft handoff [51]. In conventional
code division multiple access (CDMA) 3G networks, soft-handoff allows a
user to communicate simultaneously with several base stations. In this sce-
nario, selection diversity is used to select the best of these connections at
any given time. Such selection diversity when combined with power control
allows full frequency re-use in each cell. However, full frequency re-use in
CDMA network results in per-cell capacity to be constrained by intercell in-
terference [52]. Base station coordination techniques in LTE-Advanced are
an attempt to address this intercell interference penalty. In this chapter,
an overview of different coordination strategies are presented, and different
challenges in implementing each strategy are discussed.

4.1 System Model

A typical coordinated multicell MU-MIMO network comprises B coordi-
nating base stations each with Nt antennas. There are K users in each
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Figure 4.1: A cluster of 2 BSs, which are cooperatively serving 2 users.

cell. Each user can have multiple antennas to enable spatial multiplexing of
multiple data streams or intercell interference cancelation at the user side.
However, we only consider single-antenna users as we focus on base station
side intercell interference mitigation. A narrowband block-fading channel
model and universal frequency reuse are considered. The base stations are
connected to a central controller via high-speed backhaul links to share data
or CSI or both. Figure 4.1 shows an example of a network with 2 coordi-
nating base stations. The complex baseband received signal at user k in cell
b, denoted as user kb, is given by

ykb
=

B∑

ℓ=1

hH

kb,ℓ
xℓ + zkb

, (4.1)

where ykb
is the received signal, hkb,ℓ ∈ CNt×1 denotes the channel vector

between user kb and the base station ℓ, xℓ ∈ CNt×1 is the transmitted signal
from base station ℓ, and zkb

accounts for receiver noise plus any other form
of interference coming from outside the B coordinating cells.

4.2 Multicell Coordination Strategies

Depending on the amount of information sharing over the backhaul, mul-
ticell coordination techniques can be classified into two main categories,
namely joint processing and coordinated scheduling/beamforming [53].

4.2.1 Joint Processing

In joint processing, user data is available at all the coordinating base sta-
tions. One subclass of joint processing is the so-called network MIMO, in
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(a) (b)

Figure 4.2: Schematic illutration of joint Processing operation: a) net-
work MIMO; b) dynamic cell selection.

which the data to each user is jointly encoded and simultaneously transmit-
ted from all coordinating base stations. Network MIMO operation relies on
the assumption that all the coordinating base stations are inter-connected
via high-capacity backhaul links and can perfectly share the data and CSI of
all users. In this scenario, the concept of serving base station for each user
disappears and all the coordinating base stations act as a single distributed
multi-antenna transmitter with a per base station power constraint [54].
Therefore, in network MIMO intercell interference is exploited as interfer-
ing channels are used to transmit useful data. Another subclass of joint
processing is dynamic cell selection in which the data to each user is trans-
mitted from the coordinating cell with the best channel condition, while the
other base stations are muted, so that intercell interference ismitigated. The
operating principle of network MIMO and dynamic cell selection is shown
in Fig. 4.2(a) and Fig. 4.2(b), respectively.

4.2.2 Coordinated Scheduling/Beamforming

In this coordination strategy, user data is only available at one base station,
i.e., the serving one. It is, however, possible to share the CSI of users
via backhaul links to enable the base stations to coordinate their signaling
strategies, such as power allocation, beamforming, and user scheduling. No
data sharing over the backhaul is required. Note that in this coordination
mode, intercell interference is only mitigated. The operating principle of
coordinated beamforming is shown in Fig. 4.3.

4.3 The Cardinal Role of Scheduling in Mul-
ticell Coordination

Scheduling is one of the most important issues in cellular design. As can
be seen from (3.25) in Section 3.2.2, the long-term average rate of a user
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Figure 4.3: Schematic illutration of coordinated beamforming opera-
tion.

k in a given cell depends on both its activity fraction, i.e., ηk, and its net
average rate, i.e., Rk. The former is usually determined by the scheduler,
while the latter is a function of SINR. As a result, focusing on PHY layer
techniques such as beamforming design to enhance the SINR does not nec-
essarily improve the achievable throughput. In fact, improving SINR (and
hence Rk) might reduce ηk depending on the scheduling criterion. There-
fore, in cellular system design, as long as the throughput is the performance
metric, it is crucial to consider both the scheduling to control ηk and the
SINR enhancement techniques to improve Rk. We clarify the importance
of this issue by providing the following example.

Example 1: Consider a network consisting of two one-sided linear cells,
each with a base station with 2 antennas. Base stations are placed at
positions −1 km and 1 km. There are 4 users in each cell equally spaced
over the cell area as shown in Fig. 4.4. The user close to the cell-edge in
each cell is classified as the cell-edge user (see Fig. 4.4). Users are indexed
such that the user 1 is the closest to the base station and user 4 is the closest
to the cell-edge. Each base station has the perfect CSI of the users in its
own cell and employs PFS together with ZF beamforming to serve at most
2 out of 4 users in its own cell at each time-slot. Let b̄ = mod (b, 2) + 1,
for b = 1, 2, denote the other base station/cell depending on the context
and Sb(t) be the set of selected users in cell b at time-slot t. Under the
aforementioned assumptions, the baseband received signal model for user k
in cell b, denoted as user kb, can be expressed as

ykb
(t) =

√
αkb,b h

H

kb,b(t)wkb
(t)dkb

(t)
︸ ︷︷ ︸

desired signal

+
√
αkb,b̄ hkb,b̄(t)

∑

j∈Sb̄(t)

wjb̄(t)djb̄(t)

︸ ︷︷ ︸

intercell interference

+nkb
(t), (4.2)
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Figure 4.4: Schematic illustration of a two-cell MU-MIMO system.

where αkb,b′ captures the pathloss between user kb and base station b′ and
follows the model used in Section 3.2.2, hkb,b′(t) denotes the channel vector
between user kb and base station b′, wkb

(t) is the beamforming vector for
user kb at base station b, and dkb

(t) denotes the data symbol intended
for user kb. Here, we assume a per base station power constraint P , i.e.,
∑

k∈Sb(t)
E[d2kb

] ≤ P , for b = 1, 2. Note that the intracell interference is
essentially zero due to ZF beamforming inside each cell. The instantaneous
achievable rate of user kb assuming single-user detection is given by

Rk(t) = log2

(

1 +
αkb,b|hH

kb,b
(t)wkb

(t)|2pkb

1 + αkb,b̄

∑

j∈Sb̄(t)
|hH

kb,b̄
(t)wjb̄(t)|2pjb̄

)

. (4.3)

We consider a simple coordination strategy that involves the cancelation
of intercell interference to the cell-edge user in the neighboring cell if that
user is scheduled for transmission by its home base station. To implement
this strategy, at any given time-slot each base station performs a first step
independent scheduling in its own cell and upon the selection of the cell-edge
user, it informs the neighboring base station to update its beamformer in
order to cancel the interference to this user. The neighboring base station
then revise its scheduling, i.e., it tries to schedule a user in its own cell
while canceling the interference to the scheduled cell-edge user in the other
cell. One important issue that we would like to highlight here is that the
base station at each cell cannot compute the instantaneous user rate at
the scheduling stage as the intercell interference power is not known at
this stage. This motivates the use of average intercell interference power
to derive an estimate for the achievable rate [55]. The instantaneous rate
estimate for user kb can be written as

R̃k(t) = log2

(

1 +
αkb,b|hH

kb,b′
(t)wkb

(t)|2pkb

1 + αkb,b̄P

)

. (4.4)

This estimate rate will be used at each base station when performing PFS
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in (3.29). However, the actual achievable rate measured by the user is fed
back to the base station to update the ergodic rates in (3.30).

Next, we consider three different systems for performance comparisons:
1) a baseline system, in which each base station independently selects and
serves users in its own cell, denoted as the conventional scheme; 2) the
coordinated system we just described with the instantaneous rate estimate
calculated based on the average intercell interference power for all users,
denoted as the coordinated scheme (case I); 3) the same system as in 2, but
with the intercell interference power of cell-edge user set to zero when com-
puting the instantaneous rate estimate, denoted as the coordinated scheme
(case II). Note that this assumption relies on the described coordination
strategy which forces the neighboring base station to cancel the interfer-
ence to the cell-edge user in the other cell upon its selection.

Figure 4.5(a) shows the user throughput versus user locations for a cell-
edge SNR of 10 dB. As can be seen, the coordinated scheme (case II) en-
hances the throughput for the cell-edge user at the expence of a relatively
small loss for the cell-interior users. We also observe that although the inter-
cell interference is completely canceled for the cell-edge user in coordinated
scheme (case I), its throughput is increased slightly compared to the base-
line scheme. To investigate the reason for this observation, we have plotted
the net average rate and the activity fraction of the users in Fig. 4.5(b) and
Fig. 4.5(c), respectively. Surprisingly, we observe that the net average rate
of the cell-edge user in coordinated scheme (case I) is greater than that in
coordinated scheme (case II). Note that the intercell interference for this
user in both coordinated schemes is completely canceled. In addition, the
channel statistics and beamforming strategy at its home cell are also the
same in both schemes. As a result, this observation seems to be related to
the power allocation. In fact, our simulation shows that in case I, the cell-
edge user is more often selected as the only selected user in the cell (with
full base station power allocated to it) than in case II. The activity fraction
of this user in case I is, however, smaller than that in case II, resulting in
the cell-edge user experiencing a lower throughput in this case. This can
be attributed to the assumption on the intercell interference for this user
in case I, which results in a low instantaneous rate estimate at the schedul-
ing stage, thereby reducing the probability of selection of this user. Note
that the ergodic rate values used to determine the scheduling weight of this
user in PFS (see (3.29)) are the same in both schemes as these values are
updated in (3.30) based on the achieved instantaneous rate. This example
shows how the throughput of users in a cellular network depends on the
coupled operation of both the MAC layer scheduling and the PHY layer
beamforming.
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Figure 4.5: Comparision of throughput (a), net average rate (b), and
activity fraction (c) for different systems.
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4.4 Multicell Coordination Challenges

The performance gains provided by multicell coordination come at a cost
which depends on the level of coordination. Here, we briefly explain some
of the most important challenges that needs to be taken into account when
designing such systems.

Synchronization

Coordinating base stations have to be synchronized in both time and fre-
quency. The lack of synchronization in time results in inter-symbol in-
terference, and in frequency leads to inter-carrier interference. Especially,
different propagation delays of each user to the coordinating base stations
might conflict with the guard interval, which limits the maximum distance
between the coordinating base stations [56, 57].

Pilot and Feedback Overhead

Acquisition of user CSI to multiple base stations requires a larger number
of orthogonal pilot sequences [4, 47, 58]. In FDD systems, base stations
transmit orthogonal pilot sequences in the downlink to enable the users to
estimate their channel from all coordinating base stations. In this case,
the number of pilot sequences is proportional to the number of coordinat-
ing base stations’ antennas, and is independent of the number of users in
the system. Each user then feeds back its estimated channels to its serv-
ing base station over the feedback links. Hence, the load on the feedback
links grows proportionally to the number of coordinating base stations. In
TDD systems, however, user CSI is obtained at each base station using the
orthogonal pilot sequences transmitted by the users. The number of pilot
sequences is proportional to the number of users in the system, and is in-
dependent of the number of coordinating base stations and the number of
antennas per base station. In order to demonstrate the amount of feedback
overhead we express the following example.

Example 2: Assume a user, equipped with 2 antennas, is going to commu-
nicate with 3 base stations, each with 4 antennas in a system that employs
256-tone OFDM. Furthermore, due to the mobility of the user there is a
Doppler spread of 100 Hz. The channel estimation is assumed to happen 10
times faster than the Doppler. Using an 8 bits quantizer per real-valued co-
efficient the total feedback load for one user will be 8×256×48×1000 = 93.3
Mbps.

Backhaul Overhead

Data and CSI sharing over the backhaul requires high-capacity backhaul
links. This makes joint processing a very complex scheme. Coordinated
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scheduling/beamforming is, however, of lower complexity as it only requires
the sharing of CSI, which has been shown to occupy a very small fraction of
the total backhaul bandwidth [59]. Furthermore, in practice the backhaul
links are subject to delay [60] and error [61] and are of finite capacity [62,63],
which needs to be taken into account when making a realistic design.

Complexity

Optimal centralized resource allocation including user scheduling, beam-
former design, power and subcarrier allocation becomes prohibitive in co-
ordinated systems even upon the availability of perfect CSI. This has mo-
tivated the development of distributed algorithms to reduce the complex-
ity [64, 65].

Clustering

Network-wide coordination is extremely complicated to implement in prac-
tice. In fact, it has been shown that most of the network-wide coordination
gain can be achieved by exploiting coordination among the neighboring base
stations which cause the maximum interference to each other. The signal
from farther base stations, would it be either desired or interference sig-
nal, is attenuated by the pathloss, while it imposes the same amount of
overhead as the nearby base stations. This has motivated cluster-based co-
ordination, in which coordinating clusters of limited size are selected in a
static or dynamic fashion [66, 67].





Chapter 5

Purpose and
Contributions

The purpose of the thesis is to investigate the design and the performance of
spectrally-efficient coordinated MU-MIMO downlink systems. This chapter
summarizes the contributions of the thesis, which are included in the form
of five appended papers. Papers A and B consider multicell coordination
in the form of network MIMO. The aim of these two papers is to develop
analytical tools to enable the analysis of such systems instead of using in-
tensive Monte-Carlo simulation. In particular, Paper A uses the developed
analytical framework to propose a low-complexity scheduling algorithm with
reduced feedback requirement. Papers C and D focus on multicell coordina-
tion in the form of CSB, which is of lower complexity compared to network
MIMO, as there is no information data exchange among the base stations.
In these two papers, the main goal is to propose low-complexity schedul-
ing and beamforming strategies that require a limited amount of inter-base
station CSI exchange. Finally, Paper E considers the coordination of the
tilt angle selection at all base stations to enhance the throughput of multi-
cell multiple-input single-output (MISO) systems. In the next section, we
provide a short summary of these five appended papers. We then present
some open research problems and future work in the field. Finally, a list
of related publication by the author which are not included in the thesis is
also presented.
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5.1 Included Papers

Paper A - Multi-mode Transmission in Network MIMO Downlink
with Incomplete CSI

This paper considers a network MIMO downlink system with multi-antenna
base stations, which are connected to a central unit and communicate with
multi-antenna users. In such a network, the overhead of obtaining perfect
CSI of all users at the central unit to exploit opportunistic scheduling is
daunting. The main purpose of the paper is to develop a low-complexity
scheduling algorithm based only on the knowledge of the average received
SNR at each user from all cooperating BSs, denoted as incomplete CSI.
This is achieved by utilizing the results of random matrix theory, where
an analytical framework is proposed to approximate the ergodic rate of
each user with different number of data streams. Using these approximate
ergodic rates, a joint user and mode selection algorithm is proposed, where
only the scheduled users need to feed back instantaneous CSI. Simulation
results demonstrate that the developed analytical framework provides a
good approximation for a practical number of antennas.

Paper B - On the Achievable Ergodic Rate of Network MIMO
Systems With Imperfect CSI

In this paper, we also consider the downlink of a network MIMO sys-
tem, where multi-antenna base stations jointly serve multiple single-antenna
users. Under realistic conditions of spatial user distribution and distance-
dependent pathloss, the aggregate channel vector of each user to multi-
ple base stations, denoted as the network MIMO channel vector, has non-
identically distributed elements. This makes the mathematical treatment of
such systems tedious as most of the available tools rely on channel vectors
with independently and identically distributed (i.i.d.) elements. In this pa-
per, using the statistical properties of Gamma random variables, we propose
a new method to represent the network MIMO channel via an equivalent
i.i.d. MIMO channel. We then use this method to derive an accurate ana-
lytical expression for the user ergodic rate assuming imperfect channel state
information.

Paper C - Joint Scheduling and Intercell Interference Manage-
ment in Multicell MISO Networks

Paper C investigates the analysis and performance of CSB as a lower-
complexity coordination approach. We focus on the downlink of a clus-
tered multicell network, in which each active single-antenna user receives
information data from a single multi-antenna base station, while suffer-
ing co-channel interference from neighboring base stations. To manage
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the intercell interference within each cluster, coordination is employed via
joint operation of user scheduling and downlink beamforming. We apply a
stochastic optimization framework to find the optimal joint user scheduling
and beamforming strategy. As the optimal solution has high complexity, a
novel low-complexity algorithm is also proposed. Practical issues including
inter-cluster interference suppression for cluster-edge users, and the effect
of downlink training and imperfect channel knowledge are also investigated.
Simulation results demonstrate that the proposed algorithm provides a sig-
nificant throughput gain over the conventional non-coordinated system, es-
pecially at the cell-edge.

Paper D - Coordinated User Scheduling in the Multicell MIMO
Downlink

Similar to Paper C, this paper also focuses on CSB in a two-cell multiuser
MIMO network. A novel, distributed coordinated user scheduling (CUS)
algorithm for intercell interference mitigation in the downlink is proposed.
The intercell interference mitigation is achieved through the exchange of
necessary CSI among the base stations, and the revision of the scheduling
decisions and beamformer designs at each base station. Furthermore, mit-
igation of intercell interference is only performed for the cell-edge users, so
that the amount of inter-base station signaling overhead is minimized. Our
simulation results demonstrate that the proposed coordinated scheduling
algorithm significantly improves the cell-edge users’ throughput compared
to conventional systems with only a negligible amount of CSI sharing among
the base stations, and a relatively small throughput loss for the cell-interior
users.

Paper E - Throughput Optimization in Multicell MISO Networks
via Coordinated User-Specific Tilting

In Paper E, we focus on antenna tilt, which is an important antenna param-
eter whose impact in the context of coordinated systems has not been fully
explored so far. We propose a novel framework to coordinatively select the
tilt angles at all base stations. We further assume that the tilt angles can
be remotely changed as fast as necessary by the network operator. Con-
trary to the conventional systems in which a fixed tilt angle is employed at
each base station according to some statistical measures, in the proposed
scheme the tilt angles are adjusted to the location of the scheduled user at
each scheduling instance. Assuming the availability of location and channel
statistics information of the scheduled users at all base stations, an accu-
rate analytical expression for user ergodic rate is provided, which enables a
decentralized deployment of the proposed framework at each BS. The su-
periority of the proposed coordinated tilting over the conventional schemes
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with a fixed tilt angle at each base station is shown via simulation.

5.2 Future Work

Throughout the thesis, we have made some simplifying assumptions which
makes the obtained results serve as an upper bound for the actual perfor-
mance. In practice, feedback links, assumed to be perfect here, are subject
to both error and delay, which can severely degrade the performance. The
backhaul links, used to share data and CSI among the base station, have
also been assumed to be perfect in this thesis, which is not a valid assump-
tion in practice. Similar to feedback links, backhaul links are also subject
to delay and error. For example, the acquired CSI in the neighboring base
stations used to perform scheduling, design precoders, etc., might not be
correlated with the true CSI due to delay. Future work should also look
into optimized methods for forming coordination clusters. Especially in
coordination clusters with limited size, the optimal methods to deal with
cluster-edge users, and the unknown inter-cluster interference have not been
addressed thoroughly. Furthermore, as the future users are equipped with
at least two antennas, the intercell interference mitigation can in part be
performed at the user side using the interference alignment techniques [68].

5.3 Related Contributions

Other related publications by the author, which are not included in this
thesis, are listed below.

• A. Wolfgang, N. Seifi, and T. Ottosson, “ Resource Allocation and
Linear Precoding for Relay Assisted Multiuser MIMO Systems”, in
Proc. of International ITG Workshop on Smart Antennas, Damst-
dart, Germany, Feb. 2008.

• N. Seifi, A. Wolfgang, and T. Ottosson, “Downlink Performance and
Capacity of Distributed Antenna Systems Based on Realistic Channel
Model”, in Proc. of International ITG Workshop on Smart Antennas,
Damstdart, Germany, Feb. 2008.

• N. Seifi, A. Wolfgang, and T. Ottosson, “Performance Analysis of
Distributed versus Co-located MIMO-OFDM” 1st COST2100 Work-
shop on MIMO and Cooperative Communications, Trondheim, Nor-
way, May 2008.

• X. Wei, T. Weber, A. Wolfgang, and N. Seifi, “Joint Transmission
with Significant CSI in the Downlink of Distributed Antenna Sys-
tems”, in Proc. of IEEE International Conference on Communica-
tions (ICC), Dresden, Germany, Jun. 2009.
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• N. Seifi, T. Ottosson, M. Viberg, M. Coldrey, and A. Wolfgang, “An
Efficient Signaling for Multimode Transmission in Multiuser MIMO”
in Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Dallas, USA, Mar. 2010.

• N. Seifi, M. Viberg, R. W. Heath Jr., J. Zhang, and M. Coldrey,
“Coordinated Single-Cell vs Multi-Cell Transmission with Limited-
Capacity Backhaul” in Proc. IEEE Asilomar Conf. on Signals, Sys-
tems, and Computers (ASILOMAR), Pacific Grove, CA, Nov. 2010.

• N. Seifi, M. Coldrey, M. Matthaiou, and M. Viberg “Impact of Base
Station Antenna Tilt on the Performance of Network MIMO Systems”
to appear in Proc. IEEE Vehicular Technology Conference (VTC),
Yokohama, Japan, May 2012.

• B. Makki, N. Seifi, and T. Eriksson, “Multiuser Diversity Using
Two-Step Feedback”, accepted for publication in IET Communication,
2012.

• N. Seifi, M. Coldrey, and M. Viberg “Decentralized Intercell Interfer-
ence Management in Multicell MU-MIMO Networks” in preparation.
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