uuuuu

Modelling of pitched truss beam with
Finite Element method

Considering response of second order effects and imperfections

Master of Science Thesis in the Master’s Programme Structural engineering and
building performance design

MALIN JOHANSSON
TERESE LOFBERG

Department of civil and environmental engineering
Division of Structural engineering

Steel- and timber structures

CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2011

Master’s Thesis 2011:127







MASTER’S THESIS 2011:127

Modelling of pitched truss beam with Finite Element
method

Considering response of second order effects and imperfections

Master of Science Thesis in the Master’s Programme

MALIN JOHANSSON

TERESE LOFBERG

Department of Civil and Environmental Engineering
Division of Structural engineering
Steel- and timber structures

CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2011



Modelling of pitched truss beam with Finite Element method
Considering response of second order effects and imperfections

Master of Science Thesis in the Master’s Programme Structural engineering and
building performance design

MALIN JOHANSSON
TERESE LOFBERG

© MALIN JOHANSSON, TERESE LOFBERG, 2011

Examensarbete/ Institutionen for bygg- och miljoteknik,
Chalmers tekniska hogskola 2011:127

Department of Structural Engineering
Division of Structural engineering
Steel- and timber structures
Chalmers University of Technology
SE-412 96 Goteborg

Sweden

Telephone: + 46 (0)31-772 1000

Chalmers Reproservice / Department of Structural Engineering Goteborg, Sweden
2011






Modelling of pitched truss beam with Finite Element method
Considering response of second order effects and imperfections

Master of Science Thesis in the Master’s Programme
MALIN JOHANSSON
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Department of Structural Engineering
Division of Structural engineering
Steel- and timber structures
Chalmers University of Technology

ABSTRACT

Today truss beams in steel are frequently used as load bearing structures and the truss
manufacturing companies are forced to have a high utilization factor on their
structures due to the competition. This creates great demands on the design and
manufacturing of truss beams. After the large amount of roof failures during the
winter 2009/2010 the Swedish government requested an investigation to find the
reasons for these failures. The report showed that a majority of the collapsed roofs
were designed with slender structures, such as truss beams, and a significant part
were constructed in steel. Many of the failures were caused by faults in the design.
Design of steel truss beams do not always include plastic material properties, second
order effects or eccentricities in the joints and the effect of these therefore needs to be
studied.

This master's thesis investigates the behaviour of a pitched truss beam of steel with
consideration of second order effects due to initial bow imperfections and
eccentricities in the joints. For analysing the pitched truss beam the Finite element
program Abaqus was used. Two models of the truss beam were created; one model
with beam elements and one model with shell elements. Both models included
eccentricities in the joints. The report contains a detailed explanation of the work in
Abaqus. Problems that came up during the modelling and the solutions to some of
these problems are also explained.

The results from the analyses made in Abaqus shows the buckling modes for both
beam and shell elements. The master's thesis also includes results from static analyses
for both beam and shell elements without second order effects and imperfections. For
the beam model a static Riks analysis was performed that takes second order effects
and imperfections into account. In order to evaluate the behaviour of the truss beam
the results were analysed and compared to each other and to hand calculations based
on classic theory and on EN 1993-1-1(2005).

From the results it was concluded that first yielding occurred in the outermost
diagonals in the truss beam that are subjected to tension and that the most critical
truss element, with concern to buckling instability, is the top flange. The results also
show the difficulty to make appropriate assumptions of buckling lengths and that they
will influence the result concerning the ultimate load. In the thesis it was also
concluded that if second order effects and imperfections are excluded from the
analysis; a higher ultimate load can be obtained.

Key words: Steel truss beam, second order effects, initial imperfections,
eccentricities in joints, Abaqus
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SAMMANFATTNING

Idag anvinds ofta fackverk konstruerade i stal i barande konstruktioner. Eftersom
konkurrensen mellan fackverksforetagen dr hog maste konstruktéren anvinda sig
utav en hog utnyttjande grad vilket skapar stora krav pa konstruktionen och
tillverkningen av fackverket. Efter takrasen under vintern 2009/2010 begirde den
Svenska regeringen en utredning om varfor sa manga takkonstruktioner rasat.
Rapporten visade att en majoritet av takkonstruktionerna som rasat var konstruerade
med slanka konstruktioner, sasom fackverk, och att manga takkonstruktioner var
tillverkade av stal. I ett flertal takkonstruktioner berodde rasen pa konstruktionsfel.
Vid dimensionering av fackverk av stal inkluderas inte alltid plastiskt material, andra
ordningens effekter eller excentriciteter i knutpunkter och effekten av dessa maste
darfor analyseras.

Det hir examensarbetet visar beteendet hos ett nockfackverk av stal med beaktande
av andra ordningens effekter fran initiella imperfektioner och excentriciteter i
knutpunkter. Nockfackverket dr analyserat med hjidlp av det Finita element
programmet Abaqus dir tvda modeller av fackverket byggts upp, en modell med
balkelement och en med skalelement. Bada modellerna innehdll excentriciteter i
knutpunkterna. I rapporten finns en detaljerad forklaring till arbetet 1 Abaqus.
Problem som uppkom under modelleringen och 16sningar till nagra av dessa problem
ar ocksa forklarade.

Resultaten fran analyserna gjorda i Abaqus visar bucklingsmoder for bade
balkelement och skalelement. Examensarbetet inkluderar dven resultat fran statiska
analyser med bade balkelement och skalelement utan andra ordningens effekter och
imperfektioner. En statisk riks analys som tar hédnsyn till andra ordningens effekter
och imperfektioner var utford pa balkmodellen. For att kunna utvirdera beteendet av
fackverksbalken var resultaten studerade och jimforda bade med varandra och med
handberikningar baserade pa klassisk analys och EN 1993-1-1(2005).

Fran resultaten drogs slutsatsen att det forsta brottet intrdffar nar flytspanning uppnas
i de yttersta diagonalerna i fackverksbalken som var utsatta for dragspanning. Det
mest kritiska fackverkselementet, med hinsyn till bucklings instabilitet, var den dvre
flinsen. Resultaten visar ocksa svarigheten med att gora ldmpliga antaganden om
styvheten 1 knutpunkter mellan diagonaler och fldnsar och den betydelse de har for
barformagan. I rapporten visas ocksa att utan hiansyn till andra ordningens effekter
och imperfektioner kan en hogre barformaga uppnas.

Nyckelord: Stalfackverk, andra ordningens effekter, initiella imperfektioner,
excentriciteter i knutpunkter, Abaqus
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Cross sectional area [mz]

Cross sectional area of the chord [mz]

Effective cross sectional area [mz]

Young’s modulus [Pa]

Moment of inertia [m4]

The effective moment of inertia for the built up member [m4]
Member length [m]

Critical buckling length [m]

Bending moment [Nm]

Design value of the maximum moment in the middle of the built-up
member, considering second order effects [Nm]

Design value of the maximum moment in the middle of the built-up
member, without considering second order effects [Nm]

Design values of the maximum moment about the y-y axis along the
member

Design values of the maximum moment about the z-z axis along the
member

Normal force [N]
Design buckling resistance of a compression member [N]

Design chord force in the middle of a built-up member, for two identical
chords [N]

Elastic critical force for the relevant buckling mode based on the gross
cross sectional properties [N]

Design normal force [N]

Design value of the resistance to normal force [N]

Applied load [N/m]

Critical buckling load [N]

Shear stiffness of built-up member from the lacings or battened panel [N]
Load [N/m’]

Flexural resistance [m3]
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Roman lower case letters

€o Maximum amplitude of a member imperfection [m]

fy Yield stress [Pa]

ho Distance of centrelines of chords for a built-up column [m]
kyy Interaction factor

k., Interaction factor

k,y Interaction factor

k,, Interaction factor

n Number of buckling mode [-]

Greek upper case letters

AM,, gq Moments due to the shift of the centroidal axis for class 4 sections

AM; gq Moments due to the shift of the centroidal axis for class 4 sections

X Reduction factor for relevant buckling mode [-]
XL Reduction factor due to lateral torsional buckling
Xy Reduction factors due to flexural buckling

Xz Reduction factors due to flexural buckling

Greek lower case letters

a Imperfection factor [-]

Acrop Minimum amplifier for the in-plane design loads to reach the elastic
critical resistance with regard to lateral or lateral torsional buckling [-]

a; Load multiplication factor [-]

Uy k Minimum load amplifier of the design loads to reach the characteristic

resistance of the most critical cross section [-]

Y1 Partial factor for resistance of members to instability [-]
Kyy Interaction factor [-]

A Eigenvalue [-]

A Non dimensional slenderness [-]

v Deflection [m]

v’ Curvature [1/m]

o Stress for a unit load [Pa]

() Value to determine the reduction factor y [-]
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1 Introduction

Sweden suffered a cold and hard winter in 2009/2010 with high and long lasting snow
loads and in addition many roof structures collapsed. However, the snow loads did not
exceed the recommended snow loads in Boverket’s design rules and manuals.
Actually 75 percent of the collapses were caused by faults in design or in execution,
Boverket (2011), and the high snow loads could only be considered as the reason
revealing these faults.

1.1 Background

The large number of collapsed roof structures during the winter 2009/2010 led to that
many public places were closed in order to ensure peoples safety and lots of property
owners were worried about their roofs. In march 2010 the Swedish government
ordered Boverket, The Swedish National Board of Housing, Building and Planning, to
investigate the roof failures during the winter 2009/2010, and the results were
published in June 2011. The presentation Boverket (2011) showed that a majority of
the collapsed roofs were constructed with slender structures, such as truss beams, and
a significant part were constructed in steel.

The main problems with the collapsed roofs made of steel were stabilization of
compressed parts, designing for too small buckling lengths, faults in execution and the
structures’ sensibility to uneven load combinations. 40 percent of the investigated
collapses were caused by design faults and one of the reasons could be the large
number of design programs, Boverket (2011). A lot of companies have their own
design program and many of these programs exclude important load combinations or
do not consider lateral buckling correctly.

Today truss beams are frequently used not only in roof structures but also in bridges
and other structures subjected to loading. The great use of truss elements and today’s
demands on low material use in order to save money, results in greater demands on
the design and manufacturing of truss beams. The design of steel trusses includes a
number of assumptions that have to be made by the designer; such as buckling
lengths, the behaviour of joints and whether moments caused by eccentricities should
be accounted for or not.

A common question for engineers designing truss elements is the assumption of
buckling lengths. The answer lies in the design of the connections and whether these
are considered as fully fixed, pinned or somewhere in between. According to the
European Standard design code, EN 1993-1-1 (2005), the buckling length should be
taken as equal the system length. However, if a smaller value can be justified by
analysis the designer can obtain a greater stiffness of the compressed members in the
truss. An increase of this stiffness could then result in an increase of the load bearing
capacity for the whole truss.

1.2 Aim and objectives

The aim was to understand and explain the performance of a loaded steel truss beam
in a roof structure, with concern to second order effects and eccentricities in the joints.

The objectives for this master thesis were to:
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¢ Study the effect of imperfections and eccentricity in the joints.

e Compare results from analyses performed both with and without second order
effects.

e Compare results from analyses performed with Finite Element method with
hand calculations.

1.3 Method

The project started with a literature study of already done analyses and drawn
conclusions from the winter collapses 2009/2010. Since it was not possible to get
information about a real case a typical pitched truss was chosen to analyze. The study
continued with design methods for truss beams. Phenomena that can affect slender
structures such as buckling and lateral torsion were also included in the literature
study.

In interaction with Eurocode Software it was decided to focus on pitched truss beams
with a span of 30-45 meters. A pitched truss beam was built up twice in the Finite
Element program Abaqus, first with beam elements and then with shell elements.
Three analyses were performed on each model; a static analysis, an eigenvalue
buckling analysis and a static Riks analysis. To confirm the accuracy of the models
hand calculations were done and compared to the static analyses.

The analyses in Abaqus were based on design methods given in Eurocode and from
these the ultimate limit capacity of the truss were found and evaluated. Finally the
effect of imperfections in the most critical compressed members according to the
eigenvalue buckling analysis was studied. The studies were made by changing the
magnitude of imperfections in the static Riks analyses.

The results from running analyses in Abaqus were evaluated and compared in order to
understand the behaviour of the truss beam.

1.4 Limitations

The project focus on evaluation of design methods used for pitched truss beams
constructed in steel. Other shapes of truss beams or other materials are not discussed.
The design is exclusively based on the design codes given in Eurocode.

The investigation is done for a pitched truss beam with a span of 37 meters with
welded connections with members directly fastened to each other. Truss beams with
bolted connections or truss beams with welded connections with plates are not
analysed. The analyses are made in the Finite Element program Abaqus, which is
based on Eurocode and the pitched truss beam, is modelled by both beam elements
and shell elements; but not by solid elements. Plastic material properties are not
considered in the analyses. Models without eccentricities between the diagonals are
not analysed.
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2 Steel trusses

Steel trusses are used in a number of different structures, such as bridges, high
buildings, stocks, cranes and poles. The advantage with using trusses as load carrying
elements is the smaller amount of material used compared to for example welded I-
girders. The truss is also a smart load bearing element because of its ability to transfer
both tensile and compressive forces, and less material results not only in smaller costs
but also in a lowered self weight.

All members in the truss should be highly utilized and the loads should be transferred
in an effective and safe way. A truss beam normally contains two flanges, one at the
top and one at the bottom, and to transfer loads between these flanges the web is built
up of a number of diagonals. The supports are normally situated at the top flange and
as long as the wind load resulting in suction is smaller than the self weight, the
outcome will be a compressed top flange and a bottom flange subjected to tension.
The diagonals are mainly designed to resist normal forces but depending on the
stiffness of the connection between diagonal and flange moments could also be
transmitted. In Figure 2.1 the different members of a pitched truss beam are shown.
The name of the members will be further used in this report.

J Joint 4 Top flange

ij ij Z W Support

Diagonal \— Bottom flange

Figure 2.1 Different members of a pitched truss beam.

2.1 Different types of truss beams

There are a large number of different truss systems that could be used, depending on
the type of situation, and the maximum span is strongly dependent on the type of
truss. Figure 2.2 shows different shapes for truss beams that are frequently used in
Sweden today. The shape of the truss beam is not only affected by the required span
but also on the aesthetics such as the roof angle. Trusses could be designed to act as
girders or as secondary beams but also as columns. In case of larger spans the arch
truss is preferred; however the maximum span is depending on the shape of the truss
and dimensions of the truss members.
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Truss beams

(a) Pitched truss (b) Monopitched truss
—_ ) NN e N v~ dll EE— o<l \l/\\/ \\/\V
(c) Inverted pitched truss (d) Ridge truss

M/\l/\lw/wy

(e) Girder
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Figure 2.2 Different types of truss beams, Maku (2010).

The truss structure can have a variety of appearances and there are a number of
different diagonal structures that is possible; four commonly used structures are
shown in Figure 2.3. The shape of the diagonal structure is depending on how the
beam is loaded, either the load could be uniformly distributed or the load could be
transferred to the truss through roof purlins.

For members subjected to compression the buckling length is of great importance
since it will affect the stability of the whole truss, this will be further explained in
Chapter 3 and 5. One way to decrease this critical length is to install vertical
diagonals, see (b), (c) and (d) in Figure 2.3. These vertical diagonals are not needed as
load carrying elements; their main function is to reduce the buckling length of the
compressed flange and by that increase the load bearing capacity of the truss beam.
Since the vertical diagonals will be subjected to compression it is of great importance
that they are designed to resist the axial forces and does not buckle themselves,
otherwise they will not be able to increase the load bearing capacity of the flange. In
case of high compressive loads in the vertical diagonals, it is possible that their
buckling length need to be reduced as well, (d) in Figure 2.3 is an example of how this
can be performed.
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Structures

(a) V-structure (b) V-structure with vertical bars
(¢) N-structure (d) K-structure

Figure 2.3 Diagonals inside the truss member could be structured in different
ways depending on how the truss is designed to carry the load. The most common
used is a) V-structure, b) V-structure combined with vertical bars, c) N-structure and
d) K-structure, Thomsen (1971).

2.2  Truss elements and joints

The cross sectional shape of the flanges and the diagonals are other choices made by
the designer. The choice of cross sectional shape depends for instance on the direction
and character of the load and if the joints are executed with bolts or with welds.
Rolled plate profiles are commonly used in steel trusses since their stiffness is large in
comparison to the cross sectional area. However, in larger structures such as bridges,
the height of the truss is increased which also puts demands on larger cross sectional
areas of the diagonals in order to not lose critical buckling capacity in the compressed
members. This demand on larger diagonals results in that it is not always enough to
use rolled simple profiles, but then it is possible to create bigger cross sections with
plates or rolled profiles, welded together on site.

As for an I-girder the flanges are designed to resist moments and the diagonals, acting
as a web, are mainly designed for shear forces. This normally results in a smaller
cross sectional area of the diagonals compared to the area of the flanges, Thomsen
(1971). Circular profiles have small stiffness in comparison to the cross sectional area,
which usually makes them inappropriate to use as compressed bars. However, it is
typical to use circular profiles in smaller trusses without load transferring plates since
the joints could be easily executed. For structures subjected to high wind load, as pole
structures, it is also favourable to use circular profiles because of its small wind
resistance. In Figure 2.4 some commonly used rolled steel profiles for truss members
are shown. Roof trusses are often built up by UNP diagonals and L profiles as flanges.
In case of high shear forces the stiffness of the UNP might not be enough why the
diagonals suffering the largest forces are replaced by KKR or VKR profiles. The HEA
profile is often used in larger truss structures and as supporting columns for the
trusses in buildings.
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Profiles

(a) Circle (b) UNP (c) L

(d) KKR/VKR

Figure 2.4 Examples of cross sectional shapes that are commonly used as
components in truss structures.

One important part in the design of a truss beam is how to design the connection
between the flanges and the diagonals. The connection could be welded or bolted and
the diagonals could either be directly fastened to the flanges or to steel plates which
then is connected to the flanges. In Figure 2.5 an example of a connection for a truss
beam constructed with HEA profiles is shown, where the diagonals are directly
welded to the flanges. This kind of joint is designed for being easy to produce but it is
important that the welding is done properly. Lack of fusion, porosity, undercuts, weld
repairs or start-stop points in the weld are example of defects that will act as local
stress raisers and decrease the stiffness of the welded connection. When the diagonals
are welded directly to the flanges the centre of gravity lines of the members do not
coincide which then causes eccentricities. These eccentricities will then cause an
additional moment in the flanges of the truss.

Figure 2.5 Connection in a truss beam constructed with HEA profiles. Here the

diagonals are directly welded to the flanges which make the production easy,
Thomsen (1970).
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Another type of connection is designed with load transferring plates and an example
of this type of connection is shown in Figure 2.6. This type of connection is
commonly used in larger truss beams and is in general a better connection when
considering the moments caused by eccentricities. When using steel plates in the
connections, the axial forces in the diagonals are transferred to the plate.

Figure 2.6 Connection for a truss beam with load transferring plate, Sjelvgren,
Tranvik (2010).

The load transferring plates can affect the stability of the truss beam to a large extent
if the slenderness of the plates is too high. Several accidents have been caused by too
slender plates, Sjelvgren, Tranvik (2010).

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:127



3 Design of compressed steel members

Steel profiles subjected to axial compression, typically columns and truss members,
might suffer instability failures known as buckling. For a steel profile loaded by an
axial force the load not only causes compressive stresses in the member, it will also
cause the profile to bend or twist. These deformations results in instability of the
member and the critical stress at which buckling occur will be smaller than the yield
stress, Hoglund (2006).

Members with an unsymmetrical cross section have one direction with a larger
bending stiffness than the other. This means that the direction with higher stiffness
will be stronger and the compressed steel member will tend to buckle in the weak
direction, see Figure 3.1.

A
Weak
direction

]

Strong direction
-

»

\

Figure 3.1 Strong and weak axis for a U profile.

3.1 Different types of buckling

There are three main types of buckling, and their appearance can be seen in Figure
3.2, Hoglund (2006):

- Local buckling
- Distorsional buckling
- Global buckling

Local buckling is known as a number of small buckles in a compressed flange or web.
For an initially straight part of a compressed member the load can be increased after
the first buckles. The final failure is reached when all the small buckles are replaced
by one large.

Distorsional buckling 1s usually affecting cold formed profiles which are containing
free edges, but could also affect bracings.

Global buckling is representing different types of buckling failures which affect the
whole structure or element globally. One usually distinguishes between several types
of global buckling:

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:127



- Flexural buckling is recognized as the members gravity line is bending out in a
plane curve.

- Torsional buckling is affecting special cross sections which are braced against
flexural buckling. Deformation is seen as torsion of the cross section as the
member is still straight.

- Flexural torsional buckling consists of both flexural and torsional
deformations. The buckling is identified as the member bends out of plane and
twists at the same time.

- Tilting is affecting beams that are subjected to bending moment. The moment
results in an out of plane deflection, perpendicular to the direction of the load,
and twisting around the gravity centre of the member.

Buckling categories:
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Flexural buckling | Torsional buckling | Flexural torsional Tilting
buckling

Figure 3.2 The main types of buckling, based on Hoglund (2006 ).
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3.2  First order analysis - classic theory

How buckling will affect the load bearing capacity of the member is determined from
the theoretical buckling load. This critical load is calculated as the load at which
buckling will occur for a column which follows the classical theory. According to
Hoglund (2006) the assumptions for this theory are as follows:

Linear elastic material

Small deformations

Initially completely straight member
No residual stresses

In practice these requirements are not fulfilled and the design could therefore not only
rely on this theoretical buckling load.

When the material is elastic there is a stable state of equilibrium to be found for every
value of the axial compressive force, Hoglund (2006). But, this stable state of
equilibrium is to become unstable if the deformations in the bar are too large. As the
bending moments are a result of the deformations these will increase with increasing
deformations and the bar will become unstable, Hoglund (2006). The conclusion is
that the load bearing capacity will decrease for increased deformations.

By analyzing the reasons for structures to fail in compression, it has turned out that
some structures are very sensitive to imperfections. An initial deformation will give
rise to additional moments which needs to be considered in the design and the residual
stresses will give rise to a different stress state than the one calculated from external
loading. All these parameters will affect the load bearing capacity and therefore the
critical load in the classic theory need to be adjusted in order to take these effects into
account, Hoglund (2006).

The critical load in classic theory for a simply supported bar, see Figure 3.3, is
derived according to Hoglund (2006):

Figure 3.3 A simply supported bar subjected to a compressive axial force.

The bending moment at section x, see Figure 3.4, is calculated as:

M) = N,v(x) 3.1)

M Bending moment [Nm]
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N, Elastic critical force for the relevant buckling mode based on the gross
cross sectional properties [N]

v Deflection [m]
NK}F
——— - — - = j;,.;"‘”“i—
> P
[ —p —
S~ M=N.v

Figure 3.4 The axial force is causing the bar to deflect; the load in combination
with the deflection will create a bending moment in the bar.

According to classic beam theory the relation between bending moment and curvature
for a bar with constant flexural resistance EI can be written as:

M = —EIv" 3.2)
E Young’s modulus [Pa]
I Moment of inertia [m4]
M Bending moment [Nm)]
v’ Curvature [1/m]

Equation (3.1) and (3.2) above can then be rewritten as:

ElIv" + N,v =20 3.3)
or
v'+ k?v=0 (3.4)
where
3.5
k= |Ner 3-5)
EI
E Young’s modulus [Pa]
I Moment of inertia [m4]
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N, Elastic critical force for the relevant buckling mode based on the gross
cross sectional properties [N]

v Deflection [m]

v’ Curvature [1/m]

The general solution to Equation (3.4) is then written as:

v = Asin(kx) + Bcos(kx) (3.6)

The equation is solved by introducing boundary conditions:

i. x = 0,v = 0, which results in that B=0
ii. x = L,v = 0, results in the following expression

Asin(kL) = 0 (3.7

Where the solution A = 0 is representing a straight bar and the other option kL. = 0
gives:

kL =nm where n=2012... (3.8)
L Member length [m]
n Number of buckling mode [-]

The lowest value of n,n = 0, is representing the case where the beam is not
deflected which means that n = 1 results in the lowest value of the load to cause
deflection. The critical load according to classic theory for a pinned bar is then written
as:

2 3.9
hL=7t or NCT=HEI 39)

Or in general for other support conditions:

2El 3.10
N, = ”L%r (3.10)
E Young’s modulus [Pa]
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Moment of inertia [m4]

Member length [m]

o~~~

Critical buckling length [m]

=
3

Elastic critical force for the relevant buckling mode based on the gross
cross sectional properties [N]

The critical load could also be derived for other support conditions. In Table 3.1 the
critical length for the four most common types of supports are shown. This critical
length inserted in Equation (3.10) results in the critical buckling load according to
classic theory.

Table 3.1 Critical buckling length for different support conditions.

Euler buckling modes for compressed bars

1 2 3 4
Fixed in on end and | Pinned in both ends | Fixed in one end Fixed in both ends
free in the other (simply supported) | and pinned in the
(cantilever) other
=+ £
—
2 &,
T tu
4 3
e + F
p=2 p=1 p=0,7 p=0.5

3.3 Second order analysis

In theory buckling is caused by axial force, acting in the centre of gravity for the steel
member. However, in reality the axial force is not the only load affecting the member,
the member could also be loaded by moments. These moments may be created from
lateral loading, attached members in the ends of the member or from an eccentricity
between the axial force and the gravity centre of the member. If the bar is assumed to
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have an initial deformation, bow imperfection, and is loaded by a compressive force,
the deformation will increase in a nonlinear way with increasing load, Hoglund
(2006). This nonlinear deformation together with elastic material properties describes
a nonlinear elastic theory or second order theory.

For a bar loaded with both an axial compressive load and moment the axial force will
be multiplied with the eccentricity, created from the initial deformation of the bar,
giving rise to secondary moments. This is considered in the second order analysis,
which means that the relation between load and deformation is not linear. This results
in that a direct solution normally cannot be calculated, instead the solution is found by
iterative methods, Hoglund (2006).

If the second order analysis is to be used in design of compressed members some sort
of bow imperfection must be introduced. Residual stresses in the member will give
rise to imperfections but this effect can normally not be considered. Some ways to
consider the effect of residual stresses are given in EN 1993-1-1 (2005), see Chapter
3.4. According to Hoglund (2006) the calculations are based on assumptions
considering the following deviations from ideal conditions, classic theory:

- The bar has a bow imperfection
- The bar is inclined (columns)

3.4 Design of compressed members according to EN 1993-
1-1

In Eurocode EN 1993-1-1 (2005) it is written that a compressed member should be
verified against buckling according to the following formula:

Ned = 10 (3.11)
NRa

Ngq Design normal force [N]

Nra Design value of the resistance to normal force [N]

According to classic theory the load at which buckling is supposed to happen for an
initially straight bar, is calculated with the following expression:

n?El (3.12)

2
LCT

Ne =

E Young’s modulus [Pa]

I Moment of inertia [m4]

Ly Critical buckling length [m]

N, Elastic critical force for the relevant buckling mode based on the gross

cross sectional properties [N]
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The buckling length of the bar L. should be based on the actual stiffness of the
supports. By help from Table 3.1 the buckling length could be calculated for different
support conditions.

Due to imperfections the bar will not reach the load bearing capacity calculated
according to classic theory in Equation (3.12). How the buckling will affect the
compressed member is depending on many factors such as how well the supports
resist deformations associated with buckling, Hoglund (2006). Other factors are the
position of the load and how the moments in the member are distributed for a beam
according to classic theory. In EN 1993-1-1 (2005) all these effects are considered in
a slenderness factor 2, and the more slender the member is, the less load is required to
cause buckling.

The slenderness of the compressed member is strongly affecting the buckling load.
The load bearing capacity for stocky members will come close to the critical load
according to classic theory and defects in the member will have minor influence. For
more slender members the load bearing capacity of the member are affected by the
plastic material properties and imperfections. The “real” load bearing capacity is
calculated from the design curve given in EN 1993-1-1 (2005). This curve gives a
relation between the relative load bearing capacity and the slenderness for bars with
different cross sections and manufacturing methods.

In Table 3.2 from EN 1993-1-1 (2005) examples of different cross sections and their
buckling curve are given.
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Table 3.2 Buckling curves for different cross sections, EN 1993-1-1 (2005).
Buckling
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The design buckling resistance Ny, g 18 given in EN 1993-1-1 (2005) by:

Npra = x4y for class 1,2 and 3 (3.13)
' YM1
Npra = Xessly for class 4 (3.14)
' YM1
A Cross sectional area [mz]
A Effective cross sectional area [mz]
Ny ra Design buckling resistance of a compression member [N]
fy Yield strength [Pa]
X Reduction factor for relevant buckling mode [-]
Yui Partial factor for resistance of members to instability [-]

The reduction factor y for the relevant buckling mode can be expressed by empirical

formulas according to EN 1993-1-1 (2005):

1
- buty < 1,0 (3.15)
A= ordorz Hx=
®=0,5[1+a(1-02)+ 22 (3.16)
X Reduction factor for relevant buckling mode [-]
a Imperfection factor [-]
A Non dimensional slenderness [-]
(0] Value to determine the reduction factor y [-]

Where «a is an imperfection factor depending on the buckling curve, see Table 3.3.

Table 3.3 Imperfection factors for buckling curves according to EN 1993-1-1
(2005)

Buckling curve g a b c d

Imperfection factora | 0,13 | 0,21 | 0,34 |0,49 | 0,76
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The slenderness factor ] is calculated with one of the following formulas depending
on the cross section class of the profile:

_ 3.17
A= Ay for class 1,2 and 3 ( )

cr

[ 3.18
A= A';’;—ffy for class 4 ( )

A Cross sectional area [mz]

A Effective cross sectional area [mz]

N, Elastic critical force for the relevant buckling mode based on the gross
cross sectional properties [N]

fy Yield strength [Pa]

Equation (3.17) is allowable for bars in cross section class 1, 2 and 3; stress states
with uniformly distributed compressive stresses. As stated in EN 1993-1-1 (2005)
cross sections in class 4 will suffer local buckling before the yield stress is reached in
the cross section, with the result of lowered load bearing capacity. In order to take this
local buckling into account when calculating the buckling resistance of the member,
the cross sectional area is reduced to an effective cross sectional area, A, instead of

the cross sectional area A4, Equation (3.18). This effective area is calculated for an
effective width of the compressed member where the buckled part is reduced from the
cross sectional area.

The design values for bow imperfections, e, in global analysis are depending on the
buckling curve for the actual cross section. The imperfection is measured as
maximum deviation from a straight line between the ends of the bar, see Figure 3.5.
The recommended design value of the bow imperfection in EN 1993-1-1 (2005), for
both elastic and plastic analysis, is presented in Table 3.4.
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Figure 3.5 The imperfection e, is measured as the maximum deviation from the
straight bar in between the supports, based on EN 1993-1-1 (2005).

Table 3.4 Design values of initial bow imperfection ey, according to EN 1993-1-1
(2005).

elastic analysis | plastic analysis
Buckling curve
C()/L eo/L
o 1/350 1/300
A 1/300 1/250
B 1/250 1/200
C 1/200 1/150
D 1/150 1/100
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3.5 Design of compressed members subjected to
interaction between axial force and bending moment

According to EN 1993-1-1 (2005) members which are loaded with a combination of
axial compression force and bending moment should fulfil the following conditions:

NEg My gp+AMy ED MzEp+AMz ED
Hire T Kyy M RK kyz =", 7x <10 (3.19)
YM1 AT 0 YM1
NEgd My gp+AMy gD Mz Ep+AMy ED
e T Kzy My rk K2z =7 <10 (3.20)
YM1 XL 0 YM1
Ngq Design normal force [N]
M, gq Design values of the maximum moment about the y-y axis along the
member
M gp Design values of the maximum moment about the z-z axis along the
member
kyy Interaction factor
ky, Interaction factor
k,y Interaction factor
k Interaction factor

AM,, g4 Moments due to the shift of the centroidal axis for class 4 sections

AM, gq Moments due to the shift of the centroidal axis for class 4 sections

XLT Reduction factor due to lateral torsional buckling
Xy Reduction factors due to flexural buckling
Xz Reduction factors due to flexural buckling

The parameters in the conditions above are depending on the cross section class for
the respective compressed member, see Table 3.5. In the same way as when
calculating the buckling resistance Njpq in Equation 3.13 and Equation 3.14, an
effective cross sectional area is used for members in cross section class four; which
are not reaching the yield stress. According to EN 1993-1-1 (2005) also an additional
moment factor is taken into account for structural members in cross section class four
subjected to an interaction between axial force and bending moment. This moment is
created from the shift of the centroidal axis and is calculated according to Table 3.5.
For more information about designing for members in cross section class four see EN
1993-1-1 (2005) and EN 1993-1-5 (2006).
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Table 3.5

Cross section properties and moments due to shift of centroidal axis
for the four cross section classes, EN 1993-1-1 (2005).

Class 1 2 3 4

A; A A A Actr
Wy WoLy Woly Wey Wetty
W, Wil Wiz Welz Wetty
AMy k4 0 0 0 enyNEd
AM, 5 0 0 0 en:NEg

The interaction factors ky,, Ky,, k;y, k;, are considering the instability in the strong
and weak axis of the cross section subjected to a combination of axial force and
bending moment. In EN 1993-1-1 (2005) these factors could be calculated according
to two different methods and are among many other factors depending on parameters
such as the relation between the plastic and elastic section modulus, slenderness of the
structural member and moment distribution. For more information about the

interaction factors see Annex A and Annex B in EN 1993-1-1 (2005).
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4 FE modelling according to classic and second
order theory with elastic and elastic-plastic
material

In order to see the difference in behaviour for a compressed member designed
according to classic and second order theory, a column was modelled in the Finite
Element program Abaqus. The column is simply supported with a length of L=5
meter and have a rectangular cross section of 0.1x0.3 meters. The column is loaded by
a compressive axial force of N=1800kN, acting in the top of the column, see Figure
4.1.

N
- { i\q%
W

i ¢
A

Figure 4.1 A column with rectangular cross section and loaded by a compressive

force is analyzed according to classic and second order theory. The column is simply

supported with a length of L=5 meters and has a rectangular cross section of h=0.1

and w=0.3 meters.

According to classic theory the critical load for this column is found when the column
starts to buckle. The first buckling mode is the most severe one, and as mentioned in
Chapter 3.2 other buckling modes will appear for higher loads. Example of buckling
modes for a simply supported bar is shown in Table 4.1; these modes are also
representative for the column.
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Table 4.1 Critical load for the first three buckling modes of a simply supported
bar, based on Hoglund (2006).

Mode | Ceritical load Buckling shape
! T2El
cr = 2
2
’ . 47TL 2E 1
2
3 _ 9n“El
cr Lz

The critical load for the column is found from Abaqus by performing a eigenvalue
buckling analysis with the conditions mentioned above. The eigenvalue buckling
analysis is based on the classic theory and follows the formula given in EN 1993-1-1
(2005), see Equation (3.11). The results from the analysis are obtained as eigenvalues
for different buckling modes. Before running the analysis the designer request a
number of buckling modes and in the results Abaqus gives the specific eigenvalue for
each buckling mode. The eigenvalue is a scale factor which, when multiplied with the
initial load, gives the critical load or buckling load. More details concerning the
analysis is given in Chapter 6.4.2.

To prove the reliability of the results from the FE modelling the buckling modes and
their resulting buckling loads are calculated by hand, using Equation (3.12) above, see
Appendix B. In Table 4.2 the first three obtained buckling modes with the respective
eigenvalue and the resulting critical load, calculated both with hand calculations and
by the eigenvalues obtained from the analysis, are shown for the column in Figure 4.1.
The comparison shows that the results found by the two different design methods are
similar and that the first, and by that the most critical load is of the magnitude N, =
2073 kN.
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Table 4.2 Buckling load for the first three buckling modes of the compressed
column in Figure 4.1.

Buckling | Buckling shape Abaqus Hand
Mode calculations
1 N¢=2073 kN N¢=2073 kN

N = 8292 kN N = 8290 kN

N =18 654 kN | N, =18 654 kN

The critical load found by classic theory is not representing the real buckling load of
the column. A “real” column contains imperfections which are not included in the
classic theory, but these effects could be included by introducing an initial bow
imperfection in a second order analysis. According to EN 1993-1-1 (2005), the second
order effects are accounted for by introducing a bow imperfection with a magnitude
depending on factors such as the slenderness of the column.

The second order effects are integrated in the FE modelling by running a static Riks
(2" order) analysis which has the buckling shapes obtained in the eigenvalue buckling
analysis as an initial imperfection. The obtained buckling shape is introduced as an
initial imperfection with a magnitude chosen by the designer, in this case set to
eo = 2,5 millimetres. Since the first buckling mode is the most severe one, this one is
chosen as initial bow imperfection, see Figure 4.2. More details concerning the
analysis is given in Chapter 6.4.3.
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Figure 4.2 In the second order analysis, the column is subjected to an initial bow
imperfection. The shape of the imperfection is obtained from the first mode in the
eigenvalue buckling analysis with a chosen magnitude of ey = 2,5 millimetres.

In both the classic and second order theory the material is considered as elastic, but
when using some advanced FE programs in design it is possible to account for the
nonlinear effects that come with plastic material. These effects are found by
introducing plastic material properties in the static Riks analysis. The plastic material
properties can be introduced by one or more slopes of the relationship between stress
and strain after the material starts yielding. For the column in Figure 4.1 the elastic
material properties are introduced as in Table 4.3, and for the plastic material
properties two points are defining the slope of the stress — strain curve after yielding
starts, see Figure 4.3Fel! Hittar inte referenskiilla..

Table 4.3 Elastic material properties for the steel column

Material properties

Young’s modulus [GPa] 210

Poisons ratio 0,3
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Stress Stress
A [MPa] 4 [MPa]
6001
fy - atan(E/100)fy 355
. atan(E) Strain _ Strain»
| > 0.16
Engineering stress-strain True stress-strain

Figure 4.3 The plastic material properties for the column are introduced by
defining the yield stress and an additional point which then defines the slope of the
strain hardening after yielding according to the engineering stress-strain relation, EN
1993-1-5 (2006) .

When analyzing structural elements with reference to instability the relationship
between applied load and out of plane deflection is of great interest. In Figure 4.4 this
relationship is shown for all three theories for the column in Figure 4.1, both classic
and second order theory with elastic material properties, but also the second order
analysis with plastic material properties. Figure 4.4 clearly shows the differences
between the three theories and the effect on the load bearing capacity when
introducing bow imperfections and plastic material properties.

In classic theory the load might be increased up to the buckling load and will
thereafter stay the same while the deformations increase. In second order theory with
elastic material properties the initial deformation in the column gives rise to second
order moments which will increase the deformations in the column, but the column
might still be able to reach the critical load in classic theory. For second order theory
with plastic material properties, sections subjected to high stresses will start to yield
which increases the deformations further. In sections were yielding starts, the flexural
stiffness is reduced and as the deformations increase the load bearing capacity is
decreased, Hoglund (2006).
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Figure 4.4 Relationship between load and out-of-plane deformation for a steel
column loaded by axial compressive force, according to classic theory, second order
theory considering an initial bow imperfection and second order theory with plastic
material properties. Observe that for the curves considering second order effects the
imperfection of 2,5mm is applied as an initial deformation why the deflection does not
start at zero.
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5 Design of truss members according to EN 1993-1-1

With the ambition to lower the costs and build slimmer structures the design of a truss
structure must be precise if the company should survive the competition between truss
manufacturing companies. A number of different assumptions need to be made in the
design and the competition between companies makes it necessary to consider these
assumptions carefully since they will affect the load bearing capacity of the truss.

To get the gravity centre lines for diagonals and flanges to coincide is not always
possible. Eccentricities between the centre lines give rise to moments in both flanges
and diagonals. Whether these moments need to be accounted for in the design is a
decision made by the designer.

The stiffness of the joints has a large impact on the design of a truss structure. The
stiffer connection, the smaller buckling length can be used in the design and the
higher critical buckling load is obtined. Since the connections can have a number of
different configurations, it is up to the designer to assume the stiffness of the joint.

5.1 Buckling length

Each truss element is subjected to a force with a magnitude and direction depending
on different load combinations and where the element is situated in the truss. This
results in that some truss members are more critical than others and for the elements
subjected to compression the question of buckling and instability needs to be taken
into great consideration.

The buckling length of a compressed steel member is decided by the stiffness of the
connection between diagonal and flange. The stiffness of a joint can be considered as
somewhere in between pinned; locked in all directions but free to rotate, or as totally
fixed; locked in all directions and rotations. A pinned connection corresponds to a
buckling length of the entire length of the member, and a totally fixed connection
corresponds to a buckling length of 0.5 times the length, see Table 3.1.

A larger buckling length results in a lower critical load according to Equation (3.12).
This results in that the member is able to resist higher load before buckling starts, if
the stiffness of the connection is larger. A welded connection could normally be
considered to have greater stiffness than what is assumed in a pinned connection but it
will be hard to create it stiff enough to consider it as fixed. When a connection is
assumed to have greater stiffness than a pinned connection it is important to be aware
of that if the connection starts yielding the stiffness is reduced. This reduction results
in an increased buckling length than before yielding started in the joint. When the
buckling length of the compressed members is increased the load to cause buckling is
decreased and the members might buckle and the truss structure then fails due to
instability.

5.2 Top flange subjected to compression

The applied load is important to consider when designing the top flange, not only the
magnitude but how the load is transferred to the truss structure. If the truss beam is
loaded through purlins the load should be considered as point loads acting in the
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position of the purlins. If roof sheeting is attached to the top flange the load should be
considered as uniformly distributed on the top flange.

If the beam is loaded through purlins it is necessary to consider whether the purlins
are located directly over the joints between top flange and diagonals or between these
joints. In the case where the purlins are located just above the joints it is only
necessary to consider axial forces since no bending moment caused by loading will
arise in the top flange. However, if the purlins are located between the joints or if the
roof sheeting is attached directly to the top flange, the bending moment is important to
consider in the design.

The top flange has to be designed for buckling as well as for axial force and bending
moment and when purlins are used, both in-plane and out-of-plane buckling needs to
be considered in the design. If roof sheeting is applied to the upper flange its strength
could be accounted for since the roof sheeting can provide stabilization to the truss
structure if it is strong enough. If the stiffness of the roof sheeting is sufficient the
movement of the truss beam in the transversal direction and the rotation around
longitudinal axis will be restrained, and by that the stability of the truss is increased.
According to Eurocode the roof sheeting is strong enough if it is in structural class 1
or 2, Gozzi (2006). This results in that only in-plane buckling has to be checked in the
design, in case of strong roof sheeting.

The compressed top flange is a built-up member and should be designed for buckling
according to the method given in §6.4 EN 1993-1-1 (2005). The method is based on
the assumption of hinged compressive columns which are laterally supported.

As the top chord is considered as a built-up member an effective moment of inertia is
introduced and the effective critical force is calculated according to:

2El, 5.1
N, = L%Tff (5.1
Ieff = O,Sh(z)Ach (52)
Acn Cross sectional area of the chord [m?]
E Young’s modulus [Pa]
Losr The effective moment of inertia for the built-up member [m*]
L¢r Critical buckling length [m]
ho Distance of centrelines of chords for a built-up column [m]

The design value of the maximum moment in the member is calculated with
consideration of second order effects. The second order effects are introduced by a
bow imperfection e, with a magnitude depending on the length of the member:

1
_ Nggeo+Mgg
Mgy = v

E 1-NEd_NEd
Ner Sy

(5.3)
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€ = o5 (5.4)

L Member length [m]

Mgq Design value of the maximum moment in the middle of the built-up
member, considering second order effects [Nm]

Mz, Design value of the maximum moment in the middle of the built-up
member, without considering second order effects [Nm]

N, Elastic critical force for the relevant buckling mode based on the gross
cross sectional properties [N]

Ngq4 Design normal force [N]

Sy Shear stiffness of built-up member from the lacings or battened panel [N]

€o Maximum amplitude of a member imperfection [m]

As the maximum moment is known, the design axial force Ny g4 for two identical
truss chords with consideration of an initial bow imperfection could be calculated.
This design force should then be compared to the design resistance of the flange.

Nenga = 0.5Npq + 2Edioden (5.5)
’ Zleff
Renkd < 4,9 (5.6)
Np,Rd
Acn Cross sectional area of the chord [m?]
Loy The effective moment of inertia for the built up member [m4]
Mgq Design value of the maximum moment in the middle of the built-up
member, considering second order effects [Nm]
Ny ra Design buckling resistance of a compression member [N]
Nep Ea Design chord force in the middle of a built-up member, for two identical
chords [N]
Ngq4 Design normal force [N]
h, Distance of centrelines of chords for a built-up column [m]

5.3 Bottom flange

For the most common truss structures the top flange is in compression and the bottom
flange is in tension, however some circumstances can cause the opposite. As an
example, wind load for a low pitched truss can cause external suction or internal
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pressure within the building which can result in a compressed bottom chord. This
reverse loading situation is very important to consider in the design. The load bearing
capacity for a compressed member is significantly lowered compared to a tensioned
member due to buckling instability.

5.4 Diagonals

Depending on the stiffness of the joints, the critical buckling length of the compressed
diagonal is somewhere in between 0.5 and 1 length of the bar. When designing the
diagonal, the buckling length is of great importance both for in-plane and out-of-plane
buckling, Thomsen (1971). As mentioned in Chapter 5.1, the actual stiffness of the
connection is hard to decide and it is important to make sure that the assumption is on
the safe side. If a too low stiffness is accounted for, the structure is going to be larger
and more expensive than necessary. In case of the opposite the structure could
collapse for a lower load than expected due to buckling of critical elements.

The diagonals can be considered as Euler columns loaded only by an axial force and
checks of in-plane and out-of-plane buckling are necessary to make. As mentioned
above the effective length depends on the design of the joint but also the shape of the
cross section. According to EN 1993-1-1 (2005) the value of the buckling length
should be taken as equal to the total length for all cross sections, unless a smaller
value can be justified by analysis.

5.5 Imperfections

Imperfections are created in structural components in many different ways. During the
manufacturing and erection of a structure mistakes can be made and deformations in
an initially straight member could easily be created in storage or handling of the
member. The mistakes can have an impact on the performance of the truss structure
and depending on the magnitude and sensitivity of the member it should be included
in the design. Residual stresses can be present in the steel member and there can also
be geometrical imperfections in the structure. The members themselves can have a
lack of verticality, lack of straightness or a lack of flatness. The structural components
can also be constructed with a lack of fit and minor eccentricities, EN 1993-1-1
(2005). All these defects can create a different moment distribution and results in
lowering of the load bearing capacity.

In EN 1993-1-1 (2005) it is recommended to introduce a bow imperfection to take the
defects mentioned above, into account when analyzing the critical compressed
members in the truss. The bow imperfection depends on three things; the cross section
of the member, the length of the member and if the analysis is elastic or plastic. The
cross section of the member decides which buckling curve to be used. From this
curve, depending on the length of the member and whether the analysis is considering
elastic or plastic material, the recommended bow imperfection is obtained, see
Chapter 3.4.
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5.6 Eccentricity

In the design of the joints between flange and diagonal it is preferable to avoid
creating moments in the connections as far as possible. The moments are created
when the centre of gravity line for the diagonals and flanges to be connected do not
meet. If the joint is constructed by connecting the elements through a plate it is also
preferable to get the centre of gravity lines to meet in the middle of the plate.

However, creating a connection on these demands is not always possible and this
creates an eccentricity, see Figure 5.1. This eccentricity results in a moment in
attached members and depending on the magnitude, these should be included in the
design. Whether the eccentricity should be accounted for in the design is a decision
that is be made by the designer.

Figure 5.1 Eccentricity between diagonals, based on Gozzi (2006).
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6 Modelling of truss beam in Abaqus

In order to ease the understanding of the performance of a truss beam and the effect of
buckling, a pitched truss beam was modelled in the Finite Element program Abaqus.
This truss beam was modelled both with beam and shell elements in order to see the
differences in buckling modes and behaviour. The analysis includes sensibility against
imperfections by introducing different magnitudes of initial bow imperfections.

6.1 Input data for truss beam

In collaboration with Eurocode Software, a typical pitched truss beam with a span of
37.25 meters and a height of 1.33 meter was chosen for the analyses; the truss beam
can be seen in Figure 6.1. The different models analyzed during this project were
based on this truss beam but since effects of eccentricities between the diagonals were
to be analysed some changes had to be made. These changes concerned a small
change in position of the diagonals which then affects the geometry of the truss
members.

The structure of the diagonals was V-shaped and in order to decrease the buckling
length of the compressed top flange vertical diagonals were added, see Figure 6.1.
The truss beam was supported by two UNP-profiles on both ends of the top flanges.
The UNP profiles were welded to 15 millimetres thick plates which were bolted to the
supporting column, see Figure 6.2.
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Figure 6.1 Design drawing of the truss beam was obtained from Eurocode
Software. This drawing was used as a base when modelling in the Finite Element
program, Abaqus. The design drawing are printed in a larger format in Appendix A.
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Figure 6.2 Supports constructed with two rolled UNP profiles welded to 15
millimetre thick plates which were bolted into the supporting column.
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In Table 6.1 the section profiles for all members in the modelled truss beam are listed.
The number for each element can be seen in Figure 6.1. The top and bottom flanges
are constructed with L120x120x13 and L120x120x11 profiles respectively and all
diagonals except the two compressed ones closest to the supports are constructed with
UNP 120 profiles. Near the supports the truss is subjected to high shear forces which
make the diagonals close to the support more critical. To increase the capacity of the
truss beam diagonals 6 and 39, see Figure 6.1, were constructed with KKR
120x120x5.0 profiles which have a higher critical buckling load than UNP 120
profiles.

Table 6.1 Profiles of the elements are listed. The element numbers can be seen in
Figure 6.1.

Element number Profile

01-02 L 120x120x13.0

03 L 120x120x11.0

04 +41 Support plate 150x300x15, 2xUNP 120

05+ 07-38 + 40 UNP 120

06 + 39 KKR 120x120x5.0

As explained in Chapter 2.2, the diagonals can either be welded or bolted directly to
the flanges or the forces can be transmitted through plates which then are welded or
bolted to the flanges. In the analyzed truss beam the diagonals were directly welded to
the flanges, see Figure 6.3.
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Figure 6.3 Diagonals constructed with rolled UNP profiles or KKR profiles
directly welded to the two flanges constructed with L profiles.

During construction it is not always possible to get the diagonals to meet in one point
and this effect is taken into account in the models. The truss beam is modelled with
eccentricities between the diagonals, as can be seen in Figure 6.3. This makes the
result include the bending moment that arises in the flanges and diagonals due to the
eccentricity.
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6.2 Beam elements

The truss beam was first modelled in Abaqus using beam elements. A model with
beam elements can analyze both global and local buckling of the structure. However,
these elements are not able to analyze the local buckling of the cross sectional area,
which is important to keep in mind when analyzing the results. The advantage with
using beam elements is the small amount of time needed for Abaqus to analyze and
give results. It is therefore preferable to use this type of elements if changes needs to
be done in the model, and since results could be obtained quite fast the designer is
able to make changes in the model by testing. If a large model is about to be analyzed
in Abaqus it is therefore recommended starting modelling with beam elements and
when the program and behaviour of the model is familiar to the user, continue with
other types of elements.

When modelling in Abaqus it is important to decide which units that should be used in
order to obtain correct results. For the analyzed truss beam meter [m], Newton [N]
and Pascal [Pa] was chosen.

6.2.1 Geometry

When using beam elements the first step is to draw path lines representing the length
of the member. The path lines representing the members are created one by one and
are assembled together later. Exact coordinates can be given to the path lines when
created, which makes the assembling easier when the lines are getting their right
position immediately. Another way to create an assembly is to create the path lines
without their exact coordinates and move the lines into their exact position during the
assembling. Since every diagonal has a unique angle in the truss beam to be analysed
the exact coordinates were given to the path lines directly.

6.2.2 Properties

The path lines are assigned to a cross section that is created as a profile. There are
several different standard profiles to choose from in Abaqus or other profiles can be
created using the profile arbitrary. It is important to consider where in the cross
section the load should be applied and where the boundary conditions should be
located. The position of the load application and the boundary conditions will be the
path line that was drawn in the geometry and the cross section should therefore be
assigned relative to this line. Some of the standard profiles that are provided by
Abaqus do not relate the path line to the centre of gravity of the cross section, which
is important to keep in mind when drawing the geometry, see Figure 6.4. In the
Abaqus manual the relation between the path line and the cross section for the
standard profiles are given.
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Figure 6.4 Localisation of path line for an L profile.

For the analyzed truss beam the load should be applied and the boundary conditions
located in the gravity centre. It was therefore only possible to use the standard profile
for the KKR profile since this had the path line located in the centre of gravity of the
cross section. The UNP profile does not exist as a standard profile in Abaqus and the
L profile does not have the path line located in the gravity centre. The UNP profile
and the L profiles were created as the profile arbitrary. When drawing your own
profiles it is important to create the profile with its path line located in the gravity
centre. Origin represents the location of the path line. As a simplification the rounded
corners was excluded for both L profiles and UNP profile. However, the centre of
gravity and flexural resistance were controlled to be similar for the cross section with
rounded corners and the cross section without, see hand calculations in Appendix B.

The supports with two rolled UNP profiles and a plate were simplified in the model
with beam elements. In the model the plate was excluded and the two UNP profiles
were modelled as one I profile, with the same cross sectional area as the two UNP
profiles, see Figure 6.5.

Figure 6.5 Support containing two UNP profiles and a steel plate were simplified
to one I profile.
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When modelling with beam elements all sections are represented by simple lines.
However, as a control that the path lines have their right cross section and oriented in
a correct way the model could be displayed with its cross sections as in Figure 6.5. To
display the model with its cross-section use view/assembly display options/render
beam profiles.

The path lines that represent the members are also assigned to a material. The material
is created with different properties such as density, elastic- and plastic properties. The
self weight of the truss beam was excluded and no density was applied to the material
properties for the truss beam. For all analyses elastic properties with Young modulus
and Poisson’s ratio were applied similar to the steel column, see Table 4.3.

6.2.3 Step

When creating a model an initial step already exists. In this step are all initial
conditions for the model created, such as boundary conditions. A new step that
decides which type of analysis that should be performed on the model needs to be
created. Usually only one step is created for each model. In the created step the
information concerning the requested analysis is given, for example magnitude of the
load which should be applied to the structure and the requested output.

When different types of analyses should be performed on the same model it is
preferable to copy the model and then change the step that was created in the previous
model. In the module step it is possible to request output from the different analyses
in Abaqus. The output is generally given in one point for the cross section but it is
possible to include output in more integration points of the cross section. Every cross
section in Abaqus has a number of integration points that is possible to choose and the
amount is given in the Abaqus manual. For example the outputs for L profiles could
be requested in 9 integration points, see Figure 6.6.

: i

Figure 6.6  Location of integration points in a standard L profile, Simulia (2010).

In Chapter 6.4 analyses and steps are further explained.

6.2.4 Load application

For the truss beam a total load of 30kN/m were applied on the top flanges. When
modelling with beam elements it is not possible to apply a load on the surfaces of a
cross section, it could only be applied on the path line or at nodes on this line. For the
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truss beam a line load of 15kN/m acting in the Y direction was applied on the path
lines of both top flanges, see Figure 6.7. This then results in a total load of 30kN/m
for the whole truss. Since the path line of the L profile is located in the centre of
gravity, the load will also be acting there. The load should be applied on the model in
the created step and not in the initial step.

Figure 6.7  Global coordinate system for the modelled truss beam.

6.2.5 Boundary conditions

Since the boundary conditions are the initial conditions for the truss beam they are
applied in the initial step. There are several different types of boundary conditions to
choose from in Abaqus; for the truss beam displacement/rotation was chosen.

When modelling with beam elements the boundary conditions could be defined on
nodes or lines. The node or line is picked in the view and then the degrees of freedom
to be locked are chosen, see Figure 6.8. It is also possible to choose if the boundary
conditions should be located in the global coordinate system or if a local coordinate
system should be created and used.
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Figure 6.8 Table for boundary conditions.

The truss beam was modelled as simply supported. At the lower end of the path for
one I profile, all the displacements were locked and all rotations were free. At the
lower node of the path line for the other I profile the transversal and vertical
displacements were locked and as for the other side all rotations were free.

A roof sealing would provides the truss beam with some stiffness in the transversal
direction and as an attempt to simulate this effect the top flanges could be locked in a
zigzag pattern in the transversal direction, global Z, see Figure 6.7.

6.2.6 Mesh

The mesh of the truss beam was created first by seed part instance on the entire beam.
The approximate global size for the elements was chosen to be five centimetres. The
entire truss beam was then chosen once again when mesh part instance was created.

When modelling in Abaqus 6.8, Timoshenko B32 beam element was used,
representing a 3-node quadratic beam element. These elements are calculating for
transverse shear deformations and could be used both for stocky and slender beams,
Simulia (2010). This transverse shear deformation caused problems in the eigenvalue
buckling analysis performed and an element type excluding these deformations was
needed. In Abaqus 6.10 a better 2-node cubic beam element for analysing a truss
structure is available, Euler-Bernoulli B33. These elements do not take transverse
shear deformation into account and are therefore recommended to use for slender
beams. For further information the authors refer to the online Abaqus user manual
6.10.
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6.2.7 Connection between diagonal and flange

In order to connect diagonals and flanges to each other multiple constraints, MPC,
were used. This is a constraint that connects two or more nodes to each other. When
creating this type of connection one node is chosen as the master node, which is the
deciding node. The other nodes in the constraint will follow the master node and are
then called slave nodes. In the analyzed model three nodes were connected to each
other by multiple constraints; one node in the diagonal and one node in each flange,
see Figure 6.9. In the truss beam the diagonal function as master node and the flanges
as slave nodes.

Figure 6.9 Beam modelled with multiple constraints beam

As been explained before, the top flange was created by two path lines representing
the two L profiles. To pick points on this path lines to create MPC is not possible and
application points or nodes therefore need to be created. First datum points were
created on the flanges by the command project point on line. The end point of the
diagonal was picked and connected to the flange by picking the path line of the
flange. Datum points are not “real” nodes; instead they can be used to create
partitions. Partition means that the path line is divided into two lines instead of one
and the datum point is used to show were the line should be divided. Since all lines
are represented by nodes in their ends more lines results in more nodes and when
partition is used the nodes will be located at the position of the datum point. These
nodes were then used when creating the multiple constraints.

There are several different types of multiple constraints in Abaqus that connect the
nodes to each other in different ways. For example the multiple constraint pin is
connecting the nodes to each other in X, Y and Z direction but leaves the nodes free to
rotate. The multiple constraint beam locks the nodes to each other in all directions and
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in all rotations. MPC pin can represent the case when the buckling length is equal to
the element length and MPC beam the case when the buckling length is equal to half
of the element length.

Since the interest in analyzing the truss beam is to see the behaviour with totally
locked connections, multiple constraints beam were chosen. As mentioned this
constraint represents a fixed connection between diagonal and flange; locked in all
directions and rotations.

6.3  Shell elements

When using beam elements as in the previous model the results do not include
buckling or failure of members’ cross sections. In order to see the difference in
performance of the truss when including this local buckling a second model with shell
elements was made. A model with shell elements includes the cross section in the
analyses and the behaviour of the cross section during the load application is shown.

6.3.1 Geometry

The geometry of shell elements can be made in different ways. For this truss model
the shell tool sweep was used. When using sweep a path representing the length and
position of the member is first created, similar to the path line for beam elements. As
for the path line for beam elements the exact coordinates for the path can be entered
which makes it easier when assembling the members into a model. However, an
assembly by moving the members into their exact position can also be created. For the
truss beam exact coordinates were given to the paths since all the members have
different angles and it would be difficult to move the members into their right position
during the assembly.

When the path is created a line representing the cross section is drawn, see the
example in Figure 6.10. A thickness is thereafter assigned to this line. This thickness
should represent the thickness of the cross section for the steel member and it could be
assigned in different ways. The thickness could originate from the right side, left side,
from the middle of the cross section line or a specific point could be entered in section
assignment. For the truss beam the origin of the thickness, of the line representing the
cross section, was chosen to be in the middle. The choice was based on the ease to
understand the location and appearance of the cross section. During the assembling it
is important to keep in mind the location of the origin line in the cross section since
this is the line displayed in the model and not the thicknesses of each part in the cross
section.
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Figure 6.10  Line that represent the cross section of the member. The cross section
is drawn with its centre of gravity located in the origin which then also results in that
the cross section is placed with its centre of gravity in the path line.

In the beam model simplifications of the supports were made. When modelling with
shell elements the UNP profiles at the supports were modelled according to the
drawing but the steel plates were excluded. As for the model with beam elements the
round corners of the UNP profile and the L profiles were excluded.

6.3.2 Properties

As been written above; the cross section lines were assigned a thickness. When
modelling with beam elements the thickness of the cross section is assigned when
creating the profile. With shell elements the cross section of each truss member is
visible and it is possible to assign the cross section parts to different thicknesses, see
Figure 6.11. The members are also assigned material properties in the same way as for
beam elements, see Chapter 6.2.2.
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Figure 6.11  Different thickness in the same part.

6.3.3 Load application

When modelling with shell elements it is possible to apply the load on a surface, line
or node. The load for this truss is applied as a pressure load acting on the surface of
the top flanges, see Figure 6.12. In order to be able to compare the models with
different types of elements the total load with shell elements should be equal to the
one with beam elements, 30 kN/m. With a flange width of 120 millimetres the
resulting pressure load becomes 125 kN/m, see Equation (6.1) below.
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Figure 6.12  Load is applied as a pressure load on the surface of the top flanges.

_ 30kN/m
T 2x0.12m

0 = 125kN /m? (6.1)

Q Load [N/m?]

6.3.4 Boundary conditions

As for the load; boundary conditions can be defined on surfaces, lines or nodes when
modelling with shell elements. The truss beam with shell elements was modelled as
simply supported, same as the one with beam elements. The lower nodes of the cross
section of the two UNP profiles at one side of the truss beam were locked in all three
directions but free in the rotations. The lower nodes of the cross section of the UNP
profiles at the other end were locked in Z and Y direction but free in X direction and
in all the rotations, see Figure 6.13.
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Figure 6.13  Nodes used for boundary conditions at the supports are highlighted
with white circles.

The stiffness from a roof sealing that might be connected to the top flange could be
constructed as boundary conditions in global Z direction as in the previous beam
element model.

6.3.5 Mesh

The mesh was created by 8-node shell elements, S8R, with an approximate global size
of 0.1m. This type of element is quadratic but instead of four nodes per element, four
additional points are situated at the edges in between the four end nodes, see Figure
6.14. These were chosen in order to obtain more attachment nodes in each element.

Figure 6.14  For the mesh, 8-node shell elements are used.

The connection between diagonal and flanges is diverging from the one done in the
beam element models. In the shell element model the diagonal and flanges are
connected in 20 points around the diagonal; seven nodes at the long sides and five
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nodes at the short sides. This way of modelling the connection is more representative
for the welded connection performed for this type of truss at Ranaverken. How the
nodes were organized can be seen in Figure 6.15, and the modelling of the connection
will be explained in the next chapter.

To create the nodes needed for the connection, partitioning of the side of the flanges
were done. The partition was created by offsetting the shape of the diagonals to the
flanges in the mesh module. First an edge on which the shape should be offside to
needs to be chosen by using tools/partition/face/sketch and then pick the face at which
the shape of the diagonal should be created, in this case the flange. After this the
edges of the diagonal were projected on this chosen surface of the flange by using
project edges. The edges of the diagonal which were wanted on the top flange were
then chosen and a line representing the edge was then projected on the surface of the
flange.

Since every element has eight nodes, a total of three elements on the long side and
two elements on the short side were needed to obtain the requested nodes at each side
of the diagonal. The mesh was arranged using seed/edge by number.

Figure 6.15 Mesh arrangement around a diagonal. The diagonal has three
elements on its long side and two elements on its short side.

When generating the mesh, four elements had inappropriate shape and were reshaped
using edit mesh. The elements were long and tiny and their areas were significantly
smaller than the area of the surrounding elements. This small area caused high
stresses locally in these elements which is not a good representation for the real truss
beam. In order to improve the shape of these elements they were joined together with
nearby elements and some were spliced again to reach a better shape and area of the
elements. The improvements of the mesh were done by Edit mesh / element / split
edge and combine, see Figure 6.16.
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Figure 6.16  Mesh editing.

An input file for the model was written and then imported back to the program. This
creates a new model with fixed geometrical properties. The reason for this was to
make mesh nodes possible to pick for load, boundary conditions and connections. In
the truss beam the nodes in the mesh were used to create the connection between
diagonal and flange.

6.3.6 Connection between diagonal and flange

The connection between diagonal and flange is performed in a more realistic way than
in the model with beam elements. In reality the weld is performed all around the
diagonal, see Figure 6.17. In the model the weld was performed using multiple
constraints beam, the same constraints as in the beam model. As been explained
before; multiple constraints connect two or more nodes to each other. The weld in the
model with shell elements was simulated with seven constraints on the long sides and
five constraints on the short sides. This way of connecting the truss members was
considered as better representation of the real weld instead of using only one
constraint as in the beam element model, see Figure 6.18. One constraint will cause
high stresses locally at the constraint and by using more constraints the stresses are
evened out.
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Figure 6.17 At Ranaverken the contact edges of the truss members are welded
together and this is simulated in the shell element model by 20 constraint placed in
the same position as the welds at manufacture.

Figure 6.18 Diagonal and flange are connected to each other by 20 multiple
constraints.
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The multiple constraints could have been created in the same way as for the model
with beam elements; create a MPC, pick the master node and then pick the slave
nodes. However, this process is very time consuming and the model with shell
elements contains a very large number of constraints. Instead of creating the MPC one
by one MPC beam was created as a connector section. In connector section there are
many different standard connections to be chosen. For the truss beam MPC beam was
chosen since the connection between diagonal and flange should be totally fixed as in
the beam element model. When multiple constraints are used as a connector section
no nodes will be assigned as master or slave nodes, instead all nodes are equal.

The connector sections should thereafter be assigned to a wire. Wires between the
node in the diagonal and the node in the flange are created. Many wires can be created
at once which results in a wire set. The entire wire set could thereafter be assigned to
the connector section and the multiple constraints beam are assigned, see Figure 6.18.
The nodes picked for the wires are the mesh nodes that were created along with the
mesh.

6.4 Analyses in Abaqus

Three different analyses were performed on the models; a static analysis, an
eigenvalue buckling analysis and a static Riks analysis. The different analyses are
created by the choice of step. It is preferred that each model contains only the initial
step and the created step. The model was therefore copied and the step changed,
before running the analysis. When a step is changed the load needs to be recreated
since the load is created in the step that was deleted. If boundary conditions are not
assigned in the initial step, these also need to be redone.

6.4.1 Static analysis

The static analyses were performed to confirm the accuracy of the models, and the
step static, general was used for this purpose. The load in this model was not
performed as a line load or as a pressure; instead a concentrated load was applied in
the middle node of both flanges. The static analysis was not performed to see the
behaviour of the truss beam and the application of the load was therefore performed in
a way which made the comparison between hand calculations and results obtained
from Abaqus easier. The results from these analyses confirmed that the reaction forces
in the supports were equal the applied load, for both the beam- and shell element
model.

6.4.2 Eigenvalue buckling analysis

Eigenvalue buckling analysis, with the step linear perturbation buckle, was performed
on the models. This analysis calculates the possible buckling modes and their
eigenvalue. The buckling modes represent different buckling scenarios for
compressed members in the truss and the first mode is the most critical.

When creating the step linear perturbation buckle, the number of buckling modes is
chosen. For both the beam- and shell element model 25 buckling modes were
requested, this number covered the buckling modes of interest. For this type of
analysis it is possible to choose between two types of eigensolvers; Lanczos and
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Subspace. In the truss analyses Lanczos was chosen as eigensolver together with the
request of 25 positive buckling modes.

The buckling analysis is only possible to perform on stiff structures and the truss
beam can be considered as a stiff structure since the diagonals and flanges act like
Euler columns Simulia (2010). The eigenvalue buckling analysis can be used to
estimate the critical buckling load but can also be used to provide the static Riks
analysis with information. The buckling analysis is in this case used as input data for
the static Riks analysis. If the buckling analysis should be used as an input data the
results need to be saved. This is made by typing the following words, before end step
in keywords for the model with the step linear perturbation buckle:

*NODE FILE, GLOBAL=YES, LAST MODE= {number of requested buckling
modes }

U

6.4.3 Static Riks analysis

The second order effects and imperfections are integrated in the FE modelling by
running the step static Riks. By introducing imperfections in the model, possible
faults made at manufactory or at site are taken into account which results in a more
realistic load bearing behaviour of the truss. The load is applied gradually and the
results show how the behaviour of the truss changes until failure occurs. From these
results the failure load is possible to find for the modelled truss beam.

The eigenvalue buckling analysis provides the static Riks analysis with information
about the shape of the buckling modes for the most critical elements in the truss. The
obtained buckling shape is then introduced as an initial imperfection in critical
members of the truss with a magnitude chosen by the designer. These initial bow
imperfections are included in the analysis by writing the following words before step
in keyword, for the model with the step static Riks:

*IMPERFECTION, FILE={name of the job for the buckling analysis}, STEP=1
{number of the first buckling mode}, {magnitude of imperfection}
{number of the second buckling mode}, { magnitude of imperfection }

etcetera

The list of buckling modes and imperfections in keywords can be as long as needed.
In the modelling of the truss beam only two imperfections were introduced. The
magnitude of the imperfections was based on EN 1993-1-1 (2005), see Chapter 5.5.

With the static Riks analysis it is possible to choose if the analysis should include the
second order effects or not. This is made by turning Nlgeom on or off when editing
the step or in the job table, sees Figure 6.19.
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MName: Nonlin
Type: Static, Riks
Basic I Incrementation I Other l

Description: I

Nigeom: On Edit... I
I™ Include adiabatic heatinc_N

Stopping criteria

™ Maximum load proportionality factor?

[~ Maximum displacement:l DO I—
Mode Regior; I j

M Edit Nlgeom x|

Include or ignore the nonlinear effects of
large deformations and displacements.

Step I Nigeom |
Initial N/A
Monlin v

OK | Cancel I

Figure 6.19  Second order effects are included or excluded in the static Riks
analysis by switching Nlgeom on or off respectively in the step module.

Increments representing the load application are processing the static Riks analyses.
The length of the increments could be chosen but it is also possible to let Abaqus
decide the length of each increment. If the length of the increments is chosen, all of
the increments will have the same length. If Abaqus decides the length, it will vary
with large steps in the beginning of the analysis and then gradually decrease. This
results in that if the length is chosen the number of necessary increments will be much
larger than if Abaqus decides the length itself. Before letting Abaqus calculating with
free length of each step, limitations considering the length must be assigned. This is
done by giving maximum and minimum allowed increment lengths in the step
module, see Figure 6.20.
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[Mieditstep x|
Name: nonlinear
Type: Static, Riks

| other |
Type: ¢ Automatic ¢ Fixed

Maximum number of increments: IlUO

Initial Minimum Maximum
Arc length increment [0.1 [1E-025  [1E+036
Estimated total arc length: I 1

Note: Used only to compute the intial load proportionality factor

OK I Cancel I

Figure 6.20  Editing step module.

For this truss analysis Abaqus was free to decide the length of the increment in
between 10%° and 10°°. The maximum number of increments was chosen to 100.
However, when Abaqus decides the length of the increments, the length of the first
increment could be chosen and in this case it was selected to 0.1. It is important that
the number of increments is large enough to achieve failure before the last increment
is reached.

The static Riks analysis is a static analysis that is able to take nonlinear material or
nonlinear boundary conditions into account and is applicable when the model is
naturally unstable; the truss beam is unstable due to its tendency to buckle. In this
case nonlinear material was intended to be used, but was excluded in the final model.
The reason for excluding the nonlinear material is explained in Chapter 7.5.

The results of the analysis can be seen in every step/frame and the process is easy to
follow. The analysis is processing by an arc length and when creating a graph the arc
length is always on the x-axis. The history outputs, also chosen in step, can be seen in
the tree on the left hand side. History output contains a load proportional factor that
shows how much load is applied on the model at each step. The output for each
increment could be saved in table format which is helpful when creating graphs in
other programs. The table is created by Tools / XY-data / create and here it is possible
to choose which output is requested; ODB history or field output. The specific output
is then chosen and the last step is to select in which node the output should be picked.
The results are then found by Tools / XY-data / edit where the first column represents
the arc length and the second the chosen output.

A useful tool when viewing the results is tools/query/probe value. With this tool the
value for a node can be seen very easily for each increment. A field output should first
be chosen and then a node is picked in the view; in the table for selected probe values
the value for the specific node is shown, see Figure 6.21.
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Figure 6.21  Probe field output.
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7 Problems

A number of modelling problems in Abaqus have been solved during this project.
Some of the problems were minor and easily solved, by help from other people at the
division of steel and timber structures or by reading in the Simulia (2010); other
problems were major and took hours of researching to solve. A few problems have
been left unsolved during this project. This chapter will explain the problems that
occurred and the solutions that were found. During the modelling shortcuts that made
the work easier were found and some of these will also be explained in this chapter.

7.1  Geometry

The most important concern when modelling in Abaqus is to create a model that does
not include faults of any kind, such as errors in the geometry. The first thing to
consider is which units should be used. These units have to be used consistently
throughout the entire work.

One of the largest problems in this work occurred when the beam model was created.
Some standard profiles in Abaqus are not modelled in their gravity centre. This issue
caused problems twice and both times the entire model needed to be changed. When
modelling with beam elements the members are represented by path lines and the
cross sections are not shown. At the beginning of the modelling the cross sections of
the members were created by standard profiles in the belief that the cross sections
were modelled in their gravity centre. When the possibility to see the cross sections
was found, in view/assembly display options/render beam profiles, it was clear that
the members had the wrong position. This problem was taken care of by moving the
members into their right position in assembly.

However, it is not enough to get the cross sections into their right position. The
boundary conditions and the load are neither located in the gravity centre. This
problem was found when the results from the analyses were evaluated. Tensioned
members were deformed as subjected to compression and additional moments created
from the eccentricity between gravity centre and load application were found. Since
new profiles with their path line in the gravity centre needed to be created and the
members’ position changed; a completely new model was created.

An issue that came up when creating own profiles were how the rounded corners
should be created. This problem was not solved. Instead a new profile without
rounded corners but with similar moment of inertia and flexural resistance as the
standard profile was created, see Appendix B.

In Abaqus members of the truss were created one by one and assembled together later.
The truss beam contains several members with different angels and positions. In the
first model the members were moved into their right position in assembly. This is
possible to do but it is very difficult and time consuming when working in such a
complicated model as the truss beam. The second time the model was created exact
coordinates for the members were entered directly when the members were created. In
this way the members got into their right position directly when assembled.

In the beginning of the work in Abaqus the modelling was very time consuming.
However, during the work shortcuts were found; an example of this is how to use and
create datum points. Datum points are not nodes of the members but a node can be
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created as partition with the datum point. There are several ways to create a datum
point, see Figure 7.1.

I Create Datum x|

— Method

Enter coordinates

Offset from point
Midway between 2 points
Offset from 2 edges
Enter parameter

Project point on face
Project point on line

Figure 7.1 Table showing the different ways of creating datum points in Abaqus.

In this work datum points were created by entering coordinates, offset from a selected
point, project point on a line and midway between two points. The different types of
creating points are good to read about before starting to create a datum point. To
choose the easiest way of creating a datum point can save a lot of modelling time. It is
also possible to create datum planes, datum axes and datum coordinate systems. This
has not been done in this thesis but could also be used as a tool to make the creation of
the model easier.

7.2  Analyses

The analyses are created as steps and the steps themselves created a problem. In the
beginning two steps were created for the same model. This is not possible to do in
Abaqus since the first step affects the second step and the results from the second
analysis will be incorrect. Instead a new model must be created for each step. It is also
important to create boundary conditions and load in the right step. The boundary
conditions should be in the initial step and the load should be applied in the step that
was created.

Another thing that caused problems in the beginning was how to write in keywords.
As been explained in Chapter 6.4; a text in keywords for the buckling model was
typed for saving the buckling modes and a text in keywords for the static Riks
analysis was typed for importing the bucking modes. These words need to be typed in
exactly right and it is necessary to understand what every word means. For example
the number of the last mode is the number of modes that you want to save from the
buckling analysis. The file name that should be written in keywords for the static Riks
analysis is not the name of the model but the name of the job for the eigenvalue
buckling analysis and the step should always be equal to one, since only one step is
made. The value for the imperfection factor could be calculated according to

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:127

55



Eurocode or if the sensibility against imperfections should be analysed, it could be
chosen randomly.

7.3 Different versions of Abaqus

At the division of steel and timber structures different versions of Abaqus exists. This
limits people to help each other and it can also cause problems when it is needed to
change version during work. This thesis started with working in version 6.8. Since
there showed to exist some errors in version 6.8 that could cause problems with the
buckling modes; the model was tested in version 6.7. In version 6.8 it is possible to
use multiple constraints, MPC, but in version 6.7 MPC does not exist and then all
constraints just disappeared in the model. This caused a stability problem when
running the analysis. To figure out that the lack of multiple constraints caused this
problem was very time consuming.

The buckling analysis results in buckling modes and their respective eigenvalue.
When analysing the results from the eigenvalue buckling analysis of the beam model
it showed that a diagonal buckled with one, two and even more sinus curves with
nearly exactly the same eigenvalue. This phenomenon is not possible since the force
needed for a compressed member to buckle in higher modes would be significantly
greater than the first mode. A question was sent to Abaqus support and the answer
showed that the wrong element type was used. The element type B32 could make the
transverse shear stiffness too low and their recommendation was to change the
element type to B33, in order to exclude shear deformations. The solution seemed
simple but after some research it turned out that B33 does not exist in version 6.8; that
was used for the analyses. A change to version 6.10 was made. When the elements
were changed to B33 the results from the eigenvalue buckling analysis seemed
correct. However, when the eigenvalue buckling analysis worked properly a new
problem was found in the static Riks analysis. This new problem was not solved and
will be explained further in Chapter 7.7.

7.4  Error messages

When running a job that contains faults, error occurs and an error message is received.
These error messages that contains information about what caused the error can
sometimes be hard to understand. An explanation of some of the error messages that
have been received during this work follows.

An error message that is usual to get is that conflicts occurs in keywords. This error is
easy to fix; the rows that contain the words conflict need to be deleted from keywords.
After this is done; the analysis can be submitted once again without this problem.

It is also usual to get a stability problem. This means that a member or members are
not constrained enough. When this error message is received it is important to go
through the model in detail and figure out what can cause this error. In the beginning
of the thesis it was decided that a truss beam with pinned connections should be
analysed. This model would simulate a case with the buckling length equal to the total
system length of the truss members. This was executed by using multiple constraint
pin. When using this constraint an error message containing stability problems was
received. An answer to this instability error is believed to be problem with the
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constraints. A pinned constraint allows the members to rotate and the truss members
then started to rotate around their own longitudinal axis, which then caused instability.

7.5 Different trials

One of the aims at the beginning of this thesis was to check how the behaviour of the
structure changed for different buckling lengths. There have been several attempts to
investigate this behaviour but in the end this investigation was cancelled due to other
time consuming problems with Abaqus. The attempts that has been made is explained
in this chapter.

As been said in the previous chapter was an attempt made with MPC pin instead of
MPC beam in the beam model. This would represent the case when the connections
between diagonal and flange were pinned. This caused a stability problem since the
members were able to rotate around their own axis.

Instead of using MPC pin a coupling connection was tried, which locked the
connection in all directions and rotations except around the transversal axis. Around
the transversal axis a rotational spring was used. However, after a lot of research it
was found that the coupling connection did not work like it was assumed. The
coupling connection does not connect two or more nodes to each other as a multiple
constraint; it connects several of nodes to a point that could be located anywhere.

To avoid this problem MPC pin was used again but with additional rotational springs
around all three axes. The springs that were used could be chosen to work in all
directions and around all axes but only one can be chosen each time, so the springs are
either translational or rotational. When MPC pin was used; springs should be used
around all three axes and since only one rotation could be chosen three springs were
used. The stiffness of the springs could be changed and this should make it possible to
see the behaviour of the structure for different magnitudes of stiffness of the joints. At
this time the problem with Abaqus not modelling in the gravity centre of the cross
sections was found and there was not enough time to start over with the model with
spring connections.

From the beginning the intention was to use a spring-like connection to simulate the
weld. For the shell element model this should have been made by using a connection
section with elastic behaviour in the three directions X, Y and Z. A local coordinate
system should have been created for each weld and the directions should be taken
from this coordinate system in order to reach different stiffness’s in each direction.
However, each diagonal contains eight welds and there are 36 diagonals; this means
that there would have been 1296 welds and each weld then contains five or seven
connections and a local coordinate system. Since other problems in Abaqus were very
time consuming it was not possible to proceed with this type of connections.

In the model with shell elements a convergence problem when running the static Riks
analysis occurred. In the first model the load was applied as a pressure load. In the
belief that the pressure load caused a rotation of the top flanges around their
longitudinal axis and by that an error; the load was changed to a line load.
Unfortunately the error remained.

Many trials were made to include plastic material properties in the truss models with
beam and shell elements and experts within the program was contacted in order to
find the reason to why these material properties caused problems with convergence in
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the static Riks analysis. At the end of this master thesis still no fault in the modelling
was found and it was decided to focus on elastic material properties. However, the
riks analysis made it possible to see the effects of second order behaviour,
eccentricities between diagonals and sensibility to imperfections.

7.6  Study the results

When the results were studied a number of problems came up. The most typical
mistake is to forget to tell the program which field output that is wanted or to forget to
request some of the interesting outputs. This is chosen in field output table in the step
module. If this happens the only solution is to go back to the field output table,
request the needed output and then run the analysis once again.

A large problem was to understand the meaning of arc length. Arc length is the
variable that makes the analysis step go forward. If an output is chosen to be plotted in
visualization module; it will be plotted against the arc length. In the truss beam it
would be preferable if the variable was plotted against the load proportion factor, LPF
instead. This would make it possible to see for example how large the global
deflection is for a specific load application. However, this problem was not solved and
instead LPF that is found under history field output was plotted against the arc length.
The values for LPF was taken from Abaqus and plotted against the values from other
variables in Excel and in Matlab, see Chapter 6.4.3.

Another problem that was hard to solve was how to read the values for different
section points in the beam element model. As written in Chapter 6.2.3 every cross
section has a number of section points; the number and location changes for each
cross section and can be found in Simulia (2010). Depending on how many section
points that are requested in the step module, the outputs are written for all the section
points. However, how to read these results were complicated to find. In the bottom of
the field output table in step module it is possible to choose specify. Here the number
of section points that is wanted to get output from is specified. If all section points
should be included, the maximum number of section points for the cross section with
the highest number of section points should be specified. It is not enough to tape 9 for
the L profile if you want to see 9 section points; it must be written: 1,2,3,4,5,6,7,8,9 in
the square. In the visualization module the table section points can be found under the
tab results. In this table it is possible to choose in which section point that the results
should be shown.

7.7 Remaining problems

In the model with beam elements a problem remains. When plastic material was used
in the static Riks analysis, the structure was not loaded in a proper way and
unfortunately, this problem has not been solved. Abaqus support was contacted but no
answers were found and the analyses are therefore made without consideration of
plastic material. Still it must be pointed out that it is not assured that the plastic
material is causing the problem. The modelling of the compressed column in Chapter
4 shows that it is possible to include the effect of plastic material properties in the
static Riks analysis.

The same problem is also found in the shell element model. Both static analysis and
buckling analysis are considered to work correctly. However, as for the beam model
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the load application is not working when running the static Riks analysis. The load is
applied in very small steps and the analysis stops at a load much smaller than
expected.

As mentioned above plastic material properties were not possible to apply in the static
Riks analyses for both beam and shell elements. However, when elastic material was
applied instead, convergence was still a problem for the shell element model.
Unfortunately, this problem was not solved.
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8 Results

The results from the beam and shell element models are received from Abaqus and
are presented separately. Due to symmetry the results are only presented for one half
of the truss beam but similar stresses were found in the mirrored members of the truss.

8.1 Beam model
8.1.1 Static analysis

A static analysis representing the linear elastic behaviour of the truss beam without
imperfections and second order effects was performed. The result from this analysis
showed the behaviour of the truss beam with the applied load. The applied load was
1kN/m and the members with the highest stresses were considered. According to
linear elastic theory the stresses and sectional forces are linearly increasing with
increasing load. The results from the static analysis could therefore be scaled in order
to be compared to the eigenvalue buckling analysis and 2" order analysis.

Considering the maximum Mises stresses in different members in the truss, the
following results were obtained, starting with the most critical members:

1. Diagonal 40: yielding in tension close to the connection to the lower chord,

2. Connection 11: subjected to local bending stresses due to eccentricity,

3. Diagonal 39: yielding in compression close to the connection to the upper
chord,

4. Diagonal 37, upper flange element 63 and diagonal 32, respectively.

Upper flange element 63

\ Diagonal 32 Diagonal 39
O AW M
o /X
o/ / ’
Connection 11 Diagonal 37
Diagonal 40

Figure 8.1 The highest stresses were found in diagonals 32, 37, 39 and 40, upper
flange element 63 and connection 11, the same stresses were found in the mirrored
members.

In Table 8.1 the failure modes for the most critical elements are further investigated.
From the static analysis the ultimate load to cause yielding in the cross section could
be calculated. In material data the yield strength was defined as f, = 355MPa and as
the results from the static analysis is linear elastic the ultimate load for yielding can be
found by scaling the load (1 kN/m). This results in a load multiplication factor «;, see
Equation (8.1), which represents the ultimate load with reference to each failure
mode.

o =2 (8.1)
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fy Yield stress [Pa]
a; Load multiplication factor [-]

o Stress for a unit load [Pa]

For regions subjected to tension there are no problems with instability and the
ultimate loads for these members are the load at which the cross section yields.
However, for members subjected to compression, a stability check needs to be
performed, in addition to the cross-section capacity control. As explained in Chapter
3, compressed members might suffer instability problems before the load to cause
yielding in the cross section is reached and a stability check needs therefore to be
performed.

Eurocode EN 1993-1-1 (2005) provides several alternatives for the evaluation of the
stability of elements in compression. For the general case in which the element is
subjected to both compressive axial force and bending, three principle methods exist:

1. 1*-order analysis with stability check using interaction formulas [6.3.3]

2. 2"order analysis with assumed initial imperfections, followed by check of the
cross-section resistance [5.3.2]

3. A general method combining 1*-order analysis and buckling analysis [6.3.4],
see Chapter 8.1.2.

According to EN 1993-1-1(2005) the ultimate load for a compressed member
subjected to both axial force and bending moment is found by an interaction between
these sectional forces, see Equation (8.2). Here the multiplication factor «; is added in
order to scale the sectional forces from the static analysis up to failure. The variable
Kyy is a measurement of how much the instability affects the strength and was
calculated according to EN 1993-1-1(2005). Similar to Equation (8.1) the load
multiplications factor «; in Equation (8.2) represents the ultimate load for the
considered truss member but with concern to instability failure. With this method the
exact buckling length needs to be assumed. The hand calculations can be seen in
Appendix B6.

M

ax G+, ) <1 (8.2)
A Cross sectional area [mz]
M Bending moment [Nm)]
N Normal force [N]
w Flexural resistance [m3 ]
fy Yield stress [Pa]
Kyy Interaction factor [-]
a; Load multiplication factor [-]
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Table 8.1 Ultimate load for critical sections in the truss beam.

Failure mode | 1 2 3 4 5 6

Location d40 con. 11 |d39 d37 tf63 d32

Axial force tension | Tension | comp. | comp. |comp. | comp.

o [MPa] 25.56 19.32 17.4 16.1 15.06 11.4

Axial - See 21.2 -16.3 -38.2 93
Figure

f

orce [kN] 27

Bending - See -0.982 | -0.085 | 0.126 |-0.08
Figure

moment 23

[kNm] '

a; [-] 13.9 18.4 17.5 21.7 19.5 31.0

Ultimate load | 13.9 18.4 20.4 22.0 23.6 31.0

- yielding

[kKN/m]

Ultimate load | - - 17.5 21.7 194 324

— interaction

method

[kN/m]

From Table 8.1 it was concluded that with consideration of initial imperfections and
second order effects, all the considered compressed members except from diagonal 32
will suffer buckling instability before the load to cause yielding in the cross sections is
reached. Comparing the results from the static analysis, Figure 8.1 with the results
from the 1*-order analysis with stability check using interaction formulas in Table 8.1
also shows that the compressed diagonal 39 is more critical than connection 11 due to
the effects of instability.

For an applied load of 18.4kN/m yielding is obtained in connection 11 between the
flanges and diagonals. In Figure 8.2 and Figure 8.3 the distribution of sectional forces
in connection 11 are presented.
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Figure 8.2 Distribution of the axial force acting in connection 11, where positive
represents tension and negative compression.

Figure 8.3  Moment distribution in connection 11.

Yielding in the connection is created from the axial forces and the moment
distribution, resulting from the eccentricity in the connection. In the connection both
compressive and tensile forces are acting in a small part of the flange. These forces
will give rise to high bending stresses locally and the flange deform in bending. Other
factors that affect yielding in the connections are the global deformations of the truss
caused by loading and the modelled eccentricity between the diagonals, see Figure
8.4. When these factors are present the axial force results in an additional moment in
addition to the bending moment created from the fixed connection. This high stress
distribution is present not only in connection 11 but in other connections as well.
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Figure 8.4 Eccentricities in the connection between the flange and diagonals.

8.1.2 Eigenvalue buckling analysis

The eigenvalue buckling analysis results in a requested number of buckling modes
and their corresponding eigenvalues. In the eigenvalue buckling analysis for the
model with beam elements the first two buckling modes showed different buckling
shapes of the top flange in between the supportive diagonals. The buckling modes
differed from each other by different magnitude of deformation in the top flange
members. The first and most severe obtained buckling mode has the largest magnitude
of buckling in the top flange member 63, see Figure 8.5.

Top flange 63
_ ' 4
. i . 1 ~ - ~O .

AN NN NN NLNINANTNT

Figure 8.5 The first buckling mode in the beam model showed buckling of top
flange.

In the third buckling mode buckling is obtained in diagonals 13 and 32 of the truss
beam, see Figure 8.6. In the following six buckling modes, buckling was acting in the
same diagonals as for mode three.

Diagonal 13 Diagonal 32

A TAYT A NP AN AR e, o
i/\/\j\\zO \\L/ u, \\‘/l ‘\i/’ 2 V4 (9{// \//\7\\/

Figure 8.6  In buckling mode number three buckling occurs in supporting
diagonals and top flange.

In buckling mode number 10 diagonals number 8 and 37 have the largest buckling
magnitude, see Figure 8.7. In all of these buckling modes members of the top flange
buckled as well.
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Figure 8.7  In buckling mode number 10 the largest buckling magnitudes were
found in diagonals 8 and 37.

The eigenvalue buckling analysis shows the shapes of the buckling modes and their
eigenvalues. From these eigenvalues the critical buckling load for any buckling mode
could be calculated. The critical buckling load was calculated by multiplying the
eigenvalue with the applied load, see Equation (8.3). In the eigenvalue buckling
analysis a load of 30 kN/m was applied on the structure.

P, =AxP (8.3)
P Applied load [N/m]
P, Critical buckling load [N]

A Eigenvalue [-]

The calculated critical buckling loads for the three buckling modes are shown in Table
8.2. The hand calculations can be seen in Appendix B4.

Table 8.2 The critical buckling load for the three buckling modes of interest.

Mode | Eigenvalue, A [-] | Critical buckling load [kIN/m]

1 2.0736 62.2
3 2.3297 69.9
10 3.0200 90.6

From the critical buckling load for critical members of the truss obtained in the
eigenvalue buckling analysis together with the axial forces in the static analysis for
these elements, the results could be evaluated. As mentioned, the sectional forces in
the static analysis are linearly increasing with increasing load and could therefore be
scaled with a load multiplication factor in order to find the sectional forces for a
specific load. From Table 8.2 the critical buckling load for top flange member 63 is
62.2kN/m. In the static analysis a load of 1kN/m was applied; the load multiplication
factor will therefore be equal to the load at which the sectional forces were wanted.
The axial force from the static analysis in top flange member 63 is therefore
multiplied with the critical buckling load for the mode in which buckling is obtained
in top flange member 63. This critical axial force is then compared to the critical
buckling load according to classic theory in Chapter 3.4. The same calculations were

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:127

65



performed on diagonal 32 and 37, see Table 8.3. The hand calculations can be seen in
Appendix B7 to B9. For the hand calculated critical buckling force, a buckling length
factor of 0,5 was assumed for the diagonals and 1.0 for the top flange member. The
critical buckling length was estimated from the eigenvalue buckling analysis.

Table 8.3 Comparison of critical axial force obtained from Abaqus and
according to classic theory for critical members within buckling mode number one,
three and ten.

Mode | Critical element NAbaqus NEuer Abaqus/ Lo /L
[kN] [kN] Euler [%]
1 Top flange member | 2378 2743 13 1.0
63
3 Diagonal 32 650 803 19 0.5
10 Diagonal 37 1477 1561 5 0.5

According to Table 8.3 the magnitude of the critical buckling load for the compressed
top flange member 63 and diagonals 32 and 37 from Abaqus and classic theory is
similar. This concludes that the top flange and diagonals are suffering in-plane
buckling.

In addition to the 2"-order analysis and the check with interaction equations in the
previous chapter, the ultimate load was also calculated using the general method. This
method follows the general principle of treating instability problems, i.e. the A-y
approach. The calculations use failure load to cause yielding obtained from the static
analysis and the critical buckling load obtained from the eigenvalue buckling analysis.

In its general form, the slenderness of any member with reference to instability is

defined as:
1= /—“““"‘ 8.4
Xcr,op ( )
Acrop Minimum amplifier for the in-plane design loads to reach the elastic
critical resistance with regard to lateral or lateral torsional buckling [-]
Ayt k Minimum load amplifier of the design loads to reach the characteristic

resistance of the most critical cross section [-]

For any structure or structural element, the load which causes yielding can be
evaluated from a 1%-order static analysis. A buckling analysis (i.e. eigenvalue) will
give the load multiplier which will result in bifurcation (i.e. buckling). Thus, the
reduction factor, ), can be obtained from the following equations:
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® = 0.5(1+ a(l—0.2) + 12) (8.5)

1

X = oierin (8.6)

To obtain the load multiplication factor, the reduction factor was multiplied with the
multiplication factor to cause yielding. The applied load in the static analysis was
1kN/m and the load multiplication factor was multiplied with this load to obtain the
load to cause buckling. The calculated ultimate loads can be seen in Table 8.4 and the
hand calculations can be seen in Appendix B11.

@ = X * Ayirop (8.7)

4 Reduction factor for relevant buckling mode [-]

a Imperfection factor [-]

Acrop Minimum amplifier for the in-plane design loads to reach the elastic
critical resistance with regard to lateral or lateral torsional buckling [-]

a; Load multiplication factor [-]

Ayt k Minimum load amplifier of the design loads to reach the characteristic
resistance of the most critical cross section [-]

A Non dimensional slenderness [-]

(0] Value to determine the reduction factor y [-]

In this method the buckling length does not need to be assumed, which is often an
uncertain variable in the design of truss beams. The hand calculations can be seen in
Appendix B11.

Table 8.4 Ultimate loads for the three considered buckling modes calculated with
the general method.

Buckling mode 1 3 10

Location tf63 d32 d37

o [MPa] 1506 | 114 16.1

Critical buckling load [kN/m] 62.2 69.9 90.6

Ultimate load - yielding [kN/m] 23.6 31.0 22.0

Ultimate load — general method [kN/m] 19.5 23.2 18.7
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8.1.3 Static Riks analysis, imperfections in mode 1

For the first static Riks analysis (i.e. 2"-order analysis) initial bow imperfections were
introduced for the members that buckled in the first buckling mode. An imperfection
of seven millimetres was calculated according to EN 1993-1-1 (2005), see Appendix
B1. In the buckling mode the members that buckled have different amplitude of
buckling and in Abaqus the imperfections are multiplied with this magnitude. This
means that a seven millimetre imperfection were applied on members with the
maximum magnitude 1.0 of buckling and smaller imperfections were plant in
members with less buckling magnitude in the buckling mode.

To see the behaviour of the truss beam three failure modes were considered, the
failure modes represent yielding in two different load steps of the analysis. Yield
stress, 355 MPa, was first reached in the bottom of the outermost diagonal 40, at a
load of 17.25kN/m, see Table 8.6. High stress, close to yield stress, was also found in
connection 11 in this load step. These locations of first yielding are similar to the ones
obtained from the static 1¥-order analysis. The analysis proceeded with increasing
load and then yielding developed in almost the whole truss structure for a load
application of 27.4kN/m. In Abaqus the load was applied in large steps which made it
difficult to get a step with the exact yield stress in the members. The step that was
closest to yield stress was therefore chosen to evaluate.

Table 8.5 Values of different parameters for the failure modes. Positive values
represent tension forces and negative compressive forces.

Failure mode 1 2 3
Location d40 con. 11 | Yielding in
almost the

entire truss

Failure load [kN/m] 17.25 17.25 27.4
Axial force [kN] 405.8 491.7 -
Bending moment [kNm] 2.7 59 -
Stress Abaqus [MPa] 443.1 341.8 -
Stress  Hand  calculations | 440.6 341.0 -
[MPa]

The stress in a structural member is a product of axial force and bending moment, as
can be seen in Equation (8.4). As a check; the stress in the member was calculated and
compared to the stress received from Abaqus in Appendix BS. The hand calculated
stress was close to the stress from Abaqus and it was then confirmed that the results
from the static Riks analysis were reasonable.
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N M
O'—Z+W (84)

Cross sectional area [mz]
Bending moment [Nm]
Normal force [Nm]

Flexural resistance [m3]

A =T =z x >

Stress for a unit load [Pa]

8.1.4 Static Riks analysis, combination of mode 1 and 3

A second static Riks analysis was performed with a combination of mode one and
three from the eigenvalue buckling analysis. By introducing mode three,
imperfections are not only assigned in the top flange but also in critical diagonals of
the truss. As can be seen in Figure 8.8 the same members of the truss could buckle in
more than one mode; the buckling could have different magnitudes and appearances.
In this case the top flange and diagonals buckled in both mode one and three.

— ~ Y r > r—
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Figure 8.8 In the static Riks analysis a combination of buckling mode one and
three was used for the application of initial bow imperfections. The figure is showing
buckling mode one in the top and buckling mode three in the bottom.

When combining buckling modes as input data for the static Riks analysis the
resulting magnitude of the imperfection is a sum of the imperfections in the modes,
each multiplied by its magnification factor; if the modes contain buckling of the same
elements, as in Figure 8.8. If the member buckles in the same direction in the two
buckling modes the imperfections from the two modes are added to each other. If the
member buckles in the opposite direction in the two buckling modes, the resulting
imperfection will be the subtraction between the two imperfections. If the two
imperfections are equal but with opposite directions; the resulting imperfection will be
equal to zero and the member will end up without an imperfection. If a critical
member has a too small or no imperfection when running a static Riks analysis;
Abaqus could end up with a convergence problem and the analysis is not able to
proceed.

Top flange member 63 had the largest buckling magnitude in mode one and diagonal
32 in mode three, see Figure 8.5 and Figure 8.6. It was therefore important to get
correct imperfections in these members. According to EN 1993-1-1(2005) the
imperfections in top flange member 63 should be equal to seven millimetres and the
imperfection in diagonal 32 should be equal to eleven millimetres, see the hand
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calculations in Appendix B1. Both top flange member 63 and diagonal 32 buckled in
both modes; as can be seen in Figure 8.8.

The buckling magnitude in the top flange member 63 was equal to 1 in mode one and
equal to 0.06 in mode three. Since the member buckled in different directions for the
two buckling modes the resulting imperfection was the subtraction of the two
imperfections. However, when combining buckling mode one and three Abaqus had
problems with convergence and the correct imperfections were hard to achieve. In
buckling mode one was nine millimetres used and in the third buckling mode three
millimetres. The resulting imperfection in top flange member 63 then became 8.8
millimetres and 6.9 millimetres in diagonal 32. The imperfections that were
recommended in EN 1993-1-1(2005) were seven millimetres for top flange and eleven
millimetres in diagonal 32. When studying the results it is therefore necessary to
consider that the imperfections are not equal the ones given in EN 1993-1-1 (2005).

For this analysis four failure modes were evaluated. Bottom of diagonal 40 was first
to reach the yield stress at 18 kN/m, see Table 8.6. At a load of 26.9kN/m connection
16 has reached yield stress and top flange member 63 was very close to yielding. The
imperfection in top flange member 63 was 8.8 millimetres which is a too high
imperfection according to EN 1993-1-1(2005). At a load of 30kN/m yielding was
reached for many connections and members of the truss. As for the previous model
the mirrored members had more or less the same ultimate load for yielding.

Table 8.6 Values of different parameters for the failure modes.

Failure mode 1 2 3 4

Location d40 con. 16 tf63 Yielding in
almost the
entire truss

Failure load [kN/m] 18.0 26.9 26.9 30.0

Axial force [kN] 303.1 -179.0 -681.1 -

Bending moment [kNm] 2.2 -14.1 -5.0 -

Stress Abaqus [MPa] 346.5 373.8 343.0 -

Stress Hand calculations [MPa] | 344.6 361.1 337.1 -

8.1.5 Static Riks analysis, combination of mode 1 and 10

The third static Riks analysis was performed with a combination of buckling mode
one and ten, see Figure 8.7. According to EN 1993-1-1(2005) the imperfection in top
flange member 63 should be equal to seven millimetres and the imperfection in
diagonal 37 should be equal to eight millimetres. To reach the correct imperfections in
top flange member 63 and in diagonal 37; an imperfection of 7.6 millimetres was used
in buckling mode 1 and 7.55 millimetres in mode 10.
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Figure 8.9 In the third static Riks analysis the combination of buckling mode one
and ten was used as the input data for the initial bow imperfections. Buckling mode

one is shown at the top and buckling mode ten at the bottom.

Four failure modes were considered. As for the previous static and static Riks
analyses; the first member to reach yielding was diagonal 40 at a load application of
21kN/m, see Table 8.7. The critical diagonal 37 is the second member to reach
yielding. Top flange member 65 has an imperfection of 7.8 millimetres; higher than
recommended in EN 1993-1-1, caused by having correct imperfections in top flange
member 63. The conclusion is that with correct imperfections in top flange member
65 a higher load to cause yielding should be obtained.

Table 8.7 Values of different parameters for the failure modes.

Failure mode 1 2 3 4
Location d40 d37 tf65 tf63
Failure load [KN/m] 21.0 254 29.9 34.4
Axial force [kN] 353.9 -285.1 -733.3 -869.1
Bending moment [kNm] 2.6 2.6 -59 -5.1
Stress Abaqus [MPa] 408.3 369.2 380.9 409.9
Stress Hand calculations [MPa] | 406.0 366.7 373.3 403.9

8.2  Shell element model
8.2.1 Static analysis

A static analysis was also performed on the model with shell elements. The load was
applied as pressure acting on the top face of the both top flanges. A load of
4.167kN/m” was applied to the beam which corresponds to the load of 1kN/m as used
for the beam model.

For the top flange member 63 the ultimate load to cause yielding was calculated to
24.3kN/m based on cross-section resistance, see Equation (8.1). The load calculated
according to the general method, explained in the Chapter 8.1.2, was found to be
smaller; 20.0kN/m. The hand calculations can be seen in Appendix B10.
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Table 8.8 Ultimate loads for top flange member 63

Ultimate load | Yielding | Instability —
General method

Top flange 63 | 24.3kN/m | 20.0kN/m

8.2.2 Eigenvalue buckling analysis

For the model with shell elements; 75 buckling modes were requested. In the first
buckling mode; buckling occurred in top flange in between the supportive diagonals
with the highest magnitude of buckling in member 63, see Figure 8.10. A high
buckling magnitude of diagonal 32 was first found in buckling mode 61. However, in
this buckling mode an even higher buckling magnitude was found in the top flange. In
all the other buckling modes buckling occurred in the top flange members with
different magnitudes and appearance. In the higher buckling modes top flange
members buckled with two sinus curves in between the joints. Buckling of diagonal
37 did not occur in the first 75 buckling modes. As can be seen in Figure 8.10;
flexural torsional buckling occurred in top flange members.

AVAVAVANY QMWT ANVAVAVAVS

Figure 8.10  First buckling mode for shell model.

In the same way as for the model with beam elements the critical buckling load was
calculated with Equation (8.3). The critical buckling load for the two buckling modes
of interest can be seen in Table 8.9. Hand calculations can be found in Appendix B4.
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Table 8.9 Critical buckling load for the two buckling modes of interest.

Mode | Eigenvalue, A [-] | Critical buckling load [kN/m]

1 2.0574 61.7

61 3.3424 100.0

8.3 Overview of results

For the static analysis from the model with beam elements the ultimate load was
calculated for the first six parts that reached yielding, see Table 8.10. The ultimate
load was calculated in three different ways. The first ultimate load represents the load
to cause yielding without consideration of instability. The second and third ultimate
loads consider instability but are calculated in two different ways. For diagonal 32 the
critical load with concern to instability is diverging for the two calculation methods as
seen in Table 8.10. This divergence in result needs to be further investigated. A more
detailed explanation of the three calculations methods can be found in Chapter 8.1.1
and Chapter 8.1.2.

Table 8.10 Ultimate loads for different parts of the truss.

Failure mode | 1 2 3 4 5 6

Location d40 con. 11 | d39 d37 tf63 d32

Ultimate load | 13.9 18.4 20.4 22.0 23.6 31.0
- yielding
[kN/m]

Ultimate load | - - 17.5 21.7 194 324
— interaction
method
[kKN/m]

Ultimate load | - - - 18.7 19.5 23.2
— general
method
[kKN/m]

Ultimate loads for top flange member 63 were also calculated with and without
consideration of instability with the general method with the results from the model
with shell elements. The results can be seen in Table 8.11.
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Table 8.11 Ultimate loads for top flange member 63 calculated from results with
shell elements.

Ultimate load | Yielding | Instability —
General method

Top flange 63 | 24.3kN/m | 20.0kN/m

The critical buckling loads for top flange member 63, diagonal 32 and 37 for both
beam and shell elements can be seen in Table 8.12.

Table 8.12 Critical buckling loads received from the eigenvalue buckling analyses
with beam and shell elements.

Buckling mode | Critical buckling load — Critical buckling load —
beam elements [KN/m] shell elements [kKN/m]

Top flange 63 62.2 61.7

Diagonal 32 69.9 100.0

Diagonal 37 90.6 -

In Table 8.13 a compilation of the first and second failure mode for static analysis
without any imperfections and the static Riks analyses with imperfections in mode 1,
in mode 1 and 3 and in mode 1 and 10 can be seen. The real load application to cause
yielding is difficult to receive from Abaqus because of the large load steps. In the
table the load closest to the load to cause yielding are shown. In the table it is also
indicated if the load is higher or lower than the real load.
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Table 8.13 Compilation of the first and second failure mode for the static analysis
and static Riks analyses with imperfections in mode 1, in mode 1 and 3 and in mode 1
and 10.

Static analysis | Imperfections | Imperfections | Imperfections
—no in mode 1 in mode 1 in mode 1 and
imperfections and 3 10

Imperfections - 7mm 8.8mm 7mm

in top flange 63

Imperfections - - 7mm -

in diagonal 32

Imperfections - - - 7.55mm

in diagonal 37

First failure Diagonal 40 Diagonal 40 Diagonal 40 | Diagonal 40

mode

Load at first 13.9 <17.25 > 18.0 <21

failure mode

[kKN/m]

Second failure | Connection 11 | Connection 11 | Connection Diagonal 37

mode 16

Load at second | 18.4 > 17.25 < 269 <254

failure mode

[kN/m]
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9 Discussion

When starting this master thesis the goal was to study truss beams in the Finite
Element program Abaqus with consideration of plastic material properties,
eccentricities between diagonals within the truss and second order effects due to
initial bow imperfections.

The project started with modelling of a pitched truss beam with beam elements as
which is generally the most convenient level of modelling in common engineering
practice. The aim was thereafter to continue with a more advanced model with shell
elements, where a good representation of the welded connection performed at
Ranaverken could be included. The results from the beam element model and the
model with shell elements was then compared and studied. A large part of the time for
this thesis was spent on modelling in Abaqus and the results from the analyses are
presented in Chapter 8. Due to convergence problems with the static Riks analyses in
Abaqus, the plastic material model was abandoned and elastic second-order analysis
was performed, see Chapter 9.6. This implies that an elastic cross-section resistance is
adopted, which is valid for some members in the truss. Difficulties and solutions to
some of the problems which turned up during this thesis are mentioned in Chapter 7.

9.1 Beam elements

The issue that caused the largest problem was the magnitudes of imperfections when
combining two buckling modes. When combining buckling mode one and three the
imperfections according to EN 1993-1-1 (2005) was not possible to apply since
Abaqus did not complete the analysis due to problem with convergence. The
imperfection in the top flange became too large and the imperfection in diagonal 32
too small.

When decreasing the initial bow imperfections in the most critical member of the truss
below what is recommended in EN 1993-1-1 (2005) problems with convergence can
be obtained in the static Riks analysis. This is believed to be caused by Abaqus not
finding equilibrium close to the bifurcation point. As the imperfections are decreased
the load to cause buckling in the truss will come closer to the critical load according
to classic theory and the behaviour will be similar to a perfect column. When only the
first buckling mode was used as an input data the static Riks analysis was completed
without problems. When only the third buckling mode was used; the static Riks
analysis got convergence problems. The conclusion is therefore that the top flanges
are the most critical part of the truss and sensitive to imperfections.

According to the results in Chapter 8.1 the first failure mode for the truss beam was
represented by yielding in the tensioned diagonals 5 and 40. This yielding was an
important effect of the eccentricities between the diagonals and should therefore be
considered in the design of a truss beam. The final failure was reached when yielding
started in the compressed members. This yielding was caused by a combination of
axial force and second order moment due to deformations. By increasing the
imperfections in critical elements the location of first yielding of compressed
members was moved, see Chapter 8.1.4 and 8.1.5. This confirms that truss members
subjected to tension are not affected by imperfections in the compressed members.
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9.2 Comparison of obtained results from the analyses
with beam and shell elements
The ultimate load to cause yielding and the ultimate load with the general method

were calculated for the top flange member 63 with both beam and shell elements. The
ultimate loads were similar in both models; as can be seen in Table 9.1.

Table 9.1 Comparison between the ultimate load in top flange member 63 for
beam and shell elements.

Ultimate load | Yielding | Instability with
imperfections

Beam 23.6kN/m | 19.4N/m

Shell 24.3kN/m | 20.0kN/m

The results from the eigenvalue buckling analyses for beam and shell element models
showed that the shape and critical buckling load from the first buckling mode are
similar. The most critical member of the truss beam is top flange member 63 and the
critical buckling loads were 62.2kN/m and 61.7kN/m respectively, see Table 9.2.
With beam elements the local twisting of the cross section was not that easy to detect
as when modelling with shell elements. As seen in Figure 8.10 flexural torsional
buckling was well represented with shell elements but for beam elements it was easy
to believe that only in-plane buckling was acting, see Figure 8.8. The first diagonal
that buckled was diagonal 32 for both models. However, the critical buckling load for
buckling in diagonal 32 was higher with shell elements than with beam elements.
Another difference between the two models was that diagonal 37 buckled with beam
elements but not with shell elements.

Table 9.2 Comparison of critical buckling loads from beam and shell model.

Buckling mode | Critical buckling load — Critical buckling load —

beam elements [kN/m] shell elements [kN/m]
Top flange 63 62.2 61.7
Diagonal 32 69.9 100.0

Diagonal 37 90.6 -

The differences in the results could be explained by that the connections were
constructed in different ways for the two models. With beam elements the diagonals
were connected to the flanges in one point; the gravity centre of the L profile to the
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top of the diagonal, see Figure 9.1. This means that the length of the member is equal
to the distance between the nodes.

Figure 9.1 The entire length of the member could buckle with beam elements.

For shell elements the diagonals were connected to the flanges in a different way. A
number of multiple constraints were used and located around the diagonal. The effect
of this connection was then that the length of the member became shorter, see Figure
9.2. The diagonals have therefore a shorter length with shell elements than with beam
elements. When the length of the compressed member is decreased a higher critical
buckling load is obtained due to the decrease in slenderness of the member. This was
then believed to be the reason for obtaining a higher critical buckling load for
diagonal 32 and the lack of buckling of diagonal 37 in the model with shell elements.

Figure 9.2 The connection with shell elements makes the length of the diagonal
shorter.

9.3 Elastic design according to EN 1993-1-1(2005) and
Finite Element modelling

In EN 1993-1-1(2005) it is stated how to design a truss beam according to elastic
theory but there are no clear guidelines in how to make proper assumptions in the
design. Examples are the consideration of critical buckling length for compressed
members. As written in Chapter 5, EN 1993-1-1 (2005) suggests a buckling length
equal to the system length, in case no other value can be justified by analysis.
However, there are no recommendations for how this type of analysis should be
performed. The same uncertainty is created for the effects of eccentricities between
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the truss members and in the design these effects are in some cases excluded. The task
of this master thesis was therefore to investigate the effects mentioned above. As
mentioned in Chapter 2.2 these will create additional moments in the truss members.
The results obtained from Abaqus showed that the eccentricities caused yielding in
diagonal 5 and 40, see Appendix A.

When designing a truss it is important that all members are utilised. The load at which
instability failures, such as buckling, is reached should be close the one to cause
tension failure. If the compressed members are designed to resist a greater load than
the members subjected to tension, this extra capacity in the compressed members will
be unnecessary and expensive since the truss will fail when the members subjected to
tension yields. From the results in Table 8.6 the differences between the load to cause
yielding in diagonal 40 and the load to cause yielding in top flange diverges and the
truss could therefore be better utilized. An increase of capacity in diagonal 5 and 40
would result in a more utilized truss and the ultimate load capacity is increased.

As stated in the thesis the decision concerning proper buckling lengths is difficult and
will have great influence on the load bearing capacity. A smaller buckling length will
decrease the slenderness of the member and by that increase the ultimate capacity
with concern to instability. In this thesis two ways of designing a truss beam are
studied; a general method using Finite Element modelling and a more advanced
method following EN 1993-1-1 (2005). In EN 1993-1-1 (2005) the resistance for a
compressed structural element subjected to axial force and bending moment, should
be verified by an interaction between these sectional forces according to Equation
(8.2). For this interaction between axial force and bending moment a large number of
factors need to be calculated concerning for instance the moment distribution over the
element, support conditions and slenderness of the structural element, see Chapter
3.5Design of compressed members subjected to interaction between axial force and
bending moment. In Appendix B6 the interaction is calculated for critical elements in
the truss. In this method the buckling length should be assumed. For a truss beam the
buckling length can be hard to estimate since the global deformations will affect the
buckling length as well as the stiffness of the connections. Therefore; fixed
connections do not always give a buckling length of 50% of the length of the member
when it is located in a truss. As the buckling length has a high influence on the
ultimate load and if this value is uncertain the results from this method will be less
reliable.

In the second method that was used to calculate the ultimate load; the general method,
it was not necessary to assume the buckling length. If the buckling length is unknown;
this method gives a more correct ultimate load. As can be seen in Table 8.1 the
ultimate loads for diagonal 32 was very different in comparison to each other. The
buckling length was assumed to be 50% of the length of the member and this means
that this assumption was incorrect and that the buckling length was larger than 50% of
the length of the member.

The first method in EN 1993-1-1 (2005) is time consuming for the designer due to all
factors that need to be determined but most important an assumption of critical
buckling length needs to be done. The buckling length is needed in order to calculate
the critical buckling load according to classic theory which then affects the
slenderness of the structural member and other factors. In EN 1993-1-1 (2005) no
recommendations concerning how to choose buckling length are given and as shown
in Table 8.10 it will highly influence the ultimate capacity. The ultimate load
calculated with the interaction between axial force and bending moment is larger
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compared to the ultimate load found by the general method. Within the interaction a
buckling length factor of 0.5 was assumed for the diagonals and as the ultimate load
shows to be smaller according to the general method this buckling length factor was
too small. This confirms that a stiffness corresponding to a fixed connection between
diagonals and flanges is not obtained in the analyses in Abaqus.

Another method to find the ultimate load for a truss beam, described in this thesis and
mentioned in EN 1993-1-1 (2005), is to use Finite Element modelling. From this
model the ultimate capacity with reference to yielding is found by running a static
analysis first. From an eigenvalue buckling analysis, the critical buckling load and the
critical truss members with concern to instability is found. With the results from these
analyses the slenderness for critical elements could be calculated according to
Equation (3.17). In Table 3.2 the buckling curve for the analysed truss member is
found and together with the slenderness the reduction factor is found by using
Equation (3.15). As described in Chapter 3.4 and Equation (3.13) this reduction factor
represents the reduction of the ultimate capacity of the structural element due to
instability.

Design with help from Finite Element analysis requires less time for hand calculations
and the ultimate capacity is quickly found. However, some knowledge in modelling
and time for constructing the model is needed. The advantage with using this kind of
modelling is that the ultimate capacity is found without any assumptions considering
buckling lengths. From the analyses the designer gains enough information to
calculate the ultimate capacity with concern to instability. The fact that no
assumptions has to be made by the designer considering stiffness of connections does
not only save time for the designer, most important it could prevent instability failures
caused by designing for too small buckling lengths.

9.4 Modelling with plastic material

The intention was to model the truss beam with plastic material properties but
unfortunately only elastic material properties were possible to include in the static
Riks analysis for the truss beam with beam elements. However, elastic material is
giving a good representation of the failure modes and general behaviour of the truss.

A column was modelled in order to conclude that the static Riks analysis could
include effects of plastic material and initial bow imperfections. As seen in Chapter 4
it is possible to include these effects and at the end of this thesis still no answers were
found to why the plastic material could not be included in the truss model. Many trials
were made, for example by changing element types, and more of these trials are
explained in Chapter 7. If plastic material properties had been included the effects of
strain hardening and load redistribution due to yielding in cross sectional parts could
have been investigated.

9.5 Modelling with spring connections

In order to evaluate the effects of buckling length and analyse the results obtained
from Table 8.10 different types of stiffness’s in the connections were intended to be
tested within the truss model. Modelling with fixed connections, by using MPC beam,
caused no problems within the beam element analysis and the results are given in
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Chapter 8.1. However, in reality constructing a fixed connection between the
members of a truss beam with welds is not always feasible.

To compare the two extreme cases with fixed and pinned connections the same truss
model was modelled with MPC pin connections. Welds could normally be considered
to have a greater stiffness than the one considered for a critical buckling length equal
to the system length of the member but the intention was only to see the differences in
behaviour for the loaded truss beam. Unfortunately the pinned connections caused
instability problems in the analyses. This problem could not be solved even with the
help from Abaqus support.

9.6 Further investigations

® To make the correct assumption of the buckling length is difficult for the
designer and this issue needs to be further investigated. The influence of
buckling lengths for the behaviour and load bearing capacity of the truss could
be analysed by introducing different magnitudes of stiffness in the
connections. This could be performed by using multiple constraints, MPC pin
together with springs with different magnitude of stiffness.

e In order to give recommendations concerning appropriate assumptions in
stiffness of welded connections the influence of stiffness has to be analysed as
mentioned above. The welds in the connection could also be modelled with its
cross sectional area and include plasticity in order to see the response at
loading.

e As the results from the analysis with beam elements show that yielding is
obtained in the connections between diagonals and flanges the response for
compressed members at the point of yielding in the connections could be
analysed.

® More studies have to be made in order to find the reason for not reaching
convergence when introducing plastic material properties for a large structure
such as a truss beam when running a static Riks analysis in Abaqus.

¢ The effect of eccentricities in the joints needs to further investigated.
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10 Conclusions

The conclusions that have been drawn during this master thesis are as follows:
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The behaviour of a truss structure for different stiffness of the connections is
possible to analyse by using multiple constrains, MPC pin, together with
springs in the three directions X, Y and Z. By changing the stiffness of the
springs different buckling lengths of the members are obtained and the effects
are seen by running a static Riks analysis.

By modelling a simply supported column subjected to axial force it was
confirmed that the static Riks analysis could include plastic material
properties. For the column an initial bow imperfection was introduced from
the eigenvalue buckling analysis and together with the second order effects
and the plastic material properties convergence was obtained.

Introducing disturbances as eccentricities and imperfections is possible for a
large truss model but together with consideration of plastic material properties
convergence problems were obtained.

From the eigenvalue buckling analysis for beam elements three buckling
modes were chosen as the most critical ones, mode one, three and ten in
Chapter 8.1. However the results from the static Riks analyses showed that
these modes were counteracting each other.

Imperfections in more than one buckling mode can be included in the analysis
but it is important to investigate that they are not counteracting each other such
that the critical member ends up with a too high or too low imperfection.

The most critical truss element in the truss analysed, with concern to buckling
instability, is the top flange. Imperfections in other compressed members of
the truss did not affect the load bearing capacity. However, first yielding is
obtained in diagonals 5 and 40, subjected to tension.

The eccentricities between truss members caused yielding in connections
between diagonals and flanges and the effect in load bearing capacity of the
analysed pitched truss needs to be further analysed.

With shell elements the representation of the connections between diagonals
and flanges and the load application are improved.

If a static analysis is performed on the pitched truss beam the same failure
modes are represented as when running the static Riks analysis with
imperfections in the critical top flange.

The differences between ultimate capacity for tension and compression failure
in the truss concludes that the truss could be better utilized.

The consideration of buckling length has a large influence on the ultimate
capacity of the pitched truss beam and it is concluded that proper judgements
of the stiffness in the connections are hard to make.

By using Finite Element modelling assumptions regarding buckling lengths
are not needed. The risk for instability failures created from wrong
assumptions considering this stiffness might therefore be prevented.
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APPENDIX B - Hand calculations

The hand calculations in this thesis is made fecking the accuracy of the models in
Abaqus or in some cases used as an input dataaiqusb

B1. Imperfections

Imperfections are applied to members in the noalim@alyses. The buckling
analysis resulted in buckling modes in the topdaand in a diagonal and it is in this
members imperfections are applied. The imperfestame calculated according to
Eurocode.

The first thing is to decide the appropriate buakicurve for each memeber. This is
made by look into table 6.2 in EN 1993-1-1. Tharerttuss beam is made of the
steel class S355. The top flange is constructdevbyL profiles and these
corresponds to the buckling curve b. The diagan#he other hand is a UNP profile
which corresponds to the buckling curve c.

Buckling curve
Buckling | 5235
Cross section Limits about 5275 | 160
axis 355 |77
5420
1 = -
1 1= = 40 mm ‘_i a .
T i Z-Z b an
E):ir:'
g - =| mmet<ioo | YV [P @
s : z-z c a
= h ¥Y——— @ ¥
k- < . ¥- L a
= | o t: = 100 mm o . .
B \
i '
: 2| &= 100mm ¥y d ¢
b * e zZ-z d c
_m '_!_\j;_‘ : e te % 40 mm "__; lg lc’
: Ty !——; ¥ "l—-— ¥
= f 1 T y— c C
= |_L_| I—‘:L:r— tf 4[: L Z—Z d d
[ —
w hot finished any a g
E & S >
1A
T3 r\\ _/'I'l cold formed amy c c
N ) - -
z * R
; T = ] gener a]];l eyl;f\rept as any b b
f E hl ¥ - F——v
R | DT thick welds: a = 0,5t
= r C—— bite= 30 any c c
Zh v/t =30
LB m Si=
~ % M _|| || any c c
=F = b
r -*l—F s any b b




The second step is to look into table 5.1 in EN3t29l. The imperfections are
used in the Static riks analysis with elastic matgroperties therefore is the left
hand collumn used in the table.

Buckling curve | elastic analysis | plastic analysis
acc. to Table 6.1 eg/ L gp/ L

ag 1/350 1/300

a 1/300 1/250

b 1/250 1/200

C 1/200 1/150

d 1/150 1/100

Imperfections for top flange:

1 -3
buck,:= — =4x 10
% 250

The length of the member is measured in the model:
X = 1.73756m

Imperfections used in Abaqus:
itf = X Duck, = 6.95x 10 °m

Imperfections for diagonal 37:

1 -
bucl%:: —=5x10 3
200

The length of the member is measured in the model:
Xg = 1.615595m

Imperfections used in Abaqus:
i = Xqbuck, = 8.078x 10 3m

Imperfections for diagonal 32:

1 -3
buck. .= — =5x 10

The length of the member is measured in the model:
Xd= 2.253098 m

Imperfections used in Abaqus:
Jahi= Xgbuck, =0.011m



B2. Area, gravity centre, moment of inertia and flexural
resistance

The gravity centre for the members were used whemodels were created in
Abaqus.

For the models that were built up in Abaqus thendma corners for the L profiles

and UNP profile were excluded. If this results ifiedlent moment of inertia and
flexural resistance of the member can the restdta the analyses be incorrect. The
gravity centre and the flexural resistance wasefioee calculated for the sections with
no rounded corners and compared to the momenedfarand flexural resistance of
the real sections that incudes rounded corners.

UNP 120
b

Geometry: F—k
h:= 120mm i
b := 55mm d

h
d:= 7mm
t:=9mm t |

Area for UNP profiles without rounded corners:
Ay = hd + 2[b - QB = 1.704x 1Em’

Area for UNP profiles with rounded corners:
A = 1.699*103 mm?

Gravity centre for UNP profiles without rounded mers:

b-d
hEﬂBg+2Eqb—d)[ﬂE€ > +d)

TPy~ hid + 200b - d)[E

=17.4449mm

h
yTpX:: E = 600nm

Moment of inertia for UNP profiles without roundedrners:

3 2 3
hrd d)*  2tgb- d) b-d
Iy := —— + hid -] s 22 o -
ARETY [éyTPV 2) 12 1 d)[é 2

dn L 2b- Qi
12

T 12

2
+d- yprj = 4.914x 10mm’

2
t
+ 2tb - dUyTpy — E) =3.675x% 1(?mnm4



Moment of inertia for UNP profiles with rounded ners:
l, = 4.306*105 mm¢

l, = 3.643*106 mm4

Flexural resistance for UNP profiles without roudd®erners:

W, = —3 = 1308x 10mm°

Flexural resistance for UNP profiles with roundedners:
W, = 1.11*10% mm3

W, =6.07*104 mm3

The testing of different values for the geometry did not result in better values.

L 120x120x11
Geometri:

hq := 120mm

t1 = 11mm

Area for L profiles without rounded corners:
_ _ 2
Ag:= hyly + (hy —tp); = 2.519x 16mm

Area for L profiles with rounded corners:

A = 2.54*10% mm?

Gravity centre for L profiles without rounded corsie
hy -t

!
h &2 + (h1 - tl)[ﬂ1EE

. tlj
YTp= =0.034m




Moment of inertia for L profiles without roundedroers:

3 2 3
hq t t [Qh -t )

1My 1 1fhy -4

= + hyE =+ == =3462¢ 18mm
12 1 1[€yTP 2) 12

i

hy -t

+tylfhy - tl)Eﬁ -

2
1
tloyrp

Moment of inertia for L profiles with rounded corse
| = 3.41*106 mm#

Flexural resistance for L profiles without roundexners:

WL : =4.029x 1(‘)1mnm3

hi-y7p

Flexural resistance for L profiles with roundedresns:
W = 3.95¥104 mm3

The testing of different values for the geometry did not result in better values.

L 120x120x13
Geometri:
h2 = 120mm

t2 = 13mm

Area for L profiles without rounded corners:

Ag = hylly + (hy = ty) H, = 2.951x 10’

Area for L profiles with rounded corners:
A =2.97*103 mm?

Gravity centre for L profiles without rounded corsie

t hy, —t
2 2 2
hzngg + (h2 - tz)[ﬂzl:E > + tzj

hod, + (h2 - tz)[ﬂz

YTP2= =0.035m



Moment of inertia for L profiles without roundedroers:

3 2 3
h. @ t tolfhy - tp)
2 2\ tolfhr -t
= =+ hzfﬂz[Eysz‘—j s242 - 3996x 16mm

2 12

Moment of inertia for L profiles with rounded corse
| = 3.94*106 mm#

N

hy -t

2
- yszj

Flexural resistance for L profiles without roundsmners:

|
- = 4.689x 18mm’
2= T

2 ~YTP2

Flexural resistance for L profiles with roundedreens:
W = 4.6*104 mm3

The testing of different values for the geometry did not result in better values.

Conclusion:
The geometry of both L profiles and UNP profile camain.



B3. Column

A rectangular column was analysed in Abaqus wittosd order effects and
plastic material properties. In order to deternthmeaccuracy of the model; the
critical buckling load was calculated by hand aathpared to the critical buckling
load obtained in abaqus.

According to the derivation in Chapter 3.2 theicaitload according to
classic theory is calculated with the followingrfarla:

Ny, = (n*m )2 E*1/L,2

Input data:
be:= 0.3m Width of the cross section
he:= 0.1m Height of the cross section
Le:=5m Length of column
E:= 210GPa Young's modulus
Calculations:

beh A o
o= T 2.5x 10 mm Moment of inertia

The column is analysed as simply supported whicansé¢hat the critical buckling
length is equal the system length of the column:
| =1L

=5m

cr.c Cc

The critical buckling load is calculated for thedé first modes, i.e. the three
most critical:

Mode 1:
ng = 1

2
ny Gr) (T
Ne o.1:= %20 =2.073x 10kN

ICI’.C



Mode 2:

ny = 2
2
(n Ek) [E
2 C
Ner c.2i= — =8.29x 10EN
ICI’.C
Mode 3:
ng:= 3
- (n3ar)2[EmC ) .
Ner 3= = 1.865x 10N

ICI’.C



B4. Critical buckling load

p= 30N

m
\gp = 2.0736
Ngo = 2.3297
\g3:= 3.02
Agp:= 2.0574
hgyi= 3.3424

Critical buckling load

P

P

P

P

Pers2= AP =

crB1:= 1P =

crB2:= 2g2P =

crB3:= e3P =

crs1= AP =

62.208§<ﬁ

m

69.89:d<ﬁ

m
90.6§(ﬁ
m

61.722§(E

m

100.272’§(E
m

Applied load

Eigenvalue for the first buckling mode in beam
model

Eigenvalue for the third buckling mode in
beam model

Eigenvalue for the 10:th buckling mode in
beam model

Eigenvalue for the first buckling mode in shell
model

Eigenvalue for the 61:th buckling mode in shell
model



B5. Yield stress

The accuarcy of the stresses obtained in Abaqu$éodifferent load
applications were checked with hand calculations.

o _ -3 2

- =53
Wynp = W, = 1.308x 10 “lin

W _ -3 2

W _ -5_3

W _ -3 2

W _ -5_3

o -3 2

W -5 3

Static riks analysis, mode 1

N1 := 405.76kN M1 = 2.65kN.m

N5 = 491.7kN My = 5.8728kNJm

Stresses in the members:

N M
1 1
0q = + = 4.406x 18 Pa
Aune  Wunp
N M
2 2
oy + =3.41x 1(§3Pa

ALt Wi

Area and flexural resistance for
the UNP120 profile

Area and flexural resistance for
the L120*120*13 profile

Area and flexural resistance for
the L120*120*13 profile

Area and flexural resistance for
the KKR profile

Axial force and bending
moment; taken from Abaqus



Static riks analysis, mode 1 and 10

Npq:= 353.915kN Myq = 2.59531kNIm
Npp:= —285.13%N M, = —2.6087&Nn
Npg:= ~733.25KN M 3= —5.8533 KN
Npy:= ~869.08XN M4 := —5.1286XN[Hn

Stresses in the members:

N M
21 21
O i= —— + - 4.06x 16Pa
Aune  Wunp
N M
22 22
Gopi= ——— + —= =_3667x 10°Pa
Aune  Wunp
N M
23 23
Oogi= + = -3.733x 10°Pa
ALz W13
N M
24 24
Oy + = -4,039x 10°Pa

Atz Wiis

Axial force and bending
moment; taken from Abaqus



Static riks analysis, mode 1 and 3

N3 := 303.069kN
N3, := —178.98%N
N33:= —681.124N

N3y := -542.26kN

Mgy := 2.18216KNIm
Mgy := ~14.090&Nn
Mgg:= ~4.9861%Nn

Mg, := ~7.6365 kNN

Stresses in the members:

=3.446x 16Pa

- _3.611x 10°Pa

- _3.371x 10°Pa

- Na1  Msi
31—

Aune  Wunp
- Ns2 =~ Ms2
3=t

ALz W3
- Nag  Mass
33

ALz W3

N34 Mgy
034 = 7—— *+——

ALz W3

- _3.466x 10°Pa

Axial force and bending
moment; taken from Abaqus



B6. Ultimate limit capacity for an interaction of axial
for ce and moment

The interaction between axial force and momenhéndritical compressed members in the tr
calculated by analysing the critical elements dgfeolumns, subjected to compression and

Top flange 63
h:= 120mm
t:= 13mm
Moment of inertia for in-plane buckling
Gravity centre for the two L profiles
hE- + (h - t)[ﬂ[éh mL t)
2 2

hid + (h - {)[E

YTp = =0.035m

Moment of inertia for L profiles without roundedroers:

3 2 3
1= 2 omifyp-+ |+ 2D~ 7093x 16’
12 2 12

h-t 2
+2D]mh—t)té > +t_yTP)

— 4
lin_plan= ! =7.993x 10

Moment of inertia for out-of-plane buckling
Gravity centre for the two L profiles

yrp=0.035m The gravity center for each L profile is equal btiplane and out-of-plane <
the L profile is symmetric.

d:= 120mm  The distance between the flanges is equal the widitie UNP profile
Moment of inertia for L profiles without roundedroers:

3 2 2 3
| = 2221 + hEﬂ[éyTP*' g) + h[ﬂﬁé-yTP‘ gj + 20h-9 . = 7.079% 15mnm4

o 12
2 2
+t0h - t)[ég + g) +th - t)[é_?h —g)

o 4
lout_of_plang= ! =7.079x 1d m

Since the stiffness of the top flange is greateéh@out-of-plane direction will the ultimate cajt
calculated for in-plane buckling which is the wesds.



L oads and load effects

kN

Oy = 0.5— Applied load on each L profile in the top flange
m

Ngq:= 38.2251kN Axial force in one of the L profiles for the toafige 63 obtained fr:
Abaqus

Mgg:= 0.12kNT Moment in one of the L profiles for the top flang@ obtained from
Abaqus

’YMl =1.0

’YMO =1.0

Steel S 355

fy := 355MPa Yield stress

E:= 210GPa Young’'s modulus

Stiffness data for one L profile

A= 2951mnf Cross sectional area
h=0.12m Width of flange
b:=h=0.12m L profile is symmetric
t=0.013m Thickness of flange
= 399610 mm’ Moment of inertia
W= 46.8910mm’ Flexural resistance
L= 1.73756m Length of top flange 63 between the supporting aliads
Control of cross section class 1993-1-1 [Tabell 5.2]
- ’ 235MPa
h Y | h |
| J‘ |
Flange: A
Limit for class 3 t b
? <15e =1
b* N ime=1

2t

Flangeisin cross section class 3



Moment capacity of oneL profile without consideration

of instability

Cross section in class 3:

Welmy

MO

McRrd™=

M orq = 16.646 KNI

Mcrd>MEg=1

Compressive capacity of oneL profile
Ally

N =
cRd
Mo

Nopg= 1.048x 10N

Nerd> Neg=1

1993-1-1 [6.2.5]

1993-1-1 [6.2.4]

Ultimate capacity for one L profile with consideration of instability

Buckling 1993-1-1 [6.3.1]

For columns in cross section class 1, 2 or 3:

A
NpRrd = XE’—WI1

wherey is a reduction factor for buckling

1
&+ 0% - 22

with

X:

$=0801+aln-02 + 37

The slenderness fact ar

N A
A= —y = —[ﬂy
NCf NCf

The critical buckling load Ng =

2

Lcr2

Only buckling in the weak direction is considered

T [Ed




Lopi= 1.00.=1.738m Critical buckling length for top flange. According the Eigenvalue
buckling analysis Lcr=1.0*L

N i= = [EEZH N = 2.743x 10&N
(Ler
A

A= ﬂ
N \=0618

Rolled L profile S355 1993-1-1 [Tabell 6.2] buckling curve (b)

Table 6.1: Imperfection factors for buckling curves
b c d
0,49 0,76

Buclkling cuive Ay a
Imperfection factor o 0,13 0.21 0,34

o:=0.34

7
P o= 0.5EE1+ alx-0.2 + x]
$ =0.762

X=
P + '(1’2—>\2 X:0828

A
NpRrd:= XE—,Y
M1 NpRrg= 867.4kN

Stability control M+N 1993-1-1 [6.3.3]

From the buckling control in 5.1

x =0.828 A =0.618

Amax:= (N
No risk for tilting since the flange is braced lnetout-of-plane direction by the roof sealing
xT=1
Characteristic ultimate capacity for bending anchpession
MRy = Weldy NR:= Al

MRy = 16.646kNIm Ngy = 1.048x 10TkN



The interaction factc Kyy is calculated according #snnex A in EN 1993-1-1

For cross section class 3

_ Hy
Kyy = CrmyCmLtlE N
Ed
1 _
Ner y

The influence of the moment distribution over theneent is included by the factor Cmi

which is obatined from Table A.2
M(x mEL|3, IN

M(x) ] Coo=1+ — = Ed

(LM, )N,

M(x
N /] M | |
M;gq (x) 1s the maximum moment My gs or Mz gg
|5,] 1s the maximum member displacement along the member

Deflection due to the applied load:

5(q1L*
d:=
" 384THET 5 = 0.07Lmm
w2ED S| NEg
Cr =1+ ~1|8
- Ner Cm o= 1.009

LZEI]MEd|

Nop=2743.2ZkN  According to 5.1

Width
Ngg = 38.2ZkN
C,, andcC, tis calculated depending on the reference slends x\gwhich represents a

constant moment distribution over the element.unaase:

C,,=C N
m m O
- _Ed _ 0.014
__ cr
CmLr=1
Factors for second order effects:
N
Ed
1 —_
NCt’
W= N
Ed =0.998
1-xEF— .
NCF
_ p
Kyy = CmCmLTH N
Ed Kyy = 1.02



The interaction between bending moment and axiakfthen becomes:

I ™
O4f Ed_'_|<L O4f EdS

1l<1,0
X MNRy W MRk
X TE—
M1 M1
1
o = =19.445
NEgg . kyyMEg
Nprd  XLTMRK
Top flange 65
h:=120mm
M
t:= 13mm
W

L oads and load effects

kN
Q= 0.5—
m

Nggi= 24.4942kN

MEd:: 0.0426621kN0m
M= 1.0
MA:: 1.0

Steel S355
AfM:: 355MPa

E = 210GPa

NW

Applied load on each L profile in the top flange

Axial force in one of the L profiles for the tomafige 65 obtained fr
Abaqus

Moment in one of the L profiles for the top flangf obtained from
Abaqus

Yield stress

Young's modulus

Stiffness data for one L profile

A = 2951mnd

MV

h=0.12m
=h=0.12m

b:
M

t=0.013m

| == 39961 Gmnt"
W

Cross sectional area
Width of flange
L profile is symmetric

Thickness of flange

Moment of inertia



Wer= 46.891Cmm’ Flexural resistance

;= 1.6693m Length of top flange 65 between the supporting aliads
Control of cross section class 1993-1-1 [Tabell 5.2]
o , 235MPa
Y | h |
| l |
Flange: > f
- t
Limit for class 3 b
? <15& =1
DN y1me=1

2t

Flangeisin cross section class 3

Moment capacity of one L profile without consideration 1993-1-1 [6.2.5]
of instability

Cross section in class 3:

Welﬁgl

MO

Merd=
McRg= 16.646KkNIm
Mcrd>MEg=1

Compressive capacity of one L profile 1993-1-1 [6.2.4]

MO
Nopg= 1.048x 10N
Nerg™ Ngg= 1
Ultimate capacity for one L profilewith consideration of instability

Buckling 1993-1-1 [6.3.1]

For columns in cross section class 1, 2 or 3:

A
Nprd= XE’—WI1



wherex is a reduction factor for buckling

1
X" , 2 2
D +\P - X

with

& =0801+alx-02 + 37

The slenderness factxr

N A
A= —y = —lIg/
NCI’ NCI’

The critical buckling load Ney =

ﬁZEE[I]

Lcr2

Only buckling in the weak direction is considered

Critical buckling length for top flange. According the Eigenvalue

Lgp= 1.0 =1.669m
buckling analysis Lcr=1.0*L
2
o [ED
Nen= > Ng = 2.972x 10&N
(Ler
A
A= —[ﬂy _
AT N X =0.594

cr
Rolled L profile S355 1993-1-1 [Tabell 6.2] buckling curve (b)

Table 6.1: Imperfection factors for buckling curves

Buckling curve EN a b C d
Imperfection factor o 0,13 0,21 0,34 0,49 0,76

o= 0.34
ANW

7
= 0.5[51+ afx - 0.2 + x}
$ =0.743
1

T ——
d + [¢2_>\2 x =0.84



Stability control M+N 1993-1-1 [6.3.3]

N M
Ed Ed
+ RyyB——— < 1.0
xMNRy MRk
XLt —
M1 M1

From the buckling control in 5.1

x =0.84 A =0.594

Dinaoa= N
No risk for tilting since the flange is braced lnetout-of-plane direction by the roof sealing
XeT= 1
Characteristic ultimate capacity for bending anchpession
Maia= Wefly Neig= AT

MRy = 16.646KNIm Ngy = 1.048x 10T&N

The interaction factck,,, is calculated according #dnnex A in EN 1993-1-1

yy
For cross section class 3

_ Hy
Kyy = CrmyCmLtlE N
L Ned

Ncr_y

The influence of the moment distribution over theneent is included by the factor Cmi
which is obatined from Table A.2

n’EL|3, Np,

\IW Cono =1+ | n
) (M, (x| )N,

i

Migq (x) 1s the maximum moment My gg or M g4
|3,| 1s the maximum member displacement along the member

Deflection due to the applied load:

51g1*
" 384HD 5 = 0.060Mmm
o oy w2 ETS| | Ned
oY > RN

L2iMgg cr Cm_o= 1026



Width Nep=2972.ZkN  According to 5.1

Ngq = 24.5KN

C,, andcC, tis calculated depending on the reference slends x\gwhich represents a
constant moment distribution over the element.unaase:

C_:=C N
ANARRR m O _
- N—Ed =8.241x 10 °

cr

CmIKR:: 1

Factors for second order effects:

N
Ed
1 _
. Ncr
e NEd =0.999
1-xE— h==
NCT
v
= C o [Ty T F——
Ay ™ “mEmLT N
L NEd kyy = 1.034
N

N M
O4f Ed_'_|<L O4f Ed<

<1|<1,0
XNk W MRk
XLt —
M1 M1
. — 1 —
QU= =32.812

NEg . kyyMEg
Nprd  XLTMRK

Diagonal 37
h:=120mm Fm
b= 55mm E
NV\ )
d:=7mm \
M
1= 9mm *2

Moment of inertia for in-plane buckling
hm% + 2[b - a)m[éb;d + d)

hid + 200b — d)f

NTR= =17.4449mm



N

A

3 2 3 2
hrd d\°  2tgb- d) b-d
= + hm[éyTP'E) - = + 2tb - d)[é > +d 'yTP) = 4.914x 10Tm

Moment of inertia for out-of-plane buckling

h
TR = E = 600nm

- A L 2Ab- Qi
12

2
t
M + 2tlb - d) yTP_Ej =3.675x 18mm’

Since the stiffness of the UNP profile is greatethie out-of-plane direction will the ultimate ci

calculated for in-plane buckling which is the weaks.

L oads and load effects
Ngg:= 16.3kN Axial force in the diagonal 37 obtained from Abaqus

MEg:= 0.0849528kNIm Moment in the diagonal 37 obtained from Abaqus
W= 1.0

MA:: 1.0

Stedl S355

fyu= 355MPa Yield stress

E;=210GPa Young’s modulus

Stiffness data for one UNP profile

A= 1704mn? Cross sectional area
= 491.416mm” Moment of inertia
We= 13.081Gmm- Flexural resistance
L= 1.61557m Length of the diagonal 37
Control of cross section class 1993-1-1 [Tabell 5.2]
_ [235MmPa
o f Klass Tryckt kant -
y
Spannings- +
Flange: fordelning i ',“
tvarsnittet T c
b = 0.055m (tryck positiv) ! i
t = 9lm 1 c/t<9e

d = 70mm



¢:=b-d=0.048m £ -5333

Limit for class 1

Cc L
~<9&=1 Flange is in class 1
t
Web: Klass Bdjda delar Tryckta delar
h:=120mm ! L
M Spannings- +
- h - - fordelning i
&= h-20=0.102m ;’V'arz::;gt' c c
(tryck positiv) ! |
fY
— =14.571
1 c/t=T72e c/t<33e

Assuming full compression

Cca3m=1
d

Web in class 1

1993-1-1 [6.2.5]

The UNP profile is in cross section class 1 butsithe analysis is performed according to elastic
theory the cross section will be treated as it Wwazoss section class 3, without consideration of

plasticity. .
Cross section class 3

Moment capacity of an UNP profile without consideration of instability

Cross section in class 3:

Welﬁgl
MO
Mg = 4-643kNIm

Mera=

Mcrd>MEg=1

Compressive capacity of an UNP profile

NeRek
Mo

NeRg = 604.92ZkN

Nerd™ Ngg=1

1993-1-1 [6.2.4]

Ultimate capacity for an UNP profile with consideration of instability

Buckling 1993-1-1 [6.3.1]

For columns in cross section class 1, 2 or 3:

A
Nprd= XE'—WIl



wherex is a reduction factor for buckli

1
B +yB% - N2

with

X:

$=0801+ alfx-02 + 23
The slenderness fact ar
N A
N e
NCI‘ NCI‘

The critical buckling load Ng =

ﬁZEE[I]

Lcr2

Only buckling in the weak direction is considered

Lgp= 0.50.=0.808m Critical buckling length for fixed connections

2
New= [EEZH N = 1.561x 16&N
(ter)
Ay
D= Ng X = 0.623
Rolled UNP profile S35!1993-1-1 [Tabell 6.2] buckling curve (c)

Table 6.1: Imperfection factors for buckling curves

Buclkling cuive Ay a b C d
Imperfection factor o 0,13 0.21 0,34 0,49 0,76
Q= 0.49

@ = 0501+ olfx - 02 + 3]

$ =0.797
P ,71
P + (1,2_>\2 X:0772
A
= XB_[.E&/

M1 NpRg = 4670kN



Stability control M+N 1993-1-1 [6.3.3]

N M
Ed Ed
+ RyyB——— < 1.0
xMNRy MRk
XLt —
M1 M1

From the buckling control in 5.1

x =0.772 A =0.623

dman= V)

No risk for tilting since the flange is braced Inet
out-of-plane direction by the roof sealing

XeT= 1
Characteristic ultimate capacity for bending anchpession
MRk= We|[tg, NRk = A[ﬂy

MRy = 4.643kNTm NRk = 604.9ZKN

The interaction factck,,, is calculated according #dnnex A in EN 1993-1-1

yy
For cross section class 3

_ Hy
Kyy = CmyCmLtlE N
1- Ed

Ncr_y

The influence of the moment distribution over theneent is included by the factor Cmi
which is obatined from Table A.2

M| T wM

N
Coug =0.79+0.2ly, +036(y, ~033) -

o A
l<wy<l ol
gy = Q0714642 o0
—-0.0849528
NEd
Simnar= 079+ 0.2; + 0.36(; - 0.33‘)BN—
cr
Crm_o= 0609
Width Ne; = 1560.9kN  According to 5.1
Ngg = 16.3kN

Cy, andc, tis calculated depending on the reference slends xgwhich represents a



constant moment distribution over the element.unaase

Sm=Cm 0
Samla = 1
Factors for second order effects:
N
Ed
1 -
,wv__ NCI’
NEgg _
1-xE3— p = 0.998
NCF
o p
KW."_ Cmm:mLTB—NEd
1- ~ Kyy = 0.614

The interaction between bending moment and axrakfthen becomes:

ot NEq o MEq
+ RyyB———<1[<1,0
X MNRg MRk
X TE—
M1 M1
1
Q= =21.674

Ngg . kyyMEqg
Nprd XLTMRK

Diagonal 39

L oads and load effects
NEgg:= 21.23kN Axial force in diagonal 39 obtained from Abaqus

Mgg:= 0.9816kNIm Moment in diagonal 39 obtained from Abaqus
W= 1.0

MA:: 1.0

Stedl S355

fyu= 355MPa Yield stress



E:= 210GPa Young’'s modulus
Stiffness data for one KKR profile

g

2

A= 2236mm Cross sectional area
= 485710 mmt” Moment of inertia
W= 80 a18mm’ Flexural resistance
= . mm
L ;= 1.46912m Length of the diagonal 39
MW
Control of cross section class 1993-1-1 [Tabell 5.2]
_ [235MPa
&= ; ——,
y
Flange: C
b:= 0.120m
M
t o e
t = 50nm
R
R
r:=5mm
&::b—Zd—Zt:O.lm 3220
t

Limit for class 1 Cer2:=1
t

The KKR profile is in cross section class 1 butsithe analysis is performed according to elastic
theory the cross section will be treated as it lwagoss section class 3, without consideration of

plasticity. .
Cross section class 3

Moment capacity of an KKR profile without consideration of instability

Cross section in class 3:

Welmy
MO
McRrd= 28.72kNIm

Merd =

Mcrd>MEg=1

Compressive capacity of an KKR profile
A

Ay

meRek
MO

NgRg = 793.78KN

Nerd™ Neg=1

1993-1-1 [6.2.4]



Ultimate capacity for an KKR profile with consider ation of instability
Buckling 1993-1-1 [6.3.1]
For columns in cross section class 1, 2 or 3:
A

Nprd= XB_“fm

where is a reduction factor for buckling

1
& +yd% - N2

with

X:

$=0801+ alfx-02 + 23
The slenderness factar
N A
N e
NCI‘ NCI‘

The critical buckling load Ng =

ﬁZEE[I]

Lcr2

Only buckling in the weak direction is considered

Lgp= 0.51.=0.735m Critical buckling length for fixed connections

New= [EEZH Ny = 1.863x 10&N
(ter)
Ay
D= Ng X = 0.653
Rolled KKR profile S35!1993-1-1 [Tabell 6.2] buckling curve (c)

Table 6.1: Imperfection factors for buckling curves

Buclkling cuive Ay a b C d
Imperfection factor o 0,13 0.21 0,34 0,49 0,76
Q= 0.49

@ = 0501+ olfx - 02 + 23]



$ =0.824
1

X —
Ay

MoRa= XE—
M1 NpRg = 598.3kN

Stability control M+N 1993-1-1 [6.3.3]

From the buckling control in 5.1

x =0.754 X =0.653

= N

No risk for tilting since the flange is braced Inet
out-of-plane direction by the roof sealing

Xedy= 1
Characteristic ultimate capacity for bending anchpession
M= Weilly MNRie= Al

MRy = 28.7ZKNm NRk = 793.78kN

The interaction factck,,, is calculated according #dnnex A in EN 1993-1-1

yy
For cross section class 3

My

Kyy = CmyCmLtlE Neg
1 _

Ncr_y

The influence of the moment distribution over theneent is included by the factor Cmi
which is obatined from Table A.2

M F\ M N
. YMy Clio=0.79+021y, +036(y, _0-33)N—Ed

~-lsy<l m0

11

~._ 0722361
" -0.9816

=-0.736




Z
m
o

Smwar= 079+ 0.2T; + 0.36(; - 0.33)E-IN—
cr
Cm_=0.631
Width Ng = 1863 kN According to 5.1
Ngg = 21.2kN

Cy, andcC,, tis calculated depending on the reference slends x\gwhich represents a
constant moment distribution over the element.unaase:

Sm= Cm o
le T~ 1

Factors for second order effects:

N
Ed
1-—

cr

1-xE— 1 =0.997

1-— Kyy = 0.637

N LY
O Ed+|<; O Ed<

<1|<1,0
X MNRk W MRk
XLTE—
M1 M1
o= ! =17.47

ut
NEgg . kyyMEg

Nord XLTMRK




Diagonal 32

h:= 120mm [SEESE
M by

b := 55mm \

NV\ a

d:= 7mm

M

/gv:: Omm *2

Moment of inertia for in-plane buckling

b-d
hEiBg—+2|1Jb—d)[ﬂ[€ > +d)

= =17.444Imm
TR hid + 2[0b - o)

3 2 3 2
I hflzi . hm[éyTP_g) . % + 2tb - g)[éb . L —yTP) = 4.914x 10mm’

Moment of inertia for out-of-plane buckling

h
NTR= E = 600mm

A L 2Ab- Qi
12

| ;
w12

2
t
+ 2tb - JUlyp - E) =3.675% 18mm-

Since the stiffness of the UNP profile is greatethie out-of-plane direction will the ultimate «
calculated for in-plane buckling which is the weads.

L oads and load effects
Ngg.:= 9-33kN Axial force in the diagonal 37 obtained from Abaqus

Mgg:= 0-0773318kNIm Moment in the diagonal 37 obtained from Abaqus

VM 1.0

/W/M/QA:: 1.0

Stedl S 355

fyi= 355MPa Yield stress

E:= 210GPa Young's modulus

MWV

Stiffness data for one UNP profile
A= 1704mnd Cross sectional area

= 491.416mnt Moment of inertia

Wey= 13.0810mm° Flexural resistance



L ;= 1.61557m
MW

Length of the diagonal 37

Control of cross section class

1993-1-1 [Tabell 5.2]

_ | 235MPa
ok f Klass Tryckt kant
y
Spannings- +
Flange: fordelning i f“
tvarsnittet I c
b = 0.055m (tryck positiv) ! i
t = 9lmm 1 c/t=9e
d = 70mm
£:=b-d=0.048m C _5333
t
Limit for class 1
Scor=1 Flange is in class 1
t
Web Klass Bojda delar Tryckta delar
h:=120mm ! L
M Spannings- +
&= h-21=0.102m frdelning | c c
(tryck positiv) ! |
C fY fY
— =14.571
1 clt=72¢ c/t<33¢

Assuming full compression

. 1993-1-1 [6.2.5]
< <338 =1 Web in class 1

The UNP profile is in cross section class 1 butsithne analysis is performed according to e

theory the cross section will be treated as it lwag0ss section class 3, without consideration of

plasticity. .
Cross section class 3

Moment capacity of an UNP profile without consideration of instability
Cross section in class 3:

Welmy
MO
McRrg=4.643kNIn

Merd =

Mcrd>MEg=1

Compressive capacity of an UNP profile 1993-1-1 [6.2.4]



Mo

N

NeRg = 604.9ZKkN
Nerd> NEg=1
Ultimate capacity for an UNP profile with consideration of instability

Buckling 1993-1-1 [6.3.1]

For columns in cross section class 1, 2 or 3:

A
Nprd = XE_“!Ml

where is a reduction factor for buckling

_r
<I>+\/<I>2—>\2

with

X:

$=05P1+alh-02 + >
The slenderness factar

N A
A= —y = —[ﬂy
NCI’ NCI’

The critical buckling load Ng =

ED

Lcr2

Only buckling in the weak direction is considered

Leri= 0.51.=0.808m Critical buckling length for fixed connections

2ED

Now= —— N = 1.561x 101&N

(ter)
Ally
A N, X =0.623

Rolled UNP profile S35!1993-1-1 [Tabell 6.2] buckling curve (c)




Table 6.1: Imperfection factors for buckling curves

Buckling curve ap a b C d
Imperfection factor o 0,13 0,21 0,34 (.49 0,76
o= 0.49
NW

7
P o= 0.5EE1+ ax-0.2 + x]
$ =0.797

1

X T
P + (1,2_>\2 X:0772
Aly

NoRd:= XE——
M1 NpRrg= 467CkN

Stability control M+N 1993-1-1 [6.3.3]

From the buckling control in 5.1

x =0.772 A =0.623
Ddman= V)

No risk for tilting since the flange is braced Inet
out-of-plane direction by the roof sealing

XeT= 1
Characteristic ultimate capacity for bending anchpession
MRk= We|[tg, NRk = A[ﬂy

MRy = 4.643kNTm NRk = 604.9ZKN

The interaction factck,,, is calculated according #dnnex A in EN 1993-1-1

yy
For cross section class 3



_ Hy
Kyy = Cmy LTl Neg
1 —

Ner y
The influence of the moment distribution over theneent is included by the factor Cmi

which is obatined from Table A.2
M| M N
1 — ¥ Cuuy = 079+0.21y, +036(y, ~0.33) 2

0.0498944 — _0.645
-0.0773318

N

Ed
Smn0= 0-79+ 0.218; + 0.36fu; - 0.33)E-IN—
cr

Cm_o= 0652

Width Ng = 1560.9°kN According to 5.1

Ngg = 9.3kN
Cp, andC,, 1is calculated depending on the reference slendsi X\pwhich represents a

constant moment distribution over the element.unaase:
Sen= Cm o

le T~ 1
Factors for second order effects:

N
Ed
1 _
™ NEg
1 = 0.999
NCI’

— P
Ay~ CnCmLTh Neg
1-—— Hyy = 0.655

NCI’
The interaction between bending moment and axrakfthen becomes:

N
M TEd o MR

XNk W MRk
XLTE—
M1 M1
1
= 32.367




B7. Evaluation of buckling mode 1, instability failurein
top flange

\q = 2.0736 Eigenvalue for buckling mode 1 obtained from thgeivalue bucl
analysis in Abaqus
Q:= 30m Applied load on the truss beam
m

Qor 1= M@= 62.20852  Critical buckling load for mode one, buckling optfiange
- m

Noe = 38.2251kN Axial force ir_1 top flangg member 63, obtained frthra Static anal
tf in Abaqus with an applied load of 1kN/m

The model is based on linear elastic material, athgtresses and sectional forces obtainec

Static analysis will increase linearly with increggload. In the Static analysis a load of 1kP

applied and the axial force from this analysislddhberfore be scaled in order to find the ax

for other magnitudes of applied load.

Qcr_1
Nif_cr = Nyg B = = 2.378 10N

Axial force in top flange member 63 at the critibalkcklin
load for mode one
m

Critical buckling load for an L profile according tlassic theory

_ nlED

The critical buckling load Ngy

Lcr2

Only buckling in the weak direction is considered

E=21x 10MPa Young's modulus
ltfe5 = 3996 10mm’" Moment of inertia for an L profile
Lifgs:= 1.73756m Length of the top flange member 63

Ler ties= 1-0e5 = 1.738 mCiritical bL_Jcinng Ien_gth for top flange 6_3 is clogel.0 according to
the buckling analysis, see mode 1 in Figure 8.5

2
- T Ehies é Critical buckling load according to classic theor
Ncr_tf65" =2.743x 10[KN [tical buckling loaa according to classic tneory

(I-cr_tf65)2



B8. Evaluation of buckling mode 10, instability failurein
diagonal 37

X7 = 3.02 Eigenvalue for buckling mode 7 obtained from thgefBivalue bucl
analysis in Abaqus
Q= 30ﬁ Applied load on the truss beam
m

Qor 7= M@= 90,640 Critical buckling load for mode seven, bucklingdiigonal 37
- m

Noo = 16.3kN Axial force_ in diagongl 37, obtained from the Statnalysis in
37 Abaqus with an applied load of 1kN/m

The model is based on linear elastic material, alhgtresses and sectional forces obtainec

Static analysis will increase linearly with increggload. In the Static analysis a load of 1kP

applied and the axial force from this analysislddhberfore be scaled in order to find the ax

for other magnitudes of applied load.

7

Q . . . s .
Na7 o= Nao lr(:’:l_ - 1477% 18aN Axial force in diagonal 37 at the critical bucklitepd for

mode seven

m

Critical buckling load for an UNP profile accordibtgclassic theory

_ nlED

The critical buckling load Ner

Lcr2

Only buckling in the weak direction is considered

E=21x 10MPa Young’'s modulus
l37:= 491.41mm" Moment of inertia for an UNP profile
L37:= 1.61557m Length of the diagonal 37

Ler 37:= 0.81g7=0.808m Critical buckling length for fixed connections

TYZEEEH37 - . . :
Ny 37:= ———— = 1.561x 16&N Critical buckling load according to classic theory
— 2

I-cr_37)



B9. Evaluation of buckling mode 3, instability failurein
diagonal 32

Az 2.3297 Eigenvalue for buckling mode 3 obtained from thgeivalue bucl
analysis in Abaqus

Q= 30ﬁ Applied load on the truss beam
m

Qor 3= M@= 69.80T5"  Critical buckling load for mode seven, bucklingdifigonal 37
- m

Nos = 9.3kN Axial force in diagonal 37, obtained from the Statnalysis in
82— = Abaqus with an applied load of 1kN/m

The model is based on linear elastic material, alhgtresses and sectional forces obtainec
Static analysis will increase linearly with increggload. In the Static analysis a load of 1kP
applied and the axial force from this analysislddhberfore be scaled in order to find the ax
for other magnitudes of applied load.

Axial force in diagonal 37 at the critical bucklifapd for

ch 3
N = NaoF—=> = 649.9861kN
32_cr” 327y mode seven

m

Critical buckling load for an UNP profile accorditgclassic theory

_ nlED

The critical buckling load Ner

Lcr2

Only buckling in the weak direction is considered

E=21x 10MPa Young’'s modulus
Jaz= 491.410mm’" Moment of inertia for an UNP profile
L3o:= 2.253098m Length of the diagonal 32

Ler 32:= 0813, =1.127m  Critical buckling length for fixed connections
2

(I-cr_32)2

Ner 32:= =802.51TkN Critical buckling load according to classic theory



B10. Evaluation of ultimate capacity for top flange

member 63
Shell elements
M= 2.0574 Eigenvalue for buckling mode 1 obtained from thgeBivalue buckl
analysis in Abaqus
Q= 30N Applied load on the truss beam
m

Qo= M@= 61722 Critical buckling load for mode one, buckling optange member
- m

Axial force in top flange member 63, obtained frthra Static

Ngg:= 36.816kN analysis in Abaqus with an applied load of 1kN/m

063 = 14.6MPa

agai= — =24.315
%63

Rolled L profile S355 1993-1-1 [Tabell 6.2] buckling curve (b)

Table 6.1: Imperfection factors for buckling curves

Buclkling cuive Ay a b C d
Imperfection factor o 0,13 0.21 0,34 0,49 0,76
Q=034

@ = o.szﬁ1+ olfngz-0.2) + >\632}

1

ua , 2 2

® =0.77



B11l. General method

Top flange member 63

\p = 2.0736
Q=30
m

N
Qy 1:= M0 = 622085
= m
og3:= 15.06MPa
f,, := 355MPa

y

g3 = ——

Eigenva ue for buckling mode 1 obtained from
the Eigenvalue buckling analysis in Abagus

Applied load on the truss beam

Critical buckling load for mode one, buckling
of top flange member 63

Rolled L profile S355 1993-1-1 [Tabell 6.2] buckling curve (b)

Table 6.1: Imperfection factors for buckling curves

Buckling curve

d

Ay a b

Imperfection factor o

0,13 0,21 0,34 0,49 0,76

o:= 034

3= 0.5@1 + alfngg - 02) + xeﬂ

) 1
X =

3+ 97 - ngs?

® =0.76

¥ = 0.829



Diagonal 32

Ao 1= 2.3297
kN
=30—
R o

N
Qy 2= o= 69.891%

Eigenvaue for buckling mode 1 obtained from the
Eigenvalue buckling analysisin Abagus

Applied load on the truss beam

Critical buckling load for mode one, buckling of
diagonal 32

032 = 11.4MPa
A];w:: 355MPa
32-= "~
>\32 =
UNP profile 1993-1-1 [Tabell 6.2] buckling curve (c)
Table 6.1: Imperfection factors for buckling curves
Buckling curve ap a b C d
Imperfection factor o 0,13 0,21 0,34 0,49 0.76
= 0.49

B = 0.5@1 +affhgy - 02) + >\322}

1

v N

® =0.837

x = 0.745



Diagonal 37
A3 := 3.0200

kN
= 30—
R m

N
Qy 3= A= 90.6%

0'37 = 16.1MPa
Afm:: 355MPa

Eigenva ue for buckling mode 1 obtained from
the Eigenvalue buckling analysis in Abagus

Applied load on the truss beam

Critical buckling load for mode one, buckling
of diagonal 37

UNP profile 1993-1-1 [Tabell 6.2] buckling curve (c)
Table 6.1: Imperfection factors for buckling curves
Buclkling cuive Ay a b C d
Imperfection factor o 0,13 0.21 0,34 0,49 0,76

Q= 049

@ = 0.5@1 + alfhgy - 02) + >\372}

1

ua 2 2
O+ [P g7

® =0.694

¥ = 0.847

MNoRraaz, = X037 = 1867



