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Abstract

Classical visual object tracking techniques provide effective methods when param-
eters of the underlying process lie in a vector space. However, various parameter
spaces commonly occurring in visual tracking violate this assumption. This thesis is
an attempt to investigate robust visual object tracking and online learning methods
for parameter spaces having vector or manifold structures.

For vector spaces, two different methods are proposed for video tracking. The
first builds upon anisotropic mean-shift tracker for appearance similarity and SIR
particle filter for tracking of the bounding box. The anisotropic mean shift is de-
rived for a partitioned rectangular bounding box and several partition prototypes
with adaptive learning strategy of reference object distributions. The joint scheme
maintains the merits of both methods, using a small number of particles (<20) and
stabilizes trajectories of target during partial occlusions and background clutter. The
second object-tracking algorithm uses joint point feature correspondences and ob-
ject appearance similarity and an optimal selection criterion for the final tracking.
The point feature-based tracking simultaneously exploits and dynamically maintains
two separate sets of point feature correspondences in the foreground and surrounding
background, where background features are used for the indication of occlusions. The
appearance-based tracking uses an enhanced anisotropic mean shift with a fully tun-
able (5 degrees of freedom) bounding box. The enhancement is achieved by partially
guiding it from feature point tracker and dynamically updating the reference object
models. It is shown that proposed tracker has more tracking robustness with reduced
tracking drift.

The contribution related to manifold tracking and online learning focuses on sym-
metric manifolds (set of covariance matrices) and Grassmann manifolds (set of sub-
spaces). The online appearance learning is based on Bayesian estimation of state vari-
ables (related to object appearances) on these manifolds by a dual dynamic model.
This model is realized through the help of two mapping (exponential and logarith-
mic) functions between tangent planes and manifolds. The tracking part is based on
Bayesian estimation of state variables (related to affine object bounding box) with
manifold appearance embedded. Tracking and online learning is performed in an al-
ternative fashion to mitigate the tracking drift. Moreover, for symmetric manifolds,
Gabor features in different frequencies and orientations are introduced for the covari-
ance descriptor. This is effective for both visual and infrared video objects. Further,
the spatial information is incorporated in the covariance descriptor by extracting fea-
tures in partitioned bounding box. For Grassmann manifolds, a novel method is
introduced to detect the partial occlusion. The appearance subspace is updated in
each time interval if there is an indication of stable and reliable tracking without
background interferences. It is further shown that the proposed manifold framework
is better by comparisons with existing trackers.

Keywords: Visual object tracking, anisotropic mean shift, particle filters, Bayesian
tracking, consensus point feature correspondences, online learning of reference object,
Riemannian manifold, covariance tracking, Gabor features, Grassmann manifold.
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CHAPTER 1 -

Introduction

isual object tracking has attracted a great deal of interest in recent years, largely

driven by their applications such as video surveillance in airports, schools, banks,
human-computer interaction, hand-gesture recognition, video compression, medical
imaging in hospitals, e-health care and many more. Building a visual tracking system
is far from being an easy task due to several aspects e.g. most objects are not rigid
and can deform freely; occlusions can make objects temporarily invisible; background
clutters can make objects boundaries unclear and difficult to distinguish; illumination
variations may change object appearance and many more. Additionally, depending
on a visual tracking domain, detection of interesting objects and analysis of object
tracks to recognize their behavior can be the necessary steps before and after visual
tracking. In the last two decades, extensive research has been carried out in this area,
and various methods for visual tracking have been proposed, however, many problems
in visual trackers are still open research issues.

Informally, visual tracking consists of a recursive estimation of the unknown pa-
rameters (often referred to as states) of an object described by a region in an image
plane as it moves around the scene. To achieve visual tracking, choosing a target
model by utilizing the shape and appearance of an object is one important aspect.
The second important aspect is the formulation to find a target model in successive
video frames. The mathematical framework for visual tracking has been very well
developed (see [2, 31] and references therein). [1| have described two approaches
namely bottom-up approach (also called target representation and localization) and
top-down approach (also called filtering and data association) for tracking. The top-
down approach uses the target dynamics, prior information, control theory principles
and probabilistic search to find targets, where they are expected to be. Both these
approaches specify a target model, however, they primarily differ from each other in
search methodology. The bottom-up approach utilizes the computer vision principles
or deterministic search to estimate tracking parameters. In the following, we describe
and discuss each of these components separately. Readers are referred to [2] and
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references therein for more details.

1.1 Target Modeling

The selection of an object shape, appearance features and their proper representation
are important aspects in target modelling. [2] describes various ways to represent
an object shape. Objects that occupy small regions in an image can be represented
by points [3, 4], that is, the centroid. Rigid or non-rigid objects can be crudely
represented by a rectangular or ellipse bounding box [1, 5] or more accurately by
object silhouette and contours [6], skeletal models [7] and articulated shape models.
Using a bounding box is usual for generic algorithms. Different shapes representation
can be visualized by Fig. 1.1. This selection is often application-dependent and has

(i)

Figure 1.1: Object shape representation. (a) point (b) multiple points (c) rectangular
box (d) elliptical box (e) part-based articulated object (f) object skeleton
(g-h) object contour (i) object silhouette. The figure is taken from [2].

a critical role for object motion modelling. For example, only translation models can
be used if an object is represented by a point; parametric motion models like affine or
projective transformations are more appropriate for geometric shape representations
like ellipse or square.

Commonly used appearance features in the context of visual tracking are colors
(e.g RGB, HSV), edges (e.g. Canny edge detectors, SIFT features), filter outputs
(e.g. 1st/2nd derivatives, Gabor filters), optical flows, textures and many more.
Appearance features representation may use global properties of an image region
specified by shape models e.g. probability densities (parametric or non-parametric)
of features [1, 8|, templates 9], eigen images [5], features covariance matrix [10] and
many more. It may also use local properties of group of neighboring pixels, which
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should be unique and distinguish objects from others e.g. Harris corners [11], KLT
features [12], SIFT features [13] and SURF features [14] and many more

1.2 Target Model Search

Informally, target model search can be categorized into following:

1.2.1 Deterministic Methods

These methods define correspondences error function and carries out a target model
search in the current frame starting at a previous location of object. The aim is to find
the most similar object location that minimizes the error function like sum of square
distance, Bhattacharyya distance. The success of these methods is highly dependent
on the discriminating power of object representation and the requirement that the
object in consecutive frames has a certain overlap. Some examples of deterministic
visual tracking methods are template based tracker [15], histogram based tracker [1].

1.2.2 Detection Methods

These methods detects targets in every frame by utilizing computer vision principles
and then corresponds objects across frames to generate the tracks. Some examples
of object detection methods in the context of visual tracking are local feature cor-
respondence [11, 13, 16], segmentation [17, 18], background subtraction [19-21] and
supervised classifiers [22-24].

1.2.3 State-Space Methods

These methods consider uncertainty in previous frame information and use state-
space models and Bayesian filtering to find the target model. The general state-space
equations for Bayesian filtering can be described as:

st = fi—1(se—1, V1)
ht(St,Wt) (11)

Zt

In the following, we describe and discuss each of these components separately:

State Vector s;

It represents all information known about the target and may include the shape/appearance
of the object or other parameters that are required to describe the complete property
of the target.

State Dynamic/Motion Model p(s;|s;—1)

It predicts the next state at time ¢ conditioned on the state in all previous frames
or only previous state under the first-order-Markov assumption. The uncertainties
in prediction are controlled by the noise variance in each state variable. Commonly
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used motion models are Brownian, second-order constant velocity (CV), third-order
constant acceleration (CA) (chapter 6 [25]) and many more.

Measurement /Sensor Model p(z;|s;)

It describes the relation between sensory readings, under the influence of the sur-
rounding environment and object’s state. Measurements usually consist of image
region specified by the object state.

Bayesian Filtering

The Bayesian filtering gives a recursive method of calculating posterior density p(s¢|z1.¢)
as a function of the measurement model p(z|s;), motion model p(s¢|s;—1) and knowl-

edge of prior p(sg) at the initial step or previous step p(s;—1|z1.t—1). It consists of

two steps: prediction and update. In the prediction step, motion model is used to

find the current state conditioned on previous measurements. In the update step,

measurements are utilized to improve the prediction.

There are many ways of formulating the Bayesian filtering under different as-
sumptions. Commonly used techniques are Kalman filters [26], for linear additive
Gaussian noise for motion and measurement model, extended Kalman filters [27] and
unscented Kalman filters [64] for non-linear motion and measurement models, parti-
cle filters [29, 30] for non-linear and non-Gaussian models etc. Moreover, concepts
of multiple model filtering and data association are required to solve the tracking
problem in case of different modes of object operation or multiple objects scenarios.
However, these are beyond the scope of this thesis and not described here.

1.3 Online Learning of Target Appearance

Online learning for estimating time-evolving stochastic processes is an important re-
search issue in signal processing and computer vision. One of the main tasks for online
learning is to estimate current statistics, parameters or states of a non-stationary sys-
tem or object from new observations. In the context of, visual tracking that does
not have the opportunity of offline training, online learning means that the object
appearance model should adapt over time in such a way that it is robust to the object
intrinsic parameters (e.g. pose variation, shape deformation) and resilient to the ex-
trinsic (e.g. illumination, camera motion, viewpoint and occlusion) variations using
some previous tracked frames. Depending on the assumption for image space, the
task of online learning for visual tracking can further be subdivided in two categories,
detailed as follows:

1.3.1 Appearance Learning on Vector Space

These methods model the appearance of an object in a vector space (i.e a space closed
under vector addition and multiplication by scalar) e.g. Images presented as intensity
(or color) values, histograms, point features and many more. These spaces are dealt
with the machinery of linear algebra or differential calculus. Recently, many object
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tracking methods have been proposed and developed [2, 31|, which consider the image
as a vector space structure. e.g. [32] extends gradient-based optical flow to handel the
appearance variations. [33] handles the fast illumination changes by fast differential
EMD tracking. [34] introduces an online subspace learning method with a sample
mean update. [35] proposes to label objects and background pixels by ensembles of
online, learned weak classifiers.

1.3.2 Appearance Learning on Manifolds

These methods model the appearance of an object on a manifold that is locally Eu-
clidean. For example, images presented as the set of covariance matrices (the sym-
metric manifold) or set of subspaces (the Grassmann manifold) are not vector space
structure. Concepts of differential geometry and differential calculus are used for the
study of these structures. Images of an object may reside in non-linear space [36].
Thus, using manifold techniques for appearance learning and tracking may lead to
more robust results. For example, [37] uses a conjugate gradient and Newton’s method
for subspace tracking on Grassmann and Stiefel manifolds with applications to orthog-
onal procrustes. [38] proposes piecewise geodesics on complex Grassmann manifolds
using projection matrices for subspace tracking. The simulations are performed on
synthetic signals from an array of sensors. [39] proposes a visual tracking system
by applying a Kalman filter to velocity vectors in the tangent planes of Grassmann
manifolds.

1.4 Problem Definition and Motivation

Online learning of object appearances enables a tracker to adaptively utilize a timely
reference object model. A main challenge for online learning of visual object is to de-
cide whether the ambiguity on image changes should be learned or avoided. The am-
biguity can be caused either by object itself (e.g. deformation, pose, self-occlusion) or
by other occluding object/background. It is desirable that an online learning method
adapts to changes in object intrinsic parameters (e.g. pose, appearance and shape)
and insensitive to extrinsic variations (e.g. illumination, occlusion, background, cam-
era motion and viewpoint). Another difficulty is that objects appearance do not
always reside in a vector space e.g. symmetric positive definite covariance matri-
ces, subspaces and many more. Moreover, apart from learning, the tracking method
should be made robust. For example, by choosing complementary methods that can
work cooperatively and benefit from each other and many more.

This thesis is an attempt to address these issues by investigating new approaches
in vector spaces and manifolds for visual object tracking and online learning. It is
concerned with the objects, captured by a single static or dynamic camera, with the
assumption that detection in the first frame is already solved or need not be solved
for a setup.
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1.5 Contributions

The scientific contributions of this thesis can be summarized as follows:

Tracking method 1: Joint multi-mode anisotropic mean shift and particle
filter

Equations for the multi-mode version of the anisotropic mean shift are derived by
partitioning the bounding box into smaller subregions. It is then embedded into the
particle filter framework along with online learning of the reference object distribu-
tion. This allows mean shift to search several modes within the box. Moreover, a
method is proposed to measure the suitability of subregion kernel bandwidth estimate
for box shape parameters calculation (i.e. position, width, height and orientation).
The new hybrid tracker performs better as compared to mean shift (MS) tracker in
[40] and the combined mean shift and particle filter (MSPF) tracker in [41].

Tracking method 2: Joint object appearance similarity and local point fea-
ture correspondences

A point feature-based tracker is proposed that simultaneously exploits and dynami-
cally maintains two separate sets of point feature correspondences in the foreground
and in the surrounding background for visual tracking. It is integrated with appearance-
based tracker by an optimal selection criterion. The appearance based tracker utilizes
enhanced anisotropic mean shift with a fully tunable (5 degrees of freedom) bounding
box and online learning of the reference object distribution. The joint tracker per-
forms better as compared to anisotropic mean shift tracking in [40] and SIFT tracking
in [13] followed by the RANSAC [42].

Tracking method 3: Adaptive tracking on Grassmann Manifolds

A Bayesian framework is formulated on Grassmann manifolds for the posterior ap-
pearance estimation and object bounding box tracking. The online learning uses
dynamic model that includes both manifold object appearance point and its velocity.
A criterion is proposed to find stable tracking results for appearance learning. The
proposed tracker performs better as compared to subspace tracking on Grassmann
manifolds in [39] and vector subspace-learning based tracking in [43].

Tracking method 4: Adaptive tracking on Symmetric Manifolds

A spatial dependent covariance tracker is proposed on symmetric manifolds that uses
Gabor features in different frequencies and orientations on partition subregions. It
integrates the tracking process and online learning process in an alternative fashion.
The online learning is based on Bayesian estimate of object appearance on a manifold
by a dual model. The tracking part is based on Bayesian estimation of object affine
bounding box parameters with manifold appearance embedded. Experiments on both
visual and infrared videos have shown robust tracking performance as compared to
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covariance-based tracking in [44] and probabilistic tracking on the Riemannian man-
ifold in [45].

1.6 Thesis Outline

The thesis is divided into two parts. The first part introduces the background and
methods. The second part includes publications resulted from this thesis. A brief
introduction to the content in each chapter of the first part of the thesis is given
below.

Chapter 2 Riemannian Manifold

This chapter is devoted to describing manifolds in a very informal way. First, con-
cepts of geodesics, exponential map, logarithmic map on manifolds are introduced
followed by their descriptions for Lie Group, Grassmann and symmetric manifolds.
This theory is aimed at providing essential information required for adaptive visual
tracking on manifolds in Paper C and Paper D.

Chapter 3 Related Methods of Visual Object Tracking

This chapter describes existing methods involved in the tracker design of this thesis.
These techniques include mean shift for global appearance model-based tracking, par-
ticle filter for state space tracking and SIFT in [13] followed by the RANSAC [42] for
local point feature-based tracking.

Chapter 4 Adaptive Tracking Methods

This chapter summarizes proposed object appearance learning on a vector space with
hybrid trackers combining mean shift with local point feature correspondences and
Bayesian tracking. Further, it describes the proposed visual tracking and online learn-
ing on Grassmann and symmetric manifolds. These algorithms are detailed in at-
tached Papers.

Chapter 5 Conclusion and Future Work

This chapter contains the conclusion of this thesis. The discussion for future work is
also given.
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INTRODUCTION




CHAPTER 2 -

Manifold Theory: A Review

he study of feature analysis, estimation and optimization on manifolds appears

in a vide variety of computational problems in computer vision. Intuitively,
manifolds can be thought of as smooth, curved nonlinear surfaces that are not vector
spaces. Notions such as sums and differences of points in these spaces are not defined.
The purpose of this chapter is to give a general introduction to the theory of manifolds.
The fundamental concepts regarding manifold structures, tangent spaces, exponential
and log mapping are presented first. Then a discussion of manifolds relevant to this
thesis is given. The approach and definitions mainly follow [37, 38, 46-50]. Note
that the points on a manifold are represented by small bold letters and matrices are
represented by capital bold letters.

2.1 Manifolds

Informally, a manifold can be considered as a space that consists of open sets of
Euclidean space R?, glued together and made differential. It can be visualized [51]
by considering a circle. Globally, the circle can not look like an open subset of R
because if we travel in a "straight line", then we will end up where we started. This
is in contrary to a straight line in R, where we never come back to where we started.
However, the circle can be divided in four hemispheres top, bottom, left and right
where the angles of all points between 0 and 7 can be thought as open interval in R.
The union of these four "open sets of R" can form a circle. Thus, a manifold is locally
similar to Euclidean space, whereas globally it doesn’t.

Formally, a d-dimensional manifold M is a Hausdorff, topological space that is
locally homeomorphic to Euclidean space. For every point p € M, there exists a
neighborhood U € M containing p and an associated mapping ¢ from U to some
Euclidean space R?, such that ¢(U) is an open set in R? (for a more formal definition,
see [50, 52] Chap.1)). There are myriad constructions and definitions associated with
topological space, Hausdorff and homeomorphism. For the sake of completion, these
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are summarized below (Readers are referred to [JM2006] for more details):

Topological space: It consists of a set X together with a collection of subsets of
X, called open sets, satisfying: i) X and the empty set belongs to open sets. ii) The
union of any family of open sets lies in open sets. iii) The intersection of any finite
family of open sets belongs to open sets.

Hausdorff: A topological space is said to be Hausdorff if for every pair of points
p,q € X there exists a disjoint neighborhood U and V of p and q respectively.i.e.
unvyv =wo.

Homeomorphism: Given two topological spaces X and Y, a mapping f is called
a homeomorphism, is it is bijective (one-to-one and onto) and f : X — Y and
f~':Y — X are both continuous.

2.1.1 Coordinate Chart, Transition Map and Atlas

The coordinate chart is the neighborhood & € M and its associated homeomor-
phism ¢ from U to R?. The transition map ¢ o ¢)~! is a mapping from the open
set (U NV) € R to the open set (U NV) € RY, where (U, ¢) and (V, 1)) are two
different d-dimensional coordinate charts such that (4 NV # 0). If transition map
for all coordinates chart is analytic i.e. has a convergent Taylor series expansion, the
manifold is called analytic manifold and it is smooth and differentiable. An atlas is
a set of coordinate such that ¢;(l;) € R? for all i; U; covers M ie. M = U, Uis
transition maps ¢; o gbi_l are smooth when (U; NU; # 0). These ideas are graphically
illustrated in Fig. 2.1.1.

Figure 2.1: Two overlapping coordinate charts and transition map for two-
dimensional manifold. The figure is taken from [46].
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2.1.2 Functions on Manifold

Consider a real valued function f : M — R on the manifold. If for every p € M,
there exists a chart (U, ¢) then the composite function f = fo¢ ! which maps the
open set ¢(U) € R? to R, is called coordinate representation of f. By definition, f
is smooth and analytic if the coordinate representation is smooth and analytic for
all coordinate charts. The process of finding partial differentiation of f at p on M
involves pulling the function back to R? by using the coordinate chart (i, ¢) and then
evaluating the directional derivative. It can be expressed mathematically as:

R
o =220 2.)

where u’ is the i-th coordinate of the point ¢(p) in RY.

2.1.3 Tangent Vectors on Manifold

In literature [46, 49, 50|, the notion of tangent vectors at a point on a manifold is
defined in several different ways. However, the most intuitive method to describe
tangent vector is to use curves on manifold (page 34 [49]). A curve v in M is a
smooth mapping from open interval in R to M ie. v : R — M. A tangent vector
A at a point p on a manifold M is a mapping from the set of smooth real-valued
functions defined on a neighborhood of p (i.e (Fp(M))) to R such that there exists a
curve v on M with v(0) = p, satisfying:

(1)

dt |t:0 (22)

for all f € FpM). The curve v is then said to realize the tangent vector A and the
point p is called foot of the tangent vector. However, there are infinitely many curves
v that realize A (i.e. A = 4(0)). Two curves 71 and 2 through a point p at t = 0
satisfy 41(0) = 42(0), if given a chart (U, ¢) with p € U, it holds that:

d(d(n (1)) d(é(2(1)))

dt dt [t=0 (2:3)

li=0 =

A tangent vector on M at p can also be viewed as a real-valued operator [46] on
continuous function satisfying the properties of linearity and Leibniz product rule of
derivative:

A(af 4+bh) = aA(f)+bA(R) (2.4)
A(fh) = [fA(R) 4+ RA(f)
for all continuous functions f,h and a,b € R.

The set of all tangent vectors to M at p is called tangent space, denoted by Tp. It is
a vector space satisfying the rules of addition and scalar multiplication:

(A+D)(f) A(f) +T(f) (2.6)
(@A)(f) = aA(f) 2.7
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Intuitively, the tangent space can be thought of as the set of allowed velocities for
a point constrained to move on manifold. It gives a linear approximation for the
manifold at a point.

For d-dimensional manifold, the dimension of tangent space is equal to d. if (U, @) is

a chart containing p and u’ is the i*" coordinate of the point ¢(p), then 8(1‘;9075171) lé(p)>
i=1,...,d form the basis of 7.

To define a notion of length of tangent vectors, the tangent space at every point
p on a manifold is associated with an inner product <,.,>,. Given a set of basis
vectors for the tangent space 7, <,., >, can always be represented as a symmetric
positive definite matrix. The inner product induces a norm [|A|l, £ /< A, A >,
on 7. A manifold whose tangent spaces are endowed with a smoothly varying in-
ner product is called Riemannian manifold. The smoothly varying inner product is
called Riemannian metric. Two different inner product metrics on the same manifold
would lead to two different Riemannian manifolds. However, in practise there exists
a standard metric and the Riemannian manifold is denoted ny underlying analytic
manifold. Given two tangent vectors A,I' € 7, their inner product is written as
< A,T >. This enables to define angles between the two tangent vectors.

2.1.4 Distances on Manifold

The distance between two points p and q on the manifold is defined by integrating
over all piecewise smooth curve segments from p to q.

For a closed interval [a,b] C R, a map 7 : [a, b] — M is a piecewise smooth curve from
p = 7(a) to g = v(b), if there is a sequence of numbers a =ng < ny < ... < ni—1 <
n; = b;n; € R so that each map 7 : [n; nj11] is a smooth curve for j =0,...,i—1
The length of curve 7 between p and ¢ is given as ([48] page 374):

k—1
t)=3 [, VEIOAO>d (28)

where +/(t) is the tangent at ().

A curve on manifold is a geodesic if it is the shortest path connecting two points.
The length of geodesic is called Riemannian distance between two points and the
velocity is constant along geodesic.

2.1.5 Exponential and Logarithmic Mapping Functions

These functions map p € M, along geodesics, from tangent space 7, to the manifold
and vice versa. For each A € T, there exists a locally unique geodesic 7(t) starting
at v(0) = p with initial velocity 4(0) = A and traveling with constant speed.

The exponential mapping function exp, : 7, — M maps the tangent vector A
along the geodesic y(t) to a point q on the manifold that is reached in unit time i.e.
q = expp(A) =(1).

The exponential map defines a diffeomorphism (smooth bijection) of a neighborhood
U of the origin at T, to a neighborhood U of p in the manifold. The inverse of the
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exponential map i.e. a mapping from U to U exists locally in the neighborhood of p
and is called logarithmic map log, : M — Tj,.

It is worth mentioning, that these operators depend on the base point on the manifold
and change as the point moves. This fact is represented explicitly as subscript in the
notation. Moreover, the exponential and logarithmic maps are different for each
manifold and for each metric. Thus they have to be determined and implemented
on a case by case basis. The specific formula for certain manifolds are presented in
Section 2.2-2.5. Fig. 2.2 shows a two dimensional manifold in R3.

Figure 2.2: An example of a two-dimensional manifold M embedded in R3. p and
q are manifold points, T, M is the tangent plane for p, where A is the
tangent vector originated from p and end in q. The geodesic (t) is the
shortest curve between p and q on the manifold.

2.2 Lie Groups

A Group G is a set of elements with an operator ’.’; such that the following properties
are satisfied: i)closure; for any g1, g2 € G implies g1.92 € G. ii) associative; for any
91,92, 93 € G implies g1.(g2.93) = (91.92).9). iii) identity; for any g1 € G there exists
e € G, such that g1.e = g1. iv) inverse; for any g; € G there exists gl_1 € G, such
that gl.gl_1 =e.

A Lie Group is a group G with the structure of smooth manifold such that mul-
tiplication map m : G x G — G ( given by m(g1,g2) = g1g2 for any g1,92 € G) and
inversion map i : G — G ( given by i(g1) = gl_1 g1,92 € G) are analytic. The group
operation gives Lie groups with additional group structure. The tangent space at the
identity element of the group forms a Lie algebra, denoted by g, which is a vector
space that is closed under the Lie bracket operation. A Lie bracket is a bilinear op-
eration that satisfies the identity of bilinearity, antisymmetry and Jacobi symmetry
(see p.94 of [50] for more details).

The most commonly used Lie groups are matrix Lie groups, also called as general
linear group GL(n). These are sets of n x n non-singular matrices and the group
operation is matrix multiplication. Some commonly used examples of matrix Lie
groups include: i) The orthogonal group O(n) is the set of real n X n orthogonal
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matrices. ii) special orthogonal group (or group of rotations) SO(n) is the subgroup
of O(n) consisting of those matrices of O(n) having determinant +1. (iii) The special
Euclidean group SE(n) is the group of affine maps of R” in terms of (n+1) x (n+1)
(Ep ; ], where R € SO(n) and t € R". The formula for
exponential map, log map and distance function are (see [52] Chap. 11):

matrices of the form {

expy(A) = pexp(p 'A)=q (2.9)
log,(q) = plog(p~'q)=A (2.10)
d(p,a) = |[log(p~'a)llr (2.11)

where p,q € M, A € T, M and ||.||r denotes the Frobenius norm of matrix.

2.3 Geodesic on Orthogonal Group

This section reviews the derivation of geodesic on Lie groups of orthogonal matrices.
These derivations are required later for Grassmann manifolds. Moreover these equa-
tions will be required later for Grassmann manifold. Readers may refer to [37] for
further information.

Let Q be an n x n orthogonal matrix represented as a point on the orthogonal group
O(n) then the condition of orthogonality is given as:

Q'Q =T (2.12)

To find the geodesic equation for a curve v(t) = Q; between the two points Qo, Q1 €
O(n) such that v(0) = Qo and ~(t) = Q1 where 0 < t < t1,¢ € R, orthogonality
constraint Q] Q; = I is differentiated with respect to ¢ twice:

. QIQ+QiQ = 0 (2.13)
Q/Q +2Q/Q+QfQ. = 0 (2.14)

where Qt and Qt are the instantaneous velocity and acceleration at Q;.
Tangent space Tq is a set of all first derivatives at Q. It can be expresses by using
A =Qin (2.13) as:
To={A:Q"A +ATQ =0} (2.15)

It is the space of skew-symmetric matrices explained as: Let K = QT A, then A =
QK. Using A in (2.15), QT(Q:K) + (QTK")Q = K + K = 0, so matrix K must
be skew-symmetric.

Normal space Nq at at Q is the orthogonal complement of the tangent space at

Q. The orthogonal complement of the skew symmetric tangent space is the space of

symmetric matrices, explained for the 2 x 2 matrix as follows: Let S = Z I; be

the symmetric matrix. For K = [ Z j } to be the orthogonal complement of S,
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the condition of orthogonality ¢r(STK) = 0 is satisfied if aw + b(z + y) + cz = 0 for
any a,b,c. Thusw =2 = (z+y) =0and K= [ 2 _Oy

Thus we can write the tangent space and its normal space as:

is skew symmetric.

Tq = {A:A=QK, KT +K=0} (2.16)
Nq = {N:N=Qs, s"=8} (2.17)

The necessary and sufficient condition to be a geodesic is that the acceleration
vector Q¢ at Qq is in normal space yielding:

Q:+QS=0 (2.18)

Using Q; = —Q,S in (2.14):

QY (-Q:S) +2Q7Q + (-Q:8)"Q, =0 (2.19)

-S+2Q7Q;+8"=0 (2.20)

S=Q/Q (2.21)

The facts (Q] Q; = I) and S = ST = are used for simplification of (2.19) and (2.20)
respectively. Putting (2.21) in (2.18), we get:

Qi +QQf Qi =0 (2.22)

From (2.16), A = QK, the solution for geodesic equation can be obtained as follows:

Q. = QK (2.23)

Qe — QK =0 (2.24)

Multiplying both sides of (2.24) by integrating factor e “K.dt — o~Kt gnd using the
differentiation chain rule, we get:

eKQ - e KIQK = 0 (2.25)
e ®Q) = 0 (2.26)

Integrating both sides of (2.26) with respect to t, we get:

Q) = ¢ (2.27)
Q = ce ™ (2.28)

for t =0, Qo = ¢, thus (2.28) becomes:

Q: = Qe (2.29)

2.4 Grassmann Manifold

A Grassmann manifold G, , is a set of all k-dimensional subspaces in R™. A point on
Gn.i can be represented as quotient space within the orthogonal group O(n) by using
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the equivalence classes. Thus given a point Q € O(n), its equivalence class [Q] for
the Grassmann manifold G, j is given as:

@={e[ T o/, ] (5 200-n )] (2:30)

Two matrices are equivalent if their columns span the same k-dimensional subspace
in R™. The tangent space at point Q can be expressed by horizontal and vertical
spaces which are orthogonal complement of each other. The horizontal space at Q is
the set of tangents of the form:
T

AQzQKzQ[]g j(|)3 ] (2.31)
where K is the is the n x n skew-symmetric matrix and B is any arbitrary (n —k) x n
matrix. The vertical space is defined as set of vectors tangent to the entire equivalence
class [Q].

A point on the Grassmann manifold can also be represented by n x k orthonormal
basis matrix U. The left coset or equivalence class or orbit of Oy with respect to
matrix U is:

[U ={UQk : Q; € O(k)} (2.32)

Another strategy to represent a point in the Grassmann manifold is by n x n
projection matrix U(UTU)~1UT. In this work, n x k matrix representation is used
due to computational efficiency.

To form a full basis for R™, an n x n orthonormal matrix Q can be defined as Q £
[U|U,], where U is an nx (n—k) orthonormal complement of U such that UTU =
0. Tangent space at U consists of tangent vector Ay (of the form (2.33) ) such that
UTAy =0.

0 -BT
B 0
where Ay = H is the tangent vector at U.
The geodesic for the Grassmann manifold, by using (2.30), is given as:

Ay =[U Uy [ }Inxk —U,B=H (2.33)

U, = Qoe X'k (2.34)
The formula for computing geodesic is: (Theorem (2.3) of [37]):
_ cos Xt T
U, = (UV R)( = )V (2.35)

where RYV is the compact singular value decomposition of H = U B and the sin
and cos act element-by-element along the diagonal 3.

Proof: We decompose Q, A and skew-symmetric matrix K into block matrices as
follows:

ann = [Unxk UL(anfk)] (236)

Anxn = [ank HL(anfk)] (237)
T

K,xn 0 kan—k (238)

B, _kxk 0
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Let us decompose B in (2.37) by using an SVD decomposition as follows:

by
B = [ Uik Ustnokxn—2) | { oni;ik :|V£><k (2.39)
= U;=v’ (2.40)
Substituting (2.39) in (2.38), we get:
K = | 0 V(=UT +0.U3)
| (Ui =+ U,.0) VT 0
- r _ T
v 0o o } zng Zz)Ul
| 0 U U, o 0
- B _ T
vV o o 0 - 0 \% OT
= o U U X 0 0 0o U!
: P2dllo oo oo 0o Ul
(2.41)

Using the facts (Chapter 1 [48]) eAXA™ = A¢XA~! and exp[ (9) _09 } =

cos(f) sin(6) . )
sin(0) cos(0) ,(2.41) can be written as:
_ T
. Vv 0 o0 c s 0 A% OT
e = 0o U, U s ¢ 0 0 Uj
toee 0 0 I 0 U’

(2.42)

where ¢ = cos(Xt) and s = sin(3t). Multiplying both sides of (2.42) by Qq, we get:

VevT —VsuT

Kt

Qoe [Uo U] [ U;sVT U cUT + U, U7 }
B UoyVeVT + U U sVT ’
o _UQVSU,{ + UJ_()UlCU,{ + UJ_QU2U’§

(2.43)

Constraining to work with subspace spanned by first k-columns given by Uy, equation
for geodesic can be obtained as:

U, = [ U()VCVT + UloUl.SVT } (244)
From (2.31), we get: Ay = QoK. By using (2.36) and (2.37):
— 0 _ngn—k
Ho Hio] = [Up UL B, ixk 0
= [UoB| UyB’] (2.45)
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Again by Constraining to work with subspace spanned by first k-columns and using
(2.37) and (2.40), we get Hy = U, (B = U, [U;XVT]. Substituting U,oU; =
HoX 'V in (2.44), we get:

U, = [ UyVeVT + HeZ 'VsVT | (2.46)

Finally by using the initial condition, Uy = U, Hy = H and compact SVD of H as
H =SXV7 in (2.46), we obtain:

U, = [ UVeVT +8sVT | (2.47)
— [UV §] [ ‘;i’jgg }VT (2.48)

2.4.1 Exponential Map

The exponential map of the tangent vector A at p to yield the end point q along the
geodesic can be obtained by putting ¢ = 1 in (2.35) as:

expy,(A) =U(1) = W = UV cos(Z)V" + Rsin(Z)V" (2.49)
where p,q € G, 1, U, W are the n x k orthonormal bases matrix of p and q respec-
tively.

2.4.2 Logarithmic Map

The logarithmic map can be defined in many equivalent ways [46, 53-55]. In this
work, we have used the formula proposed by [46]:

A =log,(q) = Ssin " (Z)V" (2.50)

where p,q € G, i, U, W are the n x k orthonormal bases matrix of p and q respec-
tively, RED? = W — UUTW and VCD7T = UTW is the generalized SVD with
CTC+X7% =1 and the sin~' acts element-by-element along the diagonal of X.
The two mapping functions satisfy U7 logy; (W) = 0 and expy (logy(W)) = W.

2.4.3 Distance

The Riemannian distance or arc length between p and q can be calculated by the set
of principal angles [37] as follows:

d(p,q) = [0]|2 (2.51)

where 6 (the principal angle) can be obtained by first calculating the compact singular
value decomposition RED? of UTW and then finding cos™!(0?) where 0%,...,0}
are the diagonal values of 3. U, W are the n x k orthonormal bases matrix of p and
q respectively.
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2.5 Symmetric Manifold

The set of n X n symmetric positive definite matrices forms a manifold known as
symmetric manifold symm;’ . Positive definite matrices symmetric are used in many
applications of image and video processing. e.g To encode the Brownian motion
(diffusion) of water in Diffusion Tensor Imaging (DTI); to encode the joint variability
at different places in shape analysis; to guide the segmentation, grouping and motion
analysis in image analysis; to encode image features in video tracking and many more.
The space of Symmetric Positive Definite matrices is not a vector space (not closed
w.r.t multiplication by negative scalar). Instead, it lies on Riemannian manifold.
The tangent space at a point p on the manifold consists of symmetric matrices, not
necessarily symmetric positive definite matrices.

Two Riemannian metrics, namely affine-invariant metric and Log-Euclidean met-
ric, proposed by [56] and [57], are used for computing statistics on this manifold. Nu-
merical results of both Riemannian metrics are similar. However, the Log-Euclidean
metric is computationally efficient and calculation of mean points on M is easy with
a closed form.

The affine invariant metric [56] defines action of the linear group GL, (affine
group) on the tensor space and provides an invariant Riemannian metric with respect
to it. The formula for exponential, logarithmic map and distance for this metric are:

exp,(A) = p'/Zexp(p~/2Ap~1/2)p!/2;
log,(q) = p'/?log(p~'/2qp~1/2)p'/2 (2.52)
d(p,q) = ||log(p'/2qp~1/?)||3,

where p, q are the points on manifold and A is the velocity vector corresponding to
the geodesic from p to q. Refer to [56] for further details.

The Log-Euclidean metric [57] uses the fact that matrix exponential is a diffeo-
morphism from the space of symmetric matrices to the tensor space. This provides
tensor space with commutative Lie group structure with the matrix multiplication
generalized by logarithmic multiplication. The exponential and logarithmic map as-
sociated with this metric can be expressed as matrix exponentials and logarithms in
the following way:

exp,(A) = exp(logp+A) (2.53)
log,q = logq—logp=A (2.54)

Given two points p, q on M, the geodesic under Log-Euclidean metric is given by:

d(p,q) = | log, qll2 = || logq — log p||2 (2.55)

Readers are referred to [56, 57] for further details.
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CHAPTER 3 -

Related Methods of Visual Object
Tracking

his chapter explains the concepts encompassed by the mean shift, local point

features and particle filter framework used in this thesis. Section 2.1 describes
Bayesian filtering, its general solution and possible ways to approximate this solution
with emphasis on particle filter algorithm. Section 2.2 describes the basic theory of
mean shift followed by an overview of visual tracking with isotropic and anisotropic
kernel. Finally, section 2.3 describes the local point features tracking.

3.1 Sequential Bayesian Estimation

The aim of sequential Bayesian estimation is to find the posterior pdf p(s¢|z1.;) of an
underlying state vector s; at the current time instance, using all available observations
z1.t = (21,...,2¢) [58]. A common choice, for state s; estimation, is the minimum
mean-square error (MMSE) estimate:

éiuMSE = E(s¢|z1.4) = /Stp(5t|zl:t)dst (3.1)

Another choice is the maximum-a-posteriori (MAP) estimate, measured as the state
s; that maximizes posterior p(s;|z:), given by:

8147 = arg max p(st|z1:t) (32)

Similarly, a measure of accuracy of state estimate (e.g. covariance) can also be ob-
tained from p(st|z1.+). In the next sections we first present the exact calculation of
the posterior density and then its approximation by commonly used methods e.g.
Kalman and particle filters.
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3.1.1 Conceptual Solution

The exact solution of the posterior density estimation can be obtained by applying
the Bayes theorem, the law of total probability and exploiting the following three
naive independence assumptions:

e The probability of observation z; conditioned on the current state s; and pre-
vious history of observation z;.;—1 is independent of previous observations. i.e.

p(ztlst, z1:4-1) = p(Ze|st) (3.3)

e The probability of the current state s; conditioned on the past state s; 1 and
previous history of observation z;.;—1 is independent of the previous observa-
tions. i.e.

P(St|St—17 Zl:t—l) = P(St|St—1) (3-4)

e The probability of the current state depends only on the past state and is inde-
pendent of the previous history of states or the 1st order Markov assumption.
i.e.

p(stlsia—1) = p(st|si—1) (3.5)

We start with a prior density p(s:—1|z1.t—1) and generates a posterior density p(s¢|z1.¢),
under the Bayesian framework, in the following two steps:

Step:1 (Prediction) The predicted density p(st|z1.t—1) is calculated by marginaliz-
ing the p(s¢, S¢—1|21.¢—1) over the previous state s;_1:

p(st|zie—1) = /p(Stast—1|Z1:t—1)dSt—1
= /p(st|st717Zl:tfl)p(stfl|Z1:t71)dSt,1
= /p(st|St71)p(st71|Z1:t71)dst71 (3.6)

The above set of equations is also called Chapman-Kolmogorov equation.
Step:2 (Update) Given the prediction density p(s¢|z1.+—1) and the reception of new
measurement z; at time ¢, the posterior density p(s¢|z1.+) is computed by:

p(Zm Zi:t—1 |St)p(St)
p(stlze, z14-1) = P P (3.7)
p(z¢,21:0-1,8:)  D(St)
P(St) p(ztazl:t—l)

p(zt|Z1:t—17 St)p(zl;t—h St)

p(z, Z1:t—1)
p(zt|Z1:t—17 St)p(St|Zl;t—1)p(Zl;t—1)

p(Zt|Z1:t71)p(Z1:t71)
p(zt|st)p(se|z1:4-1)

p(zt|Z1:t—1)
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The denominator of (3.7) is the normalization constant given by:

p(z¢|Z1:4—1) = /p(ztast|zlzt—l)dst = /p(zt|st)p(st|zl:t—l)dst (3.8)

Using (3.6) and (3.8), (3.7) can be written as:

p(St|Z1:1) O<p(Zt|St)/p(St|St71)p(St71|Z1:t71)dSt71 (3.9)

The above expression is the recursive formula for posterior density estimation. The
details of each term are: i) p(z|s;) is called the likelihood and is characterized by
the measurement/observation model of dynamic state-space model. It represents
the dependence of the observation on the actual state; ii) p(s¢|s;—1) is called state
transition probability and is characterized by the motion model of dynamic state-
space model; iii) p(s;—1|z1.+—1) is called prior knowledge, which is assumed to be
known initially and then recursively updated

3.1.2 Kalman Filters

The posterior pdf is Gaussian, if motion and measurement models are linear with
additive Gaussian noise and Gaussian prior.i.e

St = Aj_1St_1+ Vi1 (310)

z; = Bisi+wy

where A;_; and B; are system and observation matrices, vi—1 ~ N(0,Q:—1) and
w; =~ N(0,R;) are mutually independent modelling and process noise with covari-
ances Q:_1 and R; respectively.

Under this assumption, the posterior pdf can be characterized by its first two
moments. The Kalman filter [26] gives the closed form solution and an optimal
MMSE estimate of posterior. It recursively calculates the mean and covariance of
posterior pdf as:

(Prediction)
§t|t71 = At—létfl\tfl (3-11)
Ppo1 = AP 1Al + Qi (3.12)

(Update)

it = Zi — Bt§t|t71 (313)
S: = BiPy 1B +R; (3.14)
K, = P;_B/S;’ (3.15)
St = Si—1+ Kz (3.16)
Pt‘t = (I - KtBt)Pt|t71 (317)

where 8;; and P, are posterior mean and covariance matrix estimate, K; is the
Kalman gain weighting matrix, z; is the innovation i.e. difference between received
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measurement z; and predicted measurement B8;;_; and S; is the covariance matrix
of innovation.

Kalman filter is further extended to handle non linear state and observation mod-
els. e.g. Extended Kalman filter (EKF) [27]: It linearly approximates the nonlin-
ear models by using Taylor series before using the original formulation; Unscented
Kalman filter (UKF) [64]: It approximates the posterior distribution through a set of
deterministically chosen points. Readers are referred to [29, 59] for further details of
Kalman filter equation and its extensions.

3.1.3 Particle Filters

Particle filters (PFs) are a family of techniques that use Monte Carlo simulations
to find a numerical solution of the posterior density for general non-linear and non-
gaussian systems. PF estimates the posterior density p(s¢|z1.+) at ¢ by using a weighted
sum of N discrete random samples (, or particles) drawn from the posterior space, as
follows:

p(St|z1:¢) wa& (s —s?) (3.18)

where {s{,j =1,...,N} is a set of support points with associated weights {wg,j =
., N}, given as:
J— p(zﬂsi)p(sﬂsifl)

Wi =Wy 7
a(silsi_1,2t)

(3.19)

where q(s!|s]_,,z;) is the proposal distribution.
Proof: Let s1.; and z1.; represents sequence of all target states and observation up
to time ¢, p(s1.t|z1.¢) denotes joint posterior density and p(s¢|z1.;) be its marginal.
Then,p(s1.¢|z1.+) can be approximated as follows:

p(s1:t|21:¢) ngé S1:4 — s1 /) (3.20)

It is difficult to draw samples from the posterior distribution because it is not available,
multivariate and non-standard [29]. A proposal distribution or importance density
q(s1:t|z1.+) is commonly used which should resemble the posterior distribution and
easy to generate samples. By this representation of samples, it is still possible to
approximate the posterior distribution, provided the weights can be defined up to
proportionality by the following:

. J )
wl pi(sﬂzl't) (3.21)
q(s1.¢lz1:1)
For recursive updation of weights, the importance density is chosen to factorize such
that:
q(s1:t|z1:¢) = q(StlS1:6-1,21:0)q(S1:0—1]Z1:4 1) (3.22)
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This helps to obtain samples s{:t ~ q(s1:¢|Z1:t) by combining each of existing samples

sT, 1 ~q(s1._1|Z1.+_1) with the new state s] ~ q(s;|s;_1,2) [29).
For recursive estimation, p(sy.t|z1.t) can be expressed as:

p(Sl;t|Z1:t) = p(Sl;t|Zt,Zl;t—1) (3-23)
_ p(sl:taztazl:tfl) (3 24)
p(ztuzl:t—l) .
_ p(zefs1, Za1)p(Selsiie—1, Z1—1)p(S1:0-1[Z1:0 1) (3.25)
p(2¢|21:0-1)
p(ze|se)p(sesi—1)
= e Y 3.26
P(S1t-121:0-1) P(2¢|Z1:0—1) ( )
Using (3.26) in (3.22), the weights can be updates as:
o Plhlma) plalshplisty) .
! - e )
q(sj1;t71|zlzt71) Q(Sﬂsiztﬂazlzt)
» z:|s))p(s? s’
g_l p(z¢|s?)p(si| t—l) (3.28)

487811, 21)

With the assumption that the current state of proposal distribution is dependent on
the previous state s;—; and the current mesurement z;, (3.28) is modified to:

i p(zﬂs{)p(sﬂsi_l)
Wy = Wiy T
q(silsi_1,2t)

(3.29)

O

The main difference of applying PFs for visual targets compared to point targets
lies in the design of the state vector. It is not suitable to stack visual target shape and
appearance into a long state vector due to computational complexity. Instead, the
state vector is divided into two sub-state vectors corresponding to the visual target
shape and appearance. Dynamic model is applied to the shape parameters of the
state vector and measurement is generated from the appearance of the state vector.

The choice of importance density is very critical in the design of particle filters.
The most commonly used importance function is q(s¢|s¢—1,2:) = p(s¢|s¢—1) which is
easy to use and simplifies the expressions for weight update, but it is often far from
optimal. To alleviate this weakness, Kalman filter or Extended Kalman filter [60]
can be used to find an approximation of g(s¢|s;—1,2;) from which it is easy to gen-
erate samples. Moreover, due to a particular choice of importance function of form
(3.22), variance of importance weights increases over time [60]. It results in a situa-
tion after sometime, where all particles will have negligible weights except one, (called
degeneracy phenomenon). One effective remedy is to discard the particles with low
importance weights. Particles with high importance weights are redistributed evenly
across the posterior. This is called called resampling. It is done when effective sample
size Nepy = m is smaller than a threshold. There are a number of resampling

=
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scheme of different complexities e.g. multinomial resampling [61], systematic resam-
pling [65], and residual resampling [66] etc. One critical side effect of resampling is the
sample impoverishment. i.e. diversity among the particles decreases due to repeated
selection of only those particles which have high weights.

Several attempts have been made to overcome degeneracy and sample impoverish-
ment by different choice of importance density and variation in resampling method.
This results in different versions of PFs. e.g. sampling importance resampling (SIR) or
bootstrap or CONDENSATION [61], auxiliary sampling importance resampling filter
[62], regularized particle filter with improved sample diversity [63], local linearization
PF [60, 64], mean shift embedded PF [41] and many more.

3.2 Mean Shift Tracking

Mean shift, originally formulated by [67, 68], is a non-parametric kernel-based method
to find the local maxima (or mode) of the unknown probability distribution function.
It starts with the assumption of the location of mode which is refined by iterative steps
towards the true maxima. The mean shift vector is proportional to the normalized
density gradient and points towards the direction of maximum increase in density;
therefore it is a gradient ascent algorithm. It is capable of solving many different
problems in the field of computer vision like segmentation, tracking, nonlinear edge
preserving image smoothing etc.

In the context of visual tracking, it was first generalized and analyzed by [1]. The
tracking is formulated as maximizing the Bhattacharyya coefficient, or minimizing
the Bhattacharyya distance, between the reference and target objects kernel weighted
color histogram. The search is performed by seeking the target location in the previous
frame and then finding the location in the current frame where the target similarity
with the reference is maximized. Being a gradient optimization method, it is easy to
implement and computationally fast with good tracking results.

The main drawback of mean shift tracking is that it may drift away or loss of
tracking, especially in cases of background clutter with similar colors to the object
of interest (as color histogram discards the spatial information of the target), object
occlusions, pose changes of large objects, and fast change of object motion.

3.2.1 Mean Shift for Finding the Mode of Density

The general form of kernel density estimator for a d—dimensional random variable
with independent and identically distributed samples {x;,7 = 1,...,n} [69, 70] at a
point x is defined as:

n n

prc(x) = % 3 K (x — x;) = % SISFKE 2 x-x) (330
=1 i=1

where K is the d— dimensional kernel, 3 is the d x d symmetric positive definite
bandwidth matrix. For radially symmetric kernel, K(z) = cik||z||?> and ¥ = 021, the
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kernel density estimator becomes:

X —X;

) (3.31)

nad o

" nod K (
i=1
where k is the profile of the kernel and ¢y is the normalization constant.
The mode of the estimated density can be obtained by taking the gradient of
(3.31) and setting it equal to zero. i.e.
2
) (3.32)

Vi (x o.d+2 Z (
= ¢,9||z||?, the kernel K

where k/(z) is the first derivative of k(z). By setting G(z)

is called the shadow of the kernel G, when the condition g(z) = —&’ ( ) is satisfied.
Substituting the shadow kernel in (3.32) and denoting pe(x) = —% Y1 | g (||2=)),
it follows that:

X —X;

g

2 c
VPK = . szg (
After some manipulation, (3.33) reduces to:

1o Vok(®) _ Yinixg (|23
2 ﬁG(X) Zz 1g Hx - )

where ¢ = S_Z is a constant. The right hand side of the above equation is called the
isotropic mean shift and is denoted as:

Z%Xiﬂ”ﬁ
Zz 19 Hx = )

The magnitude of mean shift vector decreases to guarantee the convergence and its
direction points to the nearest stationary point (local mode) of the density function
estimate. Moreover, mean shift computed with kernel G is proportional to normalized
density gradient obtained with kernel K, thus it can be considered as gradient ascent.

) 2XCh 5 () (3.33)

2
0°Cq

)

-x (3.34)

) & (3.35)

ma(x) =

3.2.2 Mean Shift for Target Localization

This section gives a brief review of the isotropic and anisotropic mean shift for visual
object tracking. The details mainly follow [1, 40].

Isotropic Mean Shift For Target Localization

The target candidate at location y is characterized by radially symmetric kernel
weighted intensity (, or color) histogram as:

py) = {Pu(¥)}u=1..ms  DPuly) =Ch Z k(‘ Y [b(x;) — u] (3.36)
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where p(y) is the pdf estimate of the candidate, p, (y) is u'" bin of the histogram, m is
the total number of bins, b(x;) is a function that associates the pixel at the location x;,
the index of its bin in the quantized feature space, x; is summed over all pixels within
the object region, o is the kernel bandwidth and C}, is the normalization constant.
Similarly, pdf estimate of the reference target model can be obtained ¢ = {Gy fu=1...m-

Target position is localized in the current frame by searching in the neighborhood
of location y, with the aim to maximize the Bhattacharyya similarity between target
model and candidate pdf. The distance measure is defined as:

d(y) = /1 = p[p(y), dl (3.37)
where

plp(y) 4l = > Vi(y),d (3.38)

where p is the Bhattacharyya similarity coefficient.
Let the initial guess for the location of the maximum of p be y(. Using the first-order
Taylor series expansion of the Bhattacharyya coefficient (3.38) around the values

p(yo):

m m ~

. . - — 1 A A 3

PP 01 3 VB0t 5 3y~ Pyl s (3.39)
1 N 3 A 1 - ~ Qu

=~ 5 ; pu(yO)v Gu + 5 ;pu(Y) pAu(yo) (340)

Using (3.36), we have:

)l = 3 D VA0 + Y ik <Hy—x

g

2) (3.41)
w; = Z \/ pAu(g;o)é[b(Xi) — u) (3.42)

To minimize the distance (3.37), we need to maximize p in (3.41). It is done by taking
the gradient of (3.41) and setting it to zero which results in the following expression
for MS position update:

where

2
n . Yo—Xx
D i1 Xiwig (H—U :

yi=—; m——

Type of kernel (i.e. isotropic or non-isotropic) and its bandwidth parameter es-
timation are essential issues in MS tracking. The original formulation, proposed by
[1], uses isotropic kernel having convex and monotonic decreasing kernel profile as-
signing smaller weight to the pixels further from the center, while the selection of the

) (3.43)
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bandwidth related to the scale of the target is a design parameter whose value is em-
pirically determined. The bandwidth calculation is made adaptive by starting from
the empirical value and checking in £10% variation. It gives a very crude estimate of
target scale, which is of little significance for practical scenario, where the target may
undergo affine transformation during the course of tracking. We now describe the
extension of isotropic MS by [40] that uses anisotropic kernel, with adaptive selection
of the bandwidth by MS iterations.

Anisotropic Mean Shift for Target Localization

The target candidate at location y is characterized by anisotropic kernel weighted
intensity (, or color) histogram as:

c

BE Z k(YT S71)0bu(I(y;)) — ul (3.44)

pu(ya 2) =

where y; = (x; —y), X is an anisotropic kernel bandwidth matrix, b,(I(y;)) is
the index of color histogram bin at location y; associated with the target candidate
, ¥;j is summed over all pixels within the bounding box, ¢ is a constant used for
normalization, © = 1,--- ,m, m is the total number of bins, k(-) is a spatial kernel
profile. Similarly, pdf estimate of the reference target model can be obtained.

Similar to isotropic MS, the expressions for Bhattacharyya similarity and position
update can be expressed as:

1 c - 1~
Py 5 Vtupu(yo, Zo) + S ijk(yfz 15.) (3.45)
u J

oy 50) 20)6[17 ) — ] (3.46)

S 9y BT Y wx;

V=< =Tv 1= (3.47)

219 2y )w;s

Proof:
0 c

ol [y ky;E'y) = 0 3.48
oy \ 2/z[2 ;% ;755 (3.48)

C nd — ~ ~ p—
ot LRIy = 0 (3.49)

J
After some manipulations and using ¢g(.) = —k/(.) and y; = (x; —y) in (3.49), we get

S 9] 2T wyx;

D p ~ (3.50)
Ej:l g(yj-T271Yj)wj

yA:
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To estimate f], a y-normalized kernel bandwidth X is applied to p (similar to [71]).
The kernel bandwidth matrix estimate is obtained by setting Vs (|Z[/2p(p, q)) = 0,
yielding,

2 2w 9y ZTY)YyT

s = _ _ - 3.51
L—y 0w k(¥ 271y)) (3:51)
where « is empirically determined, and §; = (x; — §).
Proof:
O L S ureTs )| = o (352)
o 2|2|% - J J J .
ﬁ == ij yi)| = 0 (3.53)

Using matrix differentiation formula 44 |A| = [A|A~" and representing k(y} £'y;) =
k(-), we get:

y—=1 =1 _
= ij IR |+ = ST Ywk() | = 0

J

Multiplying both sides by %2:

- T—7 ozt
= ij ~y;57) - = Swik()] = 0
J
After some algebraic manipulations and using g(.) = —k'(.), we get:
'y 11— Y 2 ~ ~T
%[ 9 Ezwjg(')yj}’j - Eijk(-) =0
J J

This finally results:

2 2w 9y ETY)Yy]
L=y 3w kI E7y5)

3= (3.54)

O
The estimation of (3.47) and (3.51) are done alternatively in each iteration. The iter-
ations continue until the estimated parameters converge, or a pre-specified maximum

number of iterations are reached. The parameters of the bounding box (width, height
and orientation) are calculated by the eigen decomposition of the bandwidth matrix.
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3.3 Tracking with Local Features

Local features extraction and matching have a lot of application in the field of com-
puter vision like detection, tracking, panorama stretching and many more. These
features are based on the local properties of group of neighboring pixels of an image
at a particular interest point like edges/corners/texture etc. These features should be
highly distinctive with the following properties:

1. Easy to detect/locate with well defined position in the image space.

2. Tolerant to image noise, intensity variation, rotation and scaling, minor changes
in viewing direction etc

3. Robust and easy to match against large data base of local feature.

In the context of tracking, local features in the target region are extracted and
compared with the feature set of the entire image area of consecutive frames. This
establishes correspondence which provide a reliable and robust estimation of trans-
formation of the bounding polygon around target. Moreover, to mitigate the effect of
noise and incorrect matches, outliers and inliers are separated using a random sample
consensus (RANSAC) and transformation is estimated using inliers only.

These features, being local in nature gives good result in case of partial occlusion,
camera jitter etc. However, the main drawback is that if the number of good matches
falls below the minimum number required to estimate the transformation, the tracking
will collapse. This section describes the exiting methodologies for extraction of local
features with emphasis on SIFT, transformation estimation and RANSAC

3.4 Methods for Extracting Local Features

3.4.1 Harris Corner Detector

Harris corner detector [11], identifies the interest points in an image by evaluating the
response function R, defined as:

R = det(H) — x(trace(H))? (3.55)

where det(H) = A Ag; trace(H) = A1 + A2; A1 and Ay are the eigen values of H ; « is
the empirically determined constant to give the results in the range [.04,.06] and H
is a 2 x 2 autocorrelation/Hessian matrix computed from image derivative as follows:

Z x,y)€ Ig Z x,y)e€ Iﬁ[
H = w(z, ) @) e Z( ) e (3.56)
(z,y)eW “27Y (zy)eW Ty

where I, and I, are the derivatives (of pixel intensity) in the x and y direction at
point z,y of the image window W, w(z,y) is the weighting function which can be
uniform or more typically isotropic, circular Gaussian (i.e weighting center values of
window more heavily compared to edges).

The criterion to evaluate the response function R is:
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1. Corners, if R > 0 with large magnitude
2. Edges, if R < 0 with large magnitude
3. Flat region, if |R| is small

Harris corner detector is invariant to rotation, affine intensity change but variant
to scaling change as shown below [72]:

B % F ) [,Ffa\
7 S

All points will be
classified as edges

Figure 3.1: Variance/invariance property of Harris corner detector. Left: H visual-
ized by ellipse rotates, but its shape (i.e. eigen values) remains the same;
Right: corners are classified as edges after scale change. The figure is
taken from [72].

3.4.2 Scale-invariant Feature Transform (SIFT)

SIFT [13] gives highly distinctive features that are invariant to affine transformation
(translation, 2D rotation and scale) and linear brightness changes. It is widely used
in applications that range from robotic mapping and navigation to image recogni-
tion, video tracking and image stitching etc. The major steps in the extraction and
matching of SIFT features are:

SIFT Key Point Localization

A keypoint is a location in the source image with associated scale and orientation
calculated by scale space extrema detection and image gradient direction. First, scale
space is constructed by convolving the image with Gaussian filters at different scales.

L(z,9,0) = G(z,9,0) * (2, ) (3.57)
where
1 _ I2—|— 2
Glr.1.0) = g exp(— LD (3.58)
Yixea g

The convolved images are organized into octave of s + 1 images. Each octave has
an increase of the scale parameter o by a factor of k, in between the images, with
a maximum of doubling the value of ¢ for the last member of octave. Moreover the
images in the next octave are subsampled and stored at a half resolution of previous
octave. Difference-of-Gaussian (an approximation of scale normalized Laplacian of



3.4. METHODS FOR EXTRACTING LOCAL FEATURES 35

Gaussian (LOG) 02V2Q) is generated by taking the difference of adjacent blurred
images in each octave.

D(z,y,0) = L(z,y,ko) — L(z,y,0) (3.59)

The candidate keypoints are obtained by finding the maxima/minima of difference-
of-Gaussian (DOG) pyramid. It is done by comparing the value of each pixel of DOG
image with 26-neighborhood pixels (8-surrounding pixels in the same scale and 9 pixels
in adjacent scale). The candidate keypoints are further refined by: i) Interpolation of

Scale
(next
octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Figure 3.2: Left: scale space images to produce difference-of-Gaussian images; Right:
Maxima and minima of difference-of-Gaussian images by comparing a
pixel to its 26 neighbours in 3 x 3 regions at the current and adjacent
scale. The figure is taken from [13].

near-by data through 3D quadratic least square fit; ii) Pruning the extrema that are

weak or that corresponds to edges. This is done by evaluating the Hessian matrix at
2
the location and scale of interest point and checking the following condition: Cg;(g}) <

2
@ where r is the ratio between largest and smallest eigen value of H, and is

normally chosen to be 10.

Finally the candidate keypoints are assigned orientations as follows: i) A gradient
magnitude and orientation is calculated in the neighborhood of the interest points;
ii) A 36-bin orientation histogram is then generated. The contribution to the bin is
equal to the product of gradient magnitude and Gaussian weight with a o 1.5 times
the scale of the keypoint; iii) Orientations corresponding to 80% of maximum peak
in the histogram is assigned to the interest points. Thus, a new keypoint is generated
having the same position and scale but different orientation.

Finally to assign the orientation to the candidate keypoints, gradient magnitude
and orientation is calculated in the neighborhood of the interest point. A 36-bin
orientation histogram is then generated. The contribution to the bin is equal to the
product of gradient magnitude and Gaussian weight with a ¢ 1.5 times the scale of
the keypoint. Orientation corresponding to 80% of maximum peak in the histogram
is assigned to the interest point. Thus, a new keypoint is generated having the same
position and scale but different orientation.
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SIFT Key Point Description

'Aﬂ': m—‘ : ,f ’\:\\ d/ \V
_Hﬁ”*;” ": 1\. e
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Image gradients Keypoint descriptor

Figure 3.3: A keypoint descriptor computed from an 8 x 8 set of samples. The figure
is taken from [13].

It is a vector of fixed length and represents the image patch centered at the key-
point as a set of orientation histogram on 4 x 4pixel neighborhood. It is computed
by calculating the gradient orientation relative to the keypoint orientation in 16 x 16
pixel patch of Gaussian image closest in scale to the keypoint scale. Then a 8-bin
orientation histogram is generated for each 4 x 4 pixel block leading to SIFT fea-
ture vector with 4 x 4 x 8 = 128 elements. The contribution of each pixel to bin is
weighted by gradient magnitude and gaussian weight with a o 1.5 times the scale of
the keypoint.

The descriptor vector is normalized to unit length and thresholded to reduce the
effect of illumination. The choice of number of bins and particular values for thresh-
olding are the results of extensive testing proposed by [13]. These parameters can be
tuned to get a different number of SIFT features.

SIFT Key Point Matching

The SIFT descriptors in two different data set are matched by finding the neighbors
with minimum Euclidean distance. A match is selected if the ratio of nearest neighbor
Euclidean distance to second neighbor Euclidean distance is less than some predefined
threshold. This makes the matching robust to false positive. Fig.3.4, shows the
example of above described SIFT features extraction and matching process.

3.4.3 SURF': Speeded Up Robust Transform

It is a high speed version of SIFT algorithm, proposed by [14]. It uses the concept of
integral images and box filter to detect the features from the determinant of Hessian
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Figure 3.4: SIFT features matching process. Cyan lines shows the matched features
(red dots) in two different frames.

matrix instead of LOG, defines as:

| Lgg(z,0) Lagy(x,0)
=] L) Liyfeo) (300

where L, , is the convolution of the image I with Gaussian 274 grder derivative with
scale o, approximated by box filter. The interest points are calculated by finding the
maxima of above determinant in 3D space z,y, 0.

The SURF descriptor is calculated by finding the derivatives at 25 sample points
using box filter in 4 X 4 subregion around the interest point resulting in 4-elements
feature vector in each subregion v = (> dz, Y dy, > |dz[,> |dy|) ie. 4 x4 x4 =
64element feature vector descriptor.

3.5 Transformation Estimation

To estimate the bounding polygon around target, geometric transformation model
is estimated from consensus feature points between two frames. This section briefly
describes commonly used transformation model and its estimation from the data, in
the context of tracking.

3.5.1 Affine Transformation Model

Affine transformation of point (z,y) to (Z,§) is described as follows:

o= b)) )
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Given, n consensus feature points, the affine transformation model can be found by
solving the following linear equations:

T Y1 0 0 1 0 a i’l

0 0 a1 vy 0 1]]0 o

) cl _|.

: dl = |: (3.62)
Tn Yn O 0O 1 0 ty Tn

0 0 =z, yo 0 1 ty Un

Since the model has 6 unknowns, a minimum of 3 consensus points are needed to
estimate model parameters.

3.5.2 Similarity Transformation Model

The similarity transformation of point (z,y) to (Z,7) is of the form:

ol o]+ [ 56

The linear system of equations n consensus feature points can be written as:

T —U1 1 0 571
i r, 0 1 o Cf)s 0 i
: 7 im 0 : (3.64)
Tno—y 10| | 4 Fn
Yn Tn 0 1 Un

Thus this model requires at least 2 consensus points to estimate parameters.

3.5.3 Projective Transformation Model

Projective transformation of point (z,y) to (Z,7) is described by homogeneous coor-
dinates as follows [77]:

T a b c| |z
gl=Xx|d e f| |y (3.65)
1 g h | |1

A is a scaling factor. By performing the multiplication and substituting the value of
A, this parameter can be eliminated. i.e.

Zlgr+hy+i) = ax+by+c (3.66)
glgr+hy+i) = de+ey+ f (3.67)
(3.68)
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The linear system of equations to find 9 unknown parameters of model is described
as follows:

1 y1 1 0 0 0 —zZ1 -1 —T1

0 0 0 =1 yun 1 —zin —vith - b
: -0 (3.69)
To a1 0 0 0 —ZpFp —Yuin —in
0 0 0 2n Yn 1 —%uln —Ynln —Un

3.5.4 RANdom SAmple Consensus (RANSAC)

The usual method of fitting a model to noisy or redundant data is least-squares
optimization. It uses all available data to smooth over errors and is a maximum
likelihood estimator for Gaussian noise. However, in the presence of gross error (due
to the possibility of false matches), least-squares estimation may lead to poor results.
In the contest of tracking, Random sample consensus or RANSAC is commonly used
which attempts to estimate parameters of transformation model by detecting outliers
and excluding them from solution. It is a 2 step probabilistic method to estimate the
model parameters, detailed as follows:

In the first step, it starts to estimate model parameters by a randomly selected mini-
mal set of points. The goodness of the estimate is measured by finding the number of
data items that fit the estimated model parameters. This is done by calculating the
error/cost function for each data point and comparing with the user given threshold
(dun). Tt classifies the data by assuming that inliers will be close to the fitted model
and outliers not. The process is repeated so that the probability of finding a minimal
set of data without outliers can be arbitrarily high.

In the second step, the model model parameters are estimated by least square fit to
inliers only. The relationship between the probability p of finding inliers and inlier is
[42]:

_ log(1—p)
~ log(1 —rn)
where 7 is the ratio of inliers to the total number of features and n is the number of
points in the minimal set. For example, for n = 3 and r = 0.6, ime, = 18 for 99%
confidence level. Readers are referred to [42] discusses different ways to choose iyqs
and dth-

max

(3.70)
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CHAPTER 4 -

Proposed Online Learning and Video
Object Tracking

This chapter gives a general introduction of the proposed appearance online learning
on vector space and manifolds. First, online learning of the reference object dis-
tributions is described in the context of hybrid tracking methods combining mean
shift with local point features correspondences and Bayesian tracking. Finally, online
learning and object tracking scheme is discussed that exploits the geometrical struc-
ture of manifold under a Bayesian framework. In this thesis, manifolds of interest are
symmetric manifolds and Grassmann manifolds.

4.1 Online Learning of Local and Global Appearance
Features

The basic idea behind our proposed online learning method is to only update the
reference model at those frames when they indicate local highest performance of
correct tracking without the interference from the background or other objects. e.g.
occlusions, intersections and many more. Further, the frequency of update do not
need to be high and can be performed in a fixed frame interval, since object changes
are usually gradual due to the mechanical movement (e.g. a person takes off an
overcoat during the walking). To achieve this, we seek the highest and stable local
tracking performance in each fixed interval, to decide whether or not the reference
object distribution shall be updated in this interval.

The candidate (or the reference) object appearance in a video frame is described
by the spatial-kernel weighted color histograms p = {p,} (or ¢ = {qu.}), as follows:

Pu = ﬁ Z;’lzl k(yNszfll]j)(S[bu(I(yj)) — u] (4.1)

where u = 1,--- ,m, m is the total number of bins, ¢; = (y; — y), &; = (x; — o),
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Y is the kernel bandwidth matrix, b, (I(y;)) is the bin index of color histogram of a
candidate object image centered at y;, c is a constant for the normalization, k is the
spatial kernel profile, y is the center of the kernel or bounding box, and I(y;) is the
candidate object image within the bounding box. The appearance similarity between
a candidate and the reference object is described by the Bhattacharyya coefficient p

defined as, p(p,q) = >, /Pu(Y, X)qu, where u is the histogram bin.

Let pp = >, N pl, be the Bhattacharyya coefficient between the current
tracked object from the final tracker and the reference object in the previous (j —1)th
interval, and x;; be the 4 corners in the tracked regions V,°*”). Noting that ¢/~
implies ¢!, for t € [(j —2)S + 1, (j — 1)5], where S is the total frames in the interval.
Then, the reference model in the jth interval is updated if the following two conditions
are both satisfied for all frames within the jth interval:

{ diste =320 s = xe-0all® < T, (4.2)
pe >Th
where t € [(j —1)S + 1,59], Tl(z) and T2(2) are empirically selected thresholds. j =
1,2, -, then the best stable high performance frame number is chosen from
" = argmax;c((;_1)s41,75] Pt (4.3)

and the reference object distribution is updated by:

¢ =rp" +(1—r)g (4.4
where ¢/ (or, ¢~!) is the updated reference object pdf in the jth (or (j — 1)th
interval, » is the constant controlling the learning rate (x = 0.1 in our tests), p’
is the pdf where ¢* is chosen from (4.3). If (4.2) is not satisfied, then the reference

object distribution is not updated, i.e., ¢/ «— ¢7~ 1.

N —

*

4.1.1 Dynamic maintenance of foreground and background fea-
ture points

The proposed approach for online dynamic maintenance and updating of consensus
points is similar in a spirit to work in [75, 78], however, major change is to combine
these methods with global appearance tracking. The method is described as follows:

e The Bhattacharyya similarity coefficient of object region pgl) =>. \/pfj(l)(y, Y) ¢, is cal-
culated

o If p,(tl) > Tr, where T is a threshold determined empirically, it indicates that the object
area is unlikely to be occluded or newly introduced. The point features in the object area are
assigned a score as follows:

Si_1+2 matched consensus point
St = Si—1—1 matched outlier point (4.5)
median(S¢—1) not matched point

For inliers i.e. point correspondences that fit the transformation, scores are increased. For
outliers i.e. point correspondences that do not fit the transformation, scores are decreased.
For newly local point features that are only within the candidate object region and do not
correspond to any background point features, their score is set to the median value of the
previous scores.
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(1)

e If p,”/ <TF, it indicates that the candidate region likely contains newly introduced area e.g.
from partial occlusions or object intersections. Hence the dynamic maintenance is temporarily
frozen.

Points in the consensus correspondence set are then sorted according to their
scores. A pruning process is applied to remove some feature points with small weights
in order to maintain a reasonable size for the points set. This is done by keeping the
first Lp (Lp=1000 in our tests) highest weight points in the set. New points are
added (e.g. due to change pose change or deformation of object) if they fit to the
estimated motion model.

In each frame, all feature points in the background region are added into the
background set. Feature points in the set are sorted according to their aging. If the
total number of feature points exceeds Lp (Lp=1500 in our tests), then only the
newest Lp feature points are kept while the remaining old aging feature points are
removed.

4.1.2 A Hybrid Method Combining Adaptive Appearance with
Bayesian Tracking

The block diagram of online learning of the reference object appearance distribution
with proposed hybrid scheme - 1 is shown in Fig.4.1. In the PF (the top block), the

o lod) 2 (od)
Image [, boxz S;tffﬂ ( Particle filter for postenor oy

L estirnation of object box ?
ref pdf g,
liklihood paﬁjc]es
plz, |E:U)) S:Uj

Multi-mode atsotropic mean shift
| | for estimating likelthood of object
appearance and improved particles

¥

Online learning of reference
object pdf in frzed mtervals

Figure 4.1: Block diagram of hybrid tracking scheme - 1, where online learning of
appearance dynamics is added.

Fl

state vector §;_1 describes the shape of a parametric rectangular candidate object
box. The initial particles sij ) are generated according to the Brownian motion model.
Then, the likelihood p(zt|§§] )) is computed using the Bhattacharyya distance that is
obtained from the dynamic appearance allocated by the anisotropic MS (the middle
block). In addition, the rectangular bounding box is partitioned into several disjoint
concentric areas. This allows the MS to seek multiple modes that give better de-
scriptions of the spatially-dependent distribution of object appearance. Based on the
MS estimates, particles are re-distributed to positions related to large weights, and
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posterior pdf of the state vector is then estimated by the PF using the appearance-
related likelihood. The online learning (the bottom block) keeps the reference model
updated. Moreover, adding online learning in this hybrid tracker has led to more
robust tracking to long-term partial occlusions and intersections in terms of reducing
tracking drift and tracking failure. See Paper A, for more details.

4.1.3 A Hybrid Method Combining Adaptive Appearance with
Point Feature Tracking

The block diagram of the online learning of local and global appearance features with
proposed hybrid scheme - 2 is shown in Fig.4.2. For tracker-A, feature point corre-

Tracker-&
Random sample consensus of point

[odr) .
I R feature correspondences in the
— foreground and background
+ dynamic mantenance . ¥ — PIG2
Final tracker based on criterion '
) : —
l v for selecting region

Tracket-B @ 4
=| Enhanced amsotropic mean shift v,

[a
g Online learning of |_
L reference model r

Figure 4.2: Block diagram of hybrid tracking scheme - 2

spondences are estimated through using maximum consensus point correspondences
in the foreground and background areas by SIFT [13] and RANSAC [42]. It generates
a parameterized candidate region R,El) : V;(l) = [2M, y® ™ pO 9T " corre-
sponding to the 2D center, width, height and orientation of the region. Apart from a
dynamic point maintenance and the use of separate foreground and background areas,
a re-initialization process is applied to tracker-A if the similarity between the tracked
area and the reference object area becomes small, indicating a potential tracking drift
( e.g., due to few correspondence points) which could propagate through frames.

For tracker-B, an enhanced anisotropic mean shift is achieved by choosing the
center between the candidate region of tracker-A and the previous candidate re-
gion of mean shift [40], and by allowing a re-initialization process. The basic idea
is to guide the MS to a correct target object location especially when confusing
track situations occur (e.g. other objects with similar color distributions, or clut-
tered), through assigning the tracker to an area that is more agreeable with the
local feature correspondences of the target. It generates a parameterized candi-
date region R§2) : Vt(2) = [2®,y@ w® h2 gD A 3rd candidate object region
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3 3 (i) (3 (3 %
Rzg ) : Vt( ) = Z?:lpz(f )Vt() where Pt = pglftfpf)
The optimal target object region RgObj ) from the final tracker is then selected by
(obj) _ (oM @ BNy wh (4)
= argmaxy.o (p; 5 p; P, ) where p”,

i=1,2,3, is the Bhattacharyya coefficient measuring the similarity between the ref-

maximizing the following criterion, Vt

erence and the candidate object from the tracked candidate area Rgi). The online
learning of the reference appearance distribution ¢, is also applied. See Paper B, for
more details.

4.2 Object Appearance Learning and Tracking on
Grassmann and Symmetric Manifolds

This is achieved by: i) Computing posterior manifold point (object appearance) es-
timate at each new observation by Bayesian formulation; ii) Defining dynamic model
that uses two state variables for modeling the online learning process on manifolds:
one is for object appearances on manifolds, another is for velocity vectors in tangent
planes of manifolds; iii) Measuring likelihood from the predicted manifold points and
the current observation by geodesics; iv) Exploiting another Bayesian formulation for
tracking object bounding box parameters by embedding the manifold appearance.
From an application point of view, the proposed framework is used in Grassmann
and symmetric manifolds for better tracking performance.

The rest of the section is organized as follows: section 4.2.1 summarizes the al-
gorithmic framework for object appearance online learning on manifolds. The object
tracking on manifolds is described in section 4.2.2. Finally, the methodology is exem-
plified with Grassmann and symmetric manifolds.

4.2.1 Object Appearance Learning

The proposed Bayesian formulation for online learning of object appearances on man-
ifolds can be detailed as follows:

State Vector

Let the object appearance at ¢ be described by a point on a manifold and the speed
of appearance change. We define the state vector as follows:

st = [pr, A¢)" (4.6)
where p; is the object appearance point on the manifold and A; is the corresponding
velocity for (p:—1,p¢) with p; be the end point of geodesic starting from p;_1.
Dynamic Model
The state (i.e., object appearance) dynamics be described by the following model:

Pt = h(pi—1,A¢) = exp,, , (A¢) (47)
A=A 1 +V, ’



46 PROPOSED ONLINE LEARNING AND VIDEO OBJECT TRACKING

where V7 (including the acceleration and model noise) is assumed to be zero-mean
white, A;_;1 is constant in each sample interval T = t; — tx_1, and T = 1 is set
for mathematical convenience, h(-) is nonmlinear, exp, . (.) is calculated by using
exponential mapping formula of manifold under consideration. The rational behind
dynamic model is to exploit the stochastic process on the manifold as a piecewise-
geodesic curve with random velocities at individual pieces.

Predicted manifold points p{ can be obtained as follows: Let pg_l be the previous
manifold particle point at ¢+ — 1 and ALl be the velocity particle that connects
(p)_,,p)_,), where p/_, is the end point of the geodesic starting from p!_,. First,
a set of velocity particles A{ (originated from p{_l) is generated in tangent planes
using the previous velocity particles A‘Z_l according to Al = A{_l + V; (the 2nd
equation of (4.7)), 7 = 1,---, N1. Then, a set of new manifold particles p! is obtained
from A7 through the exponential mapping, according to p; = erpy; (A7) (the 1st

equation of (4.7)). These manifold points C{ are considered as the predicted points
at t.

Figure 4.3: Relationship of manifold points and tangent vectors used in the learning
process. From ¢ —1 to ¢: red dots on the top cluster are manifold particles
p]_; at t — 1. Consider one manifold particle p]_; (black dot) and its
velocity particle (black arrow) A{ in its tangent plane. Mapping this
vector through the geodesic (dash curve) on the manifold results in a
predicted particle at t. Repeat this process to all manifold particles leads
to a set of predicted particles (red dots in the bottom cluster). The
posterior p?bj (blue dot) at ¢ is then obtained from the predicted particles
and the new observation f)fbj (green dot).
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Likelihood

It is modeled as the Gaussian distribution of distance d(py bi , pi) between the current

observation pfbj and predicted particles p{ as:

o A5
~ob )
p(®;”,p1) —eXp{— — (4.8)
i
where o7 is the measurement noise (67 = .1 in our tests), ||.|| is calculated by using
~obj

the distance formula of manifold under consideration. The current observation p;
at time instant ¢ is provided by the tracking process (see Section 4.2.2).
The weight is then updated as follows:

o
wi o< wi_1p(p7” py) (4.9)

and subsequently normalized by wi = wi /> j wi . Resampling is applied if N. ff =
1/ (w!)? < N1y, to prevent the degeneracy problem [76].

Posterior Online Learned Manifold Point

Finally, the MMSE estimate of the object appearance manifold point pfbj is obtained
by the expected value of weighted predicted particles on the manifold. The expression
for expectation is dependent on the choice of manifold (See paper C and D for more
details).

Fig.4.3 shows the relationship of manifold particles, velocity particles, observation
point, and the predicted and posterior estimated points between two time instants.

4.2.2 Object Tracking

The aim in the tracking process is to find the MAP (maximum a posteriori) estimate
of the object bounding box (and the image within the bounding box). This is realized
by utilizing another PF. Let the state vector s2; = [y} y? B¢ v a¢ ¢¢]7 at t be
the affine bounding box parameters (2D box center, scale, rotation, aspect ratio and
skew). Given a set of particles at t — 1, a new set of particles {s2}\? is generated
by PF-2 according to the state equation s2; = s2; 1 + v2 where v2 ~ N(0,Q).
The likelihood is modelled as Gaussian distributed distance of dynamic prediction
error of particles on the manifold. The expression for the likelihood is dependent on
the manifold under consideration. Finally, object bounding box MAP (maximum a
posteriori) estimate is computed from posterior pdf. Using the estimated s2?bj , the
corresponding appearance f)fbj to the object within the box is computed and provided
to the online learning process at t.

4.2.3 Application to Grassmann Manifolds

Fig.4.4 shows the block diagram of the proposed scheme. The proposed scheme can be
split into two parts: the block-1 on the top is for a Bayesian object tracking process,
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Figure 4.4: Block diagram of the proposed integrated scheme. ifijl is the reference
object image at t-1, I9% and s2§3]1 are the tracked object image and
its box parameters at t-1; Ifﬁjl is tracked object image used as the new

observation image at t; U; is the estimated manifold appearance, and
Ufb] is the final updated appearance after occlusion handling; (Y;_1,
Y:) are the observation matrix with a sliding window size L at t-1 and
t; I, is the current video frame; and z~*(U?7) = U is the reference
object appearance at t-1 used for the tracking process at t.

and the block-2 (bottom left) and block-3 (bottom right) are for process of Bayesian
manifold online appearance estimation, and manifold updating with criterion-based
occlusion handling, respectively. In the tracking process, object bounding box affine
parameters are tracked by a particle filter. In the online updating process, the appear-
ance subspace is first estimated on the Grassmann manifold by another particle filter.
The particle filter uses a nonlinear dynamic model, the exponential and logarithmic
mapping functions between the tangent planes and the manifold. The likelihood in
this particle filter is computed by the subspace angles between the current obser-
vation and predicted manifold particles. The online learned object appearance is
then obtained as the posteriori manifold point. A criterion is applied to estimate the
occlusion. If no occlusion is detected, updating the basis matrix of reference object
appearance is then performed. These two parts, tracking and updating, are performed
in an alternation fashion as an integrated tracking scheme. See Paper D, for more
details.

4.2.4 Application to Symmetric Manifolds

Fig.4.5 shows the complete tracking scheme for symmetric manifold. In Block 1
(top block) particle filter-1 is utilized for updating the object appearance covariance
matrix on the symmetric manifold by using the tracked object appearance and the
predicted manifold points from the dynamic appearance model. The dynamic model
is realized by computing the velocity vector of candidate manifold points under a
constant velocity assumption and then mapping the velocity vector to the manifold
originated from the previous manifold point. In Block 2 (middle block), the affine
shape parameters of objects bounding box is tracked by particle filter-2. In Block
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Figure 4.5: Block diagram of the proposed integrated scheme. (Cfﬁjl, Cfbj), (s2fﬁjl
and s2?bj ) are the manifold appearance and box parameter vector of
tracked object at t-1 and t; C; and s2} are the manifold appearance
and box parameter vector of ith candidate object at t; C_; and A]_;
are the manifold appearance and velocity vector of candidate object at
t-1; Cf % is the new observation yielded from the tracking process.

3, the covariance matrix of object appearance is computed from Gabor features in
partitioned regions. See Paper C, for more details.
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CHAPTER 5 -

Conclusion and Future Work

n this thesis, four new algorithms, are proposed for visual object tracking and online

learning. Among them, two algorithms operate on the FEuclidean space while the
other two take into account for the manifold nature of visual data. Each of the
proposed algorithms has limitations, advantages and disadvantages. This knowledge
can be used for the choice of a particular algorithm.

For joint anisotropic mean-shift and particle-filter framework, employing online
learning, fully adjustable bounding box, multiple mode appearance modeling and
efficient re-distribution of particles have all contributed to the performance improve-
ment of the proposed tracker. The required number of particles in the particle filter
is very small (15 in our tests). Compared to existing techniques, improved results are
obtained for video scenes containing similar objects, frequent intersections and par-
tial occlusions. However, several empirically determined parameters pose a limitation
to the general use of the proposed scheme. It is further noticed that the proposed
scheme is somewhat sensitive to pose changes of large objects, e.g. a large bounding
box only contains a face. In such a scenario, the bounding box would sometimes
become non-tight, or deviate from the object center (e.g. part of the object is outside
the box).

For joint point feature correspondences and object appearance similarity, introduc-
ing dynamic maintenance to foreground and background feature point sets, enhancing
the mean shift by exploiting local features as the guide and dynamic updating the
reference object model, as well as utilizing an optimal selection criterion for the final
tracking have shown to improve the tracking results. However, It is observed that if
a target object in the video experiences long-duration partial occlusions over a large
percentage of area (e.g.>60%) then the tracking performance can be degraded, espe-
cially if the visible part is rather smooth and lacks local feature points. In principle,
full or partial occlusions of long duration is beyond the limitation of this scheme.

Gabor features on partitioned object bounding boxes are shown to be effective
and very robust for tracking visual and infrared objects. Symmetric manifold online



52 CONCLUSION AND FUTURE WORK

learning and tracking scheme at each time instant is effective. It leads to better track-
ing results especially for objects with significant non-planar pose changes from videos
made from a single camera. However, Online learning relating to object occlusions is
not dealt with in this study.

For Grassmann manifold, the online learning of appearance subspace and box
shape tracking by integrating dynamic appearance and shape on the manifold is shown
to be efficient. This is a better framework for tracking as it allows motion models and
appearance models to be accurately described. Moreover, a method to detect partial
occlusion is shown to be effective. However, It is observed that if a target object in
the video, undergoes large pose change with long-duration partial occlusions then the
tracking performance can be degraded.

5.1 Future Work

In practical visual tracking systems, tight bounding box, ability to handle occlusion,
low drift rate are desirable factors and it accounts as a measure of tracker stability
and robustness. The proposed approach have shown some promising results in achiev-
ing these objectives, but certainly is not perfect. Several improvements need to be
addressed in the near future research.

5.1.1 Adaptive Selection of Emperical Parameters

Adaptive mechanism for the emperical parameter of proposed methods may result
in more generic and robust tracker and at the same time avoids manual case-by-case
adjustments.

5.1.2 Real Time Applications

Computational time for the proposed tracking scheme still poses a problem and limits
the real-time applications. To overcome this limitation, C-programs with optimized
codes, or FPGA can be considered to replace the Matlab programs used in current
tests.

5.1.3 Integration of Multiple Visual and Infrared Cameras

Another possible research direction, towards building robust trackers, can be the
integration of multiple visual and infrared cameras. It may increase tracker ability
against partial occlusion of large areas or even full occlusions and day/night capability.
This is the most desirable feature for surveillance applications.

5.1.4 Objects Detection and Activity Analysis

Detection of interesting objects and analysis of object tracks to recognize their be-
havior, before and after visual tracking, can be one more possible research direction.
Integration of these modules can make the trackers very adaptive to users and robust.
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