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Proton conductivity of lanthanum and barium zirconate
Microscale aspects on first-principles basis
JOAKIM NYMAN
Department of Applied Physics
Chalmers University of Technology

ABSTRACT

Fuel cells are devices which convert chemical energy into electrical energy cleanly
and efficiently. Development of fuel cells compatible with hydrocarbon fuels would
make more efficient use of present fossil and renewable fuels, and also enable progress
towards a future hydrogen economy. One of the major hindrances to commercially
viable fuel cell technologies is the lack of materials with properties appropriate for
devices operating at temperatures high enough to allow carbon-containing fuels,
while low enough to suppress the negative side effects of high temperatures. Part
in a direct route towards intermediate-temperature fuel cell technologies is the op-
timization of the proton conductivity of solid, ceramic, oxide materials for use as
electrolytes in so-called solid oxide fuel cells.

This thesis puts forward theoretical investigations into atomic and microscopic
mechanisms which directly influence the proton conductivity of solid oxide materi-
als posing as candidates for proton-conducting electrolyte materials. The foundation
of this work is the description of the atomic and electronic structure of materials
offered by methods based on density-functional theory. Combined with thermody-
namic and electrostatic theory, the pressing issue of grainboundary resistivity in
the otherwise promising proton-conducting solid oxide material barium zirconate
(BaZrO3), is addressed. Furthermore, fundamental aspects relatedto the optimiza-
tion of proton conductivity by means of acceptor-doping areexamined in the not as
frequently studied material lanthanum zirconate (La2Zr2O7). Acceptor-doping is in-
tended to increase proton concentration by causing vacant oxygen positions, which,
by incorporation of water molecules, can be filled with hydroxide ions.

The most important work and results can be summarized as follows: (i) By ex-
amining several different dopant species in La2Zr2O7 it is shown that a poor choice
of dopant can not only lead to inefficient concentration improvement but also to
trapping of both protons and oxygen vacancies. In consistency with experimental
observations, Ca and Sr are pointed to as the most promising dopants out of the
twelve investigated species. (ii) By calculating the energy of oxygen vacancies in
the vicinity of different grain boundary structures of BaZrO3 it is demonstrated that
accumulation of oxygen vacancies at the core of the grain boundary interfaces can
significantly hamper the effective proton conductivity in the material. This accumu-
lation leads to charged grain boundary cores and gives rise to a depletion of protons
in the surrounding region. The magnitude of the effect corresponds well with exper-
imental conductivity data.

Keywords: solid oxide fuel cell, electrolyte, conductivity, point defect, acceptor,
oxygen vacancy, proton, trapping, grain boundary, segregation, space charge, deple-
tion, pyrochlore, perovskite, La2Zr2O7,BaZrO3, first principles, DFT
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Chapter 1

Introduction

In todays fossil fuel economy, the majority of the energy consumed in our society
continually comes from the combustion of oil, coal and natural gas. Meanwhile,
the general awareness of negative effects in terms of pollution and global warming
is steadily increasing, together with the understanding that renewable sources of
energy are essential if the energy demands of our growing world population are to
be sustainable. While efforts to reduce our dependency on fossil fuels are made in a
range of areas, the notion of a future hydrogen economy is a tantalizing prospect.

In a successful hydrogen economy, energy from the Sun is converted into chem-
ical energy via the splitting of water into hydrogen and oxygen. Effectively being
stored in a fuel in the form of hydrogen molecules, this energy is then extracted as
electricity in the reverse reaction by allowing hydrogen and oxygen to recombine
into water in a controlled fashion. Depending on the application, solar energy is
harvested either directly on-site where the power is required, or in centralized power
plants for further distribution of hydrogen or electricity. The electric power can be
used for most applications capable of running on direct-current electricity: from
mobile electronic devices to transportation and housing.

In a quintessential incarnation of the hydrogen economy, solar energy is thus
transformed into electricity via a closed cycle of hydrogen, oxygen and water. Pol-
lution and production of greenhouse gases is eliminated andthe Sun is the direct
source of energy. The realization of a perfect hydrogen economy is, however, asso-
ciated with many technological challenges: from efficient catalysis of the splitting of
water, via safe storage, transportation and distribution of hydrogen, to cost-effective
and reliable extraction of electric power from the hydrogen. Substantial political and
financial commitments are also required in terms of for instance infrastructure in or-
der to facilitate the transition from our current fossil-fuel driven energy economy.

Although implementation of an ideal hydrogen economy is a long-term ambi-
tion, development of the fuel cell devices capable of converting chemical energy di-
rectly into electricity is currently receiving significantattention (compare figure 1.1).
Benefits of thus progressing towards a clean hydrogen economy along with more
short-term gains from applying the attractive efficiency ofthe fuel cell principle
on the already established hydrocarbon infrastructure arerepeatedly being pointed
out [1–7]. The present supply of hydrocarbon fuels and derivatives thereof, renew-
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Figure 1.1: Annual publication numbers of scientific paperscontaining the indicated
keywords, as indexed bywww.scopus.comin October 2011.

able as well as fossil, is in other words believed to be put into more efficient use
powering fuel cells instead of wasteful combustion engines. All the while devel-
oping clean, sustainable and effective means of producing and storing hydrogen,
optimizing fuel cell systems tolerant to carbon-containing fuels in the meantime is
thus considered highly desirable.

One class of fuel cells is particularly insensitive to impurities in the fuel: the
solid oxide fuel cell. It takes its name from the ceramic oxide material used as the
critical electrolyte component. So far the development of commercially viable solid
oxide fuel cells have been hindered by issues related to the stability and performance
of available materials [2, 8]. This thesis deals with aspects related to some of these
issues. Taking advantage of the ability of density functional theory to realistically
describe materials on the atomic scale, theoretical and computational methods are
employed to study fundamental mechanisms related to the conductivity of two can-
didate materials for solid oxide fuel cell electrolytes. Indoing so the performance
with regards to the operating temperature of solid oxide fuel cells is adressed.

The content of the thesis is organized as follows. With the research presented
mainly in the appended papers, the summarizing chapters 1-10 are intended to define
and introduce the subject and put the results in a wider perspective. This is chapter 1.
Chapters 2 and 3 serve as motivation and background to the work, introducing fuel
cells and outlining the challenges of materials for solid oxide fuel cell electrolytes.
Chapters 4 and 5 introduce the theoretical framework of the investigations, followed
by a description of method and models in chapters 6–8. A summary of the papers is
then provided in chapter 9, and finally a few routes for related work in the future are
proposed in chapter 10.

2



Chapter 2

Fuel cell systems

Even though the principle of the fuel cell has been known for almost two centuries,
it was not put into practical use until the US space program inthe sixties and it took
nearly three more decades for wide-spread development and commercialization to
gather speed. [3] Over the last decade, the interest in the technology has been ever
increasing, but still difficulties remain in finding suitable materials and materials
processes which strike a viable balance between practicality, cost, efficiency and
reliability. All of the content in the present chapter can befound in reviews on
fuel cell technology and its status and challenges. [8–16] The intention is to briefly
survey the area to provide a background for the research presented in this thesis. Of
particular relevance are the effects of operating temperature, solid oxide fuel cells
and the conductivity of electrolyte materials.

2.1 Basic principle

In electrolysis an electric current is driven through water, resulting in the splitting
of water molecules into hydrogen and oxygen molecules. A fuel cell does the re-
verse; it combines hydrogen and oxygen to produce water and electricity. Splitting
the water molecule stores free energy by rearranging the low-energy configuration
of atoms in the water molecules into the higher-energy combination of hydrogen
molecules and oxygen molecules. Similarly, the combination of atoms in other
hydrogen-containing compounds like hydrocarbons correspond to a relatively speak-
ing high-energy state. The fuel cell regains this energy by chemically facilitating the
rearrangement into lower-energy configurations. It is thisdirect way of converting
chemical energy into electricity that gives the fuel cell its advantage in efficiency
over conventional heat engines such as petrol engines or steam turbines.

The basic fuel cell principle is outlined in figure 2.1 (a)–(b). Keeping in mind
that in general the fuel may derive from hydrocarbons, the principle is illustrated
with pure hydrogen for simplicity.1 In the fuel cell, hydrogen (oxygen) is adsorbed
onto the surface of the anode (cathode). Acting as catalysts, the electrodes then

1No particular loss in generality is implied since hydrocarbons for use with fuel cells are typically
reformed into hydrogen, either separately in external reformers or internally at the fuel cell anode.
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2 Fuel cell systems

(a)

(b)

(c)

(d)

Figure 2.1: The fuel cell. (a)–(b): basic principle, (c): cross-sectional SEM micro-
graph of a solid oxide fuel cell [17], and (d): schematic performance characteristics
(polarization curve) [18].

split respective molecule and incorporate the atoms into its structure where they are
ionized. Electrons from the anode flow through the electrical load in the external
loop to the cathode, while protons and/or oxygen ions are transported in the elec-
trolyte. Depending on whether the electrolyte conducts oxide ions and/or protons,
the components are then assembled into water at the anode and/or the cathode.

The reactions of the hydrogen fuel cell are thus:

Full cell: H2 +1/2O2 −→ H2O (2.1)

Anode: H2 −→ 2H+ +2e− (2.2)

Cathode: 1/2O2 +2e− −→ O2− (2.3)

Water production: 2H+ +O2− −→ H2O, (2.4)

where the water production reaction takes place at the cathode for the case of proton-
conducting electrolytes and at the anode for the case of oxide-conducting elec-
trolytes.

4



2.2 Performance factors

2.2 Performance factors

From the principle of the fuel cell, several basic performance requirements are evi-
dent: The rate at which adsorption and dissociation of the fuel and oxygen molecules
takes place at theelectrodesmust be high, as must the assembly and discharge of
by-products (water molecules). The electrodes must also have both high electronic
and ionic conductivity. Anelectrolyte on the other hand, should have high ionic
conductivity but to prevent short-circuiting the cell it can not be permeable to elec-
trons and molecules or atoms of the oxygen gas and the fuel.

Figure 2.1(d) schematically illustrates the effects of limitations in the basic fuel
cell requirements [18]. Power density (power per fuel cell area) is given by voltage
times current density:P = U i and should be as high as possible to optimize the
performance of the fuel cell with respect to size and weight and thus also cost. The
dotted line indicates the electrostatic potentialUtheory which in the ideal case is gen-
erated across the electrodes as a result of the available chemical energy (compare
Box 1.1). In reality a number of losses are present and the potential can be written:

U = Utheory−Uco−Usr−Uor−Usmd, (2.5)

where the subscripts co, sr, or and smd refer to the losses indicated in the figure:
cross-over, slow reaction, ohmic resistance and slow mass diffusion. Cross-over
losses derive from imperfections in the insulating and gas-separating properties of
the electrolyte: finite electronic conductivity and gas permeability or leaks due to for
instance cracks or pores.Slow reactionrates at the electrodes generically becomes
a problem at low temperatures or with ineffective catalyst materials. Theohmic
resistanceof the fuel cell gives rise to a linear drop in the voltage as function of
current (Box 2.1 shows the effect on efficiency):Uor = Ri, whereR is the area-
specific resistance (ASR) measured inΩcm2. Slow mass diffusion, finally, refers
to limitations in the flow of fuel and oxygen to the electrodesand the flow of by-
products away from them.

Many practical considerations also enter the picture, suchas the compatibility
of the components, their individual durability and cost, and the practicality and cost
of the finished fuel cell device. All things considered, the operating temperature
of a fuel cell device has great effects on its performance. A highly beneficial re-

Box 2.1: Theoretical voltage and efficiency of a hydrogen fuel cell.

If all the free energy∆Gf released by reac-
tion 2.1 is converted into work done by the
two electrons produced in the anode,W =
−2eUtheory, the voltage is:∗

Utheory=−∆Gf/2e∼1.25 V−0.5T mVK−1.

Assuming for illustration only ohmic losses
and lettingPtheory=Utheoryi andPor =Uori =
i2R, the electrical efficiency of a fuel cell is:

ηel =
Ptheory−Por

Ptheory
= 1−

iR
Utheory

.

∗Values represent standard pressures of H2, O2 and H2O [19]. Implied is a maximum
thermodynamic efficiencyηG ∼ 1−0.2T (1000K)−1. Total efficiency would beη = ηelηG.

5



2 Fuel cell systems

sult of high operating temperatures is an increase of chemical reaction rates at
the electrode surfaces, which reduces slow reaction losses. It also makes the fuel
cell less sensitive to impurities in the fuel and more importantly enables the use of
carbon-containing fuels. In devices operating at low temperatures, expensive elec-
trode materials like platinum become necessary for efficient use even with pure hy-
drogen fuel. Further demands on the purity of the fuel are setby the susceptibility of
platinum to CO poisoning. Last but not least, the conduction mechanisms of ions in
solid oxides are thermally activated, which means electrolytes and electrodes made
from such materials suffer less ohmic resistance losses at high temperatures.

There are howeverdisadvantages of excessive temperatures. In addition to the
decrease in thermodynamic efficiency (Box 2.1) it makes thermal insulation critical
and forces the use of expensive ceramic or stainless steel materials in the construc-
tion of the fuel cell device. It also increases the degradation rate of the various
components and may cause mechanical problems related to thermal expansion, par-
ticularly in the compatibility between electrolyte and electrode materials. Cracks
and other imperfections may form, causing cross-over losses. Furthermore, the time
it takes for the fuel cell to reach its operating temperatureincreases which leads to
inconvenient start-up times and precludes use in applications with intermittent en-
ergy demands. Finally it can be remarked that devices with oxide-ion conducting
electrolytes risk hampered efficiency at high temperaturesdue to formation of steam
at the anodes, which dilutes the fuel.

2.3 Technologies
A number of different ways of realizing the relatively simple fuel cell principle have
been explored over the years. Implementations are to a greatextent contrasted in the
choice of electrolyte and are in general named correspondingly. While this thesis
deals solely with issues related to the solid oxide fuel cell(SOFC), a brief orientation
on the alternatives may be in order.2 A summary of conventional fuel cell types
with some of their characteristic traits is given in table 2.1. Quite striking is the
division that can be made into low-temperature and high-temperature technologies.
In the temperature range between 200 and 800◦C only the molten-carbonate fuel cell
(MCFC) can be found, at 650◦C. This noticeable lack of devices capable of operating
in the intermediate temperature range spurs much of the current research regarding
fuel cells, with the outlook of finding a middle ground between the advantages and
disadvantages of high temperatures.

At the low-temperature end thepolymer electrolyte membrane fuel cell (PEMFC)
is found. It is arguably the one garnering the greatest amount of attention due to its
high power density along with the quick start-up times affiliated with its low operat-
ing temperature. These attributes make it suitable for a wide range of applications,
including mobile installations such as cars. Unfortunately the proton-transporting
water molecules inherent in the sulfonated polymer electrolyte make temperatures
above the boiling point of water, 100◦C, difficult to achieve.

2For further information on different fuel cell technologies see references 10,11,15.
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2 Fuel cell systems

Despite 40 years of success in the space craft industry, terrestrial use of the
alkaline fuel cell (AFC) is limited due to the need of preventing contact with CO2,
which otherwise reacts with, and rapidly degrades the KOH electrolyte liquid. The
phosforic acid fuel cell (PAFC)was the most popular technology in the early 1990s
and several systems are in operation in Europe, USA and Japan. Although operating
at twice as high temperatures as the PEMFC, expensive catalysts and pure fuel are
still required.

From the perspective of using hydrocarbon derivatives as fuel, thedirect methanol
fuel cell (DMFC) and themolten carbonate fuel cell (MCFC)might seem interest-
ing competitors to the SOFC. DMFCs like the PEMFCs have a polymerelectrolyte
and inherit many of their properties. The methanol fuel however causes cross-over
and slow reaction losses which severely limit the power density and restrict the use
to low-power applications. In the temperature-wise relatively pleasant MCFC, the
molten salt (typically a Li/Na/KCO3 mixture) used as electrolyte instead causes in-
conveniences. First of all its corrosive nature places highdemands on container
materials. Secondly, CO2 forms at the anode and must be recirculated to the cathode
by pumps. Third, the electrolyte can only withstand a limited number of thermal
cycles and must therefore be kept above its melting temperature at all time.

The ceramic electrolyte material ofsolid oxide fuel cells (SOFCs)finally, brings
many of the advantages of such materials. Solid oxides are often insulators or only
slightly semiconducting, with suitable electronic properties. Their durability and
mechanical robustness are also pleasing qualities. Drawbacks are generally speak-
ing limited to the high-temperature disadvantages mentioned in section 2.2 and
narrowing the fuel cell temperature gap from above by developing intermediate-
temperature solid oxide fuel cells (IT-SOFCs)therefore indeed stands out as an
attractive ambition.
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Chapter 3

Materials for solid oxide electrolytes

What turns out to be critical in the development of intermediate-temperature solid
oxide fuel cells is that the dense crystal structure of the ceramic electrolyte materials
not only has the benefit of making them impermeable to fuel andoxygen molecules,
but also brings the disadvantage of restricting the mobility of ions incorporated in the
structure. The conduction mechanism is thermally activated, and as a consequence
the resistivity rapidly increases with decreasing temperatures.

In terms of an acceptable resistance, the need for an overallarea specific resis-
tance not exceeding 0.5Ωcm2 of a finished fuel cell has been pointed out [9]. As-
suming an electrolyte thickness of 15µm and an allowed contribution of 0.15Ωcm2

to the overall resistance, this corresponds to a specific electrolyte conductivity of
10−2 Scm−1 [9], a number frequently encountered as the minimum target for solid
oxide electrolyte materials. The material is then suitablefor use at or above the
temperature at which the number is achieved.

In this chapter the materials which are studied in Papers I–Vare introduced,
along with a condensed overview of other materials and considerations presently
relevant to the field. More detailed reviews and examples of conventional as well as
novel electrolyte materials can be found in for instance references 8,13,20.

3.1 Oxide-ion conductors

Conventional solid oxide fuel cells today employ oxide-ion conducting electrolytes
based on zirconium oxide, ZrO2. To enhance the ionic conductivity in the material it
is doped, which means a certain amount of a foreign metal ion is introduced into it.
This stabilizes the structure in its higher-conducting cubic fluorite phase and cause
oxygen vacancies to form which enables the oxide ions to migrate in the material.1

Typically yttrium (Y) or scandium (Sc) is used, giving rise to the names yttria- and
scandia-stabilized zirconia respectively (YSZ and ScSZ).Characteristic for zirconia
electrolytes is good structural and mechanical stability and sufficient ionic conduc-
tivity at the elevated temperatures solid oxide fuel cells operate today (800–1000◦C).

1The mechanisms of doping and vacancy formation will be returned to in chapters 4 and 5.
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3 Materials for solid oxide electrolytes

Zirconia as an electrolyte has been studied for many years and its properties are rel-
atively well explored. [13,20]

Attempts have also been made to produce oxide-ion conducting electrolytes
based on ceria, doped CeO2. Compared to its fluorite relative zirconia, these mate-
rials display better ionic conductivity but during certainconditions a non-negligible
electronic conductivity is also seen, with corresponding cross-over losses. Further-
more they struggle with issues related to stability and processing of the material.
Ceria is considered promising for temperatures around 500–650◦C and research is
ongoing. [13,20]

Other classes of oxide-ion conducting materials are also being investigated, in-
cluding apatites and LAMOX as well as perovskites and perovskite-related struc-
tures. Ionic conductivities greater than that of zirconia has encouragingly been re-
ported for all of these classes and might indicate that new insights or even future
electrolyte candidates can be found among them. Apatites (eg. La9Sr(SiO4)6O2.5)
are difficult to synthesize but are believed to have the feature of conducting oxide
ions via a qualitatively different, interstitial, mechanism than for instance zirconia.
LAMOX (La2Mo2O9) undergoes a phase transition to a highly conducting phase at
580◦C, but suffers from chemical and thermal incompatibility with electrode mate-
rials. In certain perovskite-related structures, interesting order-disorder transitions
with noticeable effects on ionic oxygen conductivity are seen but need more investi-
gation along with chemical instabilities reported in the materials. [13,20]

3.2 Proton conductors

Leaving the oxide ion conductors, perovskite-structured materials are of even higher
interest and connections to zirconia and ceria persist. Thetwo materials investigated
in Papers I–V of this thesis for instance, are bothzirconates. In a wider perspective it
should be mentioned that solid oxides may exhibit conductivity of both protons and
oxygen ions, as protons and oxygen vacancies may well coexist in the material. Typ-
ical proton conductors exhibit dominating proton conductivity at low temperatures
but transition to oxide ion conduction at high temperatures. The relevant mechanism
of proton incorporation will be explained in chapter 4.

Generally speaking, proton conducting electrolytes bringthe already pointed out
basic benefit of water being produced at the oxygen-side of the fuel cell, allowing
full use of the hydrogen fuel. However, the greatest reason solid oxide proton con-
ductors attract much attention as electrolyte candidates for intermediate-temperature
fuel cells is the generally lower conduction activation energy they exhibit. This al-
lows for high ionic conductivities at fundamentally lower temperatures than conven-
tional oxide ion conductors (cf. the difference in slopes seen in figure 3.1 (a)). [8]

Pure and high protonic conductivity in solid oxide materials was first reported for
the cerate perovskites SrCeO3 [25,26] and BaCeO3 [27] by Iwahara and coworkers
in the eighties when they found increased conductivities indoped samples exposed
to humid air. Later, spurred by the troublesome reactivity of cerates with CO2 and
the known better stability of zirconates, Iwahara et al investigated the conductivity of

10



3.2 Proton conductors

(a) (b)

Figure 3.1: Comparison of (a): the temperature-dependence of conductivities in
typical oxide-ion conductors (YSZ) and proton conductors.[14, 21], and (b): the
conductivity of interior and boundary of BaZrO3 grains. [22–24]

CaZrO3, SrZrO3 and the material studied in Papers III–V of this thesis: BaZrO3 [28].
The cubic perovskite structure of BaZrO3 is shown in figure 3.2 (a).

Since Iwaharas ground-breaking work, proton conductivityin barium cerate
(BaCeO3, BCO) and barium zirconate (BaZrO3, BZO) has been extensively inves-
tigated and the materials are today two of the top contendersfor proton-conducting
electrolytes. They exhibit in some sense mutually oppositebenefits and drawbacks,
seemingly inherited from their oxide ion conducting fluorite cousins: BCO displays
some of the highest proton conductivities but suffers from poor chemical stability
and contributions of electronic conductivity, while BZO onthe other hand has ex-
cellent chemical stability but in general show total conductivities about an order of
magnitude lower than BCO. Additionally, BZO is troublesome to synthesize and
requires high sintering temperatures to obtain dense, homogenous samples. Given
the antagonistic assets of the two materials, ongoing investigations into mixed so-
lutions can be mentioned, along with optimization of dopingschemes. The outlook
is hopeful enough that chemically compatible electrodes for use with cerates and
zirconates in fuel cells are being researched and the performance of assembled fuel
cell structures are being evaluated. [8,14,20,30]

In the light of recent findings, the prospect of BZO is perhapsparticularly promis-
ing. Encouraging results on the sintering issue has been reported by the inclusion of
sintering aids such as ZnO and different materials processing techniques. Moreover,
it has become apparent that the low measured conductivitiesare due to blocking ef-
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3 Materials for solid oxide electrolytes

(a) (b)

(c)

Figure 3.2: BaZrO3 (barium zirconate). (a): the cubic perovskite structure. The
zirconium ion is in the center of the oxygen octahedron. (b):HRTEM micrograph
of the boundary between two grains of BaZrO3 [29]. (c): one of the grain boundary
structures studied in Papers III–V.

fects caused by grain boundaries (compare figure 3.1 (b)). The resistivity of the grain
boundaries thus overshadows the high conductivity of idealbulk material, shown in
figure 3.3, which was predicted to be even higher than BCO by Kreuer [31] a decade
ago. [8,20, and references therein]

The grain-boundary blocking effect in BZO is clearly in needof elucidation.
Based on experience from zirconia and ceria [33], it has beenspeculated that an
aggregation of positive charge at the boundaries is likely acontributing cause [22,34]
and recent experimental evidence seems to support the hypothesis [35,36]. Such an
accumulation of positive charge gives rise to an electrostatic potential barrier and
depletion of the positive oxygen vacancies and protons in the grain boundary region.
As of yet the cause of the positive grain boundaries has not been unraveled and
shedding light on this issue opens for devising schemes to counteract the problem.
This is what motivates the research of Papers III-V, where itis investigated whether
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3.2 Proton conductors

Figure 3.3: Proton conductivities of various oxides [31] ascalculated from data
on proton concentrations and mobilities [32]. Noteworthy is the high conductivity
of BaZrO3, but in the midst of the perovskites (composition ABO3) are also other
classes of less studied oxides, for instance the pyrochlore-structured La2Zr2O7.

an aggregation of positive oxygen vacancies in the core of grain boundaries in BZO
is a factor for the blocking effect. An HRTEM micrograph of a grain boundary and
one of the grain boundaries in which oxygen vacancy segregation was explored are
shown in figure 3.2 (b)–(c).

Although perovskites like BCO and BZO are the most mature proton conductors
for use as solid oxide electrolytes, the search for suitablematerials clearly does not
end with them. Investigations of other classes of materialsenable discovery of com-
mon denominators or qualitatively different mechanisms ofproton incorporation and
transport, which make possible a deeper understanding of properties relevant for
proton-conducting electrolytes. Certain perovskite-related compounds (BCN18) for
instance display intrinsic metal ion non-stoichiometry which gives rise to increased
proton concentrations. Other perovskite relatives (elpasolites, cryolites, Ba2In2O5)
have intrinsically oxygen-deficient structures. Phosphates like LaPO4 have received
interest due to its unusual mechanisms of proton incorporation and transport. Hope
for diminishing the fuel cell temperature gap from below hasbeen raised by solid
acids like CsHSO4 and CsH2PO4, which show high proton conductivities at 120–
300◦C. Niobates and tantalates have enjoyed quite some attentiondue to excellent
chemical stability.

One class of oxides which in the context of the present thesisis of extra interest
is the rare-earth pyrochlore oxides, to which lanthanum zirconate (La2Zr2O7, LZO),
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3 Materials for solid oxide electrolytes

(a) (b)

Figure 3.4: La2Zr2O7 (lanthanum zirconate). In (a) the pyrochlore structure, as
given by first-principles optimization of the ionic configuration (Paper I) is shown.
Two inequivalent oxygen sites exist, O and O′. The Zr ions are in the center of the O
octahedra. Figure (b) displays a SEM micrograph, showing grains of La2Zr2O7 [38].

the material studied in Papers I–II belong. The structure, seen in figure 3.4, has simi-
larities with the proton-conducting perovskites in that itcontains interlinked oxygen
octahedra with the rare-earth cation in the center. In a sense it is also related to zir-
conia as it can be seen as a fluorite super-structure, with theinteresting difference of
an intrinsically vacant oxygen site. Possibly motivated bythese properties and the
success of the perovskites, Iwahara and coworkers in 1996 investigated the proton
conductivity of a number of pyrochlore zirconates, including LZO. [37] Although
doping was still necessary to obtain ionic conductivity, indicating that the intrinsic
vacancy position did not contribute, the proton conductivity was not insignificant
(compare figure 3.3).

It can be added that the ion-conducting properties of LZO arerelevant not only
from a fundamental point of view but also from the perspective of fuel cell design, as
restrictive layers of LZO have been seen to form in the interface between YSZ elec-
trolytes and popular electrode materials containing La [39]. While such issues were
not seen in recent compatibility tests between BZO and electrode materials [30],
interdiffusion between Zr-based electrolytes and La-containing electrodes is not un-
likely to cause segregation of LZO.

Despite of this, further investigations into proton conductivity in pyrochlore-
structured oxides have been limited compared to the perovskites. Especially lacking
are theoretical studies of the microscopic mechanisms related to proton conductivity.
In Papers I–II a few of the most fundamental mechanisms of proton transport and
doping optimization are examined in LZO.
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Chapter 4

Ion conduction in solid oxides

Optimizing the ionic conductivity of materials for use as electrolytes in solid oxide
fuel cells is a direct route towards improving fuel cell efficiency and narrowing the
temperature gap in present fuel cell technologies. Understanding the mechanisms of
first and foremost proton conductivity in solid oxide on a fundamental level is also
the consistent theme of the present thesis. In this chapter an introduction to electrical
conductivity in general is therefore provided in section 4.1. This is followed by an
account of the effect of microstructure in terms of grains and grain boundaries on
the effective, macroscopic conductivity in section 4.2. The remaining sections of
the chapter then outlines the specific atomistic mechanismswhich are explicitly or
implicitly relevant for the work presented in the appended papers.

4.1 Definitions and introduction

The electrical resistanceR of a piece of material is a measure of its inability to
conduct direct electric current and is defined by the familiar ohm’s law:

I = U
1
R

. (4.1)

That is, applying a voltageU over a piece of material with the resistanceRgives rise
to the currentI . Given a certain voltage, the total current depends on the geometry of
the piece of material under consideration. For a uniform piece the current increases
with its cross-sectional area and decreases with its length:

I = U
1
ρ

A
L

, (4.2)

which introduces the resistivityρ of the material: the measure of the inability of
the material itself to conduct direct electric current. Resistivity is thus the intensive
material property corresponding to the extensive resistance. It is however often con-
venient to consider not the inability of a material to conduct current but instead its
ability, which is the conductivityσ:

σ =
1
ρ
. (4.3)
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4 Ion conduction in solid oxides
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Figure 4.1: Illustration of grain boundary conductivity differing from bulk (grain
interior). Inside the shaded grain boundary region, a different conductivity can be
expected both in the parallel (σgb||) and perpendicular (σgb⊥) directions.

Since electric current is the transport or flux of electric charge, different charge
carriers can generally speaking contribute to the conductivity of a material and the
total conductivity is the sum of the conductivities relatedto each and every one of
them. In solid oxide electrolytes the relevant charge carriers are in general oxide ions
O2− and/or protons H+ and, hopefully to a negligible extent, electrons e− and/or
electron holes h+:

σ = σO2− +σH+ +σe− +σh+. (4.4)

Sometimes the transference numbert is used to signify the contributions of different
charge carriers to the total conductivity:

σ = (tO2− + tH+ + te− + th+)σ. (4.5)

In electrolytes it is desirable to obtaintO2− + tH+ >> te− + th+. In oxide-ion conduc-
torstO2− dominates while in proton conductorstH+ shows the largest contribution.

Although electronic conductivity is of implicit interest in the present work in that
it should be low in electrolyte materials, ionic conductivity is the primary topic and
will henceforth be the focus of attention.

4.2 Microstructure: grains and grain boundaries

In a material like conventionally synthesized BaZrO3 with its grains and trouble-
some grain boundaries it is unlikely that the conductivity is homogenous and equal
throughout the material. In the interfaces between the grains, the grain boundaries,
the structure is per definition different than in the bulk interior of the grains and a
different conductivity should be expected, compare figure 4.1.

Considering the structural arrangement of grains seen in forinstance figure 3.4(b),
a simplified model is needed to evaluate the effective conductivity of the material. A
common approach is illustrated in figure 4.2. The grains are approximated as cubes
with the side lengthG assigned the average grain size or diameter of grains in the
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4.2 Microstructure: grains and grain boundaries
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Figure 4.2: The brick layer model, approximating grains with an average sizeG
separated by grain boundaries of thicknessg. On the right side, one building block
of the brick layer structure is shown, with the arrow indicating the imagined direction
of the current through the sample.

sample. Between the cubes, flat layers model grain boundaries having some charac-
teristic thicknessg. One building block of this so-called brick layer model consists
of a cubic bulk piece, one grain boundary layer perpendicular to the direction of the
current and two parallel with it. If large grains and thin boundary layers are assumed,
G >> g, the explicit expression for the effective conductivityσeff of this brick layer
geometry is (details in Box 4.1):

1
σeff

=
1

σbulk +2 g
Gσgb||

+
g
G

1
σgb⊥

, (4.6)

which translates to an effective resistanceReff = L/Aσeff of the sample. For grain
boundaries with diminished conductivity compared to bulk,like is seen in BZO,
equation 4.6 shows the relevance of grain size and the perpendicular component
of the grain boundary conductivity: If2g

G σgb|| << σbulk, the effective conductivity

Box 4.1: Effective conductivity from brick layer model.

Referring to figure 4.2 and assumingG >> g, the ”electrical curcuit” of one unit in the brick
layer geometry can be seen as one boundary layer with areaG2 and lengthg connected in series
with a parallel connection of the bulk piece, areaG2 and lengthG, and two boundary layers, total
area 2gG and lengthG. From the parallel connection,G

2

G σ1 = G2

G σbulk + 2gG
G σgb|| is obtained.

This is to be connected serially toG
2

G σ2 = G2

g σgb⊥. Thus writing 1/σeff = 1/σ1 + 1/σ2 gives
the expression in equation 4.6.
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4 Ion conduction in solid oxides

obeys
1

σeff
=

1
σbulk

+
g
G

1
σgb⊥

. (4.7)

Here the second term on the right hand side is suppressed by the factorg/G, which
mathematically confirms what is intuitively understood: that large grains and there-
fore a smaller ratio of grain boundary to bulk is preferable in the case of resistive
grain boundaries. However, the exponential temperature dependence of the conduc-
tivities dominates over the size effect as temperature is elevated (cf. the diverging
bulk and grain boundary graphs of figure 3.1(b)), making the impact of the grain
boundaries sensitive to the activation energy of the grain boundary conductivity (see
section 4.3).

In papers III–V, it is shown that concentration gradients are expected in the grain
boundary regions of BaZrO3 (compare figure 4.7). In such cases, the grain boundary
conductivity can be found by averaging over the interface domain. To a first approx-
imation it is reasonable to assume that the local conductivity in the grain boundary
is homogenous parallel to the interface but varies perpendicularly. Referring to the
coordinates indicated in figure 4.1 the grain boundary region can then be divided
into slices with width dx. Parallel to the interface, the average conductivity is found
by integrating the conductivity of each slice:

σgb|| =
1
g

Z g/2

−g/2
σ(x)dx, (4.8)

wherex = 0 has been placed at the center of the interface. In the perpendicular
direction, the slices are instead serially connected and the average conductivity is
given by:

1
σgb⊥

=
1
g

Z g/2

−g/2

1
σ(x)

dx. (4.9)

As demonstrated, the brick layer model provides a means to estimating the ef-
fective conductivity of a certain polycrystalline sample given the conductivity in
different regions within the crystal, more specifically thebulk and grain boundary
regions. It is also routinely used to separate the measured conductivity of a sample
into bulk and grain boundary contributions, as seen in figure3.1(b). A review of the
impedance spectroscopy then employed is for instance givenin reference 40, where
further discussion on and references to the brick layer model can also be found.

4.3 Activation energy vs mobility and concentration

Measurements of ionic conductivity in solid oxides generically produce linear graphs
when log(σT) or for small temperaturesT, log(σ) is plotted against 1/T (compare
figures 3.1 and 3.3). In other words the conductivity typically takes the familiar
arrhenius form:

σ =
σ0

T
exp(−Ea/kBT), (4.10)
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4.4 Mobility

which is usually taken as the definition of the activation energy Ea of the conductiv-
ity for a given material sample during specific measurement conditions.

To illuminate the origin of the expression in equation 4.10 it is necessary to
consider the conductivity of ions migrating in a crystal lattice from an atomistic
viewpoint. For each specific charge carrier, its contribution to the total conductivity
depends on two factors: a) how many such carriers exist per unit of material and b)
how mobile they are. For a certain speciesi that carriesqi number of fundamen-
tal chargese and has concentrationci and mobilityui, its conductivity can thus be
written:

σi = qi eui ci. (4.11)

There are in other words essentially two possible sources ofa given activation en-
ergy: mobility or concentration of the charge carrier in question. It also follows that
two ways exist of increasing the conductivity: increasing the concentration of the
carrier or increasing its mobility.

Ions migrating in a dense crystal lattice are generally restricted to jumping be-
tween specific lattice sites. Consequently there has to existan uninterrupted pathway
of such sites in the lattice. Furthermore the sites may not besaturated by other copies
of the migrating species. Considering further that a latticesite in a crystal to a lesser
or greater extent represents a stable ion position corresponding to a local minimum
in the free energy landscape, it follows that in essence the problem of finding a ma-
terial with high ionic conductivity boils down to finding a material (i) capable of
hosting a large concentration of the ion in question, that has (ii) partially occupied,
interlinked ion sites, (iii) separated by an as low as possible migration barrier [41].

In the appended papers, migration barriers are only considered in Paper I and
strong emphasis of the research is instead on the aspect of free carrier concentration.
The mobility aspect is discussed in the next section, while the remaining content of
the summarizing part of the thesis is devoted to concentration.

4.4 Mobility

Starting from equation 4.11, the mobility of an ion is linkedto its self-diffusivityD
via the Nernst-Einstein relation [41]:

u =
qeD
kBT

. (4.12)

An explicit expression for the self-diffusion coefficient can in turn be found from
random walk theory [41]:

D = γ̃z(1−n)ν0exp

(

−
∆Gm

kBT

)

, (4.13)

whereγ̃ contains geometrical details of the lattice and possible corrections for non-
randomness in the diffusion,z is the number of neighboring equivalent sites,n
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4 Ion conduction in solid oxides

(a) (b)

Figure 4.3: Schematic illustration of the vacancy mechanism of oxide ion migra-
tion (a) and the grotthuss mechanism of proton migration (b). For simplicity only
the oxygen sublattice is shown.

is the occupied fraction of those sites, andν0 is a characteristic vibrational fre-
quency of the lattice, expressing the frequency of ”jump attempts” of the migrat-
ing ion. ∆Gm = ∆Hm − T∆Sm finally, is the barrier in free energy between two
equivalent sites. Here,Hm is enthalpy andSm entropy. Noteworthy is that the
temperature dependency of the diffusivity is determined bythe migration enthalpy
∆Hm = ∆Em + p∆Vm. If for convenience a new parameterγ = γ̃zν0exp(∆Sm/kB) is
defined, the conductivity of an ionic speciesi in a crystal lattice can now be written
by combining equations 4.11–4.13:

σi =
ci(1−ci/Ni)q2e2γ

kBT
exp

(

−
∆Hm

i

kBT

)

. (4.14)

Here the density of lattice sitesNi offered the migrating species was also introduced.
It can be added that usually the concentration of charge carriers is relatively small
so that the factor(1− ci/Ni) is well approximated by unity. The case of oxide ion
conduction is slightly different in this respect, as ideal oxides havecO2−/NO = 1 (all
oxygen sites are occupied by oxygen ions). After noting thatcO2−(1−cO2−/NO) =
(NO − cVO)cVO/NO, where VO denotes a vacant oxygen site, it is therefore more
common to think of oxygen migration as the migration of oxygen vacancies, and
consider the conductivityσVO ∝ cVO(1−cVO/NO) ≈ cVO.

Figure 4.3 (a) illustrates the vacancy-mediated diffusionprocess of oxide ion
conduction. Regarding proton migration, protons naturally associate with oxygen
ions to form hydroxide ions, (OH)−. In solid oxides this corresponds to the proton
being located in a position between lattice sites, covalently bonded to an oxygen
ion. To migrate, the proton has to reorient itself around theoxygen ion and then
reassociate to a neighboring one. This two-step rotation-jump operation, called the
Grotthuss mechanism, is believed to be the main channel for proton migration in
perovskites and is schematically illustrated in figure 4.3 (b). Computer simulations
have shown that the highest migration barrier is associatedwith the jump step. It
has further become clear that the migration is enabled by vibrations of the oxy-
gen lattice, where distortions allow the protons to be handed over from one oxygen
ion to the next, thus reducing the migration barrier. It is believed that the softness
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4.5 Concentration

(a)

(b)

Figure 4.4: More detailed illustration of proton migrationin perovskites. Quantum
molecular dynamics simulations showing (a): the proton trajectory, with the proton
associated to an oxygen ion most of the time and only occasionally migrating to a
neighboring ion [31]. (b): lattice distortion during the proton transfer step [42, 44,
45].

of the lattice in perovskites is indeed what makes them particularly good proton
conductors. [31, 42, 43] The proton trajectory and lattice distortions, from quantum
molecular dynamics simulations, are shown in figure 4.4. In Paper I it is shown that
a similar proton pathway as seen in perovskites exists also in pyrochlore oxides, and
the migration barrier is evaluated.

4.5 Concentration

The concentration of a free charge carrieri such as presently discussed is for a di-
lute, non-interacting solution at thermodynamic equilibrium given by the Boltzmann
distribution:

ci = Nie
−∆Gf

i /kBT , (4.15)

where∆Gf
i is the change in Gibbs free energy associated with the introduction of

one such carrier into the lattice. The underlying thermodynamics will be discussed
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4 Ion conduction in solid oxides

(a)

(b)

Figure 4.5: Schematic illustration of acceptor doping giving rise to a charge-
compensating concentration of oxygen vacancies, (a), subsequently replaced by hy-
droxide ions in a humid environment, (b).

in chapter 5 and methods and considerations for calculatingrealistic free formation
energies will be reviewed in some detail in chapter 7. For thepurposes of the present
chapter it however suffices to ascertain that as a consequence the conductivity of
carrieri is now written:

σi =
Niq2e2γ

kBT
exp

(

−
∆Hm

i +∆H f
i

kBT

)

, (4.16)

where it has been assumed that 1−ci/Ni ≈ 1 and the exponential factor comprising
the entropy and volume of formation has similar to the migration counterparts been
consumed by the factorγ. It is seen that the formation enthalpy of the charge carrier
also contributes to the activation energy. The sum∆Hm

i + ∆H f
i expresses the fact

that a low concentration and high mobility (high∆H f
i , low ∆Hm

i ) can give rise to the
same conductivity as a high concentration and low mobility (low ∆H f

i , high∆Hm
i ).

Regarding the concentration of protons in most solid oxide proton conductors,
it has already been touched upon in chapter 3 that significantprotonic conductiv-
ity only appears after acceptor doping, an intentional incorporation of negatively
charged point defects in the material, followed by exposureof the sample to a hu-
mid atmosphere. The reason is that the negative charges introduced in the material
have to be compensated for, either by the creation of positive charges or the removal
of other negative charges. The former can for instance occurby the creation of
electron holes or protonic defects, while the latter can be achieved by the removal
of oxygen ions. While protons as a result in principle can be incorporated directly
in connection to the doping process, oxygen vacancies are more stable at the high
temperatures in question (both oxygen and hydrogen tend towards vaporization as
the temperature is increased). As the sample cools, water molecules from a humid
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4.6 Trapping

Figure 4.6: Schematic illustration of acceptor dopants trapping oxygen vacancies
(left) and protons (right).

atmosphere are instead incorporated in the vacant oxygen positions, effectively cre-
ating two hydroxide ions per vacancy,cf. figure 4.5. The effect of thishydration
reactionis that protons are introduced in the material and the protonconcentration
is increased.

In Paper II the charge-compensating efficiency of a number ofdifferent dopant
species incorporated in LZO at typical synthesis conditions is evaluated.

4.6 Trapping

While introducing negative acceptor dopants in the materialincreases the concen-
tration of oxygen vacancies and/or protons, it also has a potential downside. The
positively charged protons and oxygen vacancies can be expected to be electrostat-
ically attracted to the dopants, thus introducing local low-energy positions for the
migrating species, compare figure 4.6. In order for the migrating species to dis-
sociate from this local bound state and enter the normal, conductive, state it needs
to obtain an enthalpy∆H t. In consequence, the activation energy of the species
in question—in its trapped state—is split further to include also the dissociation or
trapping enthalpy∆H t [46]:

Ea = ∆Hm +∆H f +∆H t. (4.17)

Note that here the formation enthalpy refers to carriers in the trapped state. During
conditions such that the trapped states are occupied (most prominently low temper-
atures), this formation enthalpy is small and the trapped carriers experience a migra-
tion barrier∆Hm + ∆H t. In the case of proton conductors, this trapping effect may
have not only direct bearings to the ionic conductivity but trapping of oxygen vacan-
cies may also have indirect effects in terms of proton concentration in that trapped
oxygen vacancies can not migrate to the surface of the sampleand take part in the
hydration reaction. Trapping of protons by acceptor dopants in LZO is investigated
in Paper I, and trapping of oxygen vacancies is studied in Paper II.

4.7 Depletion

The present chapter is concluded with figure 4.7, illustrating the effect of an accu-
mulation of positive charge at the core of grain boundaries.The positive charge
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4 Ion conduction in solid oxides

gσ(x) ∝ c(x)

Figure 4.7: Schematic illustration of an accumulation of positive charge (green) at
the core of a grain boundary causing depletion of positive charge carriers (red), for
instance protons, in the grain boundary region.

electrostatically repulses positive charges in the region, causing a space-charge re-
gion depleted of positive charge carriers such as protons. Due to the suppressed
concentration, the conductivity of these charge carriers will be severely hampered,
with a harmful effect on the effective conductivity of the material, as discussed in
section 4.2. In Papers III–IV the proton depletion associated with the accumulation
of positive oxygen vacancies at the core of grain boundariesin BZO is examined.

24



Chapter 5

Defects in semiconductors
and insulators

Ideal, crystalline, solid state materials are constructedby an infinite periodic repeti-
ton in space of some basic building block – a unit cell consisting of one or more
atoms. No finite, real-world, pieces of material are howeverperfect crystals. Some-
where the crystal has to end in a surface, or an interface to another crystal with a
different orientation or a different composition or arrangement of atoms. Such in-
terfaces are also commonly found inside materials, betweengrains of bulk material
or to local precipitates of different phases. There may for instance also be disloca-
tions between atomic planes, and imperfections due to missing, added or switched
atoms. These various imperfections in a crystal can be classified by their spatial
dimensionality as bulk-, plane-, line- and point defects.

Such defects can greatly affect the macroscopic propertiesof a material, like its
ability to withstand thermal and mechanical stresses. Moreimportantly for the sub-
ject of the present thesis, the electronic properties of thematerial is also affected. In
a periodically symmetric material the probability of finding an electron at one point
in a unit cell must be the same in the equivalent point of everyunit cell in the crystal.
Imperfections however break this symmetry and may introduce new electronic states
associated with the imperfection. Analogously, point defects may find positions of
higher or lower stability in the vicinity of other defects, be it other point defects (cf.
trapping) or higher-dimensional ones like grain boundaries (cf. segregation). Ac-
cumulation of charged point defects at grain boundaries causes local electric fields
and possible depletion of charge carriers. Understanding the physics of defects in
semiconductors is essentially what has enabled the engineering and development of
the plethora of electronic semiconductor devices which arean integrated part of our
society. As seen in previous chapters, point defects are also a necessary ingredient
in the ionic conductivity of solid oxides and much like the properties of electronic
semiconductor devices are dictated by the electronic structure, the properties of solid
oxide fuel cell electrolytes are dictated by the defect structure. By the discussion
above the structure of defects and electrons are however intrically connected, and
treatments of the two are in a wider perspective difficult to separate.

This chapter offers a brief introduction to point defects and grain boundaries,
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5 Defects in semiconductors and insulators

with the purpose of clarifying definitions and notation (section 5.1), as well as pro-
viding an introductory model for understanding the electrical properties of point
defects (section 5.2) and grain boundaries (section 5.5) insemiconductors. Fur-
thermore the thermodynamics and chemistry of point defectsis introduced in sec-
tions 5.3–5.4.

5.1 Definitions and notation

Point defects can be defined as zero-dimensional imperfections in a crystal, meaning
a single atom is removed, added or replaced in a way that is notconsistent with the
ideal crystal lattice. In the present thesis it is practicalto divide point defects into
three categories:vacancies, substitutionaldefects andinterstitial defects. These are
illustrated in figure 5.1. Vacancies arise when a native atomis removed from its po-
sition in the crystal lattice (figure 5.1(b)). Substitutional point defects are the result
of the replacement of an atom with another, either native or foreign to the mate-
rial (figure 5.1(c)). Interstitial point defects, finally, are atoms occupying positions
between points belonging to the crystal lattice (figure 5.1(d)).

By convention theKröger-Vink notationis used to denote point defects. The
speciesM and lattice sitesof the defect is expressed asMs. For example, a substitu-
tional point defect constructed by the incorporation of titanium on a site which in the
pure material is occupied by lanthanum, is denoted TiLa. For interstitial point defects
the position of the defect is described with the subscripti. For instance Tii denotes
a titanium atom in an interstitial position. Vacancies are most commonly denoted
V, so that for example a vacancy on a lanthanum site is denotedVLa. Sometimes
a lower-casev is used instead, particularly if there is a chance of confusion with
Vanadium. In addition to species and position, point defects are characterized by
theireffective charge. The creation of a point defect in a semiconductor or insulator
is typically accompanied by a more or less local change in charge, the magnitude of
which can vary depending on the occupation of electronic states associated with the
defect. Often one needs to specify to which charge state of the defect one refers, and
this is done by adding a superscript to the notation. Dots, primes and crosses (M˙,
M′ andM×) respectively denote a positive, negative and neutral effective charge,
measured in elementary units. For example, removing an O2− ion from its position
in an ionic oxide nominally results in a vacancy where the charge has increased by
two units, why the point defect would be denotedVÖ. Placing the oxygen ion in
an interstitial position would similarly result in an O′′i defect, while replacing say a
La3+ with a Nd3+ corresponds to a Nd×La defect.

5.2 Donors and acceptors

As previously mentioned, point defects in insulators and semiconductors can carry
an effective charge and give rise to electronic states with energies in the band gap.
Depending on the occupation of these states the charge of thedefect changes. Posi-
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5.2 Donors and acceptors

(a) Perfect crystal lattice without point defects. (b) Vacancies: one on theB-site (VB), one on the
W-site (VW).

(c) Substitutionalpoint defects: two constructed
from native atomic species occupying the wrong
lattice site (WB andBW) and two from a foreign
species (GB andGW).

(d) Interstitial point defects: two constructed
from native atomic species (Bi andWi) and one
from a foreign species (Gi).

Figure 5.1: Point defects in a crystal constructed from two atomic species denoted
B, for black, andW, for white. Foreign atomic species have been colored gray and
are denotedG.

tively charged point defects have released, or donated, oneor more electrons to the
host material and are consequently called donors. Negatively charged point defects
have instead trapped, or accepted, electrons and are calledacceptors. It can be stated
that the foundation for understanding these properties waslaid in 1940 when Mott
and Gurney described what came to be known as the effective mass or hydrogenic
theory for point defects [47]. A frequently cited review on the topic was written by
Kohn in 1957 [48]. The theory is outlined here in a conceptualform as an introduc-
tion to effective charge, localized states, and acceptors and donors.

The effective mass concept concerns the behaviour of electrons close to the bot-
tom of the conduction band, and electron holes close to the top of the valence band.
Close to the edges, electronic energy bands can often be estimated with a parabolic
function, as depicted in figure 5.2. Recalling the energy of afree electron,

Efree
e (k) = ~

2k2/2me,

whereme is the free electron mass, it is realized that the energy of electrons near
the minimum of the conduction band,ECBM

e , and holes near the maximum of the
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Valence band
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Figure 5.2: Depiction of effective masses of electrons in the conduction band
and electron holes in the valence band. Close to the edges, simple bands are ap-
proximately parabolic,ie. E ∝ k2. Comparing to the energy of a free electron,
Efree

e = ~
2k2/2me, electrons and holes close to the band edges can be seen as free-

like electrons with some effective massesm∗
e andm∗

h respectively.

valence band,EVBM
h , can be written1:

ECBM
e (k) = ECBM +

~
2k2

2m∗
e

(5.1)

EVBM
h (k) = EVBM +

~
2k2

2m∗
h
, (5.2)

whereECBM andEVBM are the energies at respective band edge. Having the same
dispersion relation as free electrons, electrons and holesclose to the edges of the
conduction- and valence bands can thus be expected to behavelike such, only with
some effective massesm∗

e andm∗
h respectively.

It is now time to introduce a point defect. For illustrative purposes an ionic
compound will form the basis of the discussion, but the arguments can be applied to
covalent crystals as well. Figure 5.3 illustrates the effective changes imposed on the
system when adonordefect is created. For instance, replacing a divalent cation with
a trivalent, a point defect with an effective charge+1 is created. One excess electron
is also introduced to the system. This electron can be placedin the bottom of the
conduction band, where it will behave like a free electron with effective massm∗

e
and energy given by equation 5.1. It will however be attracted by the positive charge
of the defect, indicating there has to exist a bound state with energy lower than the
free-like state. The situation is very similar to a free electron and a proton, an ionized

1Notice opposite sign in the hole energy compared to the VBM electron energy in figure 5.2; in
an electron energy diagram a decrease in electron energy is an increase in hole energy.
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5.2 Donors and acceptors

(a) Before introducing a point defect. Perfect
ionic crystal constructed from two ions. The an-
ions (small, cyan-colored) are negatively charged
due to electrons occupying two valence states
which are empty in the neutral atom. The cations
(large, orange) are positive due to two missing
valence electrons.

(b) Introducing a substitutional point defect.
A trivalent atom replaces one of the divalent
cations. Two of the three new valence electrons
are accounted for by making the replaced cation
neutral. One extra valence electron is however
available to the system.

(c) The effective change to the system is the ex-
tra valence state and electron. If the electron is
notoccupying the localized state, the point defect
has effectively a positive charge and the electron
is in the free-like state in the conduction band.
The situation is similar to a proton and free elec-
tron, ie. an ionized hydrogen atom.

(d) If the electronis occupying the localized
state, the point defect is effectively neutral and
the electron is bound to the point defect. The sit-
uation is similar to a hydrogen atom.

Figure 5.3: Illustration of the formation of a donor defect,in this example by the
substitution of a divalent cation with a trivalent. The bound, localized, state that
appears must be lower in energy than the free-like state in the conduction band.
Comparing with a hydrogen atom the energy of the localized state can be estimated,
as can the orbital extension of the electron (see the text). Note that an equivalent
change in effective local charge and available electrons asdescribed here occur for
different point defects, for instance creating an anion vacancy. In the cases of vacan-
cies, the localized states can be expected to be characterized by the valence states of
neighboring ions instead of valence states of the substituent.
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5 Defects in semiconductors and insulators

hydrogen atom. If the crystal hosting the point defect and electron is estimated with a
screening medium with some dielectric constantε, the energy of the localized defect
state can be evaluated. The effective positive charge of thepoint defect establishes a
Coulomb field, additional to all the other crystal fields that existed before the point
defect was introduced. Due to the screening of the host medium, the Coulomb field
is not given bye/r but instead

Udonor(r) =
e/ε
r

,

wheree is the elementary charge. The electron in the hydrogen atom has the ground
state energy

Ehydrogen
e = −e4me/2~

2,

which is in reference to the free vacuum state. Here the relevant reference energy is
instead that of the free-like state at the minimum of the conduction band, and it is
immediately concluded that the bound state of the donor defect has an energy

Edonor= ECBM−
e4m∗

e

2~2ε2 ,

or

Edonor= ECBM−Ehydrogen
e

m∗
e

meε2 . (5.3)

The dielectric constantε typically has a value of order 10, and the values ofm∗
e can

range in order between 0.01me – 1me. This corresponds to a value ofEdonorbetween
13.6×10−4 and 13.6×10−2 eV, or from about 1 to about 140 meV, below the con-
duction band. Compared to band gaps of order 1 eV or more, the archetypal donor
level is thus close to the conduction band. The weak bonding of the electron also
implies a large spatial extension which is far from point-like. Using the expression
for the bohr radius, a0 = ~

2/mee2 ∼ 0.5 Å, the typical extension of an electron in a
donor state is between 5 and 500Å.

The qualitative description ofacceptordefects is analogous to that of donors.
As an example, figure 5.4 illustrates the effects of replacing a divalent cation in
the lattice with a monovalent. In removing a divalent atom from the system and
replacing it with a monovalent, one electron has to effectively be removed from the
system. This electron can be taken from bulk valence states,ie. the valence band,
which results in an effectively negative point defect,cf. figure 5.4(a). It can also be
taken from valence states localized at the point defect as seen in figure 5.4(b), which
corresponds to a neutral point defect. The local valence electrons have lost one
partnering empty valence state in the cation and thus represent a higher energy than
the bulk valence states in the valence band. In other words, figure 5.4(a) represents
a situation with an electron trapped in a localized defect state with energy higher
than the valence band, while figure 5.4(b) represents a situation with no electron
trapped or conversely a hole trapped in a bound state at the negatively charged point
defect. To estimate the energy of the localized state, comparison with a hydrogen-
like situtation is again possible, only the Coulomb field is set up by a negative charge,

Uacceptor(r) = −
e/ε
r

,
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5.3 Concentration at thermodynamic equilibrium

(a) The electron removed from the system has
been taken from the valence states of the bulk.
This is illustrated with the missing electron on
the anion to the far right and the hole in the
valence band. Locally at the point defect, the
charge has decreased with one unit, why the ef-
fective defect charge is−1. This corresponds
to a local excess of one electron, which is at-
tributed to one valence electron in one of the an-
ions closest to the replaced cation. This electron
has lost its corresponding empty valence state in
the cation and is more weakly bound, meaning
higher in energy, than valence electrons in the
bulk (the valence band).

(b) The electron removed from the system has
here been taken from the local valence states
at the defect, illustrated with the missing elec-
tron on one of the anions closest to the replaced
cation. Thus the point defect is neutral, with no
local excess electron, and there is no electron
missing in the bulk valence states. In the band
picture this corresponds to the localized state not
being occupied. Compared to the situation in
(a), the localized electron has filled the hole in
the valence band. Conversely the situation can
be thought of as the positive valence band hole
being trapped in a bound state at the negatively
charged point defect.

Figure 5.4: Schematic illustration of how an acceptor defect can form, in this ex-
ample by substituting a divalent cation with a monovalent. In order to make the
removed divalent cation into a neutral atom, two electrons are needed. Since the
substituent only has one valence electron, one electron must effectively be removed
from the system. That electron can either be taken from bulk valence states (a), or
from valence states localized at the point defect (b).

and attracts the positive hole instead of a negative electron. The bound state is by an
electron seen as higher in energy than the states in the valence band and in the band
picture the energy of the bound state of the hole must thus be

Eacceptor= EVBM +Ehydrogen
e

m∗
h

meε2 . (5.4)

In full analogy with donor states, values forEhydrogen
e m∗

h/meε2 are small compared
to the band gap and it is concluded that typical, simple, acceptor states are located
in the band gap close to the valence band.

5.3 Concentration at thermodynamic equilibrium

Common for all concentration considerations in the present thesis is the assumption
of thermodynamic equilibrium. In this section the thermodynamics of point defect

31



5 Defects in semiconductors and insulators

formation is therefore sketched, leading to expressions for the concentration of a
given point defect in a crystalline material.2

Considering some system of which the crystalline material ofinterest is part, the
formation of a point defect is described by a chemical equilibrium relation:

system including perfect crystal⇋ system including defective crystal.

One may equivalently write

defect species in source⇋ defect species in crystal,

where by source it is here meant for instance the oxygen gas surrounding the crystal
in the case of formation of oxygen vacancies in ambient conditions. Equivalently
the gas acts as a sink for the oxygen atom removed from the crystal. The source
or sink varies depending on the defect and defect process in question and can for
instance also be a different region within the crystal itself. For the purpose of the
present discussion the point defect formation equilibriumis therefore written:

defect species in X1 ⇋ defect species in X2.

where X1,2 is used to denote different thermochemical ”environments”or ”states”
of the defect species.

Equilibrium corresponds to a minimum in Gibb’s free energy:

G = H −TS= E + pV−TS, (5.5)

whereH is the enthalpy,Sthe entropy,E the energy andV the volume of the system.
The formation ofNi defects of typei in the crystal, X2, imposes a change in the free
energy:

G = G(X1)+G(X2) −→ G =G(X1)+G(X2)

+∆Gi(X1)+Ni∆G◦
i (X2)−kBT lnΩi(X2),

(5.6)

where∆Gi(X1) denotes all changes in free energy of X1, while for X2 the change
was explicitly divided into two parts:∆G◦

i (X2) comprises all changes in free energy
related to the creation of one defect, except for the change in configurational en-
tropy kB lnΩi(X2). HereΩi(X2) is the number of microstates available to the point
defects. IfNmax denotes the number of positions available to formation of the Ni

defects, the configurational entropy is:

kB lnΩi(X2) = kB ln

(
Nmax

Ni

)

= kB ln
Nmax!

Ni!(Nmax−Ni)!

≈ kBNmaxln
Nmax

Nmax−Ni
−kBNi ln

Ni

Nmax−Ni
.

(5.7)

where Stirling’s formula was used. To find the equilibrium number of defects in the
crystal the free energy is minimized by taking the derivative of G with respect toNi

2A detailed treatment is found in for instance Maier [49].
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5.3 Concentration at thermodynamic equilibrium

and equating with zero. After noting that a change dNi in X2 is a change−dNi in
X1, the result is:

∂
∂Ni

∆Gi(X1) = ∆G◦
i (X2)+kBT ln

Ni

Nmax−Ni
. (5.8)

At this point it is noted that a change in Gibb’s free energy with respect to the number
of particles is defined as the chemical potentialµ of that particle: ∂

∂Ni
∆Gi(X1) =

µi(X1). If the change in X2 is for the moment treated the same way, the equilibrium
relation equation 5.8 can be phrased:

µi(X1) = µi(X2), (5.9)

which states that the chemical potential of speciesi is equal in X1 and X2, given
thermodynamic equilibrium. Furthermore it is now possibleto replace the numbers
Ni andNmax with concentrationsci andcmax in units of choice, for instance defects
and sites per volume or per formula unit of the host crystal (mole). Consequently,
equation 5.8 can be written:

µi(X1) = µ◦i (X2)+kBT ln
ci

cmax−ci
, (5.10)

whereµ◦i (X2) = ∆G◦
i (X2). Exponentiation of equation 5.10 gives

ci = (cmax−ci)exp

(

−
∆Gf

i

kBT

)

, (5.11)

where
∆Gf

i = µ◦i (X2)−µi(X1). (5.12)

Rewriting equation 5.11 now yields an explicit expression for the concentration
of point defects of typei in the crystal X2:

ci = cmax
1

1+exp(∆Gf
i /kBT)

. (5.13)

It is seen that the occupation of the available defect sitescmax is given by the Fermi-
Dirac distribution. For low defect concentrations,ci << cmax, the Boltzmann ap-
proximation can instead be used:

ci = cmaxexp

(

−
∆Gf

i

kBT

)

, (5.14)

in which case the statistical decrease in occupation probability as sites are being
used up by speciesi is lost.

The maximum concentration,cmax, presently used refers to the number of sites
available for formation of the point defect under consideration. In general, several
different species can compete for the same sites (cf. for instance hydroxide ions and
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5 Defects in semiconductors and insulators

oxygen vacancies, which together with oxygen ions compete for oxygen lattice sites
in solid oxides during hydration) and

cmax = ctot−∑
j

c j , (5.15)

with ctot the total density of lattice sites in the crystal andj running over the com-
peting species.

Apart from the explicit statistical approximations, the derivation above silently
assumed a concentration-independent changeµ◦i (X2). While a reasonable approxi-
mation in many cases, it may not be true for extremely high defect concentrations
or highly interacting point defects. Formally, this discrepancy is rectified by defin-
ing an effective number or concentration of defects, a so-called activity ai which is
conveniently defined in the Boltzmann form so that it subsumes also the statistical
approximations:

µi = µ◦i +kBT lnai. (5.16)

The activity is in turn sometimes written in terms of an activity coefficient fi : ai =
fi Ni/Nmax. In practice, defect interaction is more readily evaluatedin an approxi-
mate manner by explicitly considering pairs of defects (cf. trapping) or more com-
plicated clusters. Such clusters or complexes can be included in a complete defect
treatment by defining them as independent defect species.

5.4 Defect chemistry and mass action

In general defect processes, more than one constituent is involved and it is useful
to find relations between the concentrations or partial pressures of the constituents.
Consider therefore the following chemical reaction model:

aA +bB ⇌ cC+dD, (5.17)

wherea,b,c,d denotes the number of species A,B,C,D taking part in the reaction.
With the definition of chemical potential from section 5.3 inplace, the free energy
balance can be written

aµA +bµB = cµC +d µD, (5.18)

which after rearranging and using equation 5.16 reads:

aµ◦A +bµ◦B −cµ◦C−d µ◦D = kBT ln
ac

Cad
D

aa
Aab

B

.

Let ∆G◦ = aµ◦A +bµ◦B −cµ◦C−d µ◦D. Then:

exp

(

−
∆G◦

kBT

)

≡ K =
ac

Cad
D

aa
Aab

B

, (5.19)

whereK is called the equilibrium constant of the reaction and∆G◦ is the difference
in standard potentials, or the total difference in free energy except for configura-
tional entropy, between the right and left hand sides of the reaction. The relationship
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5.4 Defect chemistry and mass action

between a chemical reaction (here equation 5.17) and an expression like that of
equation 5.19 is called the mass action law.

Since equation 5.19 is written in the Boltzmann form, the site restriction in a
crystal lattice, equation 5.15, must be remembered when replacing the activities
with concentrations. Moreover, since implicitly the interest revolves around charged
acceptor and/or donor defects, consistency with respect tocharge neutrality of the
material as a whole has also to be taken into account.

Taking the equilibrium formation of oxygen vacancies in an undoped oxide as
an example, conditions such that the removal of an oxygen atom from the material
to ambient oxygen gas results in a fully ionized defect are assumed. The vacancy
will then have an effective charge +2:

O×
O ⇋ VÖ +

1
2

O2(g)+2e′.

For gas phase constituents the activity corresponds to the partial pressure of the gas,
if ideal gases are assumed. The mass action principle gives:3

K1 =
cV n2

e p1/2
O2

cO
,

wherecV denotes the concentration of vacancies,ne the concentration of electrons
andcO the concentration of non-vacant oxygen sites. If low vacancy concentration
is assumed and no other defects compete for the oxygen sites the Boltzmann approx-
imation is valid andcO = NO, with NO denoting the density of oxygen sites in the
lattice. With no other defects, charge neutrality is also simple: ne = cV/2, and an
expression for the vacancy concentration as function of oxygen partial pressure is
obtained:

cV = (4NOK1)
1/3p−1/6

O2
.

The vacancy concentration decreases with increasing oxygen pressure.
For hydration of an acceptor-doped solid oxide, the relations become more com-

plicated. The hydration reaction is written:

H2O(g)+VÖ +O×
O ⇋ 2(OHȮ), (5.20)

and the mass-action relationship is

K2 =
c2

OH

cV cO pH2O
. (5.21)

Further, site restriction now gives:

NO = cO +cV +cOH (5.22)

3Note that here the formation free energy is implicitly assumed to be given at a reference oxygen
pressure of 1, in the units used forpO2 (tabulated values are usually in bar).
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5 Defects in semiconductors and insulators

and, assuming a single acceptor dopant A, for instance Y′
Zr (Y3+ substituted for

Zr4+), charge neutrality dictates (here it is assumed only vacancies and protons com-
pensate for the dopants):

0 = 2cV +cOH−cA. (5.23)

Combining equations 5.21–5.23 gives the dependence of the proton concentration
on dopant concentration and water partial pressure:

cOH = NO
κ

κ−4

[

1−

√

1−
κ−4

κ

(

2
cA

NO
−

c2
A

N2
O

)]

, (5.24)

whereκ = pH2OK2.
The mass-action approach and the defect chemistry outlinedhere have been used

in Papers III and IV to evaluate the effect of hydration on theequilibrium concen-
trations of oxygen vacancies and protons in grain boundaries of BaZrO3. Equiva-
lently, the concentrations of point defects in a material can be found by employing
equation 5.11 on the defects in question. Relationships between the various con-
centrations are then manifested in the relation between thechemical potentials (in
their full form, cf. equation 5.18) of the different constituents, which appearin the
formation energy∆Gf . By introducing the chemical potential of electrons,µe, and
self-consistently applying charge neutrality, the intricate charge balance between
acceptors, donors, electrons and electron holes can be adressed, resulting in the
equilibrium concentrations of the various defects. This formalism is described in
chapter 7 and has been explicitly used in Papers II and V. Implicitly it is used in
all papers since it enters when comparing the energy (and thus concentration) of in-
corporation on different lattice sites, including segregation to grain boundaries and
trapping energies.

5.5 Space-charge at interfaces

Figure 5.5 illustrates how an accumulation of excess chargein a spatially localized
region in a material will give rise to charge-compensating areas of so-called space
charge around the region. While the figure illustrates compensation by depletion
of charge carriers with equal sign as the charged region (electron holes and oxygen
vacancies in the inset, protons in the large illustration),accumulation of carriers with
opposite sign is equally possible and it is the concentration and mobility of different
charge carriers in the material that determine the outcome.It is noted that similarly
the ”excess” charge discussed here may arise from a diminished concentration of
opposite charge.

As figure 5.5 suggests, boundaries between grains are frequently seen as two
opposing grain surfaces, possibly with a layer of non-crystalline, amorphous, ma-
terial or even secondary phases in between. Furthermore theaccumulated charge
is often thought of as immobile, with a frozen concentrationin the core of the in-
terface. Given such circumstances, it is reasonable to takethe charge in the core
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5.5 Space-charge at interfaces

Figure 5.5: Two illustrations of excess positive charge at agrain boundary interface
and resulting depletion of positive charge adjacent to the interface [22,50]. See also
figure 4.7.

as a boundary condition for finding the compensating concentration in the space-
charge region, and treat the core charge as a parameter (cf. Gouy-Chapman and
Mott-Schottky approximations [49,51]). However, the electrostatic potential caused
by the core charge will tend to deplete also the concentration of core charge itself
and if the carriers of this charge are mobile, a steady-stateconcentration will be es-
tablished, balancing the effect of the electrostatic potential and the driving force for
accumulation.

Both cases however consider thermodynamic equilibrium of mobile charge car-
riers; in the first case only in the space charge region, whilein the second case the
consideration includes also the core. In a one-dimensionalapproximation which
is usually employed, the electrochemical potential (electrochemical since charged
species in an electrostatic potential is considered) of mobile charge carriers is then
considered as function of distancex from the grain boundary interface and equi-
librium with the grain interior (x = ∞) is assumed (for simplicity the Boltzmann
approximation is used here):

µ◦i (x)+kBT log
ci(x)
cmax

i
= µ◦i (∞)+kBT log

ci(∞)

cmax
i

. (5.25)

Only the difference in free energy between the grain interior and grain boundary
region enters;∆G◦

i (x) = µ◦i (x)−µ◦i (∞). If no explicit driving force for accumulation
exists, this difference is given by the potential energy obtained by the charge carrier
due to the grain boundary electrostatic potential,∆G◦

i (x) = qie∆ϕ(x). To find the
electrostatic potential, Poisson’s equation needs to be solved:

d
dx

∆ϕ(x) = −
1
ε

ρ(x), (5.26)
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whereρ(x) is the charge density, here determined by the concentrations of charge
carriers:

ρ(x) = ∑
i

qieci(x). (5.27)

More generally, given the structural difference across a grain boundary even in the
absence of amorphous layers or secondary phases, it is unlikely that a given charge
carrier has a constant chemical potential across a grain boundary. Local differences
give rise to positive or negative segregation energies, striving to enrich or deplete the
grain boundary area of the carrier in question:

∆G◦
i (x) = µ◦i (x)−µ◦i (∞) = ∆Gseg

i (x)+qie∆ϕ(x). (5.28)

Equations 5.25 and 5.26 (withρ(x) given by equation 5.27 and the difference
in chemical potentials by equation 5.28) constitute a system of coupled equations
which must be solved simultaneously. In Papers III–V an iterative numerical scheme
has been used to find the electrostatic potential and free carrier concentrations (pro-
ton, oxygen vacancies, electrons and electron holes) driven by energetic segregation
(Eseg

VÖ
< 0) of mobile oxygen vacancies to the core of grain boundariesin BaZrO3.
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Chapter 6

Computational method

In the research put forward in the present thesis, the energetics of point defect for-
mation is of central importance. This chapter introduces the first principle com-
putational atomistic method based on density-functional theory which has been the
primary means to evaluating energies of point defect formation, trapping and segre-
gation. Ab-initio or first-principle methods refer to the derivation of physical proper-
ties from fundamental quantum-mechanical principles without involving empirical
models or severe simplifications of the underlying physicallaws. Density-functional
theory (DFT) is a means to such simplifications and has since its conception in the
1960’s become a house-hold word among chemists and physicists. Numerous re-
view articles (eg.[52–54]) and textbooks (eg.[55,56]) cover theory and application
in great detail. The aim of the present text is to provide an overview of the topic.

On the atomic scale, matter can be described as a collection of nuclei and elec-
trons, interacting via electrostatic forces. In principleall properties of such a sys-
tem can be derived from the quantum-mechanical wave function of the full system,
Ψ(r1, r2, . . . ,R1,R2, . . . ; t), wherer i andRI denote the coordinates of the electrons
and nuclei in the system, respectively. In theory it is possible to determine the wave-
function using the time-independent Schrödinger equation:

HΨ(r1, r2, . . . ,R1,R2, . . .) = EΨ(r1, r2, . . . ,R1,R2, . . .). (6.1)

In anticipation of doing so it is straight-forward to write the HamiltonianH of the
system:

H =−
1
2∑

I

1
MI

∇2
I +

1
2 ∑

I 6=J

ZIZJ

|RI −RJ|

−
1
2∑

i
∇2

i +
1
2 ∑

i 6= j

1
|r i − r j |

−∑
I ,I

ZI

|RI − r i|
,

(6.2)

where atomic units,~ = me = e= 1 were used, andZI , MI respectively denote the
charge and mass of the nuclei. However, a finite-size piece ofmaterial contains
a number of nuclei and electrons on the order of Avogadro’s constant,NA ∼ 1023.
Solving any equation with that number of degrees of freedom is clearly a formidable
task, far beyond the capabilities of any theoretical or computational methods. It is
clear that simplifications and approximations are required.
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6 Computational method

6.1 The Born-Oppenheimer approximation

A common starting point in simplifying many-atom problems is to separate the nu-
clear and electronic degrees of freedom. While the electrostatic forces acting on the
atomic nuclei are comparable in magnitude to the forces on the electrons, the mass
of the nuclei is much larger. This fact implies that the dynamics of the heavy nuclei
is much slower than the dynamics of the light electrons. In the Born-Oppenheimer
approximation [57], the electrons are assumed to adiabatically follow the nuclear
motion. In other words, at every instance on the time scale ofthe nuclei, the elec-
trons relax to a ground state given by the potential of the nuclei in the current con-
figuration. This enables the separation of the many-atom problem into an electronic
problem and a nuclear problem.

6.2 Electronic structure: density-functional theory

Having separated the electronic and nuclear degrees of freedom, the electronic prob-
lem is solved for a fixed nuclear configuration giving rise to an external potentialVext.
The Hamiltonian for the electronic system can then be written

He = −
1
2∑

i
∇2

i + ∑
i 6= j

1
|r i − r j |

+Vext. (6.3)

Still the complexity of this problem poses a tremendous computational challenge
due to the electron-electron interaction expressed in the second term of equation 6.3,
which prevents the use of efficient diagonalization techniques. It is in reducing the
complexity by removing these non-diagonal terms that density functional theory
enters.

The essence of DFT is to transform the problem of determiningthewave-function
of the system ofinteractingelectrons into the problem of determining the electronic
density, which can be found from a system ofindependentelectrons.

In 1964 Hohenberg and Kohn [58] formulated a theorem in two parts regarding
the ground-state electronic density. First, the external potentialVext of an electronic
system is up to a constant uniquely determined by the ground-state electronic density
n0(r). Since formally the wave-function is determined by the external potential,
the direct implication is that all properties of an electronic system is completely
determined by the electronic density. In particular this should be true for the energy
of the system, and the second part of the theorem concerns therelationship between
the ground state energy and the electronic density: There exists an energy functional

E[n(r)] = F [n(r)]+
Z

n(r)Vext[n(r)]dr , (6.4)

whose minimum is given by the ground state densityn0(r) and corresponds to the
ground state energyE0 of the system:

E0 = E[n0(r)] = min
n(r)

E[n(r)]. (6.5)
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6.2 Electronic structure: density-functional theory

In principle it is thus possible to find the ground-state energy and electron density by
minimizing the energy functional, which is a 3-dimensionalproblem in contrast to
the original 3N-dimensional problem. Unfortunately the complex many-body effects
are inescapable and so far no approximations have been introduced. An explicit form
of F [n(r)], which contains all effects of electron-electron interaction, is therefore not
known.

In 1965 Kohn and Sham [59] introduced a practical scheme for computing the
ground state energy and electronic density. The key idea wasthat the Hohenberg-
Kohn theorem only applies to the electronic density, not thespecific properties of the
electronic system. The density could for instance be derived from a fictitous system
of independentelectrons. Kohn and Sham proposed to consider such a system and
isolate the many-body effects of the true system into one unknown energy term.
Kohn and Sham showed that it is then possible to write an explicit expression of the
energy functional in the following form:

EKS[n(r)] = Ts[n(r)]+EH[n(r)]+Exc[n(r)]+
Z

n(r)Vext[n(r)]dr , (6.6)

where Ts[n(r)] is the kinetic energy functional of the independent electrons and
EH[n(r)] is the Hartree energy, the electrostatic energy stored in the charge density
n(r). Finally Exc[n(r)] is the energy due to exchange (the Pauli principle), corre-
lation (Coulomb repulsion) and many-body contributions to kinetic energy in the
real, interacting, system of electrons. This exchange-correlation functional is conse-
quently what now contains all many-body effects of the original problem. Minimiz-
ing the Kohn-Sham functional of equation 6.6 leads to the Kohn-Sham equations:

[

−
1
2

∇2 +VKS(r)
]

φi(r) = Eiφi(r), (6.7)

whereVKS(r) is given by

VKS(r) = VH(r)+Vxc(r)+Vext(r), (6.8)

and in turnVH(r) =
R

(n(r ′)/|r −r ′|)dr ′ andVxc(r) = δExc[n(r)]/δn(r). Equation 6.7
is a system of Schrödinger equations which are coupled via the electronic density
n(r) = ∑i fi |φi|

2, where fi is the occupation number of the independent-electron
orbital φi. The equations can be solved iteratively given an initial guess ofn(r) until
a self-consistent solution is found. The solution is the ground-state electronic density
n0(r), and it can be shown that the corresponding ground state energy is given by

E0 = ∑
i

fiEi −EH[n0(r)]+Exc[n0(r)]−
Z

n0(r)Vxc(r)dr . (6.9)

Still, no approximations have been introduced, and if an exact form of the exchange-
correlation functional could be found, the Kohn-Sham approach would lead to the
exact ground-state energy and electron density corresponding to the original elec-
tronic problem. Such an exact form is however not known, and approximations
must be used.
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6 Computational method

To recapitulate, what is accomplished with DFT is to trade the problem of the
system of interacting electrons (cf. equation 6.3) for a problem involving inde-
pendent particles, which has to be solved iteratively (equation 6.7) and in prac-
tice involves an approximation of the electron-electron interaction. Computationally
speaking the latter turns out to be favorable since fast diagonalization schemes can
be employed. The complexity of the original problem howeverpersists in the form
of finding a proper exchange-correlation approximation. Fortunately, it turns out
that relatively simple schemes usually yield surprisinglyaccurate results.

Exchange-correlation approximations

In the Kohn-Sham approach to DFT, the effects of electron-electron interaction are
built into the exchange-correlation (xc) functionalExc[n(r)], cf. equation 6.6. Here
the basic properties of two of the simplest and most commonlyemployed approxi-
mations, namely LDA and GGA are briefly outlined.

The first approximation of the xc functional was proposed by Kohn and Sham
in their original paper [59] and became known as the local density approximation
(LDA). In LDA, a local xc energy densityεLDA

xc is defined, and in every point in
space estimated with that of a homogeneous electron gas of density n(r). The xc
functional can then be written

ELDA
xc [n(r)] =

Z

n(r)εLDA
xc

(
n(r)

)
dr . (6.10)

The essential benefits of LDA is arguably its simplicity and relative unambiguity.
An exact expression for the exchange energyεx of a homogeneous electron gas is
known, and the correlation energyεc can be calculated with Monte Carlo simula-
tions [60]. The xc energy is given simply as the sum of the two:εLDA

xc = εx + εc.
The electron density is rarely homogeneous. A natural improvement to LDA is

to take local gradients of the density into account. This is exactly what the popular
generalized gradient approximation (GGA) of the xc energy does. In other words,
the xc energy is considered a function of the local density and its gradient;εGGA

xc =
εGGA

xc

(
n(r),∇n(r)

)
. GGA is however not one single approximation. It exists in

many flavors, and expansions to different gradient orders have been experimented
with. Functionals are constructed using both theoretical methods involving formal
requirements posed by sum-rules, long-range decay etc., and by empirical fitting of
parameters, aimed at reproducing experimental results on bond lengths, bond angles
etc., found in molecular databases [56].

In practice, the choice of which xc functional to use often comes down to testing
and empirical knowledge from comparison with experiments.In the present context
of semiconductors and especially point defects in semiconductors, particular atten-
tion is warranted in regards to the size of the band gap. This however deserves a
separate discussion, see section 8.2.
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6.3 Nuclear structure

Practical implementation:
plane waves, supercells and pseudopotentials

It has been established that the Kohn-Sham equations simplify the original electronic
problem. Apart from the briefly mentioned iterative procedure, a solution scheme
has however not yet been discussed.

A common computational approach is to transform the Schrödinger equations
into a linear eigenvalue problem by expanding the Kohn-Shamwave-functions in
some basis set. Different basis sets are clearly possible, but due to the inherent
periodicity in crystalline system it is for condensed matter-investigations natural to
use periodic boundary conditions and choose a basis set of plane waves. As a result
of Bloch’s theorem [61], a complete basis set is then given byplane waves with wave
vectorsk within the first Brilluin zone, according to:

Ψn,k(r) = ∑
G

cn,k+Gei(k+G)·r , (6.11)

wheren is the index of the eigensolutions and corresponds to different bands. The
sum runs over all reciprocal lattice vectorsG, but is in practice truncated by choosing
some cut-off energyEcut and for eachk only include lattice vectors such that1

2|k +
G| ≤ Ecut.

For perfect, crystalline, bulk systems this approach is ideal since calculations
representing an infinite piece of material only need to be made for atoms of one unit
cell. When studying non-periodic systems, large cells are however needed and the
periodically repeated unit is called a supercell. For non-periodic systems special
attention needs to be made in regards to the size of the supercell, which will be
discussed in the context of point defects in section 8.1.

The downside of using plane-wave basis functions is the slowconvergence of
the sum for rapidly varying functions. Close to nuclei, electronic wave functions os-
cillate heavily, why plane wave basis sets are not ideal. Fortunately, while the elec-
trons close to the nucleus can be polarized, they do not take active part in chemical
bonding. It is therefore common to only include the valence electrons in DFT cal-
culations. The potential of a nucleus is then replaced with apseudopotential which
includes the combined potential of the nucleus and the core electrons. Pseudopo-
tentials are constructed to produce wave functions coinciding with the all-electron
wavefunctions outside some cut-off radius, while inside the cut-off they are modified
for a plane-wave friendly, smooth, behavior of the wave function.

6.3 Nuclear structure

In standard DFT-based computation schemes, the nuclear problem, or more accu-
rately ionic problem in the case of pseudopotentials, is treated classically. The elec-
tronic problem, including the ground-state energy, depends parametrically on the
ionic configuration. This means the total energyEtot of the ion-electron system does
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6 Computational method

as well, and that the forceFI on ionI is given by

FI = −
∂Etot

∂RI
,

This force is readily obtained, using the Hellman-Feynman theorem [62], as the ex-
pectation value of the corresponding gradient of the Hamiltonian. For instance the
ionic equilibrium configuration can then be determined by employing some mini-
mization algorithm (eg.conjugate gradient, Newton schemes) and iterative solutions
of the electronic and ionic problems.
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Chapter 7

Ab initio modeling
of point defect formation

During the last two decades, the formalism necessary for successfully using the
computational methods based on density-functional theoryto calculate the stability
and electronic properties of point defects has been well established [63–73]. On the
basis of thermodynamic equilibrium considerations, defect concentrations produced
during different chemical environments, temperatures andpressures can be obtained
from realistic formation energies calculated with respectto atomic chemical poten-
tials. Similarly the equilibrium distribution of electrons over acceptor-, donor- and
host states can be readily taken into account by self-consistent determination of the
Fermi level of the system. The deliberations outlined here have been explicitly ap-
plied in Papers II and V but are of direct relevance for the work in all papers as
the evaluation of trapping- and segregation energies involves comparing formation
energies.

The present chapter takes its origin from the discussion on point defect concen-
tration given in section 5.3 and aims to survey the use of ground-state energy output
of DFT calculations in evaluating free energies of formation, ∆Gf(T, p), of point de-
fects. First, in section 7.1, an expression for the formation energy,∆Ef

0 ≡ ∆Ef(T =
0, p= 0), of a point defect at zero temperature and pressure is derived. In section 7.2
methods for treating the atomic chemical potentials occurring in the formation en-
ergy are exemplified. The chemical potential of electrons isseparately dealt with
in section 7.3, and in section 7.4 the calculation and meaning of thermodynamic
charge transition levels is commented on. To conclude the chapter, treatments of
finite temperature and pressure are addressed in section 7.5.

7.1 Formulation at zero temperature and pressure

The energies before and after formation of a point defect areillustrated in fig-
ure 7.1 and comprise first and foremost the total internal energy of the crystal:
Etot

material w/o defectandEtot
material w/ defectrespectively. Furthermore the chemical poten-

tials of the reference states with which atoms are exchangedneed to be taken into

45



7 Ab initio modeling of point defect formation

Figure 7.1: Formation of a point defect. Atoms added to or removed from the ma-
terial are exchanged with corresponding reservoirs. Similarly the point defect may
carry an effective charge, which means during formation oneor more electrons are
exchanged with the surrounding host material, acting as a reservoir for electrons.

account. In general the chemical potentials are treated as parameters except for well-
defined situations where the values are pinned by thermodynamic equilibrium with
specified material phases. Such pinning constraints are used to dictate limits on the
chemical potentials, which will be illustrated in section 7.2. Presently the chemical
potentials can be thought of as the energy cost of exchangingatoms with a reservoir
of such atoms. If an atom is added to the material, the energy before formation of the
defect comprises the chemical potential of the atom in its reservoir. Similarly, when
defect formation involves removing an atom from the material, the energy after for-
mation will have a contribution from the chemical potentialof the removed atom
in its corresponding reservoir. Vacancies, for instance, involve placing one atom in
such a reservoir, while substitutional doping comprise both placing a host atom of
the crystal in its reservoir and taking a dopant atom from itsreservoir.

In the case of point defects carrying an effective chargeq, electrons are during
formation added to or removed from the energy levels associated with the defect.
These electrons have been taken from, or placed in, the environment of the point
defect, which usually only constitutes the host material. The energy of placing an
electron in a material is, analogously to atom reservoirs, given by the chemical po-
tential of electrons in the material, denotedµe. For a defect carrying an effective
chargeq measured in elementary charges,q electrons have been transferred between
the defect and the surrounding host material. The energy related to electronic ex-
change can thus be expressed by addingqµe to the energy after formation, in which
case the situation with negative effective charges is included in the sign ofq.

Concerning the energy of the crystal containing a charged defect, figure 7.2 il-
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7.2 Chemical potential limits

Figure 7.2: Modeling charged point defect in DFT. The numberof electrons in the
supercell is modified corresponding to the effective charge. To avoid diverging
Coulomb energy due to interacting supercell images, a neutralizing homogeneous
background charge is added.

lustrates the standard approach to model such charged pointdefects in DFT. First the
number of electrons used in the calculation is modified according to the charge. For
example a defect with charge+2 is modeled by using two electrons fewer than what
would give a neutral system, while for negative charges electrons are instead added.
The change in the number of electrons alter the occupation ofthe defect-associated
states and the charge related to the defect. In DFT implementations employing pe-
riodic boundary conditions, an artificial homogeneous background charge of equal
magnitude but opposite sign is added to neutralize the supercell.

To summarize, the energies before and after formation of a point defect can be
written

Ebefore= Etot
material w/o defect+µ0,added atom

Eafter = Etot
material w/ defect +µ0,removed atom+qµ0,e,

where a zero in the subscripts was added as a reminder of zero temperature and
pressure. After some rearrangment the final expression is:1

∆Ef
0 =Etot

material w/ defect−Etot
material w/o defect

+µ0,removed atom−µ0,added atom+qµ0,e.
(7.1)

7.2 Chemical potential limits

It was noted in equation 5.18 and preceding text that thermodynamic equilibrium
establishes relations between the chemical potentials of the components of the equi-
librated system. Such relations can be used to pinpoint the values of the chemical
potentials given known equilibrium conditions, and to find limits based on knowl-
edge regarding phase stabilities [74].

To illustrate these deliberations, the pyrochlore composition A2B2O7 is taken as
an example and the three chemical potentialsµ0,A, µ0,B andµ0,O are considered. The
basic assumption is that the A2B2O7-phase is stable (or at least metastable), which
at equilibrium gives an equation involving the chemical potentials:

2µ0,A +2µ0,B+7µ0,O = µ0,A2B2O7 = Etot[A2B2O7], (7.2)

1Several atoms are often added or removed during formation ofthe defect, with straight-forward
generalization of equation 7.1.
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7 Ab initio modeling of point defect formation

whereEtot[A2B2O7] is the total energy of one formula unit A2B2O7, as given by
a DFT calculation. Here the ratios of the constituents may vary, and in order to
determine all three potentials, two more equilibrium equations are needed. A priori
knowledge about which stable phases the constituents A, B and O can form can be
used to consider different situations defined by simultaneous equilibrium with two of
those phases at the time. Assume for simplicity that A has no stable bulk phase and
only one stable binary oxide phase, A2O3. Assume further that also B has only one
stable oxide phase, BO2, but can also exist as bulk. Oxygen can exist in any of the
oxide phases but also in the ”bulk” gas phase: O2(g). In principle six different points
in a phase diagram can then be examined, each corresponding to equilibrium with
A2B2O7 and two of the other phases, see table 7.1. Having used these equations to
find the values of the chemical potentials, formation energies corresponding to each
of the specific chemical environments may be calculated.

Usually it is not motivated to study all environmental conditions outlined in ta-
ble 7.1. First, synthesis of a material for the most part takes place in equilibrium
with an atmosphere containing oxygen. The value ofµ0,O is then pinned, leaving
only points 1–3. Second, the values of the metal atoms are in an oxygen-rich en-
vironment often limited by the formation of binary oxides, in the present example
A2O3 and BO2, and it is natural to consider only A- and B-rich environments, de-
fined by chemical equilibrium with respective binary oxide.Only points 1 and 3
now remain. Each of these points correspond to a maximum value of respective
chemical potential,µ0,A or µ0,B. The A-rich limit of point 1 is defined by chemical
equilibrium with A2O3 and corresponds to an upper bound onµ0,A:

µmax
0,A =

1
2

Etot[A2O3]−
3
2

µ0,O.

Table 7.1: Example environments as described in the text, with simultaneous equi-
librium between two A-B-O phases. In conjunction with chemical equilibrium with
A2B2O7 and equation 7.2, all three native chemical potentialsµ0,A, µ0,B andµ0,O can
be computed at each of the six points, enabling the calculation of formation energies
corresponding to each specific chemical environment. As described in the text it is
however usually not necessary to consider all these combinations.

phase 1 phase 2 equilibrium equation 1 equilibrium equation2
1 O A2O3 2µ0,O = Etot[O2] 2µ0,A +3µ0,O = Etot[A2O3]
2 O B 2µ0,O = Etot[O2] nµ0,B = Etot[Bn]
3 O BO2 2µ0,O = Etot[O2] µ0,B+2µ0,O = Etot[BO2]
4 A2O3 B 2µ0,A +3µ0,O = Etot[A2O3] nµ0,B = Etot[Bn]
5 A2O3 BO2 2µ0,A +3µ0,O = Etot[A2O3] µ0,B+2µ0,O = Etot[BO2]
6 B BO2 nµ0,B = Etot[Bn] µ0,B+2µ0,O = Etot[BO2]
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7.3 Fermi level and self-consistent concentrations

Similarly, point 3 corresponds to the B-rich limit and the maximum value ofµ0,B:

µmax
0,B = Etot[BO2]−2µ0,O.

In the A-rich limit µ0,B is at its minimum value, which can be calculated with equa-
tion 7.2. Similarly forµ0,A in the B-rich limit. Thus only one degree of freedom in
the chemical potentials of the native atoms remains, with bounds defined by the A-
and B-rich limits. Notice here that at finite temperatures the values of all chemical
potentials in this situation depends on the oxygen partial pressure (and temperature-
and pressure variation in the enthalpy and vibrational entropy of oxygen). Compare
section 7.5.

For point defects involving a foreign speciesM, for instance dopants or impu-
rities, one more chemical potential comes into play. The value of this potential can
be calculated in a similar manner as previously described, by considering different
stable phases involvingM. However, important conclusions can be drawn without
doing so, specifically by studying properties given by differences in formation en-
ergies, for which the chemical potentials cancel. First, thermodynamic charge tran-
sition levels are calculated by comparing the formation energy of different charge
states of a given defect. Secondly, by comparing the formation energy of a defect
incorporated on different lattice sites, the distributionof the defect concentration
over the different sites can be calculated. Similarly, in evaluation of trapping and
segregation energies all reservoir chemical potentials cancel.

7.3 Fermi level and self-consistent concentrations

The last term appearing in equation 7.1 involves the electronic chemical potential,
µe. Just like atomic chemical potentials this is a free energy related to the cost of
adding one electron to a reservoir of electrons. Also in fullanalogy to atomic chemi-
cal potentials, the electronic chemical potential only takes a distinct value in specific
equilibrium situations, determined by the thermodynamic conditions and electro-
chemical environment, as will be explained in the following. In such a specific
environment, the pinned value of the electrochemical potential is suitably defined as
the Fermi level of the material.

The appearance ofqµe in equation 7.1 measures the energetic cost associated
with the exchange ofq electrons between the defect and the electrochemical envi-
ronment. As illustrated in figure 7.3 the value ofµe will in a pure (non-defective)
material be pinned to the center of the band gap (provided thedensity of states are
equal in the valence and conduction bands), but in the presence of acceptor- and/or
donor defects the value depends on the relative concentration and electronic prop-
erties of the different defects. Without detailed knowledge regarding the formation
energy of all possible defects and their different charge states,µe can formally not be
pinpointed and must be treated as a parameter. If that knowledge on the other hand
can be gathered, it is possible to calculate the value ofµe by considering charge
neutrality. In a neutral material the concentration of all effective charge contribu-
tions must sum to zero. Ifci(qi) denotes the concentration of a certain point defect
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7 Ab initio modeling of point defect formation
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(a) Pure (non-defective) semiconductors and insulators: The
finite-temperature smearing of the Fermi function (right) is sym-
metric aroundµe. Assuming the density of states are equal near
the edges of the valence- and conduction bands, the resulting hole-
electron formation is symmetric around the center of the band gap.
Hence the value ofµe (the Fermi level) must be in the center of the
band gap.

f

E
µ

e

(b) With acceptordefects present: Electrons from the
valence band can be trapped in the states associated with
the defects, which reduces the concentration of electrons
in the valence band. The Fermi function, and with itµe,
must then shift downwards.

f

E
µ

e

(c) With donor defects present: Electrons can be do-
nated from the defect to the conduction band, leading
to an increased concentration of electrons in the con-
duction band and a corresponding upwards shift of the
Fermi function andµe.

Figure 7.3: Schematic illustration of the position of the Fermi level (the value ofµe)
in the band gap of insulators and semiconductors. Note that donors and acceptors
regularly co-exist in a material, in which case the concentration of electrons donated
to the conduction band competes with the concentration of holes created by accep-
tors in the valence band. The position of the Fermi level is then determined by the
relative concentration of different defects in the material and the energy involved in
moving electrons between them and the bands. Equation 7.3 expresses this relation-
ship and is a means to calculate the Fermi level.
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7.3 Fermi level and self-consistent concentrations

i in a specific state with chargeqi, and the concentration of electrons in the conduc-
tion band bynCB and the concentration of holes in the valence band bypVB, the
charge-neutrality condition can be written:

∑
i

∑
qi

qi ci(qi)+ pVB −nCB = 0, (7.3)

where the outer sums runs over all species of point defects present in the system and
the inner runs over all charge states of respective defect.

To solve equation 7.3, each of the relevant concentrations must be determined so
that the only unknown isµe. In the Boltzmann approximation the dependence of the
concentrationsci(qi) onµe follows (cf. equations 5.14 and 7.1):

ci(qi) ∝ e−qiµe/kBT . (7.4)

The concentrations of conduction band electrons and valence band holes are found
by integrating over the density of statesg(E) in the conduction band (CB) and va-
lence band (VB) respectively:

nCB =
Z

CB
f (µe,E)g(E)dE

pVB =
Z

VB
[1− f (µe,E)]g(E)dE,

(7.5)

where f (µe,E) is the Fermi function. Using the Boltzmann approximation ofthe
Fermi function, equation 7.5 can be reduced to (cf. eg.reference 75):

nCB = NCBe−(ECBM−µe)/kBT =
(

NCBe−ECBM/kBT
)

eµe/kBT

pVB = NVBe−(µe−EVBM )/kBT =
(

NVBeEVBM/kBT
)

e−µe/kBT ,
(7.6)

whereECBM andEVBM are the energies at the conduction band minimum and va-
lence band maximum, respectively.NCB andNVB in turn denote the effective density
of states in the conduction- and valence bands, and are givenby

NCB = 2

(
2πm∗

hkBT

h2

)3/2

NVB = 2

(
2πm∗

ekBT
h2

)3/2

,

(7.7)

wherem∗
h andm∗

e are respectively the effective masses of holes in the conduction
band and electrons in the valence band. Note that that for theBoltzmann approxi-
mation of the Fermi function to be valid, conditions such that ECBM−µe≫ kBT and
µe−EVBM ≫ kBT must hold.
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Figure 7.4: In the figure, VB, VBM and CB stand for valence band, valence band
maximum and conduction band.Determination of thermodynamic charge transition
levels from formation energies (example of oxygen vacancy from Paper II). Plotting
the formation energy for three different charge states of the defect, it is found that
for low values ofµe the state with charge+2 is most stable. Atµe−EVBM ≈ 2.5
a transition occurs to the state with charge+1 having the lowest energy, defining a
thermodynamic charge transition level as depicted in the right panel. Increasingµe

further, another level is found forµe−EVBM just over 3.

7.4 Thermodynamic charge transition levels

With the formalism for calculating formation energies in place it is straight-forward
to calculate the thermodynamic charge transition levels induced in the band gap
when introducing point defects in a semiconductor or insulator. At thermodynamic
equilibrium, the total concentration of a particular defect will be distributed over its
different charge states. As illustrated in figure 7.4 the valueµtransition

e of the electronic
chemical potential where the defect changes from being thermodynamically most
stable in charge stateq, to charge stateq′, is found by comparing the formation
energy of the different charge states. Belowµtransition

e the concentration of defects
in charge stateq will dominate and vice versa. It should be noticed that these
levels will in general not coincide with experimentally determined optical transition
levels. The ionic configuration in equilibrium may vary significantly between the
states below and above a transition level, in which case these transition levels will
differ from optical ones. Optical transition levels may be calculated by using the
same defect geometry for the final charge state as for the initial. Thermodynamic
transition levels can on the other hand be observed in experiments where the final
charge state can fully relax to its equilibrium configuration, such as in deep-level
transient spectroscopy (DLTS) [76–78].
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7.5 Temperature, pressure and zero-point energy

7.5 Temperature, pressure and zero-point energy

Having so far formally restricted the treatment to zero temperature and pressure, it
is now extended to finite temperature and pressure. Effects of zero-point motion are
conveniently included in the discussion as well.

In the context of point defects in semiconductors, temperature and pressure ef-
fects related to solid phases are commonly neglected. Usually the contributions are
small, and especially for solid reservoirs the similarities of crystal and reservoir lead
to a great deal of cancellation. Gas-phase reservoirs on theother hand can con-
tribute significantly to the free energy of formation and aremore frequently taken
into account. As a first estimation of finite temperature- andpressure effects it is
thus reasonable to only take changes related to atomic exchange with gas phases
into account.

Taking equilibrium with an oxygen-rich atmosphere as an example, the chemi-
cal potential of oxygen is defined as half Gibbs free energy ofone O2(g) molecule;
µO(T, p) = 1/2gO2(T, p). If the harmonic zero-point vibrational energy of the oxy-
gen molecule,~ωO2/2, is explicitly included, and ideal-gas behavior is assumed, the
chemical potential of oxygen is:

µO(T, p) =
1
2

(

Etot[O2]+
~ωO2

2
+hO2(T, p◦)−TsO2(T, p◦)+kBT ln

p
p◦

)

, (7.8)

wherep◦ is some reference pressure andhO2, sO2 is respectively the enthalpy and en-
tropy of one oxygen molecule. The energy scale is here chosenso thathO2(0, p◦) =
0. The harmonic zero-point energy is known for the oxygen molecule (about 0.1 eV)
and values of enthalpy and entropy are readily available in thermodynamical ta-
bles [19].

While the approach taken in the present thesis is to neglect temperature and
pressure effects of solid phases, a brief outline is nevertheless in order. It is first
noted that a pressure of 1 atm translates to 10−3 meV/Å3, which in comparison
with formation energies on the order of eV makes contributions from thepV-term
of Gibbs free energy safe to neglect. If the vibrations in a solid are modeled by
approximating theN-atom lattice with 3N harmonic oscillators, each with a unique
frequencyωs, the explicit expression for the vibrational free energyFvib(T) of a
crystal is [79]:

Fvib(T) =
3N

∑
s=1

{
~ωs

2
+kBT ln [1−exp(−~ωs/kBT)]

}

.

Notice that the zero-temperature vibration enters explicitly in the first term and that
the classical result 3NkBT is recovered in the high-temperature limitkBT >> ~ω.
The harmonic frequency modesωs can be calculated by diagonalizing the force-
constant matrix corresponding to forces on the ions in the lattice. Using finite differ-
ences these forces can be calculated using DFT by applying small, subsequent per-
turbations of the ion coordinates. Another approach to calculating harmonic phonon
frequencies is to combine DFT with linear response theory [80]. In the formation of
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7 Ab initio modeling of point defect formation

a point defect, phonon modes can disappear (vacancies) or appear (eg. interstitials),
and the frequencies of existing modes can change due to changes in interatomic po-
tentials. To a first approximation, a change of 3kBT can thus be expected during
formation of a point defect in a solid crystal, and a practical improvement can be
obtained by studying changes in the phonon spectrum relatedto the ion site where
the defect is introduced, and to the nearest neighbors.
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Chapter 8

Discussion of method

Methods based on density-functional theory currently represent the most popular
way to perform theoretical research into the electronic andatomistic properties of
crystalline materials. Despite this success and continuedadvances in computing
power, the techniques are not flawless in terms of accuracy and performance. In re-
lation to the calculation of formation energies of point defects, there are particularly
two things which makes a combination of high accuracy and feasible performance
less than straightforward to achieve. The first of the issuesis an artifact of model-
ing non-periodic features in implementations of DFT employing periodic boundary
conditions, and most notably concerns the formation energyof charged point de-
fects. This item is attended to in section 8.1. The second subject is the inability of
calculations utilizing standard LDA and GGA exchange-correlation functionals to
accurately reproduce the band gap in insulators and semiconductors. An error in the
band gap translates to an uncertainty in the relative formation energies of different
defect charge states. Section 8.2 outlines the problem and routes to improved band
gaps, including the use of hybrid exact exchange functionals which is employed in
Paper V.

8.1 Supercell calculations: finite-size effects

The first term on the right hand side of equation 7.1 refers to the total energy of a
piece of material containing one sample of the relevant point defect. This one point
defect breaks the periodic symmetry of the host crystal. Modeling non-periodic
structures in the commonly employed periodic boundary supercell implementations
of DFT is inherently intricate due to the periodic repetition of supercells. This issue
is always present when modeling systems not exhibiting the symmetry given by the
supercell periodicity: atoms and molecules, surfaces and interfaces, line defects and
point defects. If for instance one point defect is placed in asupercell, the result is a
periodic array of point defects and not the single, isolateddefect intended, compare
figures 8.1 and 8.2. Interaction between periodic defect images gives rise to spurious
contributions to the calculated energy. The generic solution to minimizing the energy
error is to separate the non-periodic features by making thesupercell large enough
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Figure 8.1: Electrostatic interaction between the periodic supercell images of
charged point defects. Erroneous energy contributions arise from the defect images
interacting with each other and with the neutralizing background.

so that they do not interact. The effect of increasing the size of the supercell can
be checked by studying the convergence of properties of interest, eg. formation
energies, with respect to supercell size. Furthermore, forquantities and conclusions
based on comparison of the formation energy of similar pointdefects, much of the
errors due to finite supercell sizes cancel. While the majority of the work in the
present thesis is founded on such convergence tests and comparisons of formation
energies, a brief discussion on these finite-size effects isnevertheless appropriate.
With focus on potentially charged point defects, the spurious interactions may be
divided into two categories: electrostatic and elastic.

Electrostatic interaction

For charged point defects, an erroneous electrostatic contribution to the formation
energy comes about from the artificial array of charges and the homogenous back-
ground charge needed to make the supercell neutral,cf. figure 8.1. Several different
approaches to improve supercell convergence by suppressing or correcting for the
electrostatic error have been proposed and discussed [81–92], but it is one of the ear-
liest and most straight-forward ones that has gained the most momentum and more
or less become standard. In 1985 Leslie and Gillan pointed out that the coulombic
error can be estimated by the Madelung energy of an array of point charges in a
neutralizing background and a screening medium [81]. This energy is given by

ELG = −
αq2

2εL
,

whereq denotes the defect charge,α the Madelung constant which depends on lat-
tice type, andε the macroscopic dielectric constant of the screening medium (the
material hosting the defect). However, despite the descriptive name, the charge of
point defects is on a microscopic level rarely point-like but generally has a finite ex-
tension and carries higher order electrostatic moments. In1995 Makov and Payne
proved that the Madelung energy caused by the monopole moment of the charges
should be appended with a quadrupole term scaling asqQ/L3 and that the total
coulombic error can be written [82]:

EMP = −
αq2

2εL
−

2πqQ
3εL3 +O(L−5), (8.1)
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8.1 Supercell calculations: finite-size effects

whereQ denotes the quadropole moment of the charge. The derivationof this ex-
pression was based on ions or charged molecules,ie. on charged defects hosted by
vacuum and not a condensed matter material such as a solid oxide. The screen-
ing effects of a host other than vacuum were included in a phenomenological man-
ner and described by the dielectric constant. The dielectric constant is however a
macroscopic quantity which not necessarily describes screening effects accurately
on a microscopic level. Another implicit assumption is thatthe charge of the defect
does not extend beyond the boundaries imposed by the supercell. Arguably, this
may not necessarily be true considering the large bohr radius predicted by the hy-
drogen/effective mass model. The Makov-Payne correction can thus be expected to
produce excellent results for ions and charged molecules but is uncertain for defects
in condensed systems. Indeed, examples of failures of the Makov-Payne correction
to improve supercell convergence for defects in condensed systems can be found in
references 83–85.

Several authors have suggested a different approach to removing the spurious
interaction, which involves truncating or compensating the long-range tail of the
Coulomb potential induced by the point defect [86,89,93]. However, these methods
do not take into account polarization of the material outside the supercell. This leads
to an error estimated to be larger than in the standard approach for materials with
ε > 2.8, which includes most solids of interest [91]. In a recent publication [91]
a new, fullyab initio, approach to the coulombic interaction was presented which
might hold some promise, but evaluation and tests of the method are still few.

For an estimation of the errors due to electrostatic interaction involved in the
present work, the leading monopole term of the Makov-Payne/Leslie-Gillan correc-
tion was calculated to 0.08 eV for the formation energy of a defect in charge state
±2 (eg. a fully ionized oxygen vacancy) in the 135-atom BZO supercells used in
Paper V.

Elastic interaction

Elastic interaction arises from the fact that ions surrounding the defect site relax to
a different stable configuration when the defect forms. As illustrated in figure 8.2,
finite supercells prevents the relaxation to take place the way it would for an isolated
defect. To avoid errors caused by elastic interaction, supercells therefore need to
have a size that essentially encloses the elastic strain field caused by the defect,ie.
so that the ions at the edges of each supercell do not experience any significant strain
caused by the defect.

Models of point defects in isotropic elastic media [94] showthat the energy
caused by spurious elastic interaction falls off as 1/R3, whereR is the distance
from the defect. In supercell calculations one has a choice in boundary conditions,
keeping the volume of the supercell constant or keeping the pressure in the system
constant equal to zero. According to the models, the elasticenergy is either overes-
timated or underestimated depending on these boundary conditions. If the volume
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8 Discussion of method

Figure 8.2: Elastic interaction between the periodic supercell images of point de-
fects. If the supercell is small, the ions surrounding the defect will not relax the way
they would if the defect was isolated.

is kept constant, the energy is overestimated and given by

Eel,V = Eel

[

1+
3(1−ν)

2(1−2ν)

r3
c

R3

]

, (8.2)

whereEel is the correct elastic energy,ν the Poisson ratio of the elastic medium and
rc the radius of the defect core. For zero-pressure calculations the energy is instead
underestimated and the corresponding expression is

Eel,p = Eel

[

1−3
(1−ν)

(1+ν)

r3
c

R3

]

. (8.3)

The conclusions are that the error due to elastic interaction scales the same way as
the second term of the Makov-Payne estimation of the electrostatic error in both
constant-volume and zero-pressure calculations. Since the scaling is known, contri-
butions from elastic interaction and multipole electrostatic interaction can in princi-
ple be suppressed by extrapolating formation energies obtained with different super-
cell sizes. In the present thesis the approach is to use constant-volume calculations,
since the energetic overestimation of the elastic contribution leads to some cancella-
tion of errors due to electrostatic interaction.

8.2 The band gap problem

As a rule, DFT based on LDA or GGA severely underestimates theband gap of
semiconductors and insulators [95–99]. In barium zirconate, for instance, the band
gap is calculated to 3.1 eV with GGA, in contrast to the experimental value 5.3 eV.
In addition to the explicit misdescription of wide-bandgapionic conductors as mixed
or electronic conductors, the problem has direct bearings to the relative formation
energy and concentration of defects in different charge states.

There are two aspects of the band gap problem. First, exchange-correlation ap-
proximations based on local electron densities (both LDA and GGA) suffer from an
error in energy related to self-interaction of electrons. The error is most severe in
densities characterized by strongly localized electron orbitals, primarily f - but also
d-states.
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8.2 The band gap problem

The second aspect of the band gap problem is related to an inability of standard
LDA- and GGA-based DFT to produce accurate total energies for systems where an
electron has been placed in an otherwise unoccupied level (cf. conduction band),
if that level is separated from the occupied ones (cf. valence band) by a gap in en-
ergy [95–97, 100, 101]. At the heart of the problem lies a discontinuity ∆xc in the
xc potentialVxc between that seen by the added electron and that seen by the others.
This xc discontinuityshouldbe present but vanishes in LDA and GGA. The proce-
dure of adding an electron to otherwise unoccupied states tocalculate total energies
is characteristic not only for calculating band gaps but also the formation energies
of point defects with occupied defect-associated electronstates. The discontinuity
grows with the size of the energy gap, on which account primarily the formation
energy of neutral or not fully ionized states of donors with transitions levels close to
the conduction band are prone to error [66].

Two things can be pointed out in particular.1 First, even when adding (or remov-
ing) electrons to a supercell the aim is to calculate ground states. The issue with
adding electrons is thus not explicitly related to excited states versus DFT being a
ground-state theory2. Second, on a primary level the band gap discussed here should
not be confused with the one seen in the band structure or density of states derived
from the Kohn-Sham eigenvalues. The two however happen to coincide due to the
vanishing xc discontinuity. The fundamental band gap is defined as the difference in
ionization energyEI and electron affinityEA,

Egap= EA −EI, (8.4)

or in other words the difference between the energy related to adding an electron
to the material and the energy related to removing one. The difference between the
Kohn-Sham band gapEKS

gap and the fundamental gap is in fact the xc discontinuity:

Egap= EKS
gap+∆xc.

In practical DFT calculations the band gap given by equation8.4 is calculated from
total energies with electrons properly added and removed:

Egap=
[
Etot(+1)−Etot(0)

]

︸ ︷︷ ︸

ECBM

−
[
Etot(0)−Etot(−1)

]

︸ ︷︷ ︸

EVBM

, (8.5)

whereEtot(i) is used to denote the total energy withi electrons added to the system.
Indicated are also the conduction band minimumECBM and valence band maximum
EVBM corresponding to the band gap.

1For details, seeeg. references 95–97,100,102.
2Compare: Just like an atom, an ion also has a quantum-mechanical ground state.
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8 Discussion of method

Methods and approaches to best alleviate errors related to the band gap problem
are areas of ongoing research. Nevertheless, a few techniques can be highlighted
and summarized [100,102].

• The GW approximation[103]. A many-body approach based on Green’s-
function techniques. Provides accurate band gaps but has currently no feasible
way of obtaining total energies for the size of supercells needed for realistic
point defect investigations.

• LDA/GGA+U [104]. An explicit, repulsive, coulomb energy (U) is added to
localized orbitals in the valence band. This can counteractthe self-interaction
error and partly improve the band gap.

• Hartree-Fock[105]. Separate method, not related to DFT. Many-body treat-
ment including exact exchange evaluation (Fock exchange).Yields too large
band gaps.

• Exact exchange(EXX) [106]. Exact exchange is calculated from the Kohn-
Sham orbitals instead of using the Hartree-Fock method.

• Hybrid functionals[107, 108]. Motivated by the overestimation of band gaps
by the Hartree-Fock method and the underestimation by LDA/GGA, an in-
terpolating amount of Fock exchange is mixed in with normal LDA or GGA.
High computational costs, primarily due to the long range ofthe Fock ex-
change. By only treating short-range exchange exactly, performance can some-
times be improved while retaining improved band gaps [109,110].

Application of hybrid exchange-correlation functionals is becoming increasingly
popular as a means to obtaining accurate band gaps. Compared to standard GGA,
such calculations are however typically 50–100 times more demanding in terms of
computing time, which is close to unfeasible in combinationwith the large super-
cells required to manage the finite-size errors in point defect calculations. In Pa-
per V an approach suggested by Alkauskas and Pasquarello [111] to overcoming this
dilemma was taken. With basis in the often close overlap of wavefunctions derived
from GGA and corresponding hybrid functionals, the wavefunctions of converged
and optimized GGA (PBE [112]) calculations were used as input to ”oneshot” hy-
brid (PBE0 [113]) computations, in which only one iterationof the electronic prob-
lem were performed. Excellent agreement between formationenergies resulting
from this approach and fully self-consistent hybrid calculations was obtained. Fur-
thermore the calculated band gap of 5.25 eV was in gratifyingagreement with the
experimental value 5.3 eV.

60



Chapter 9

Summary of the papers

Paper I

The stable proton sites in LZO are pinpointed and an uninterrupted migration path-
way connecting these sites is identified. Furthermore the proton trapping energies
of four common dopant species are evaluated. The two most energetically favor-
able proton positions are found adjacent to oxygen in the octahedra enclosing Zr
(cf. figure 3.4(a)) with occupation of the other oxygen site (O′) unlikely on ener-
getic grounds. Based on these two positions a pathway is identified, consisting of
alternating jumps between equivalent positions, and transitions between inequiva-
lent positions by rotation of the proton around its host oxide ion. According to the
calculations the migration barrier amounts to 0.3 eV while trapping energies as large
as 1 eV are seen. In comparison with experimental activationenergies of 0.7 eV in
Ca-doped samples, the energies are in reasonable agreement although slightly un-
derestimated. Out of the investigated dopants Ba, Mg, Sr, Ca,the latter two show
the most modest trapping energies.

Paper II

Effects of twelve different species of di- and trivalent acceptor dopants on the charge-
compensating concentration and trapping of oxygen vacancies in LZO is evaluated.
It is found that substitution of La or Zr for aliovalent dopants results in defects with
nominal charge. As a consequence the determining factor forthe charge state of a
given dopant is whether it replaces La3+ or Zr4+. The results show a clear corre-
lation between replacement preference and dopant size, with dopants having small
ionic radii occupying the smaller Zr site and larger dopantsenergetically preferring
the larger La site. This behavior is explained by minimization of lattice strain and is
in line with conventional wisdom that size-matching between substitutional dopants
and the host cation intended for replacement is an importantfactor.

It turns out that elastic effects are significant also in the formation of oxygen
vacancies and in the pair interaction between dopants and vacancies. First, oxygen
vacancies are seen to form only on one of the two inequivalentoxygen sites in the
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9 Summary of the papers

material, almost entirely due to greater lattice relaxation. The most stable vacancy
site is the same as the one found energetically preferred by protons in Paper I. Sec-
ondly, while no decisive correlation between dopant chargeand trapping energy is
noticed, the pair interaction varies greatly with dopant size.

Taken together, the results of Papers I and II point to Ca and Srbeing the most
promising of the investigated dopant species by exhibitinga good combination of
charge-compensating concentration enhancement and low trapping energy.

Paper III

Investigations are initiated into the segregation of oxygen vacancies to grain bound-
aries in BZO and its effects on proton conductivity due to space-charge depletion in
the grain boundary region. Calculations show a segregation energy of−1.25 eV of
oxygen vacancies to the core of a prototype grain boundary. On the basis of a simple
space charge model it is demonstrated that significant spacecharge effects can be
expected from vacancy segregation energies of this magnitude and results in electro-
static potential barriers comparable to estimates based onmeasured conductivities.
Furthermore it is shown that the core vacancies are not expected to be extensively
replaced by hydroxide ions in hydrated samples, but persistwell below the hydra-
tion temperature of bulk oxygen vacancies. It is noted that the high stability of the
oxygen vacancy position found at the interface is related tocharge mismatch and
lattice relaxation during vacancy formation.

Paper IV

DFT calculations of oxygen vacancy segregation to two grainboundaries are per-
formed, and used as comparison for classical model-potential computations of seg-
regation energies in a total of eight different tilt grain boundary structures. Segrega-
tion energies ranging between−0.5 and−2 eV are found. In this work an energetic
grain boundary core is defined, based on the one-dimensionalprofile of the segrega-
tion energies calculated in the grain boundaries. A continuous space charge model
with a numeric solution scheme is constructed, which shows that the calculated seg-
regation energies give rise to electrostatic potential barriers between 0.2 and 0.8 V.
By evaluation of the ratio between grain boundary and bulk proton conductivity, it is
demonstrated that the potential barriers cause grain boundary blocking effects which
essentially span the range seen in a collection of experimental data. The conclusion
is that the grain boundary character of the material is determinant for the severity of
grain boundary blocking effects caused by oxygen vacancies.

Similar to the observation made in Paper III, correlations are noticed between
segregation energy and areas of lattice strain and charge mismatch. Particularly in
low-angle grain boundaries, regions of high vacancy stability are found near dislo-
cation cores. Tendencies of increasing magnitude of the segregation energies with
increasing grain boundary energy are also seen.
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Paper V

A wider and more general use of the formalism developed in Paper IV for evaluat-
ing the space charge effects arising from calculated segregation energies, is demon-
strated. The segregation energies of all relevant charge states of an oxygen vacancy
in the prototype grain boundary from Paper III, are calculated. By further performing
self-consistent calculations of bulk defect concentrations within the thermodynamic
stability range of BZO, and use them as input to the space charge model, the equi-
librium defect structure in bulk and grain boundaries of a material characterized by
oxygen-deficient grain boundary cores is obtained. The bending of the valence and
conduction bands in the grain boundary due to the electrostatic potential, as well as
the associated change in concentrations of conduction electrons and valence holes,
are taken into account. A perturbative application of a hybrid exchange-correlation
functional is used for efficient calculations with a proper description of the band gap.

Unlike DFT results produced using standard GGA functionals, use of the hybrid
exchange-correlation functional shows that the oxygen vacancy in bulk BZO is a
relatively deep donor defect, with the transition between the +2/ + 1 charge state
1.4 eV below the conduction band. Furthermore, it is seen that the most popular
dopant species in BZO, Y, incorporates in an ideal manner as an acceptor on the
Zr site under Ba-rich conditions, but can partly self-compensate by forming unin-
tended donor defects on the Ba site in Zr-rich conditions. Finally, with the pos-
sible influence on grain boundary conductivity in mind, the Ysegregation to the
grain boundary due to the positive electrostatic potentialis studied as function of
dopant concentration, thermochemical conditions and sintering temperature. It is
demonstrated that the space charge effects caused by oxygenvacancy segregation is
a strong driving force for Y segregation to the grain boundary during sintering. Low
temperatures and Ba-rich conditions amplify the segregation.
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Chapter 10

Conclusion and outlook

The microscopic mechanisms which govern the ability of solid oxide materials to
conduct protons is a fascinating subject. We have seen in this thesis that this ability
can be directly enhanced by adding foreign atomic species (dopants) to the material,
which increases the amount of protons but may in the same stroke cause entrapment
of the very protons which were gained. Oxygen, which is inherent as a building
block of the material actively chosen, is cunningly first removed in reaction to the
added foreign atoms, and then put back again with protons following along. The
oxygen however prefers not to return to the boundaries between grains inside the
material, and oxygen vacancies instead blocks the passage of protons.

While it may seem as if nature stubbornly refuses to fully comply with our
attempts to optimize the materials candidating for use as proton-conducting elec-
trolytes, it is hopefully just an expression of limited understanding on our behalf. In
the research presented in this thesis, theoretical and computational methods aimed
at raising our level of understanding a bit further. In Papers I and II efficient dopant
species with modest trapping energies in lanthanum zirconate were for instance iden-
tified, and in Papers III–V insight into the behavior and effects of oxygen vacancies
in grain boundaries of barium zirconate was provided. Continuing this research by
similarly investigating the energetic properties of protons in grain boundaries comes
across as relevant. In Papers I and II it was found that protons in lanthanum zir-
conate are more stable at the oxygen sites preferred also by oxygen vacancies, and
analogous tendencies have been seen in comparison between different perovskite
oxides [114]. It is in other words not unlikely that protons,like oxygen vacancies,
display energetic segregation preferences to grain boundaries in barium zirconate.
High core concentrations of protons, greater space-chargepotentials and wider de-
pletion regions would be the results. Conductivity measurements support this con-
jecture, with indications of greater space-charge effectsin hydrated samples than in
dry samples [22].

In this context one may reflect on the possibility for qualitatively different be-
havior of grain boundary hydrogen compared to bulk. Hydrogen is for instance often
amphoteric in semiconductors, with both stable donor- and acceptor states [71]. The
possible existence and effects of acceptor states of hydrogen, in particular incorpo-
rated as negative hydride ions on vacant oxygen sites, in perovskite oxides have been
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discussed before [115,116] and were recently revisited in aDFT investigation of bar-
ium titanate [117]. As was illustrated for the Y dopant in Paper V, acceptor states
are stabilized compared to donor states in the presence of positive space charge
potentials at grain boundaries. Further considering the elevated concentrations of
oxygen vacancies we have predicted at the grain boundary cores, the possibility for
anomalous effects in terms of concentration and conductionmechanisms, caused by
negative hydrogen states, can at least be kept in mind. On a related note, it should
not be forgotten that increased proton migration barriers have been shown in at least
one grain boundary structure [118].

Equally important, or maybe even more so, as the behavior of protons in grain
boundaries, seems to be the behavior of acceptor dopants. Itwas noted in Papers IV
and V that attraction of negative acceptor dopants by the positive core oxygen va-
cancies does not cause significant neutralization of the grain boundary cores. The
vacancy concentration increases in response, and the net electrostatic result is neg-
ligible. At variance with this behavior, a decrease of the blocking effect in grain
boundaries as a result of increasing dopant concentration has been noted in mea-
surements, and understanding this effect might be a route towards devising schemes
to counteract the grain boundary problem.

Finally, the range of oxygen vacancy segregation energies we found for the dif-
ferent grain boundary structures in Paper IV, raised questions regarding the grain
boundary character in polycrystalline samples. In this light it seems useful to look to-
ward ways to produce samples with well-characterized interfaces, in order to enable
more direct comparisons between measurements and models. The rapid progression
in thin-film techniques will probably make this possible in anear future [119].

In conclusion, further understanding of the blocking effect in grain boundaries of
BZO is a route worth pursuing, and grain boundaries offer interesting dimensions to
the defect thermochemistry of proton conductors. In a widerperspective, the micro-
or nanostructure of solid oxide materials represents a degree of freedom which might
be taken advantage of to improve the proton conductivity. For instance, perhaps high
defect concentrations at interfaces can, in the future, be turned from a problem to an
asset, and lead to electrolytes with tailored nanoscale designs having conductivities
of a completely different magnitude than today [120–123]. To make this possible,
theoretical and computational methods will surely prove valuable complements to
experiments. It is a good thing that the mind is free and computers get cheaper and
cheaper!
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