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Abstract

In recent articles, topologically twisted N=4 supersymmetric Yang-Mills theory on a
four-manifold of the form V = W × R+ or V = W × I were considered. W here is
a Riemannian three-manifold, and a suitable set of boundary conditions apply to the
endpoints of I (or R+). In the special case where W = S3, spherically symmetric solutions
where obtained to the localization equations. For large interval lengths, these consist
of pairwise occurring (non gauge-equivalent) solutions, which then coincide for a certain
critical interval length, only to disappear if it decreases below this critical value. Only for
the instance were the interval length is of critical value was an exact analytical solution
obtained.

The only feasible explanation for this is that there exist a tunneling between the
solutions in one solution-pair as one goes to five dimensions. This will be shown to be
the case in this thesis.

A five-dimensional version of the previously mentioned theory on R×S3×I is considered,
and the localization equations of this theory obtained. An analytical expression of this five-
dimensional supersymmetric field configuration has not been possible to obtain, similarly
to the case in four dimensions, but the solution is instead obtained as a series expansion
in terms of an infinitesimal parameter ε stating how much the solutions differ from the
exactly solvable static case for critical interval length in four dimensions, where we have
stationary solutions in five dimensions as well.

Keywords: Topological Field Theory, Maximal Supersymmetry, Yang-Mills Theory, Topological
Twisting, High Energy Particle Physics.
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To those who do not know mathematics
it is difficult to get across a real feeling as to the beauty,

the deepest beauty, of nature ...
If you want to learn about nature, to appreciate nature,

it is necessary to understand the language that she speaks in.
– Richard P. Feynman





Chapter 1

Introduction

Since the ancient Greeks, mankind has strived to understand the fundamental laws that
govern our universe. It started with observations and experiments where the outcome was
explained in the language of mathematics, and thus theories of nature were formed. As our
understanding of the world increases, more complicated theories are required to explain
the diversity of nature. These in turn pose great demands of our ability in mathematics,
and the ability to formulate properties of nature in mathematical terms.

Physics and mathematics are thus thoroughly intertwined, and knowledge in one field
can lead to advances in the other. If mathematics is the language in which nature speaks,
physics is the ability to properly interpret what she says. This is why the combination of
knowledge in physics as well as mathematics is so powerful, and our insight in how the
world should behave can lead us to solve problems that from a purely mathematical point
of view might be deemed incredibly hard, or even impossible. This is part of the beauty
of the field of theoretical physics, where the absolute fundamentals of our universe can be
studied.

The theories that have been most successful in accurately describing the world are
so-called field theories. Common for these theories are that we can represent observable
quantities by fields on spacetime, the evolution of which can be described by the Lagrangian
formalism.

Such field theories exists for all four fundamental forces of nature, the electro-magnetic
force, the strong nuclear force, weak interaction and gravity. The standard model of particle
physics, which has had great success in satisfactorily describing all the forces of nature with
the exception of gravity in one field theory and then we have Einsteins theory of general
relativity describing gravity.

An important concept here is the so-called gauge theories, where the Lagrangian is
invariant under some continuous group of local transformations, which is called a gauge
group. A gauge group is necessarily a Lie group. For example, Maxwell’s theory of
electromagnetism is a gauge theory with the gauge group U(1). (This theory is invariant
under multiplication with a phase.) Cases where the gauge group is non-abelian are called
Yang-Mills theories. For example, the standard model of particle physics is such a theory,
since it has the gauge group SU(3)×SU(2)×U(1). Thus the field of Yang-Mills theories is
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Chapter 1. Introduction

an interesting research topic since our world seems to have an innate non-abelian structure.
(See [1].) Yang-Mills theory is also included in the list of ”Millennium Prize Problems” of
the Clay Mathematics Institute [2].

The global symmetries of nature are of great interest in physics as well. In addition to
symmetries of space, such as rotational- and translational invariance, we can have another
form of symmetry, namely Supersymmetry. Supersymmetry relates to each fermion a
bosonic superpartner. This is done by essentially requiring the Lagrangian to be invariant
(up to a total derivative) under the supersymmetry transformation with a parameter ε that
relates the variation of the bosonic fields to the fermionic fields and vice versa. By adding
this ”extra symmetry” to the theory, one can for example solve the naturalness problem
in the standard model. ( The naturalness problem can loosely speaking be described
as follows; in order for the standard model to be accurate, very specific requirements of
the Higgs mass appears, but there is no good explanation for why it should be so small
compared to e.g. the Planck scale or GUT scale. This is more natural with supersymmetry.)

1.1 Maximally Supersymmetric Yang-Mills theories

Here, we have considered N = 4 super Yang-Mills theory, i.e. a Yang-Mills theory
with four times the minimal amount of supersymmetry, meaning that there here are four
supersymmetry generators, which is realized by adding an index to the supersymmetry
generator and allowing this to take the values 1, 2, 3, 4. This is the maximal amount
of supersymmetry possible without being forced to consider gravity as well, since every
supersymmetry generator can be seen as lowering helicity by 1

2
, so with 4 generators, if

one starts at helicity +1, one gets precisely down to −1. The next possible number of
supersymmetry generators in the theory is 8, which then would force us to take particles
of helicity ±2, that is, gravitons, into the spectrum. Hence N = 4 super Yang-Mills theory
is sometimes referred to as maximally supersymmetric Yang-Mills theory. This theory has
some interesting mathematical properties, as for example being exactly scale invariant, so
that the β-function is identically 0, meaning that to all orders of pertubation theory, the
fermionic and bosonic contributions cancel out the quadratic divergencies that appear, and
the theory is ultraviolet finite. This is the first known example of a four-dimensional field
theory with this property [3].

1.2 Topological Field Theories

A topological field theory is a field theory where the correlation functions do not depend
on the metric of space-time, i.e. they are topological invariants. This means that they will
be unaffected by continuous deformations of space-time and is thus highly convenient.

For any topological field theory with an action I with some supersymmetryQ, computations
can, under favorable conditions, be localized on configurations that obey {Q,ζ} = 0 for all
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1.3. Motivation for the Thesis

fermion fields ζ. This is done by adding a suitable term to the action, which is Q-exact,
on the form

I ′ = I − 1

ε

{
Q,

∫
V

Tr

(∑
ζ

ζ {Q, ζ}

)}
. (1.1)

This integral diverges as 1/ε unless the localization equations are satisfied, that is
{Q,ζ} = 0 ∀ ζ. Recall that we in the path integral formalism have an expression for the
path integral on the form

∫
D... e−I′ . This means that the path integral will be reduced

to a calculation on configurations that obey the localization equations since it will tend to
zero if {Q,ζ} 6= 0 ∀ ζ .

This integral diverges as 1/ε unless the localization equations are satisfied, that is
{Q,ζ} = 0 ∀ ζ. Thus the infinite-dimensional path integral has been reduced to an intergral
over fields satisfying the supersymmetry equations.

1.3 Motivation for the Thesis

This thesis builds on the paper ”Fivebranes and Knots” by Edward Witten, published in
March of 2011, [4], as well as the paper ”Boundary conditions for GL-twisted N=4 SYM”
by Måns Henningson [5].

By performing a topological twisting of N = 4 super Yang-Mills theory (obtained from
ten dimensions by dimensional reduction) on V = R+×W for suitable boundary conditions
on W , a topological field theory is obtained [4].

The localization equations of the four dimensional theory were obtained in [4], and
maximally symmetric solutions to these were obtained in [5] in the V = W × I case with
W = S3. These solutions show up as non-gauge equivalent pairs that cancel below a certain
critical interval length. Thus it was speculated that these were connected by a solution
in five dimensions. This has been shown to be the case in this thesis. The localization
equations have been obtained for a general W in [4], and are herein analyzed for the
maximally symmetric case.

1.4 Structure of the Thesis

Below, the outlay of the thesis is presented to facilitate for the reader. It is worth noting
that the calculations made in chapter 2 are highly schematic and non-detailed in order to
not loose focus of our primary result here, that is, solving the localization equations in five
dimensions. For more detailed calculations and explanations, see chapters 1-3 in [4].

The first chapter in this work will be a quick review of the content in [4] that is needed for
this thesis to remain self-contained to obtain the localization equations in four dimensions.
The starting point is here the Jones polynomial of a knot, that can be obtained from the
Chern-Simons action for a gauge theory with gauge group G on the three manifold W .

3



Chapter 1. Introduction

This can then be related to N = 4 super Yang-Mills theory in four dimensions for suitable
boundary conditions on W [6]. These boundary conditions turn out to be the ones of
the D3-NS5-system of type IIB string theory. A topological twisting of the N = 4 Yang-
Mills theory will then be performed to obtain a topological field theory, whose localization
equations then will be simplified by S-dualizing the theory.

In the following chapter, a review of the results from [5] are made, and these are further
analyzed. Chapter 4 further reviews [4] where the five-dimensional localization equations
are obtained by a T-duality of the previously obtained theory. These five-dimensional
localization equations are then solved in the maximally symmetric case.
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Chapter 2

Obtaining a Topological Field Theory

A knot is an embedding of a circle in a three-dimensional space. Usually one here talks
about R3, but below we will consider the case of S3. To every knot, K, in R3 or S3 one can
associate a Jones polynomial, denoted J (q;K) in [4]. The Jones polynomial is a Laurent
polynomial in one variable q with integer coefficients. There are many ways of constructing
the Jones polynomial for a knot, but if one wishes to make the three-dimensional symmetry
manifest, it requires a construction starting from a three-dimensional gauge theory with a
Chern-Simons action [7].

The Chern-Simons action for a gauge theory with gauge group G and gauge field A on
the three manifold W is given by

I =
k

4π

∫
W

Tr(A ∧ dA+
2

3
A ∧ A ∧ A), (2.1)

where k is an integer for topological reasons.
Now assume K is an oriented loop embedded in W . Given a representation R of G, we

can then define the Wilson loop operator by:

W(K,R) = −TrRP exp(−
∮
K

A). (2.2)

It turns out that the Jones polynomial, as well as the generalizations of it can be computed
as an expectation value of Wilson operators. Exactly how this is done differs depending
on the exact appearance of G and W .

In [4], one wishes to use nonperturbative string theory/field theory dualities to three-
dimensional Chern-Simons gauge theory. However, there is no good way of realizing this
directly. Thus one must first use the recent insight that the path integral of the Chern-
Simons theory on a three-manifold W can be expressed as a path integral of N = 4 super
Yang-Mills theory on a half-space V = W × R+, where R+ is parameterized by y : y ≥ 0
[6]. Here, any knots in W will be represented by Wilson operators in the boundary of V .
This path integral of N = 4 can however be dualized by standard dualities and this will
lead to a higher-dimensional description.

5



Chapter 2. Obtaining a Topological Field Theory

Firstly, in order to relate the N = 4 path integral to a Chern-Simons path integral
on W , one needs to use the right boundary conditions on W . These boundary conditions
turns out to be those of the D3-NS5 system of type IIB superstring theory in the presence
of a theta angle. In type IIB superstring theory, we have two two-form gauge fields, one
originating from the R-R sector of the closed string and one from the NS-NS-sector. Thus
strings can carry two types of charges, and similarly we will here have two types of branes.
The D-branes that couple to the charges originating from the R-R-sector (here in addition
to the two-form there is one zero-form and one four-form, which gives us stable D1-, D3-,
and D5-branes), and the NS5-brane, which couple to the gauge field originating from the
NS-NS-sector [8].

2.1 The D3-NS5-system

Consider R1,9, with coordinates x0, x1, ...x9 and metric (− + ...+). Now consider N D3-
branes all supported at x4 = x5 = ... = x9 = 0, ending on an NS5-brane, which is supported
at x3 = x7 = x8 = x9 = 0. Thus in the four-dimensional space spanned by x0...x4, one
sees that the D3-branes span the half-space x3 > 0. The theory of the D3-branes is a
U(N) gauge theory with N = 4 supersymmetry. Here, the NS5 brane provides a boundary
condition that preserves half the supersymmetry, a so-called half-BPS boundary condition.

In type IIB superstring theory, we have the complex coupling parameter τstr = θ/2π +
i/gs, that in the gauge theory becomes τYM = θ/2π + 4πi/g2

YM . When the theta angle
disappears, we simply get Neumann boundary conditions for the gauge fields in the gauge
theory. However, since the D3-NS5-system is half-BPS for all values of τstr, this means
that from a gauge-theory point of view, the Neumann boundary-conditions must have a
half-BPS generalization when θ 6= 0.

The R-symmetry group for N = 4 Yang-Mills theory is SO(6) (or actually Spin(6)).
To properly explain what the R symmetry group is, one needs to consider in detail what
happens when we reduce the theory from 10 dimensions down to 4. Let AM be the 10-
dimensional notation of the gauge fields. Let us now relabel these fields, so that Aµ = AM :
M,µ = 0,1,2,3, φi = AM : M = 4,5,6,7 and σ = A8 + iA9. Then the R-symmetry group is
the group that acts on the φ-fields as well as A8, A9.

From a ten-dimensional point of view, the boundary conditions arising from the presence
of the NS5-brane is invariant under a subgroup of SO(1,9) denoted by U = SO(1,2) ×
SO(3) ~X × SO(3)~Y , where the two copies of SO(3) results from the splitting of the R-
symmetry group caused by the presence of the NS5-brane. The supersymmetries of N = 4
Yang-Mills theory transforms under SO(1,9) as a spinor 16 of definite chirality, that is:

Γ0,1,...9ε = ε, (2.3)

where ΓI , I = 0,...9 are the gamma matrices of SO(1,9). Each factor in U has a two-
dimensional representation denoted by 2. The 16 of SO(1,9) transform under U as two
copies of the tensor-product (2,2,2) = V8. This is a real representation of U of dimension
8. Hence the supersymmetries transform as V8 ⊗ V2, where V2 is a two-dimensional real
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2.1. The D3-NS5-system

vector space. We now need to find a base for V2. This is found by considering elements in
the Clifford algebra of SO(1,9) that commutes with U . They are generated by:

B0 =
(

0 1
−1 0

)
, B1 =

(
0 1
1 0

)
, B2 =

(
1 0
0 −1

)
. (2.4)

Let now ε0 ∈ V2 as
(
s
t

)
, and ε̄0 be defined as the row-vector (t,−s).In any half-BPS

boundary condition that is invariant under U , we must have that the unbroken symmetries
are on the form V8 ⊗ ε0 for some ε0 ∈ V2. Scaling of ε0 here is not of interest so we can
simply choose

ε0 =

(
−a
1

)
ε̄0 = (1,a), (2.5)

where the parameter a corresponds to the gauge theory θ-angle. It was shown in [9] that for
every choice of a there is a unique U -invariant half-BPS boundary condition that preserves
all of the gauge symmetry.

In order to be able to localize the action, we need to know the fermion fields of the
theory. The fermion fields, λ, of N = 4 super Yang-Mills theory are adjoint-valued fields
and transforms under 16 of SO(1,9), as do the supersymmetries. The boundary conditions
for the λ’s turn out to be, as derived in [9]:

λ |x3=0∈ V8 ⊗ ϑ (2.6)

where ϑ ∈ V2 is

ϑ =

(
a

1

)
. (2.7)

Actions

Let the scalar fields that transform under SO(3) ~X be denoted ~X. By considering the
boundary conditions for them as well as the boundary conditions for the gauge fields at
x3 = 0 for general values of the parameter a (corresponding to the gauge theory θ-angle),

as described in [4] it can be shown that the action for ~X and the gauge fields respectively
can be written as:

ÎX =
1

g2
YM

∫
x≥0

Tr(DµXcD
µXc) d4x+

2a

3g2
YM(1 + a2)

∫
x3=0

εcde Tr(Xc[Xd, Xe]).

ÎA =
1

2g2
YM

∫
x3>0

Tr(FµνF
µν)d4x− θ

32π2

∫
x3≥0

εµναβTr(FµνFαβ)d4x. (2.8)

7



Chapter 2. Obtaining a Topological Field Theory

with

θ

2π
=

2a

1− a2

4π

g2
YM

. (2.9)

The second term in both these actions was added to satisfy the boundary conditions. In
the action for the gauge fields, it is actually the ”usual” topological term of four dimensional
gauge theory. Note that for fixed values of θ and a, equation 2.9 gives us two possible values
for gYM . These correspond to half-BPS boundary conditions for the D3-NS5 and D3-NS5
systems respectively.

One now wishes to leave the Lorentzian signature and go to Euclidean signature in
order to approach topological field theory. A Wick rotation, x0 → −ix0, is thus performed,
which will reverse the sign of the second part of ÎX since this contains two factors of x0,
(one in dx0 and one in X0 ) and multiplies the second term in ÎA by −i since it only
contains one factor of x0 in the differential, giving us the boundary action

I∗ =
1

g2
YM

∫
x3=0

(
−2a

3(1 + a2)
εabc Tr(Xa[Xb,Xc]) +

2ia

1− a2
εµνλ Tr(Aµ∂νAλ +

2

3
AµAνAλ))d

3x

(2.10)

2.2 Interpreting our theory in a topological field theory

way

An attempt will now be made in order to understand equation 2.10 from the perspective
of topological field theory. The basic idea is to construct a four-dimensional topological
field theory by topological twisting of N = 4 supersymmetric Yang-Mills theory. Let the
N = 4 Yang-Mills theory be given by a system of D3-branes parameterized by x0, x1, x2, x3,
where these coordinates are rotated by SO(4), whereas the remaining coordinates, x4...x9

are rotated by SO(6).
To obtain a topological field theory from this, we define SO′(4) that acts on x0, x1, x2, x3

and simultaneously on x4, x5, x6, x7. Pick a parameter of the supersymmetry, ε, that is
invariant under SO′(4), that is, it satisfies

(Γµν + Γµ+4,ν+4)ε = 0, µ,ν = 0,...,3. (2.11)

According to [4], it can be shown that if we restrict ourselves to operators and states
that are invariant under this supersymmetry, a four-dimensional topological field theory
has been obtained.

Furthermore, SO′(4) commutes with SO(2) ' U(1), which is the R-symmetry group
that acts on the two remaining coordinates. From the viewpoint of SO′(4), four of the

8



2.2. Interpreting our theory in a topological field theory way

adjoint scalar fields of N = 4 supersymmetric Yang-Mills theory are reinterpreted as an
adjoint valued one-form φ = φµdxµ. The other two combine into an adjoint valued complex
scalar field σ which transforms under the U(1). We can normalize the generator of this
group to give σ charge 2. This will now give the boundary part of the action as:

I∗ =
1

g2
YM

∫
x3=0

εµνλTr(− 4a

3(1 + a2)
φµφνφλ + i

2a

1− a2
(Aµ∂νAλ +

2

3
AµAνAλ))d

3x. (2.12)

What happened to the boundary conditions? Do they preserve the symmetry of the
topological field theory? Equation 2.11 has a two-dimensional space of solutions. We can
pick a basis of solutions εl, εr that are chiral in the four-dimensional sense:

Γ0123εl = −εl
Γ0123εr = εr. (2.13)

They can be normalized so that they also satisfy:

Γµ,µ+4εl = −εr
Γµ,µ+4εr = εl. (2.14)

When constructing our topological field theory, we can thus take our supersymmetry
generator to be an arbitrary linear combination of these two. Since any scaling is uninteresting
in this case, one can without loss of generality choose

ε = εl + tεr. (2.15)

We here have a family of topological field theories that are parameterized by t ∈ C. Now
by (2.4) and (2.13), one can see that, after some basic gamma matrix algebra

B0εl = iεl (2.16)

B0εr = −iεr.

Combining this with (2.11) and (2.14)

B1εl = −εr (2.17)

B1εr = −εl.

From the above two relations, (2.16 and 2.17) is obtained that

(
1 + i

1− t2

1 + t2
B0 +

2t

1 + t2
B1

)
(εl + tεr) = 0. (2.18)

9



Chapter 2. Obtaining a Topological Field Theory

However, by using the matrix expressions for the B-matrices, (2.4), we can see that the ε0

as defined in (2.5) also satisfies

(
1 + i

1− t2

1 + t2
B0 +

2t

1 + t2
B1

)
(ε0) = 0. (2.19)

This means that the half-BPS boundary conditions preserve the supersymmetry of the
twisted topological field theory as well as every supersymmetry with ε = η ⊗ ε0 with
η ∈ V8 in the D3-NS5-system if the following relationship between the parameter t of the
topological field theory and the parameter a describing the D3-NS5-system is satisfied:

a = i
1− it
1 + it

. (2.20)

Inserting this expression for a (2.20) into (2.9) and recalling the definition of τ , (τYM =
θ/2π + 4πi/g2

YM), one obtains

t2 =
τ̄

τ
. (2.21)

It can be interesting to note that the operation t→ −t corresponds to a→ −1/a and the
exchange of the D3-NS5-system to a D3-NS5 system. Using the relationship between a
and t (2.20), we can now rewrite the boundary couplings (2.12) in terms of t instead:

I∗ =
1

g2
YM

∫
x3=0

εµνλTr(−t+ t−1

3
φµφνφλ +

t+ t−1

t− t−1
(Aµ∂νAλ +

2

3
AµAνAλ))d

3x. (2.22)

2.3 Wilson loops

N = 4 super Yang-Mills theory in four dimensions admits 1/16-BPS Wilson loop operators.
[10]. Below, a brief explanation of how these are constructed will be given.

The supersymmetry transformation law for bosonic fields in this theory is given by

δAI = iεΓIλ = −iλΓIε (2.23)

I = 0,...,9

Above, a ten-dimensional notation has been used, thus for I ≤ 3, AI is a component
of a gauge field and for I ≥ 4 it is a scalar field. When we twisted, we converted four
of those scalars into a one-form φ =

∑3
µ=0 Aµ+4dxµ, similarly, we define another one-form

A =
∑3

µ=0 Aµdxµ . Recall that Greek letters are used to denote four-dimensional indices.
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2.4. Action of N = 4 Super Yang-Mills Theory

The Wilson operators will be on the form

W = Tr P exp(−
∮
K

(A))

A = A+ wφ (2.24)

giving us
δW ∝ (δA+ wδφ) = ... = −iλ(Γµ + wΓµ+4)ε. (2.25)

In order for the Wilson operator to be invariant under the supersymmetry, we require
that δW = 0. However, this means that, for general values of w, there are no supersymmetric
Wilson operators except at the boundary of V where one can use the boundary conditions
obeyed by λ as well as the conditions obeyed by ε in order to make sure that (2.25)
vanishes. Since we are at the boundary of V, only µ = 0,...,2 is considered in (2.25). When
this condition is satisfied, the Wilson operators in equation 2.24 indeed are supersymmetric
for any knot K in the boundary of V.

Condition 2.25 is equivalent to λΓµ(1 + iwB0B1)ε = 0 since Γµ,µ+4ε = iB0B1ε. Thus
one considers the situation when

λΓµ(1 + iwB0B1)ε = 0. (2.26)

The fermion boundary condition of the D3-NS5-system says that λ, on the boundary
of V is the tensor product of some vector in V8 with ϑ ∈ V2 (ϑ was defined in 2.7), and
similarly, the condition for the generator ε of an unbroken supersymmetry of the D3-NS5
boundary condition is that it must be the tensor product of some vector in V8 and ε0 ∈ V2.
Thus it is required that

ϑT (1 + iwB0B1)ε0 = 0 (2.27)

in order for the Wilson operator in 2.24 to be invariant under the supersymmetry generated
by ε.

2.4 Action of N = 4 Super Yang-Mills Theory

Recalling the definitions of ϑ (2.7) and of ε0 (2.5), as well as the expressions of the B-
matrices (2.4), the condition 2.27 reduces to

w = i
a2 − 1

a2 + 1
=
t− t−1

2
. (2.28)

Now, by the definition of a, if θ, gYM ∈ R, then a ∈ R which means that t, w must be
purely imaginary. Furthermore, recalling that t = ± τ̄

τ
gives us that
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Chapter 2. Obtaining a Topological Field Theory

w = ∓iIm(τ)

τ
(2.29)

with the corresponding signs.
The action of N = 4 super Yang-Mills theory on a four mainfold V is the sum of a term

proportional to 1/g2
YM containing the kinetic energy for all fields, and a term proportional

to θ:

I =
1

g2
YM

∫
V

d4x
√
gLkin + i

θ

32π2

∫
V

d4xεµναβTr(FµνFαβ). (2.30)

In the case where V has no boundary, both these terms are Q-invariant. The θ-term
is Q-invariant since it is, more generally, topologically invariant (unchanged under any
continuous deformations). The first term is equivalent mod {Q,...} to a multiple of the
second term.

I = {Q, ...}+
2πiΨ

32π2

∫
V

d4xεµναβTr(FµνFαβ). (2.31)

The parameter Ψ = |τ |2
Re(τ)

is known as the canonical parameter and is always real for the
D3-NS5-system.

Now, what happens when V has a boundary? (Since this is the case we have here!) Then
the integral

∫
V

d4xεµναβTr(FµνFαβ) is no longer Q-invariant but varies with a boundary
term. It is convenient to replace this integral by a multiple of the Chern-Simons function,
defined below for any (possibly complex) connection A = A+ wφ as:

CS(A) =
1

4π

∫
∂V

d3xεµνλTr(Aµ∂νAλ +
2

3
AµAνAλ). (2.32)

Thus we can write 2.31 as

I = {Q, ...}+ iΨCS(A). (2.33)

Note here that CS(A) is not quite gauge-invariant, so 2.33 must be treated with care.
That the generalization of 2.31 in the presence of a boundary is exactly 2.33 is explained
in [4].

One can write CS(A) explicitly as a function of A, φ and w, giving us

CS(A) = CS(A) +
1

4π

∫
∂V

d3xεµνλTr(wφµFνλ + w2φµDνφλ +
2w3

3
φµφνφλ). (2.34)
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2.5. Localization of the path integral

2.5 Localization of the path integral

As described in the introduction, this path integral can now be localized on configurations
that satisfy {Q,ζ} = 0 for all fermion fields ζ. The fermion fields in this theory are one
self-dual two-form χ+, one anti-self dual two form χ− and a scalar η, all adjoint-valued.
For these fields, it is true that{

Q,χ+
}

= (F − φ ∧ φ+ tdAφ)+{
Q,χ−

}
= (F − φ ∧ φ− t−1dAφ)−

{Q, η} = Dµφ
µ (2.35)

The localization equations thus become

(F − φ ∧ φ+ tdAφ)+ = (F − φ ∧ φ− t−1dAφ)− = Dµφ
µ =0

Dµσ = [φµ, σ] = [σ, σ̄] =0 (2.36)

These localization equations are a set of elliptical differential equations on the manifold
V such that ∂V = W . Under favorable conditions, the last row of the equations imply
σ ≡ 0. [4].

However, instead of solving these equations here already, one now preforms an S-duality,
which turns out to simplify them considerably.

2.6 S-duality

We now apply EM-duality to N = 4 super Yang-Mills on V = W ×R+. The gauge group
then transforms as G → GV , where GV is the Langlands dual group. As before, this new
GV gauge theory will have a theta-angle and gauge coupling (denoted θV and gVYM), where
we again can define:

τV =
θV

2π
+

4πi

(gVYM)2
. (2.37)

The family of topological field theories that is relevant here is mapped to itself by
electro-magnetic duality. The twisting parameter of the dual description, tV is related to
the twisting parameter in the original description by:

tV = ± τ

|τ |
t. (2.38)

For the D3-NS5-system, we have t2 = τ̄
τ

which leads to

13



Chapter 2. Obtaining a Topological Field Theory

tV = ±1. (2.39)

This sign is however uninteresting. This means that the localization equations in GV

become surprisingly simple, giving us

F − φ ∧ φ+ ?4dAφ = 0 = dA ?4 φ. (2.40)

These equations were treated for the case W = S3 in [5]. It is worth noting that when we
S-dualize, the Wilson operators becomes ’t Hooft operators.

We now need to see how the boundary conditions away from the ’t Hooft operators look
in the dualized GV gauge theory. After S-dualization, the D3-NS5-system goes into a D3-
D5 system, and these are now the required boundary conditions. These are described by
specifying the singular behavior of the fields near the boundary. They turn out to actually
have a half-BPS-symmetry. On the boundary, the gauge fields A will be the connection
induced by the metric (for example, if W is flat, A will vanish). The normal part of the
one-form φ vanishes on the boundary. Because of rotational- and translation invariance, it
is known that φ can only be a function of x3 = y on the boundary. By considering how
2.40 looks under these assumptions, it can be shown, together with requiring conformal
invariance of the D3-D5 boundary condition that the remaining parts of φ, that is, the one
form on W , which is here denoted ~φ will satisfy:

~φ =
~e

y
+ ... (2.41)

where ~e is the vielbein. Thus ~φ has a regular Nahm-pole at infinity.
We will herein only consider the solutions far away from the t’Hooft operators. [9], [4].
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Chapter 3

Four-Dimensional Equations

In the last chapter it was shown that the localization equations of the four-dimensional
S-dualized topologically twisted theory takes the form:

F − φ ∧ φ+ ?4dAφ = 0 = dA ?4 φ

Dµσ = [φµ, σ] = [σ, σ̄] = 0 (3.1)

The ?4 here denotes the Hodge operator in the four-dimensional sense. The second set of
equations forces σ to vanish everywhere under favorable conditions, and thus will henceforth
not be considered. In [5], these were studied on the four-manifold V = W × I where I is
an interval parametrized by the coordinate x3 = y.

We now make the gauge choice Ay = 0. Equation 3.1 together with suitable boundary
conditions gives us φy = 0. This will simplify equation 3.1 to:

∂yA = ?3(dAφ)

∂yφ = ?3(F − φ ∧ φ)

∂A(?3φ) = 0. (3.2)

The ?3 here represents the Hodge operator in the three-dimensional sense. By aid of the
Bianchi-identity together with the top two equations, it can be shown that the last one of
these is identically satisfied if it is satisfied for some value of y. Thus we do not consider
this equation any further.

In general, these equations have an infinite-dimensional space of solutions, but a boundary
with half-BPS boundary conditions will define a ”middle-dimensional” solution set. Here
we have two boundaries, (one at y = 0 and one at either infinity or at finite distance) which
means they each define a middle-dimensional solution set. The intersection of these sets
will in general be given by a discrete set of solutions. This was first stated in [4] and then
confirmed in [5].
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Chapter 3. Four-Dimensional Equations

3.1 Boundary Conditions at Infinite Distances

We now consider what kind of boundary conditions apply at infinite distances. In [5], the
boundary condition that was considered was that A + iφ→ ρ as y →∞ where ρ is a flat
connection on the complexification EC of the gauge bundle E. Let ρ = ρ1 + iρ2 where ρ1, ρ2

denotes the real respectively imaginary part of ρ. Expanding A and φ around these gives
us:

A = ρ1 + a

φ = ρ2 + ϕ (3.3)

where

(
a

ϕ

)
→
(

0

0

)
as y →∞. (3.4)

3.2 Special properties of the case W = S3

It is here important to know that the three-sphere also can be considered as a group. This
can be done since S3 is isomorfic to SU(2), which will be shown below.

If we consider SU(2) =
{
g ∈ C2×2 : det(g) = 1, g†g = 11

}
, one can let g = x011 + i~x · ~σ

where ~x = (x1, x2, x3) and ~σ = (σ1, σ2, σ3). The condition

g†g = 11 (3.5)

then gives us that

|x0|2 + ~x† · ~x = 1. (3.6)

Furthermore, det(g) = 1 gives us that

X† ·X = 1 (3.7)

where X = (x0,x1, x2, x3). In order for these two to be compatible, X must be real since
otherwise the triangle inequality would not be satisfied (|X† ·X| ≤ |x0|2 +~x† ·~x). However,
S3 can be parametrized by X† ·X = 1 when embedded in R4. Thus SU(2) ' S3.

If we endow S3 with the standard round metric, we can define the Maurer-Cartan form

e = g−1dg. (3.8)

This can be seen as a one-form on S3 with values in the Lie algebra of SU(2), and hence
as relating one direction in space to one direction in the Lie algebra. It will then satisfy
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3.3. Boundary Conditions at Finite Distance

de = −e ∧ e

ω =
1

2
e

?3(e ∧ e) = e (3.9)

where ω is the connection on the sphere induced by the metric.

3.3 Boundary Conditions at Finite Distance

At finite distance, we instead have the boundary conditions

A = w + a

φ = y−1e+ ϕ (3.10)

where a, ϕ ∈ Ω1(W, ad(E)). These are shown to give a middle-dimensional solution space
in [5], if the boundary conditions at y = 0 are as below.

a = O(y)

ϕ = O(y) (3.11)

3.4 Spherically Symmetric Solutions

We can now make the maximally symmetric ansatz

A =
1

2
(1 + u)e

φ = se (3.12)

where u, s are functions of only y. Thus equations 3.2 reduce to differential equations for
u and s as follows:

∂yu = 2su

∂ys =
1

4
u2 − s2 − 1

4
. (3.13)

We have two critical points in the u− s plane, namely s = 0, u = ±1, which correspond
to the trivial configurations φ = 0, A = 0 and φ = 0, A = e respectively. In [5], it is
stated that these are related to each other by a gauge transformation, thus being gauge
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Chapter 3. Four-Dimensional Equations

Figure 3.1: The flow in the s − u-plane, where arrows denote direction of increasing y.
Only the interior of the space defined by the solutions flowing to or from the critical points
s = 0, u = ±1 will satisfy our boundary conditions. Solutions here will appear pairwise by
a solution parametrized by ε and its reflection through the s-axis.

equivalent. These fullfill the boundary conditions at y → ±∞. These points can be viewed
in the figure 3.1.

However, we cannot find solutions explicitly for all configurations of V = I × S3. Let
∆y denote the interval length. This will then be related to a parameter denoted by ε (note
that this has nothing whatsoever to do with the supersymmetry parameters of the theory)
by defining ε as the value of u at s = 0. This is shown in figure 3.1. In the interior of the
region bordered by the solutions flowing to and from the critical points s = 0, u = ±1, we
have solutions that satisfy our boundary conditions. These will be uniquely determined
by ε, and will all have a similar bell-shaped form as in figure 3.1. For a fixed value of the
interval length, we will have a pair of solutions, which will be related by reflection through
the s-axis. This can also be viewed as letting ε→ −ε. As ε approaches 1, the solutions will
approach the constant solution at the critical point s = 0, u = 1, and this is the solution
that corresponds to I = R+. The solution given by

u = 0

s = −1

2
tan

y

2
(3.14)

corresponds to the critical interval length ∆y = ∆ycrit = 2π.
In [5], it was also there stated that for ∆y > ∆ycrit, solutions will appear pairwise

related by a reflection in the u-axis, but these solutions are not gauge equivalent. This
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3.4. Spherically Symmetric Solutions

poses an interesting question as to why this is the case, especially since they disappear at
∆y < ∆ycrit. Thus we expect them to be connected by a tunneling instanton solution of a
set of five-dimensional localization equations obtained by T-dualizing the four dimensional
theory. How to obtain these equations has been described in [4]. This will later in this text
be shown to actually be the case, thus explaining the occurrence of pairwise, non-gauge
equivalent solutions.

However, first it is interesting to see what the solutions for ∆y > ∆ycrit look like. In
this thesis, we will obtain this by a series expansion around the exact solution in 3.14 in
the parameter ε. That parameter will later on be related to the interval length.

One can thus make the ansatz that

u = 0 + εu1 + ε2u2 +O(ε3)

s = s0 + εs1 + ε2s2 +O(ε3) (3.15)

where u0, s0 are given by 3.14.

One finds the functions u1, u2, s1, s2 etc by solving (3.13) order by order in ε. It is easy
to see that u must be a odd function of ε and similarly s must be an even function of ε.
Thus reducing our ansatz to

u = 0 + εu1 + ε3u3 +O(ε5)

s = s0 + ε2s2 + ε4s4 +O(ε6). (3.16)

Herein, u, s has been found up to order 4 in powers of ε. To exemplify the approach,
the calculations required to find u1 will be performed below, but for the others only the
result will be given since the calculations are straight-forward and follows the same pattern
as for u1.

To find u1, we consider the ∂yu-equation of 3.13 to first order in ε, thus giving us

∂yu1 = 2s0u1 = − tan
y

2
u1,

which leads to

u1(y) = cos2 y

2
u1(0), (3.17)

where u1(0) is a constant of integration which must be 1 by requiring that u(y) = ε when
s(y) = 0. The differential equations do become more complicated for higher powers of ε,
but will always be ordinary differential equations with only one unknown and can thus
always be solved by the method of integrating factor, at least numerically.

Solving these gives us:
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Chapter 3. Four-Dimensional Equations

u1(y) = cos2y

2

u3(y) =
1

96
siny(15y + (8 + cosy)siny)

s2(y) =
5

32

(y
2

cos−2y

2
+ sin

y

2
cos−1y

2

)
+

1

192

(
20cos

y

2
sin

y

2
+ 16cos3y

2
sin

y

2

)
s4(y) =

1

18432

(
427siny − 3sin2y − 24sin3y − sin4y + 645tan

y

2
−

15y
(
31 + 32cosy + 22cos2y + 4cos3y + 30ytany

2

)
1 + cosy

)
. (3.18)

These have later been used in order to find the solution to the time-dependent, five
dimensional equations in the next chapter.

3.5 The Relationship Between ε and the Interval Length

Here, the expansion parameter ε will be related to the interval length ∆y. This can be
done, again to any desired order in ε, but has here only been done to the order ε2.

∆y = −
∫

dy = −
∫ ∞
−∞

(∂ys)
−1 ds =

∫ ∞
−∞

ds
1
4

+ s2 − 1
4
u2

(3.19)

where we have used the expression for ∂ys in 3.13. However, one now wishes to express u
in terms of s. To do this, we first recall that

u(y) = ε cos2 y

2
+O(ε3)

s(y) = −1

2
tan

y

2
+O(ε2), (3.20)

giving

y(s) = −2 arctan(2s+O(ε2)) = −2 arctan(2s) +O(ε2). (3.21)

Inserted in the expression for u(y) one then obtains

u(s) =
ε

1 + 4s2
+O(ε3), (3.22)

resulting in
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∆y =

∫ ∞
−∞

ds
1
4

+ s2 − 1
4
( ε

1+4s2
)2 +O(ε4)

= 2π + ε2 5π

8
+O(ε4). (3.23)

It should be noted that this interval length will now be considered ”fixed” for a certain
value of ε and that it will not be changed by the time-dependent solutions that will be
considered in section 4.
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Chapter 4

Five-Dimensional Equations

We now wish to consider the problem from a five-dimensional viewpoint instead. This can
be done in several ways.

One way is to simply perform a lift from four to five dimensions, that is, claiming
that the four-dimensional theory is the theory obtained from considering a five-dimensional
maximally supersymmetric Yang-Mills theory compactified on a circle. This new coordinate
introduced here can be thought of as a time-coordinate. In this way, the boundary
conditions of the theory can as well be lifted in a straight forward way, giving us that
three of the scalar fields have the singular behavior at the boundary earlier described. This
can be interpreted as T-dualizing the theory from a D-brane point of view.

However, the maximally supersymmetric five-dimensional Yang-Mills theory is not
ultraviolet complete. It does, on the other hand, have a canonical completion in six
dimensions in the form of the (0,2)-theory. Thus this formulation will be more convenient
for our purposes.

The basic idea here is to obtain a five-dimensional version of our four-dimensional theory
by twisting of the six-dimensional (0,2) superconformal field theory associated to a simple
and simply-laced Lie group G. More specifically, one wishes to identify the localization
equations of the five-dimensional topological field theory on the five-manifold R× V , (i.e.
the equations describing a supersymmetric field configuration). By formulating the five-
dimensional maximally symmetric Yang-Mills theory in terms of a dimensionally reduced
theory from ten dimensions it was shown in [4] that one arrives at the five-dimensional
localization equations:

−F+ +
1

4
B ×B − 1

2
DyB = 0

Fyµ +DνBνµ = 0 (4.1)

together with

σ = 0. (4.2)

B is a self-dual two-form related to φ by

B0i = φi, Bij = εijkφk, i,j,k = 1,...3. (4.3)
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This can be done since φ here will be a self-dual two form on V with values in the adjoint
bundle ad(E) (derived from the GV bundle E → R × W × I). Hence we can use this
to define an anti-symmetric tensor field B as above (equation 4.3). We can also define a
cross-product operation on B:

(B ×B)µν =
∑
τ

[Bµτ , Bντ ] . (4.4)

The right hand side is here the commutator in the Lie algebra and is self-dual in B if B
is, thus B × B is also a self-dual two form with values in ad(E). Furthermore, F+ is here
the selfdual projection of the two-form F (on R×W ), defined by F+ = (1 + ?4)F/2, with
the Hodge star defined in the four-dimensional sense (?(dx0 ∧ dx1) = dx2 ∧ dx3).

These are now considered on the manifold R×W × I. In equation 4.1, one can make
the gauge choice A0 = 0. In this notation, the time component of the gauge field is also
equal to the component along the interval I of the one form φ, so this as well vanishes in
this gauge. We denote the remaining fields as A1...3, φ1...3, Ay = A4 = χ. The indices 1...3
are denoted by Latin letters. Indexes running from 0...3 are denoted with Greek letters.
The 0th direction is a time-like dimension, and will thus be denoted by t.

First, let us now consider the 0,i component of the first one of the equations in 4.1:

1

2
(F0i + εijkFij)−

1

4
(B ×B)0i −

1

2
(∂yB0i + [Ay,B0i]) = 0 (4.5)

where we have

(B ×B)0i =
∑
τ

[B0,τ , Biτ ] =
∑
j

[φj, φk]εijk = ?3(φ ∧ φ). (4.6)

Thus this results in that 4.5 can be written as

∂tA = ?3(F − φ ∧ φ) + Dµφ
µ. (4.7)

Now consider the µ = 0-part of the second of the equations 4.1.

Fy0 +DνBν0 = 0

which leads to

∂tχ = −∂iφi + [Ai,φi]. (4.8)

Similarly, the µ = i part can be written as:

Fyi +DνBνi = 0
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4.1. The special case W = S3

giving

∂yAi − ∂iχ+ [χ,Ai] + D0B0i + DjBji = 0

which leads to

∂yAi − dAχ+ ∂tφi + djεijkφk = 0

and then one finally obtains

∂tφ = ?3dAφ− Fy. (4.9)

Hence in the A0 = 0-gauge, the five-dimensional localization equations can be written
as

∂tA = − ?3 (F − φ ∧ φ) + dχφ

∂tφ = ?3dAφ− Fy
∂tχ = − (?3 (dA ?3 φ)) . (4.10)

This is the general appearance of these equations, since we in five dimensions do not
have a vanishing theorem that sets χ ≡ 0 However, it is here worth noting that χ is a
0-form with values in the Lie algebra. This will aid when specializing to the spherically
symmetric case.

4.1 The special case W = S3

We will now consider spherically symmetric solutions of the equations 4.10 in the case where
W = S3. This is interesting because it might shed some light on the phenomenon that
pairwise, non-gauge equivalent solutions occur in the four-dimensional equations. Thus our
goal here is to find a solution in five dimensions which interpolates between the solution
pairs in four dimensions. However, there is no spherically symmetric, Lie algebra valued
non-vanishing one-form so this means that we in this case will have χ ≡ 0. This will
simplify the equations significantly, giving us:

∂tA = − ?3 (F − φ ∧ φ) + ∂yφ

∂tφ = ?3dAφ− ∂yA
χ ≡ 0. (4.11)

Note that the right hand side in these equations is exactly the four-dimensional equations.
Thus for time-independent solutions, the four-dimensional equations will be satisfied.
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In the special case of spherical symmetry, we have, as in four dimensions

A =
1

2
(1 + u)e

φ = se (4.12)

where u and s are functions of y,t, and e is the Maurer-Cartan form satisfying equation
3.9. By inserting this into 4.11 we obtain

∂tu = 2∂ys−
1

2
u2 + 2s2 +

1

2

∂ts = −1

2
∂yu+ su. (4.13)

In the four dimensional case, we saw that s(y) only contains even powers of ε, and
similarly, the function u(y) only contains odd powers of ε. It stands to reason that this
should be the case even in the time-dependant situation, which means that, in the five-
dimensional case we cannot simply compare the equations order by order. Thus we here
must make an important variable transformation, that is

t→ τ = εt (4.14)

where ε is the parameter of the expansion around the exact solution for critical interval
length. This will then effect the time-derivative terms in 4.15, and will give us the following
equations for s and u as functions of y and τ .

ε∂τu = 2∂ys−
1

2
u2 + 2s2 +

1

2

ε∂τs = −1

2
∂yu+ su. (4.15)

We can now solve the equations order by order in ε .
We search for solutions on the form

s(y,τ) = s0(y) + ε2(s̃2(y) + d2(y, τ)) + ε4(s̃4(y) + d4(y, τ)) +O(ε6)

u(y, τ) = εu1(y,τ) + ε3u3(y,τ) +O(ε5) (4.16)

where s̃(y) denotes the stationary part (the four dimensional solution), and d(y, τ) the
dynamic part.

The Boundary Conditions

We now need to consider what boundary conditions will be imposed on u and s respectively.
When we go from four- to five dimensions, the boundary conditions in the y-direction does
not change. This means that we still require the s −−−→

y→y0
∞ and s −−−→

y→y1
−∞, together

with the fact that u = 0 at the interval ends. y0, y1 here denote the interval endpoints.
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4.1. The special case W = S3

In the time-direction though, our boundary conditions can be stated as requiring the
five-dimensional solutions to approach the four-dimensional as t → ±∞. This is satisfied
by requiring that the dynamic part vanishes as t → ±∞. Furthermore, the dynamic part
of the solution cannot have any poles since any occurrence of poles herein would result in
a distortion of the interval length, which must be fixed for fixed value of ε.

Moreover, the appearance of the four-dimensional solutions leads us to believe it is
reasonable to search for solutions satisfying s(y,τ) = −s(−y, τ) and u(y,τ) = u(−y, τ).

Solving the Equations Order by Order

Thus if we consider the equations in order ε we obtain

0 = s0(y)u1(y,τ)− ∂yu1(y, τ).

which if we recall that s0(y) = −1
2

tan(y
2
) gives us

u1(y,τ) = cos2(
y

2
)T1(τ). (4.17)

Here, T1 is an integration constant that is allowed to depend on the transformed time, τ .
In order to find this time-dependence, we go to order ε2:

cos2(
y

2
)∂τT1 = 2∂y(s̃2 + d2)− 1

2
cos4(

y

2
)T2

1 + 4(s0(s̃2 + d2)). (4.18)

By using the fact known from the four dimensional equations, namely that 2(∂ys̃2 −
tan(y

2
)s̃2) = 1

2
ũ1

2, where once again the ˜ denotes the four dimensional solution (stationary
solution) we obtain a non-linear partial differential equation. However, if this PDE is
considered for a fixed value of τ we obtain an ordinary differential equation in y, and we
can thus solve it in the standard manner of multiplication with integrating factor.

∂yd2 − tan(
y

2
)d2 =

1

2
cos2(

y

2
)(∂τT1 +

1

2
cos2(

y

2
)(T2

1 − 1))

which leads to

d2 =
1

2

(
∂τ (T1) +

5

12
(T2

1 − 1)

)
cos−2(

y

2
)

∫
cos4(

y

2
)dy +

1

12
sin(

y

2
) cos3(

y

2
). (4.19)

The singular terms in d2 will be a result of the integral above, which will give rise to poles
of first- as well as second order. Thus in order to fulfill the regularity assumption of d2, we
must require that, for all values of τ we have

∂τ (T1) +
5

12
(T2

1 − 1) = 0
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giving

T1 =
e

5τ
6 − C

e
5τ
6 + C

. (4.20)

However, we can here choose C to be 1 without loss of generality since it is simply a
consequence of translations in τ . This gives us:

T1 = tanh(
5τ

12
)

u1 = cos2(
y

2
)T1(τ) = cos2(

y

2
) tanh(

5τ

12
). (4.21)

If we insert this into 4.19 we obtain:

T2 = cosh−2(
5τ

12
)

d2(y,τ) = − 1

12
cosh−2(

5τ

12
) sin(

y

2
) cos3(

y

2
). (4.22)

It is clear here that this time-dependent solution interpolates between the two four-
dimensional solutions with parameter ±ε, since we see that

u1(y,τ)
τ→±∞−−−−→ ±ũ1(y) (4.23)

s2(y,τ) = s̃2(y) + d2(y, τ)
τ→±∞−−−−→ s̃2(y).

Thus this is the desired time-dependent solution to lowest order in ε. This is the general
process for obtaining the time-dependent s and u functions to any order: By first finding the
structure of the u2n−1 by using the equation for order ε2n−1, and then inserting this solution
into the equation for order ε2n together with the knowledge that the stationary parts of s
must fulfill the four dimensional equations, one will obtain an ordinary differential equation
for d2n for all values of τ . However, in general, this will have double poles, which needs
to be canceled by the regularity condition of d2n. Imposing this will result in an ordinary
differential equation for t2n−1, which when solved will give both the full expression for u2n−1

and s2n. During this process, several integration constants will appear, but in cases where
these must not vanish by the parity of u and s, they turn out to simply be the result of the
possibility of translation in τ and thus can be chosen to 1. In this manner, it is possible to
find the time-dependence recursively to any desired order in ε.

In this work, the explicit form of the ε3 and ε4-terms have also been determined. This
was done by the same procedure.

In order to facilitate the calculations, a change of variable from y to x has been
performed. This will have no profound consequences but is simply a matter of convenience.
They are related by:

x = sin
y

2
. (4.24)
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By solving the ε3-part of 4.15, one obtains

u3(y,τ) =
(
1− x2

)(
1

72
T1x

(
(27− 22T3)x+ 6(−1 + T2)x3 +

45arcsinx√
1− x2

)
+ T3(τ)

)
. (4.25)

As before, T1 and T2 simply denote the τ -dependent factors in u1 and s2 respectively.
The τ -dependence of T3 is explicitly shown here in order to emphasize that that factor is
still an unknown as opposed to T1 or T2.

By then solving the ε4-part of 4.15 as a ordinary differential equation of y for a constant
value of τ , one finds the general expression of the time-dependent part of s2(x, τ) as

d4(x,τ) =
1

207360(1− x2)
D4(x, τ), (4.26)

whereD4 is an expression containing factors of
√

1− x2 and arcsinxmultiplying polynomials
in x where the coefficients contain T1,T2,T3 and ∂τT3. This has here been written below
in order to facilitate for the reader as much as possible without loosing any information.

D4(x, τ) = x
√

1− x2
(
c0 − c2x

2 + c4x
4 − c6x

6 + c8x
8
)

+

15
(
c̃0 + c̃2x

2 − c̃4x
4 + c̃6x

6
)

arcsin(x)+

4320
(

T1

(
x
√

1− x2
(
33− 26x2 + 8x4

)
+ 15arcsin(x)

)
T3(τ)+

6
(
x
(
5− 2x2

)√
1− x2 + 3arcsin(x)

)
T′3(τ)

)
(4.27)

where

c0 = −15
(
801 + T2

1(−801 + 46T2)− T2(477 + 104T2)
)

c2 = 10
(
1233 + T2

1(−1233 + 398T2) + T2(−1269 + 872T2)
)

c4 = 8
(
3411 + 2T2(−891 + 458T2) + T2

1(−3411 + 1786T2)
)

c6 = 144
(
99 + 14(−2 + T2)T2 + T2

1(−99 + 74T2)
)

c8 = 288
(
6 + 6T2

1(−1 + T2) + (−2 + T2)T2

)
(4.28)

and

c̃0 = 801− 801T2
1 − 477T2 + 46T2

1T2 − 104T2
2

c̃2 = 2160
(
−2 + 2T2

1 + T2

)
c̃4 = 1080

(
−4 + 4T2

1 + T2

)
c̃6 = 1440

(
−1 + T2

1

)
. (4.29)
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As can be seen above the general structure of D4 is first one term with a factor of
x
√
x multiplying a polynomial of degree 8 in x with coefficients completely specified by

the known time-dependence. Then we have one term which is polynomial in degree 6 in
x (again with coefficients totally specified by known time-dependence) multiplied by an
arcsin(x)-factor. Lastly we have the terms involving the unknown time-dependence, one
consisting of a factor of x

√
x times a polynomial of degree 4 in x, plus a term of arcsin(x),

all multiplying the unknown time-dependence T3(τ), and one consisting of a factor of x
√
x

times a polynomial of degree 2 in x, plus a term of arcsin(x) multiplying the τ -derivative
of T3(τ). This will always be the general structure of the d2n(x, τ)-piece of the solution,
though the degrees of the polynomials will increase.

We can now impose the condition that this expression must be free of singularities, that
is, D4(x,τ) must have a root at x = ±1 in order to prevent the possible poles that will
arise there due to the denominator.

It is worth noting that we in the previous calculation, that is in order ε2 had to worry
about a potential double pole also appearing. However, the fact that we here instead have
two single poles is a fact only due to that we have changed variables. The general solutions
does thus not become less singular for each order, so this method is applicable to all orders
of ε.

The non-singularity-requirement of d4 gives us

15

2
π
(
−639 + 639T2

1 + 603T2 + 46T2
1T2 − 104T2

2 + 4320T1T3(τ) + 5184T′3(τ)
)

= 0 (4.30)

This condition makes sure the vanishing of both poles. It gives us:

T3(τ) = cosh−2 5τ

12

(
− 5τ

2592
+

5

72
tanh

5τ

12

)
(4.31)

Giving us

u3(x,τ) =
(
1− x2

)(
−

sech2 5τ
12

(
5τ + 36 (−5 + 22x2) tanh5τ

12

)
2592

+
1

24
xtanh

5τ

12

(
9x+

15arcsinx√
1− x2

− 2x3tanh2 5τ

12

)) (4.32)

d4(x, τ) =− 1

31104

(
−1 + x2

)
sech4 5τ

12

(
3
(
x
√

1− x2
(
−85− 378x2 + 72x4

)
− 135

(
−1 + 4x2

)
arcsinx

)
cosh

5τ

6
− 5

(
3x
√

1− x2
(
−19 + 18x2

)
+ 81

(
−1 + 4x2

)
arcsinx+ x

√
1− x2τsinh

5τ

6

)) .

These can of course be expressed in terms of y again simply by using 4.24. This will
then give us
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Figure 4.1: The time-dependent solution that interpolates between a stationary solution
corresponding to −ε and the stationary solution corresponding to ε. The direction inwards
in the paper is the direction of increasing τ . The time-dependent solution can here clearly
be seen as interpolating between the four-dimensional solutions.

u3(y,τ) =− 1

2592
cos2y

2

(
sech2 5τ

12

(
5τ − 36(−6 + 11cosy) tanh

5τ

12

)
+

54tan
y

2
tanh

5τ

12

(
−15y − 9siny + 2

√
2
√

1 + cosy sin3y

2
tanh2 5τ

12

))
d4(y,τ) =− 1

62208
cos2y

2
sech4 5τ

12

(
3cosh

5τ

6

(
−135y + 540ysin2y

2
+

378
√

2
√

1 + cosy sin3y

2
− 72
√

2
√

1 + cosy sin5y

2
+

85siny) + 5

(
−81y + 324ysin2y

2
+ 54
√

2
√

1 + cosy sin3y

2
− 57siny + τsiny sinh

5τ

6

)).
(4.33)

These do satisfy the conditions that this time-dependent solution is an instanton tunneling
between the two (non-gauge-equivalent) solutions in one ”solution pair” as described in
chapter 3 since we have
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u3(y,τ)
τ→±∞−−−−→ ±ũ3(y) (4.34)

s4(y,τ) = s̃4(y) + d4(yτ)
τ→±∞−−−−→ s̃4(y)

This can also be seen in figure 4.1. We can there see how our five-dimensional solution
interpolates between the solutions in four dimensions.Thus we have now found an explicit
form of:

u(y,τ) = εu1(y, τ) + ε3u3(y, τ) +O(ε5)

s(y,τ) = s0(y) + ε2(s̃2(y) + d2(y, τ)) + ε4(s̃4(y) + d4(y, τ)) +O(ε6) (4.35)

where s̃2(y) and s̃4(y) are the time-independent functions as obtained in 3.18. u1(y, τ) and
d2(y, τ) are given in 4.23, and u3(y, τ) and d4(y, τ) are the functions just obtained in 4.33

This method can be used to find higher ε-dependence as well, and can be done order
by order to any desired order of ε. The variable y will be inconvenient for obtaining higher
order ε-dependence. As seen here, a variable transformation to x was performed (4.24),
but there may be other variable changes that could facilitate calculations further.

4.2 Outlook

A general feature here is that the maximally symmetric solutions disappear when the
interval length is short enough. This is a feature of the equations that may be interesting to
investigate for general three-manifolds W , since it may be a general property. Furthermore,
the isolation of the solutions can also be investigated.
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