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A semiclassical model is developed to describe plasmon–electron coupling and electronic damping
of surface plasmons. It is compared with the ab initio linear response calculations for metallic thin
films in the jellium approximation and for a realistic crystalline Mg(0001) surface. The semiclassical
model is able to reproduce the quantum oscillations of plasmon linewidth, which was obtained
in the previous ab initio calculations. In addition, state-resolved analysis reveals the origin of
these oscillations, which result from superposition of the short-period oscillations of individual
electron–hole pair transitions. The semiclassical model is further applied to a crystalline Mg(0001)
surface, where linewidth dispersion of the surface plasmon is calculated and shows good agreement
with earlier ab initio calculation and experiment. Our results suggest that this semiclassical approach
is quite promising for the quantitative description of plasmon–electron coupling and associated
processes such as surface-enhanced Raman scattering, light emission, and fluorescence. © 2011
American Institute of Physics. [doi:10.1063/1.3575185]

I. INTRODUCTION

Many optical and electronic phenomena at metal
surfaces1–3 and in nanostructures4–11 are dominated by the
collective excitations of the conduction electrons, namely, the
surface plasmon. How long can such oscillations be sustained
and how these oscillations decay at surfaces determine the
outcome and efficiencies of various dynamical processes.
For example, it is known that lifetime of surface plasmons
sensitively affects the field enhancement in surface-enhanced
Raman spectroscopy (SERS) and fluorescence. At solid
surfaces, the lifetime of surface plasmon at finite momentum
transfer is dominated by Landau damping, i.e., the decay of
surface plasmons into electron–hole (e–h) pairs. Although
the energy dispersions of surface plasmons can often be
described by classical electrodynamics,6, 7 the damping of
surface plasmons is purely a quantum mechanical process
and is governed by the coupling between the surface plas-
mons and e–h pairs. This process is unfortunately not well
understood even for the simplest crystalline surfaces.

So far, quantitative and systematic measurement of plas-
mon lifetime (or the linewidth) has been carried out mostly
in metal thin films and overlayers.12–18 These measurements
indicate that the plasmon linewidths depend sensitively on
the interface structures and film thicknesses. For example, the
plasmon linewidth of Ag films deposited on a Cu(111) surface
changes by more than an order of magnitude when the film
thickness is increased from 2 to 22 monolayers (ML), while
the plasmon energy varies only by less than 10%.15 Further-
more, this thickness dependence is nonmonotonic, but shows
drastic oscillations as a function of thickness.13 Similar quan-
tum oscillations in Landau damping have been observed in
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metal nanoparticles19–22 and thin films.23, 24 However, the os-
cillation period for thin films 1.7 ∼ 2.0λF, where λF is the
Fermi wavelength of electrons, is much longer than that in
the nanoparticles. It is also about three times longer than the
universal period λF/2 observed in many properties of metal
thin films.25–30 In the previous study, this oscillation period
was qualitatively associated with the dynamical Friedel os-
cillation of the bulk electron gas.31 This explanation is ques-
tionable because electrons in the thin films are not bulk-like
due to the confinement perpendicular to the films. The origin
of such long-period oscillations and its difference from that
of nanoparticles are still unknown. In particular, it remains
unclear whether and how this oscillation is connected to the
quantum well states (QWS) normal to the films.

Theoretically, plasmon–electron coupling (PEC) and
electronic damping have usually been described by the fol-
lowing two different approaches. (1) One approach is ab intio
calculations based on the linear response time-dependent
local density approximations (LR-TDLDA), where the
linewidth of the surface plasmon can be extracted from the
lineshapes of the loss functions. The extracted linewidth mea-
sures the damping rate of surface plasmon by all electrons in
the system. However, it gives no information about how the
plasmon excitations couple with and decay into individual
e–h pairs.35 Such an approach lacks physical transparency and
cannot be applied to processes that require specific coupling
between electrons and plasmon, for example, SERS. In addi-
tion, application of LR-TDLDA has been limited to a few sim-
ple and jellium surfaces32–34 and small nanostructures36, 37 due
to its high computational cost. (2) In contrast, model Hamil-
tonian of PEC (Refs. 20–22) has been developed in the liter-
ature. This approach is able to specify explicitly the coupling
between surface plasmons with each and every electron–hole
pairs. It also avoids the time-consuming computations of
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the many-body response functions. Such a semiclassical
approach has been used for the description of plasmon
damping of the Mie resonances in metallic nanoparticles.20–22

It is thus interesting to find out whether this approach can be
extended to surfaces, thin films, and other geometries.

This paper presents a semiclassical model of plasmon–
electron coupling and Landau damping for metal thin films
and surfaces, based on the quantization of the plasmon hy-
bridization (PH) model of Nordlander and co-workers. It is
compared and calibrated with ab initio LR-TDLDA calcula-
tions in the jellium model of thin metal films and a crystalline
Mg(0001) surface. The semiclassical model is able to repro-
duce the oscillations of plasmon linewidth, which was ob-
tained in the earlier LR-TDLDA calculations. Furthermore,
state-resolved analysis from the semiclassical model reveals
the origin of these oscillations, which result from superpo-
sition of the short-period oscillations in individual e–h pair
transitions. The semiclassical model is further applied to a
crystalline Mg(0001) surface, where the linewidth dispersion
of surface plasmon is calculated and shows good agreement
with earlier ab initio calculation and experiment. Our results
suggest that the semiclassical approach is quite promising for
the quantitative description of plasmon–electron coupling and
associated processes such as surface-enhanced Raman scatter-
ing, light emission, and fluorescence in quasi-2D systems.

II. THE SEMICLASSICAL MODEL

Semiclassical models of PEC are usually based on quan-
tization of the classical plasmon fields.38, 39 Our model is ob-
tained by quantization of the PH model of Nordlander and
co-workers.6, 7, 40 From the PH model, the Hamiltonian of the
surface plasmon of thin films40 can be written as

H = n0me

2A

∑
s=±

∑
q‖

q‖(1 − e−2q‖ D)

× {
Ṁ∗

q‖s Ṁq‖s + ω2
q‖s M∗

q‖s Mq‖s
}
, (1)

where n0 is the electron density, me is the electron mass, D is
the thickness, and A is the normalization area of the film. This
Hamiltonian consists of two branches of surface plasmons, a
low-energy symmetric mode (−) and a high-energy antisym-
metric mode (+), which result from hybridization between
the surface plasmons of the two surfaces.6, 7 The dispersions
are given as ωq‖± = ωsp(1 ± e−q‖ D)1/2, and ωsp is the surface
plasmon frequency. The collective coordinates with momen-
tum transfer q‖ of the two modes, Mq‖±, can be transformed
into

Mq‖± =
√

¯

2q‖n0meωq‖±(1 − e−2q‖ D)
(aq‖± + a†

−q‖±).

(2)

From the quantization condition for the annihilation (aq‖±)

and creation operator (a†
q‖±),

[aq‖±, a†
q′

‖±] = δq‖q′
‖ , (3)

the Hamiltonian of Eq. (1) is now quantized as

H = 1

A

∑
s=±

∑
q‖

¯ωq‖s

(
a†

q‖saq‖s + 1

2

)
. (4)

The induced potential of the classical plasmon field,40

δV± (x) = 2πn0e2
0√

2A

∑
q‖

Mq‖±(1 ± e−q‖ D)

× (e−q‖|z| ∓ e−q‖|z+D|)eiq‖·x‖ , (5)

can also be quantized accordingly:

δV± (x) =
∑

q‖

v±(q‖, z)(aq‖± + a†
−q‖±)eiq‖·x‖ , (6)

where v±(q‖, z) = e0

√
[π¯ωq‖±/2q‖ A(1 ∓ e−q‖ D)](e−q‖|z|

∓ e−q‖|z+D|), and e0 is the electron charge. This potential has
the same spatial dependence as its classical form in Eq. (5)
but has now attached a quantum amplitude after quantization.

The damping rate for the surface plasmons is calculated
from Fermi’s golden rule as

�(q‖, ωq‖±) = 2π

¯

∑
k‖

∑
n,n′

fnk‖ (1 − fn′k‖+q‖)

× |〈n′k‖ + q‖, mq‖± = 0|
× v±(q‖, z)aq‖±eiq‖·x‖ |nk‖, mq‖± = 1〉|2

× δ(¯ωq‖± + εnk‖ − εn′k‖+q‖), (7)

where mq‖± are quantum numbers of plasmons, and |nk‖〉
(|n′k‖ + q‖〉) is electron (hole) state with eigenenergy εnk‖
(εn′k‖+q‖ ) and occupation number fnk‖ ( fn′k‖+q‖ ). The Lan-
dau damping rate given by Eq. (7) shows that it is determined
by two major ingredients: (i) the coupling potential, which is
specified in Eq. (6), and (ii) the eigenenergies and wavefunc-
tions of the e–h pairs involved in the damping. The latter can
be found in previous publications.23, 24

Plasmon–electron coupling of a semi-infinite surface can
be simply obtained from the asymptotic limit D → ∞ of the
thin film model. In this limit, ωq‖± = ωsp, and the coupling
potential v(q‖, z) = e0

√
(π¯ωsp/q‖ A)e−q‖|z|. The z = 0 plane

is chosen at the dynamical image plane obtained from LR-
TDLDA,2, 23 where the plasmon induced density and potential
are peaked. The damping rate of surface plasmon is thus

�(q‖, ωsp) = 2π

¯

∑
k‖

∑
kz ,k ′

z

fkzk‖(1 − fk ′
zk‖+q‖ )

× |〈k ′
zk‖ + q‖, mq‖ = 0|v(q‖, z)

× aq‖e
iq‖·x‖ |kzk‖, mq‖ = 1〉|2

× δ
(
¯ωsp + εkzk‖ − εk ′

zk‖+q‖
)
. (8)
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III. RESULTS AND DISCUSSION

A. Landau damping of surface plasmon in thin films

To find out how the semiclassical PEC model works for
thin films, we calculated the Landau damping of surface plas-
mon in the rs = 3 jellium slab with variable thicknesses. This
system was studied in early publications23, 24 using the LR-
TDLDA approach and is now used as a model system for cal-
ibration of the semiclassical model. Metallic thin films are
described by the jellium model as in the previous studies.23, 24

The electron density of rs = 3 with Fermi wavelength
9.82 a.u. is chosen to model silver without considering its d
electrons. Inclusion of background polarization should lead to
significant redshift of plasmon energies. This is, however, not
the focus of this work. A vacuum layer of 12λF (6λF on each
side) was found to give enough number of scattering states,23

yielding converged loss spectra in LR-TDLDA and the semi-
classical linewidth. A broadening parameter of 27 meV is
used in the calculation of χ0 to avoid divergence and to speed
up the calculation. This parameter is much smaller than the
physical linewidths extracted from the response functions and
does not affect the results.

Figure 1 shows the eigenenergies of the QWS normal
to the films. These QWS together with the 2D free-electron
bands form the 3D band structures and wavefunctions of the
thin films. The eigenenergies are shown as a function of thick-
ness in unit of λF. The zero of the energy is referred to the vac-
uum level. The shaded area marks the occupied states, while
the upper part is the unoccupied states. These spectra were
generated in the same way as in previous calculations.23, 24

It is clear that the Fermi level (or the work function) oscil-
lates with a period of λF/2. This oscillation results from the
quantum size effect of the thin films and is generally respon-
sible for the quantum oscillations in work function, electron–

2 4 6 8 10 12
−5

−4

−3

−2

−1

0

1

Thickness (λ
F
)

E
ne

rg
y 

(e
V

)

FIG. 1. Calculated eigenenergies of QWS in metallic films with rs = 3.0
around the Fermi level. A vacuum region of 12λF is used for all thicknesses.
The shaded area indicates the occupied states, whose Fermi energy oscillates
with a period of λF/2. The discretized scattering states above the vacuum
level (at zero) are also displayed. These continuum states are generated si-
multaneously as the bound states.
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FIG. 2. Full width at half maximum of the symmetric surface plasmon mode
as a function of film thickness at q‖ = 0.10 a.u. calculated by TDLDA (open
circles) and the plasmon–electron coupling model (squared line).

phonon coupling, and transition temperatures of superconduc-
tivity observed in various experiments.

We focus on the damping rate of symmetric branch only,
although calculations and comparison have also been done
for the antisymmetric mode. Figure 2 shows the full width
at half maximum (FWHM) of the symmetric plasmon mode
extracted from LR-TDLDA and from the semiclassical model
given by Eq. (7). Here the semiclassical linewidth is defined
as ¯�. The two linewidths are in good agreement at all thick-
nesses that were calculated. Both linewidths oscillate with the
thickness, although the oscillations are more drastic in the
semiclassical model at large thicknesses. In the semiclassical
calculation, the energy dispersion of the symmetric plasmon
is taken from the classical expression, which is close to the
dispersion given by LR-TDLDA.23, 24 Test calculations have
also been done for the FWHM at other q‖ values for both
symmetric and antisymmetric modes, which are all in good
agreement with the LR-TDLDA results. It should be noted
that the computations by the PEC model involve only the
band structures and wavefunctions of the ground state, and
avoids the linear response calculations, which is computation-
ally much more demanding. The good agreement between the
PEC model and LR-TDLDA indicates that the PEC model
captures the essential physics of plasmon–electron coupling
and gives reliable damping rate of surface plasmons. It is
therefore possible and appealing to apply this model to de-
scribe plasmon–electron coupling in larger systems and more
realistic structures in the future.

In order to gain insight into the quantum oscillations
shown in Fig. 2, especially its large period, we carried out
a state-resolved analysis of the damping rate using the semi-
classical model as shown in Fig. 3. This is only possible in
the semiclassical model, where the damping rate is calculated
by the golden-rule expression. And contributions from each
initial state (subband) can be calculated and analyzed sepa-
rately. The total FWHM for q‖ = 0.1 a.u. is again given as
the squared line, which has an oscillation period of about 2λF.
The partial damping rate corresponding to transitions from
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FIG. 3. Damping rates calculated by partial summation of different initial
states including successively the HOMO state (nocc = 1), HOMO-1 (nocc
= 2), HOMO-2 (nocc = 3), HOMO-3 (nocc = 4), and HOMO-4 (nocc = 5)
of the quantum well states below the Fermi levels. These states contribute
dominantly to the total width (squared line). Superposition of individual tran-
sitions gradually destroys the λF/2 oscillation period associated with single
particle excitations, and gives rise to a large period of about 1.7 ∼ 2.0λF that
is characteristic for the dynamical Friedel oscillations.

the highest occupied state (HOMO) is given by the bottom
line in the figure (nocc = 1). This single-band rate oscillates
with a period of λF/2, the universal period observed in work
function and other quantities. Obviously, this short period is
a signature of single-particle effect. Including one more band
beneath the HOMO-1 state, the partial damping rate is shown
as the second line from the bottom (nocc = 2). Short-period
oscillations are still visible at large thicknesses. However, at

small thicknesses, this partial rate is almost comparable to the
total damping rate for up to D = 2.5λF. In this regime, super-
position of the two bands almost destroys the λF/2-period os-
cillations. As a result, oscillations with a large period start to
emerge. Including more occupied states into the damping rate
(nocc = 3, 4), more oscillations with the large period appear
at increasing thicknesses. This analysis clearly shows trans-
formation from individual e–h-like excitations with a period
of λF/2 to the collective oscillation, which has a period of
about 2λF. It also demonstrates how collective behavior devel-
ops from the superposition of individual e–h pair excitations.
The analysis in Fig. 3 reveals the origin of the linewidth os-
cillations with the film thickness in a much more transparent
manner.

B. Damping of surface plasmon at Mg(0001) surface

Next we apply the semiclassical model to a realistic crys-
talline Mg(0001) surface, where the energy dispersion and the
damping rate of the surface plasmons have been measured ex-
perimentally. It serves as a prototype system for testing the
PEC model in extended systems beyond the jellium approxi-
mation.

The Mg(0001) surface is modeled by a slab of 28 layers
of Mg atoms. The lattice constants are chosen from exper-
imental data, i.e., a = 3.21 Å and c = 5.21 Å. A supercell
with a vacuum region corresponding to 8 ML of Mg atoms
is included in the ground state discrete Fourier transform
calculation. The Troullier–Martins pseudopotential41 is used
for Mg. The wavefunctions are expanded in plane waves with
an energy cutoff at 12 Ry. The Brillouin zone integration
is performed by summation over a 90 × 90 × 1 k-point
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FIG. 4. (a) Surface loss function of Mg(0001) as a function of momentum transfer along �M. The calculation was done in LR-TDLDA using a 28 ML
magnesium slab. (b) Comparison of surface plasmon dispersions obtained by TDLDA (squares), early calculation by Silkin et al. (Ref. 33) (diamonds), and ex-
perimental data (Ref. 44). (c) FWHM dispersions obtained by TDLDA (squares), the model (squared line), and experimental data (Ref. 44). In the semiclassical
model, we used the TDLDA plasmon dispersion in panel (b) and the dynamical image plane zdip = d(q‖, ω) (Refs. 24 and 2) which is about 1 a.u. outside the
surface, as the reference plane in the coupling potential.
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mesh, yielding high resolution of momentum transfer in
linear response calculations. Response functions are cal-
culated within the mixed momentum-coordinate scheme.34

Ceperley–Alder’s local density functional42 parameterized
by Perdew and Zunger43 is used throughout all calculations.

Silkin et al. have shown that band structure has to be
taken into account in order to obtain reliable surface plasmon
linewidths for Mg(0001) surface.33 Starting from the ground
state band structure, we performed both LR-TDLDA and
semiclassical calculations for the energy dispersion and the
rate of Landau damping. The results are shown in Fig. 4.
Panel (a) shows the surface loss spectra with momentum
transfers along the �M direction of the surface Brillouin
zone. The energy dispersion and FWHM linewidth are given
in panels (b) and (c) as a function of momentum. The energy
dispersions given by TDLDA are in good agreement with
experimental data44 and the early calculations by Silkin and
collaborators. The Landau damping rate in the semiclassical
model is calculated by using the TDLDA plasmon dispersions
found in panel (b). Using the classical energy dispersion does
not change appreciably the damping rate. Once again, the
FWHM given by the semiclassical model is in quite good
agreement with that of TDLDA and experiment. Figure 4
shows that the PEC model is able to reproduce the damping
rate of the surface plasmons on the crystalline surfaces.

IV. CONCLUSIONS

In summary, we have presented a semiclassical model of
plasmon–electron coupling and electronic damping of surface
plasmons in the metallic thin films and the Mg(0001) surface
with realistic band structures. The semiclassical PEC model
successfully reproduces the ab initio LR-TDLDA results. In
the jellium approximation of the thin films, the linewidths
of the surface plasmons show an oscillatory dependence on
the film thickness with a period of 1.7 ∼ 2λF. State-resolved
analysis by the PEC model revealed that this long-period
oscillation results from the superposition of individual e–h
pair transitions. We further extended our study to crystalline
Mg(0001) surface, where realistic band structure is taken into
account. The damping rates given by the semiclassical model
agree well with the ab initio calculations and experimental
data. This suggests that the semiclassical model captures the
essential physics of plasmon–electron coupling of realistic
metal systems, and offers a promising approach for the de-
scription of dynamical processes involving plasmon–electron
coupling near surfaces of nanostructures.
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