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Abstract — High-resolution basis functions are em-
ployed for accurate modelling of electromagnetic
scattering from dielectric objects. It is shown that
the field radiated by each of these micro basis func-
tions resembles the dipole field, even in the imme-
diate vicinity of its cubic support. This, in turn,
significantly eases the computational burden of gen-
erating the off-diagonal elements of the moment
matrix. Furthermore, the on-diagonal self-term is
known analytically and only governed by the electro-
static field (electrodynamic part is negligible). This
method has been hybridised with the Characteris-
tic Basis Function Method (CBFM) and the Adap-
tive Cross Approximation (ACA) algorithm to re-
duce both the size and generation time of the mo-
ment matrix equation. It is demonstrated that the
proposed method, herein referred to as MEDM, is
not only fast and memory efficient but it also gener-
ates an accurate solution of scattering problems as-
sociated with complex-shaped, thin and electrically
large objects.

1 INTRODUCTION

In various low-loss RF applications, it is impor-
tant to evaluate the electromagnetic scattering and
power dissipation losses accurately [1], for instance
in dielectric objects such as radomes for radio as-
tronomy. However, the numerical analysis becomes
a burdensome task for most commercially available
CEM tools if the dielectric is thin, complex-shaped,
and electrically large.
Taking a cue from [2], we propose to employ so-

called micro-domain basis functions—for modelling
the volume equivalent current—that are one-to-two
order smaller in size than conventional basis func-
tions. The proposed basis functions can approxi-
mate the boundaries of arbitrary-shaped geometries
accurately by representing them with a cubic vol-
ume of uniform current. Furthermore, since each
micro-domain basis function is electrically small,
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the field that it generates closely resembles that of
the dipole field. This field is known in closed form
and can be tested by using the collocation method,
and by employing the basis functions in the adja-
cent cells, since these also have an electrically small
support. Finally, the field tested over its own sup-
port can be computed in closed form by retaining
just their quasi-static contributions.

The major drawback of this approach, however,
is that the number of basis functions increases dra-
matically in comparison with that when the conven-
tional bases are employed. To mitigate this prob-
lem, we first employ the CBFM, [3], which reduces
the number of independent basis functions signifi-
cantly, and then hybridise it with the ACA algo-
rithm for rapid construction of the reduced ma-
trix [4].

The resulting numerical scheme is easy to imple-
ment; yet it is accurate, and can handle large prob-
lems of dielectric contrast, in particular in a multi-
level context (MLCBFM). In effect, the Character-
istic Basis Functions (CBFs) are constructed from
low-level basis functions, so that one can view this
method as being equivalent to employing higher-
order (conformal) basis functions of conventional
size in conjunction with an accurate integration
scheme. However, the advantage of the present
method is that it is much simpler. We begin by in-
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Figure 1: The EM scattering from a dielectric object

of arbitrary shape.

troducing the concept of the method of equivalent
dipole moments (MEDM). Next, we describe the
CBFM and show the results for a canonical prob-
lem of scattering by a dielectric sphere to test the
numerical accuracy, convergence, and the compu-



tational efficiency. Finally, we compare our results
with those obtained from the commercially avail-
able CEM solver, Ansoft HFSS, as well as with the
Mie series solution, which is available analytically.

2 The Method of Equivalent Dipole Mo-
ments (MEDM)

Figure 1 illustrates a dielectric object with volume
V, permittivity ε, and a permeability µ identical
to that of free space, µ0. The object is illumi-
nated by an electromagnetic field Ei. After in-
voking the volume equivalence principle, the ob-
ject is replaced by the surrounding medium (vac-
uum), while the equivalent electric current Jeq in-
side the object gives rise to the original scattered
field Es(Jeq), such that the field consistency con-
dition Jeq = jω(ε − ε0)E, for r ∈ V holds, where
E = Ei +Es(Jeq), and

Es(r,Jeq) = −jωµ0A(r,Jeq)−∇Φ(r,Jeq), (1)

where A and Φ are the electric vector and scalar
potentials, respectively. These can be expressed as

A =

∫∫

V

∫

G(r − r′)Jeq(r
′) dV ′, (2a)

Φ =
−1

jωε0

∫∫

V

∫

G(r − r′)∇ · Jeq(r
′) dV ′, (2b)

where G is the scalar free-space Green’s func-
tion given by exp (−jk0|r − r′|)/(4π|r − r′|). In
common with the conventional MoM discretisa-
tion, we proceed in MEDM by expanding the vol-
ume equivalent current as Jeq =

∑N

n=1 Infn(r),
where {fn}Nn=1 are the N micro-basis functions,
and {In}Nn=1 are the corresponding expansion co-
efficients. Next, we use the collocation method to
test the field at the centroid rm of the mth micro-
cube supporting the corresponding basis function1,
for m = 1, . . . , N . This yields the MoM matrix
equation V = ZI, where

Zmn =
1

jω(ε− ε0)
〈fn(r), p̂δ(r − rm)〉

− 〈Es(fn(r)), p̂δ(r − rm)〉 , (3a)

Vm =
〈

Ei, p̂δ(r − rm)
〉

. (3b)

In the above equations, the scalar product 〈a · b〉 =
∫∫∫

V∞

a · b dV , and p̂ ∈ {x̂, ŷ, ẑ}. The choice of the
polarisation p̂ is similar to that of the micro-basis

1The collocation method is herein equivalent to
Galerkin’s method when evaluated through the mid-point
integration rule.

function fn. Specifically,

fn(r) =















x̂, r ∈ Vn, n ∈ {1, . . . , N/3}
ŷ, r ∈ Vn, n ∈ {N/3 + 1, . . . , 2N/3}
ẑ, r ∈ Vn, n ∈ {2N/3 + 1, . . . , N}
0, elsewhere.

where Vn is the cubic support of fn with edge
length a and volume a3.
For non-overlapping basis functions, the field Es,

generated by fn in (3a) closely resembles that of
the dipole. For instance, for a z-oriented dipole
with dipole moment Il = a3 (since we have a uni-
form current of unit amplitude in each micro-cube),
the radiated electric near field at rm becomes

Ex =
a3Cmn

4πjωε0
xze−jk0|rmn|, (4a)

Ey =
a3Cmn

4πjωε0
yze−jk0|rmn|, (4b)

Ez =
a3

4πjωε0

[

Cmnz
2 +

k20
|rmn|

. . .

− jk0
|rmn|2

− 1

|rmn|3
]

e−jk0|rmn|, (4c)

where k0 is the free space propagation constant, ω
is the angular frequency, rmn = rm − rn, and

Cmn = − k20
|rmn|3

+
3jk0
|rmn|4

+
3

|rmn|5
. (5)

The self-term Znn, for m = n, can be computed an-
alytically using the singularity subtraction method,
by accounting for the static part of the Green’s
function only, and thus ignoring the electrodynamic
residual part. After some mathematical manipula-
tion, we obtain the approximation

Znn ≈ a3

jωε0

[

ε

(ε− ε0)
− 4

π
arctan

(

1√
3

)]

. (6)

Once a well-conditioned moment matrix equation
is constructed, we can solve for the unknown ex-
pansion coefficient vector I = Z

−1
V. The matrix

fill and solution times, with respective time com-
plexities of O(N2) and O(N3), can be reduced sig-
nificantly by using the ACA and CBFM [4].
In CBFM, the problem is subdivided into smaller

sub-blocks [see e.g. Fig. 2(b)]; each sub-block
supports a higher level basis function (CBF) con-
structed from a lower-level group of micro-domain
basis functions having predetermined fixed expan-
sion coefficients. In CBFM, Jeq is therefore ex-
panded as

Jeq(r) =

P
∑

n=1

ICBF
n JCBF

n (r), (7)



(a) 791361 micro-domain
basis functions

(b) 1728 CBF-blocks

Figure 2: Graphical illustration of the problem when

subdivided by micro-cubes and CBF blocks.

where P is the total number of CBFs employed for
the problem; JCBF

n represents the nth CBF and
ICBF
n represents the nth unknown expansion coeffi-
cient for that CBF. Each CBF is expanded in terms
of micro-basis functions with known expansion co-
efficients {αn

l }Nl=1, as; JCBF
n (r) =

∑N

l=1 α
n
l f l(r),

where most elements of the column vector αn =
[αn

1 , . . . , α
n
N ]T are zero, since the CBF has a local

support. To determine the nonzero entries, the cor-
responding block is first extended by a few neigh-
bouring cells, then illuminated by a plane wave
spectrum (PWS), truncated again to the original
CBF block size. Following this, the number of
CBFs generated is then reduced via the use of
the Singular Value Decomposition (SVD) proce-
dure with a threshold set on the singular values.
Because of the use of the PWS approach, the CBFs
can be used to solve the scattering problem for
multiple incident angles without the need to gen-
erate them anew for each angle. Upon introduc-
ing the sparse N × Q column-augmented matrix
JCBF = [α1, . . . ,αQ], where Q is the total number
of CBFs, we arrive at the reduced moment matrix
equation Z

CBF
I
CBF = V

CBF, where

Z
CBF = J

T
CBFZJCBF, (8a)

V
CBF = J

T
CBFV, (8b)

and where the rank of Z is Q. This matrix equation
can be solved rapidly for I

CBF by using standard
Gaussian elimination techniques. The ACA is used
to construct ZCBF rapidly, since it exploits the rank
deficiency of the off-diagonal block of the moment
matrix Z by factorising it in lower-rank matrices.
The effective rank is particularly small for distant
groups of micro-basis functions, or CBFs.

3 NUMERICAL RESULTS

MatLab computations have been performed on a
laptop computer equipped with a 2.2 GHz dual core
processor, and 2 GB of RAM. For the HFSS com-
putations, a desktop server has been used equipped

with an Intel Xeon E5345 quad core processor
(2.33 GHz), and 4 GB of RAM.

3.1 Field Convergence

Fig. 3 shows that, if a source cube containing a
single equivalent dipole is subdivided into smaller
sub-cubes, where each sub-cube contains a dipole
with a corresponding smaller dipole moment, the
accuracy of the computed Zmn does not increase
significantly. Even for a single dipole, the field at
the centroid of a direct adjacent cell can be com-
puted sufficiently accurately.
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Figure 3: Imaginary part of Zmn for different subdivi-

sions of the source cube basis functions.

3.2 Effect of the Mesh Cell Size

As shown in Fig. 4, the electric field can be mod-
elled more accurately by reducing the support size
of the micro-basis functions, especially for the fields
in the interior region. The fields external to the di-
electric object converge much faster.

3.3 Scattering from a Dielectric Sphere

A comparison between the MEDM, HFSS and the
analytical Mie-series solution, is presented in Fig. 5
for a dielectric sphere of radius λ/(4π). For HFSS,
if we use a max. delta energy of 1e-3 in 15 mesh re-
finement steps, it takes 35123 tetrahedra and a total
simulation time of 28 min. The MEDM employs
6309 micro-domain basis functions of edge length
λ/100, 8 CBF blocks are used for the subdivision
(3 cell extension), each employing only 12 CBFs (96
CBFs in total). The solve time for the problem is
less than 150 sec. On average, the results shown
in Fig. 5 demonstrate that the MEDM achieves a
better accuracy as compared to that of the HFSS
software. Although, the external scattered field has
been determined very accurately, the internal field
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Figure 4: Magnitude of the electric field inside a ho-

mogeneous dielectric sphere along the z-axis; εr = 6,

k0R = π/50.
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Figure 5: Magnitude of the electric field inside a ho-

mogeneous dielectric sphere along the x axis; εr = 6,

k0R = 1/2

exhibits an anomalous glitch. This is attributed to
the pulse-type of basis functions for the current,
which gives rise to surface charges at the end faces
of the cubic support that cannot be compensated
for by an opposite charge of adjacent basis func-
tions (if at the boundary of the object). Most of-
ten one is interested in physical quantities that are
integrals over the fields or currents (scattering pat-
terns, power losses, energy storage, etc.); hence, the
glitch at only the last cell may not be of much con-
cern. For instance, the time-average stored electric
energy 1/4

∫∫∫

ε|E|2 dV is for MEDM: 5.68e-15 J;
HFSS: 5.62e-15 J; and Mie: 5.77e-15 J, which shows
that the MEDM result is closer to the analytically
derived value than the one computed by HFSS.
Nonetheless, to mitigate the problem of the glitch,
research is currently ongoing to model both the
current and charges by pulse-type basis functions,

while weakening the hard constraint on the con-
tinuity equation for charges and currents at small
scales. The latter would require us to add only N/3
additional micro-basis functions, since the charge
density does not carry polarisation information be-
cause it is a scalar quantity.

4 CONCLUSION

Micro-domain basis functions have been employed
to model the currents in dielectric bodies with high
precision. The large number of independent ba-
sis functions is reduced significantly via the use of
the CBFM, rendering the algorithm memory effi-
cient, with little effect on the accuracy of the so-
lution. Concurrently, the ACA algorithm has been
used for rapid construction of the reduced moment
matrix. In summary, the novel method proposed
herein, and referred to as MEDM, is easy to im-
plement, it is fast as well as memory efficient, and
it can solve electrically large problems of arbitrary
shape with relative ease. Future work will be de-
voted to develop methods to mitigate the effect of
spurious glitches in the electric field, arising as a
consequence of choosing pulse-type basis functions
for the current while imposing a hard constraint on
the continuity between surface currents and charges
at small scales.
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