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The microwave breakdown of the gas inside 

transmission systems and other types of RF equip-

ment involves the exponential growth of the number 

of free electrons in the system due to ionizing colli-

sions of electrons with the neutral molecules of the 

gas. To this day it remains a serious failure mecha-

nism for any type of high power microwave equip-

ment [1]. Not only because of the noise generated and 

the changed electromagnetic characteristics of the 

equipment, but under atmospheric pressure conditions 

because of the intense heat that is generated in the 

breakdown region. This heat is caused by the motion 

of electrons in response to the field coupled with the 

high frequency of collisions with the neutral mole-

cules. The result is not only the heating of the con-

ducting elements and the direct damage to them, but 

also the heating of the surrounding gas, the concomi-

tant lowering of the breakdown threshold, and the 

possible expansion of an initially small breakdown 

region.  

Typically, when there are small protrusions in the 

conducting parts of the microwave device, these are 

the most vulnerable sites from the point of view of the 

risk for microwave breakdown, simply due to the re-

sulting field intensification in the vicinity of the these 

protrusions. Examples of such irregularities can be 

tuning screws, welding points, sharp corners etc [2,3]. 

In atmospheric pressure Air, microwave breakdown is 

achieved at 30 kV/cm/Torr, corresponding to the high 

pressure part of the Paschen curve. The initial break-

down region might be localized completely in an area 

of field intensification, and initially be quite small. 

The electron density will rapidly saturate at a level 

where the internal field in the breakdown region will 

correspond to the breakdown value. On short time-

scales the situation might be stable. However, the 

motion of the electrons will generate heat and lower 

the surrounding breakdown threshold, allowing the 

small breakdown region to expand and consequently 

generate more heat. The full analytical treatment of 

this type of non-linear problems is extremely compli-

cated. On short timescales, the electrodynamics of the 

system will be determined by the intricate interplay 

between the breakdown region and the external elec-

tromagnetic field. And on longer timescales, the heat-

ing of the gas will change the dynamics completely. 

Couple this with suitable boundary conditions and the 

problem becomes formidable indeed. Computer simu-

lations can indeed model the situation, but for physi-

cal understanding simplified scenarios should be ana-

lyzed. In Ref. [4] we considered the situation where 

initially there is a spherical breakdown region in an 

otherwise homogeneous electric field. The volume of 

the sphere is assumed to be small in comparison with 

the wavelength, which allows us to use the quasi-

steady approach for the field. At the same time, the 

sphere is assumed to be much larger than the attach-

ment length aa DL / , where D is the diffusion 

coefficient, and a is the attachment frequency [5]. 

This allows us to neglect the process of diffusion in-

side the sphere, and the electrical field can be approx-

imated as the breakdown threshold field in high pres-

sure Air. This value for the electric field has a tem-

perature dependence, since increasing the gas temper-

ature locally decreases the neutral density and allows 

the electrons to reach higher energies. The tempera-

ture dependence is of the form TTETE aa /)( 00 , 

where 0aE is the breakdown field at room tempera-

ture, 0T . The electric permittivity,  , inside the 

breakdown region is a function of the electron densi-

ty, and the field is known analytically from 

)2/(3 0  EEa , where 0E is the externally ap-

plied field. This allows us to express the electron den-

sity as a function of the electric field strength and the 

gas temperature. Consequently, we can derive a heat-

ing term valid inside the breakdown region. This heat-

ing term will only depend on the temperature, and the 

equation for the evolution of the gas temperature 

looks like 
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00 )/()( TTT   is the thermal con-

ductivity of Air [6],   is the Air density, vc  the heat 

capacity of Air at constant volume, and 
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term for the breakdown region. Outside the sphere the 

heating is zero. The temperature 
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TT a  corre-

sponds to the temperature necessary to achieve break-

down by heating in the external field 0E . 0 is the 



vacuum permeability, and   is the field frequency in 

rad/s.  

The question is whether the sphere is thermody-

namically stable or not. To investigate this we inte-

grate Eq. (1) over the sphere radius, R , and employ 

the fact that the temperature on the edge of the sphere 

must be 1T , and the temperature far away must be 

0T .  We get Jouleloss
total QQ
t

W





, where 

RQloss   is the heat lost over the edge of the 

sphere, and 
3RQJoule   is the heat generated in the 

sphere. The two terms are plotted in Fig. 1. 

  
Fig. 1: The dependence on radius for the heat loss term 

(dashed line), and the heat generation term (solid line).  

It is clear from the figure that any deviations from 

the point of equilibrium (marked by a circle) will lead 

to instability. If the radius decreases below the equi-

librium value, less heat will be generated than what is 

lost over the edge and the sphere will cool down and 

contract. If the radius increases from the critical value, 

more heat is generated inside than what can be trans-

ported over the edge, and the sphere will expand.  

The critical radius can be expressed as 
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and evaluated for any combination of parameters. For 

example, in room temperature at atmospheric pres-

sure, when 3/ 00 EEa , and 
510  Hz we get 

1.0critR  cm. Increasing the frequency decreases 

the radius, and for GHz values the radius will be be-

low the attachment length. This implies that in the 

range of sizes between the attachment length and the 

wavelength in a microwave system, no stable break-

down region can exist inside a homogeneous field. 

However, it does not tell us if there might be stable 

situations at smaller sizes, where diffusion is im-

portant, or what happens close to very small field en-

hancements, where experiments seem to imply the 

existence of stable discharges.   

Although the model is approximate, we can use 

the values given by the critical radius to determine 

safe sizes for areas of intensified heating or field 

strength inside otherwise homogeneous microwave 

systems. This can be a very useful consideration in 

the design of RF equipment, in order to avoid full 

scale breakdown.  
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