

Bench Test of a Satellite Signal Processing

Algorithm Based on a Space-qualified Board
Master’s Thesis in the Master Degree Program, Communication

Engineering

HENG YIN

LU LI

Department of Signals and Systems

Division of Communication Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2011

“Productivity is never an accident. It is always the result of a

commitment to excellence, intelligent planning, and focused effort.”

Paul J. Meyer

American entrepreneur and author

i

Abstract

Abstract

In the traditional satellite signal processing algorithm development, the algorithm

developer simulates and optimizes the algorithm in MATLAB and then the software

department translates the algorithm into the executable software supported by the

processor board. To streamline the development procedure, a test bench prototype to

conveniently convert the MATLAB algorithm to an executable program and test the

algorithm on the target board with LEON2 processor have been be developed.

In this work, the MATLAB add-on product MATLAB Coder was used to automatically

convert the MATLAB algorithm to C code which can be built into executable machine

code. The algorithm C code converted from MATLAB Coder does not have any

configuration for the target board and the real-time operating system RTEMS. In order

to supplement these configurations and add the code of time measurement, a bench test

program was developed in Eclipse. After the executable machine code was generated,

the input data of the algorithm was loaded onto the processor board and the program

was executed on board. In the end, the output data of the algorithm was read out and

analyzed in MATLAB.

With this test bench MATLAB algorithm, for example FFT, FCM and SIM (the latter

two are provided by RUAG AB), can conveniently be tested on the target board. In the

end, numerical error of the hardware execution of the algorithm is analyzed and the

execution time is measured. According to the result, the fixed length FFT has a higher

speed than the general length FFT; the floating point FFT is faster and more accurate

than the fixed point FFT. Moreover, the execution time of the basic operations of the

FFT algorithm was investigated. Besides the hardware FPU was proved to shorten the

execution time compared to the software FPU for those floating-point-intensive

algorithms. Finally it was approved that for the FFT-based algorithm, the execution

time of its MEX file was proportional with that of its machine code executed on the

target hardware.

Keyword: embedded system, LEON2, real-time, test bench, Eclipse, MATLAB Coder,

FPU, FFT, fixed point, floating point

ii

Acknowledgment

Acknowledgment

First of all, we would like to express our deepest appreciation to our supervisors Elin

Eklund and Thomas Lindgren. They spend a great deal of precious times on us and

offered us so many valuable guidelines to help us complete our thesis work. They have

never blamed us when we commit some stupid mistakes; on the contrary, they

encouraged us and gave us great confidence. Without their help, this thesis work

couldn’t be accomplished. In our heart, they are not only our supervisors, but also are

our dearest teachers and kind friends.

We also should show our gratitude to our superman Björn Enoksson who has a broad

professional knowledge. Almost every time we come across with tricky problems, he is

the one who helped us to crack them. Thanks for him taking so much precious time off

from his busy schedule and being so patient to us.

We still would like to thank Magnus Mortberg and Martin Johansson who helped us to

configure Eclipse and learn how to use the Subversion. Martin Johansson is also the one

who established the location of our project in the Subversion repository and helped us to

add an important external repository. Anders Carlström showed great interest on our

thesis work and gave us a lot of practical suggestions; Henrik Garbergs helped us to use

the COLE Tools. We would especially like to mention our friends Nicklas Sahlbom and

Petros Petkakis who gave us great joys in the company.

Thank our examiner Henk Wymeersch who were interested in the proposal of this these

work, reviewed our report and examined the presentation. Also thank our advisor Wei

Yang who guided our producer of completing the master thesis work and reviewed our

report.

In the end, great appreciations to our families, without their strong support both

substantially and mentally, we would not have the chance to be in Sweden and finish

the two-year study. Thanks our dear friends in Chalmers. Special thanks to our beloved

ones, Shenzhou Hou and Quan Ge who accompanied us all the way.

iii

Terminology

Bench Test A test carried out on a platform before it is released for use,

to ensure that it works properly

Byte 8 bits of data

Memory Access The operation of reading or writing memory

MiB Megabyte

Test Bench The platform used to perform a test

iv

Abbreviations

ASIC Application Specific Integrated Circuit

CDT C/C++ Development Tooling

COCOS Computer Core Support ASIC

COLE COCOS and LEON ASIC

CPU Central Processing Unit

DCL Debug Communication Link

E-DSU Enhanced Debug Support Unit

EEPROM Electrically Erasable Read Only Memory

FFT Fast Fourier Transform

FPU Floating Point Unit

HW Hardware

IDE Integrated Development Environment

IO Input/Output

IU Integer Unit

LEON 32-bit Microprocessor

LEON2 Second version of LEON processor

LEON2-FT Single Event Upset Tolerant Version of LEON2 Processor

LS UART Low Speed Universal Asynchronous Receiver Transmitter

MATLAB Matrix Laboratory

MEX MATLAB Executable

PROM Programmable Read Only Memory

RTEMS Real-Time Executive for Multiprocessor Systems

SDRAM Synchronous dynamic random access memory

SPARC Scalable Processor Architecture

SW Software

RISC Reduced instruction set computing

SRAM Static random-access memory

TABLE OF CONTENTS

ABSTRACT .. I

ACKNOWLEDGMENT ... II

TERMINOLOGY .. III

ABBREVIATIONS ... IV

1 INTRODUCTION .. 1

1.1 BACKGROUND .. 1
1.2 OBJECTIVE ... 1
1.3 APPROACH ... 1
1.4 SCOPE .. 2
1.5 ORGANIZATION .. 2

2 PROCESSOR BOARD OVERVIEW ... 3

3 SOFTWARE INTRODUCTION ... 5

3.1 MATLAB WITH MATLAB CODER ... 5
3.2 ECLIPSE .. 5
3.3 COLE TOOLS ... 5
3.4 REAL-TIME EXECUTIVE FOR MULTIPROCESSOR SYSTEMS (RTEMS) .. 6

4 BENCH TEST IMPLEMENTATION .. 8

4.1 COMPOSITION OF THE TEST BENCH ... 8
4.2 BENCH TEST PROGRAM OVERVIEW ... 9
4.3 FRAME DESIGN OF THE OPERATION RESULT ANALYSIS ... 10
4.4 DESIGN OF THE TEST CONTENT AND THE ORDER... 12
4.5 BENCH TEST WORKFLOW IN DETAIL ... 13

4.5.1 C code and input data generation .. 13
4.5.2 Test configurations in Eclipse .. 15
4.5.3 Load input data and start execution ... 15
4.5.4 Read out the result and analyze .. 15

5 BENCH TEST RESULT AND ANALYSIS ... 16

5.1 INTRODUCTION .. 16
5.2 BASIC OPERATIONS .. 16
5.3 FFT .. 16

5.3.1 Floating point FFT ... 16
5.3.1.1 Processing time of floating point FFT ... 17
5.3.1.2 Error analysis of floating point FFT .. 22

5.3.2 Fixed point FFT .. 26
5.3.2.1 Processing time of fixed point FFT ... 26
5.3.2.2 Error analysis of fixed point FFT .. 27

5.4 FCM AND SIM —PROCESSING TIME .. 29
5.5 COMPARISON BETWEEN MEX-FILE COMPUTATION TIME AND ON-BOARD COMPUTATION TIME 30

6 CONCLUSION ... 33

6.1 DIFFERENT PARAMETERS THAT INFLUENCE THE TEST RESULTS .. 33
6.2 THE EFFECTIVENESS OF MEX FILES ... 33

7 FUTURE WORK .. 34

REFERENCE ... 35

Figure 2-1 Processor board block diagram ... 3

Figure 3-1 The COLE Tools overview [9] ... 6

Figure 3-2 The architecture of RTEMS .. 7

Figure 4-1 Composition of the test bench .. 8

Figure 4-2 Illustration of the functionality of the bench test program 10

Figure 4-3 Frame design of the operation result analysis ... 11

Figure 4-4 Workflow of the bench test ... 13

Figure 4-5 Create a MATLAB Coder project [7] ... 14

Figure 4-6 An example of setting input data [8] .. 14

Figure 5-1 Processing time for general length FFT (Fs= 1023 periods) 19

Figure 5-2 Processing time for general length FFT (Fs = 1024 periods) 19

Figure 5-3 FFT calculation flow ... 20

Figure 5-4 FFT calculation result from processor board .. 23

Figure 5-5 Error between the result from hardware and the MATLAB result 23

Figure 5-6 FFT error analysis in normalized Std error ... 25

Figure5-7 FFT error analysis in normalized max error .. 25

Figure 5-8 Processing time of fixed point FFT with different lengths 26

Figure 5-9 : Normalized error of fixed point FFT with different lengths....................... 27

Figure 5-10 Normalized error comparison of different input data amplitudes (The

number in x axis is the log2 value of the amplitude.)... 28

Figure 5-11 Processing time of FCM regarding to different input data length (SDRAM)

 .. 29

Figure 5-12 Processing time of SIM with different input data lengths (SDRAM) 30

1

1 Introduction

1.1 Background

In space communications, signal processing is no doubt an indispensable and crucial

component of the whole satellite communication system. Due to the fact that it demands

large amounts of highly reliable and particularly accurate scientific computation, it is of

great interest to develop modern satellite signal processing algorithms in a

mathematical-oriented programming language, for example MATLAB.

In the final application, the algorithm will be executed on a space-qualified processor

board using the LEON2 processor. LEON2 is a 32-bit CPU microprocessor core, based

on the SPARC-V8 RISC architecture and instruction set. Any processor only supports

machine code, which can be built from C code and cannot be built from MATLAB

script. Moreover, the on-board execution of an algorithm is probably to have a different

performance than its performance on the standard computer where it is developed.

Hence, in a traditional flight application production, engineers simulate their algorithm

in MATLAB and someone else codes the MATLAB script into C code which can be

built into the executable machine code and test the algorithm on board. From time

schedule and cost point of view, it is highly interesting to automatically convert the

algorithms defined in MATLAB to C code.

To streamline the procedure of development and production of the satellite signal

processing algorithm, it is expected to have a way that straight bench tests the

performance of a MATLAB algorithm on the processor board without manual code

conversion, so that the MATLAB algorithm under development can be optimized based

upon the real feedback from time to time before it is finally coded into software.

1.2 Objective

The goal of this thesis project is to develop a prototype of test bench and apply it to

conveniently test a satellite signal processing algorithm on the processor board, in the

consideration of the practical situation in RUAG.

1.3 Approach

As described in Section 1.1 Background, different from the more general and low-level

programming languages such as C, C++ and Fortran, MATLAB is not supported by the

embedded systems such as the target processor board. In order to provide better

compatibility for the embedded systems, MathWorks
TM

 has produced an add-on product

called MATLAB Coder to convert MATLAB code to C code automatically with its

built-in MATLAB compiler. Therefore it is used in our project to automatically convert

the MATLAB algorithm to C code.

However, the converted C code does not include any program for the hardware

configuration or other necessary configurations. In order to make its corresponding

2

machine code executable on the board, a main program to encapsulate it and

complement those essential parts is developed in C language. This ‘main program’ is

called the bench test program in this report.

1.4 Scope

In this project, a RUAG provided algorithm under development was applied as the test

object. Due to the time limitation, not the entire algorithm was tested. It was divided

into several smaller functional components so that the bench test can start from the

simpler MATLAB algorithms. The algorithms used in our bench test were FFT, FCM

and SIM, in which SIM is the most complex algorithm in the entire algorithm. Both the

FCM and SIM are based on FFT calculation.

According to practical industry requirement, the most concerned result of the bench test

is the execution time. So in our project, the execution time is the main investigated

factor. The other concerned factor is the numeric precision of the on-board computation.

1.5 Organization

This paper begins with a brief introduction of the hardware and software used. It then

continues to present the detailed procedure of how this test bench system works,

followed by the description, analysis and discussion of the bench test results. The future

work is proposed in the end.

3

2 Processor Board overview

Processor Board

C O LE

U AR T

D C L

LEO N 2FT
Tim er

M em ory

SD R AM /SR AM

PR O M /EEPR O M

FPU
E-

D SU

IU

D ata

C ache

Instruction

C ache

Figure 2-1 Processor board block diagram

The Processor board is equipped with COLE ASIC, acting as a processor and I/O

controller. As it is shown in Figure 2-1, the main components used in our project of

COLE are the LEON2-FT processor, Memory, the Low Speed Universal Asynchronous

Receiver Transmitter (LS UART), the Debug Communication Link (DCL) and a Timer.

The LEON2-FT processor includes an Enhanced Debug Support Unit (E-DSU), an

Integer Unit (IU), a Floating Point Unit (FPU) and two kinds of caches. The E-DSU

provides hardware debugging support such as breakpoints, watch points and trace

facilities. It helps COLEmon (see Section 3.3) to remotely debug. The IU implements

the integer arithmetic instructions and computes memory addresses for loads and stores.

It also maintains the program counters and controls instruction execution for the FPU

[7].The registers in IU are 32-bits wild. FPU executes floating-point calculations and

implements load and store instructions for the data transfer between the FPU and

memory. The floating-point registers in FPU are 32-bits too. If the FPU is disabled, the

floating point operations are emulated by software routines, which in called software

FPU. However, the processing speed of software FPU is very slow. There are two types

of caches in the LEON2-FT processor. One is 32 Kbytes instruction cache used to store

instructions. The other is 16 Kbytes data cache for data storage. If the caches are

disabled, the processing time will be triple times larger than it in the enabled mode.

The Memory module is connected with the COLE chip through memory interfaces

which include error detection and error correction of memory. There are both volatile

memory and non-volatile memory on the processor board. As volatile memory, COLE

supports SRAM and SDRAM. The memory sizes used are 8MiB for SRAM and

512MiB for SDRAM. During the thesis work, both of these memory types have been

used and their performances are examined. For non-volatile memory, PROM and

4

EEPROM are used for program and data storage, normally. However, in this thesis

work, the test programs are only loaded in RAM (SRAM or SDRAM) and executed

directly.

The UART and DCL support hardware handshakes, hardware flow control, registers

and memory for Debug Communication Link (DCL).

The Timer unit provides real time information, which can be used to measure the

processing time.

5

3 Software Introduction

3.1 MATLAB with MATLAB Coder

MATLAB is the name for an interactive computing environment as well as a high-level

programming language, which could be used for algorithm development, data

visualization and data analysis. A huge number of built-in functions are provided by

MATLAB that can be directly employed, making the programming straightforward and

concise.

MATLAB Coder is an add-on product of MATLAB used to convert MATLAB code to

C and C++ code. It supports standard MATLAB language features, including matrix

operations, subscripting, program control statements and structures [5]. Cooperating

with Simulink Coder and Embedded Coder, MATLAB Coder could generate C codes

from Simulink models as well.

Besides generating C and C++ code, MATLAB Coder can also produce MATLAB

Executable (MEX) files for both fixed-point and floating-point mathematics, which

enables the user to verify the generated C or C++ code in MATLAB. MEX-files are

dynamically linked subroutines produced from C, C++ or Fortran source code that,

when compiled, can be run from within MATLAB in the same way as MATLAB files

or built-in functions [6]. As the MEX-file is based on the same C code generated from

MATLAB coder, it’s very useful for the developer to check the C code before moving

them to another software development environment.

3.2 Eclipse

Eclipse is an integrated software development environment. It provides a free open

environment that employs a plug-in concept to broadly extend its functionality. The

plug-in concept, on one hand, allows Eclipse to multiple programming languages. As

Eclipse was originally used to develop Java, by using its plug-in based mechanism, the

C/C++ Development Tooling (CDT) was added to the basic Eclipse framework to

provide C and C++ Integrated Development Environment (IDE). One the other hand, it

enables Eclipse to work with other third-party plug-ins, such as the application of

COLE Tools, which is introduced later.

3.3 COLE Tools

The COLE Tools is a collection of software tools developed in RUAG that designed to

aid the development with the COLE system. As described in Section 2, COLE is the

main component of the processor board, so the COLE Tools is used as part of the test

ben ch in our project, to get access to the processor board. In the COLE Tools collection,

COLE Broker, COLEMon, COLE Inspector and Broker Manager are used in this

project.

6

Inspecto
r

COLE

C O LE

Broker
G D B

Eclipse

C O LE

m on

Broker

M anager

Processor Board

C O LE

UART

D C L

LEO N 2FT

Tim er

M em ory

SDRAM /

SRAM

C onsole

Read/W
rite

Console

Figure 3-1 The COLE Tools overview [9]

COLE Tools provides a multifunctional development environment, which contains the

source level debugging on target, inspection of the memory and registers as well as

loading of data or program. As shown in Figure 3-1, the COLE Broker acts like a key

anchor for the other COLE Tools to communicate with the processor board. It collects

and transmits the commands from the other tools to the COLE and distributes the

responses to the waiting tool. Before starting the COLEmon, COLE Launcher or the

Inspector COLE, the COLE Broker should be connected to the processor board first.

The status of it can be managed by the Broker Manager.

By integrating into the Eclipse framework, the COLE Tools provides an integrated

development environment. In Figure 3-1, the Eclipse, GDB, COLEmon together can

start or stop debugging and execution of a board-supported program. GDB is the

standard GNU debugger. The COLEmon acts like a remote target monitor for remotely

debugging. The ‘remote’ means the system which will run the program is a different

type from the one on which the program is developed and built. The Console line in the

figure presents the catching of the debug output (from the one of the LS UART port).

For embedded system development, the examination of the registers and memory is

very important and useful. Through the Inspector COLE, the real-time register values

and memory content can be read out in hexadecimal format. It can also write binary

files into the memory and read the memory content out to binary files.

3.4 Real-Time Executive for Multiprocessor Systems (RTEMS)

RTEMS is the short name for a kind of real-time operating system, which provides a set

of services for embedded systems. It acts like a bridge to connect two different layers of

typical real-time systems. It offers a tool to fit hardware dependencies in the system and

also provides a way for application code that accesses them at the same time. It can be

grouped to a serial of resource managers, as it is shown in Figure 3-2. They cooperate

with each other and provide respective services for real-time systems.

7

Figure 3-2 The architecture of RTEMS

RTEMS should be configured before using it for any applications. There are several

parts that need to be configured: the driver for devices such as clock and console, the

length of tick, the maximum of each RTEMS objects (e.g. classic API tasks,

semaphores, messages queues and rate monotonic periods) that can be concurrently

active, and the initialization tasks. RTEMS provides the rtems/confdefs.h C language

header file that contains most of the configuration tables that might be used for

applications, so users can just make use of it instead of building these tables by

themselves.

In this thesis work, RTEMS can be viewed as a large library that provides a number of

supports to the test bench design, for instance, the timer manager in RTEMS could be

applied to calculate processing time.

8

4 Bench Test Implementation

4.1 Composition of the test bench

The test bench in this context refers to the comprehensive platform where the test of a

MATLAB algorithm was carried out from a standard computer through a lab computer

to the processor board. See Figure 4-1 Composition of the test bench.

Figure 4-1 Composition of the test bench

The standard computer in the figure above has MATLAB 2011 with MATLAB Coder

installed. It can be any standard computer that supports MATLAB. In our project, for

accurate comparison, all the bench test result of the algorithm on a standard computer

was performed on the same computer with Intel Core Quad CPU, whose clock speed is

3.00 GHZ.

As mentioned in the introduction section, MATLAB is the technical computing

software used to develop the satellite signal processing algorithm. A brief introduction

of it is in Section 3.1. It is the first software used in the bench testing procedure. In other

words, the standard computer is the first platform of the test bench.

For consistency, in the following context, the phrase ‘MATLAB algorithm’ refers to the

MATLAB function that implements a certain algorithm. From the test bench’s view, the

MATLAB algorithm is the input of the test bench, whose development is supposed to

be completed before being fed to the test bench. Hence, in this report there is no detail

information about the algorithm development in MATLAB.

The reason why the MATLAB algorithm can not be operated on the processor board is

stated as in Section 1.1 Background. Consequently, there is a need to convert the

MATLAB algorithm to C code in order to build the corresponding machine code. Also

as explained in Section 1.1, in our project, MATLAB Coder was applied to

automatically convert the MATLAB algorithm to C code. MATLAB 2011 on the

standard computer integrates with this powerful software MATLAB Coder.

The lab computer is the second platform of the test bench. Actually, it is also a standard

computer, specified by being physically connected to the processor board. On base of

this physical connection, by using the installed Eclipse and the COLE Tools on it, the

9

bench test program can be loaded and the execution can be started on the processor

board.

The COLE Tools is a collection of board support software as described in Section 3.3. It

is installed on the lab computer. In our project it is the only interface software that is

capable for data transmitting between the lab computer and the processor board, which

is shown in the figure above.

Eclipse is an open-source plug-in based IDE. A plug-in in Eclipse is a component that

provides a certain type of service within the context of the Eclipse workbench [2]. By

using this plug-in based mechanism it is suitable for embedded system cross-

development. In our project there are two purposes of using Eclipse. One is to edit,

compile and build the bench test program, the other one is together with COLE Tools to

load and start execution of the bench test program on the processor board. A short

description of why a bench test program is needed and what is its functionality is

presented in Section 4.2.

In Figure 4-1, the left side of the lab computer is connected to the standard computer.

The connecting line is shown dashed because there is no physical data transmitting

between these two computers. The connection means the manual work of copying the

MATLAB Coder generated C code to the bench test program in Eclipse.

The final platform of the test bench is the processor board. Three components of the

processor board were of concern in our project. One is the memory. There are two sizes

of the integrated memories, which are 8MiB and 512MiB respectively. Since the

MATLAB algorithm involving large data vectors requires more memory space and vice

versa, the 8MiB memory was used to begin with. The question about whether there are

different time performances between the two memories was investigated. The other

factor of concern is the cache in LEON2. Cache is a terminology used in computer

science. It is a small block of memory for temporarily storing some data and

instructions that probably to be reused by the following operations. Because of its

different fabrication process, the cache is of higher accessing speed than the main

memory (SRAM and SDRAM). It saves time by reducing the accesses to the slower

main memory. The last factor of concern is the Floating Point Unit (FPU) in LEON2. It

is a dedicated hardware to accelerate the speed of floating-point operations. If it is used,

it is called using the hardware FPU. If this one is not used, the floating point operations

are emulated by software routines. In that case, it is called using software FPU. By

using the hardware FPU, the operation of the floating-point-intensive calculation, such

as the tested algorithm of this project, is expected to achieve a higher speed than using

software FPU.

4.2 Bench test program overview

The bench test program is the frame work around the test algorithm. It is a C program

used to encapsulate the C code of a MATLAB algorithm as part of it and it makes the

whole C program executable and processing time measurable on the processor board.

As presented in Section 1.3, the converted C code lacks the necessary hardware

configurations, RTEMS configurations and other program related configurations,

10

without which the corresponding machine code can not be executed successfully. The

converted C code for the algorithm also lacks the necessary C code to assess the

operation time of the algorithm on board. That is also why a bench test program should

be developed. In a word, in order to make the algorithm executable and processing time

measurable, a bench test program was developed in Eclipse.

Figure 4-2 illustrates the functionality of the bench test program. In a practical bench

testing procedure, the MATLAB Coder converts a MATLAB algorithm into the

corresponding C code in terms of a set of C files. Those C files are then copied to the

Eclipse project of the bench test that contains the bench test program. After some

manual configurations in the bench test program to encapsulate the algorithm C code,

those C files are built together with all the other files of the bench test program. As

shown in Figure 4-2, the timer is started right before the execution of the algorithm and

stopped right after the execution of the algorithm. The execution time of that algorithm

is obtained by subtracting the start timer from the stop timer. These manual

configurations are further described in Section 4.5.2. If the building is successful, a

board-supported executable file will be produced.

Figure 4-2 Illustration of the functionality of the bench test program

4.3 Frame design of the operation result analysis

In this section, the design of the framework of the operation result analysis will be

described. The operation result in our bench test project refers to the execution time and

the numerical precision.

As mentioned in Section 1.4, the key index for the algorithm is the execution time of it

on the target board. If it takes longer time than the one proposed in the initial

specification for that algorithm, the algorithm can not be accepted or should be further

optimized. There are three factors that may influence the processing time on board,

which are the memory, the cache and the FPU. These three factors are marked with

yellow in Figure 4-3. The FPU and the cache can be disabled or enabled manually in the

bench test program. If they are enabled, a faster processing time is expected. Therefore

the bench test of the same algorithm of different FPUs and cache modes were tested and

compared. There are two types of memory, SRAM and SDRAM. Theoretically, it is

estimated that there is no difference of the processing time between the two memories.

However, it was decided to test and verify it.

The bench test program

Hardware Configurations

Other Configurations

MATLAB with MATLAB Coder

Algorithm
(MATLAB)

Algorithm
(C code)

Hardware

Processor
Board Insert Execute Algorithm

C Code
Compile

Start Timer

Stop Timer

The bench test program

Hardware Configurations

Other Configurations

MATLAB with MATLAB Coder

Algorithm
(MATLAB)

Algorithm
(C code)

Hardware

Processor
Board Insert Execute Algorithm

C Code
Convert

Start Timer

Stop Timer

11

The operation time of the MEX algorithm (See Section 3.1) was also measured. It was

tested on the standard computer in MATLAB. The result of it was compared with the

on-board time of the same algorithm, in order to determine the scale factor between the

MEX processing time and the on-board time. If the scalar is fixed, a preliminary

evaluation and optimization of the algorithm can be done in MATLAB according to the

MEX performance before testing the algorithm on hardware. The working procedure of

comparing the MEX operation time and the on-board operation time is illustrated in

Figure 4-3.

In addition, besides the total execution time of an algorithm, the memory

reading/writing speed was also measured. The time cost of almost every memory related

instruction consists of the memory reading/writing time and the CPU calculation time.

The CPU calculation time is supposed to be much faster than the memory

reading/writing time, which means the memory reading/writing is dominant. Since there

are a lot of memory related instructions in the bench test program, it is of worth to

investigate how largely the memory reading/writing time will influence the total

execution time.

Figure 4-3 Frame design of the operation result analysis

As mentioned in the beginning of this section, the second operation result is the

numerical precision. The arithmetic calculations on board are carried out by the

processor board’s CPU, LEON2, which is based on the 32-bit SPARC-V8 RISC

architecture. 32-bit means the maximum precision of the stored numbers is 32-bit

floating point. The standard computer has a maximum precision of 64-bit floating point.

The disparity of the maximum precisions is the main affective factor of the numerical

precision.

In the bench test, there are three different computation outputs, which are (1) the output

of the MATLAB algorithm, (2) the output of the on-board algorithm and (3) the output

of the MEX algorithm. Among them, the MATLAB and MEX algorithms were

operated on the standard computer. Since the algorithm operated on board and the ones

operated on the standard computer are based on the same mathematical algorithm, there

Input data

Operation on
standard PC

Operation on board Double to single
64 bit 32 bit

Error
analysis

32 bit

64 bit

Frame Design of the Operation Result Analysis

FPU

Cache

Memory

Switch

Time cost
analysis

32 bit
MATLAB

MEX

12

should be no difference of the outputs. However, due to the fact that the processor board

uses 32-bit architecture, the accuracy of the computation result from the hardware is

supposed to be worse than the one from the 64-bit architecture standard computer,

although they have the same accuracy of input data. Note that though the MEX

algorithm was operated on the standard computer, it was implemented in the way of 32-

bit architecture by MATLAB, as shown in the Figure 4-3. So it is estimated to have a

similar numerical precision with the on-board algorithm. In our project, the most

accurate computation output comes from the MATLAB algorithm calculation, so it was

used as a reference for the other computation outputs. The difference between the

reference and the other outputs is viewed as error.

The issue of the fixed point and floating point was also investigated. They are different

formats used to store and manipulate numbers. Because the floating point format

achieves better precision, higher dynamic range and shorter development cycle [3], it

more suits the FFT-based algorithm in our case. However, the on-board processing time

of it is still a question. Therefore, by using an open-source fixed point FFT C code (See

Appendix A), the on-board processing time of the fixed point FFT was assessed and

compared to that of the floating point FFT. If the result confirms that the floating point

format is much more suitable for our case, the fixed point format will not be considered

any further.

4.4 Design of the test content and the order

This section introduces what are tested in the bench test and the order. As mentioned in

Section 1.4, for developing and investigating the bench test in a steady way, the test

objectives are from simple to complex, as the order below:

 First of all, the memory reading/writing speed is tested. After that, the execution

time of some basic arithmetic operations are tested, which are multiplication,

division and cosine calculation.

 In the next step, FFT is tested. It is the most fundamental constitution of the

tested algorithm. In the bench test of FFT, the on-board execution time of the

FFT with hardware FPU, FFT with software FPU, fixed length FFT, general

length FFT, floating point FFT and fixed point FFT of the increasing input data

sizes are investigated. The numerical precision of the fixed point and floating

point FFT is analyzed. Meanwhile, the execution time of the MEX FFT is tested

and compared with the on-board FFT.

 Afterwards, the second most complex algorithm of the target algorithm, called

FCM, is tested.

 Finally, the most complex algorithm, called SIM, is tested. Similarly, the

execution time and numerical precision of MEX FCM and SIM are tested and

compared with the on-board FCM and SIM.

13

4.5 Bench test workflow in detail

The whole bench test workflow is illustrated in Figure 4-4. The first step is to generate

the C code of the target algorithm and prepare the associating input data in MATLAB.

Section 4.5.1 introduces how the code was converted and the input data was prepared.

The next step is to encapsulate the generated C code of the algorithm into the bench test

program. Suppose that the generated C files have already been copied to the Eclipse

project of the bench test, Section 4.5.2 will discuss the settings of some speed affecting

test parameters. The following step is to load the input data and the file of bench test

program onto the processor board as well as to start the execution. A short description is

given in Section 4.5.3. Finally, the output of the on-board operation of the algorithm

shall be read out from the memory, which is introduced in Section 4.5.4.

Figure 4-4 Workflow of the bench test

4.5.1 C code and input data generation

The integrated software product MATLAB Coder was used to convert the target

algorithms into the C code. MATLAB Coder provides two ways to compile a

MATLAB function to C code. One way is to create a new MATLAB Coder project and

MATLAB algorithm development

 Generate C code Generate input data

Set test configuration
and build the machine code

Read out the output

Analyze result

Bench Test Workflow

Load input data

 MATLAB
MATLAB Coder

Eclipse

MATLAB

Load the program and start
execution

Copy C code to the project

COLE Tools

COLE Tools

Eclipse
COLE Tools

14

configure the necessary settings in a Graphical User Interface (GUI) dialog box. This

method was mainly used when we investigated the functionalities of MATLAB Coder

or debugging the compilation. In the GUI window, the format for the input data, the

global variables, the hardware configuration and the compiler configuration can be set

manually, see Figure 4-5 and Figure 4-6 for example. The advantage of this method is

that its intuitive interface helps the user to quickly locate a certain configuration option.

The disadvantage of it is when the target algorithm is changed; it will cause a lot of re-

clicking to re-set the format of input data and global variables again.

Figure 4-5 Create a MATLAB Coder project [7]

Figure 4-6 An example of setting input data [8]

The other way is to write a normal MATLAB script which includes the command-lines

for all the essential settings. Each configuration option in the GUI dialog box has a

corresponding command. This method was afterwards preferred in our project because

the compile script of an algorithm could be reused to a great extent. Comparing with the

GUI method, this one reduces a lot of messy re-clicking work.

As described earlier, MATLAB Coder can not only convert a MATLAB function to C

code for an executable file, but also to an MEX file. The C code for an execution file

was used on the target hardware and the MEX file was operated on the standard

computer, usually the C code in the context refers to the C code to run on board.

The input of the algorithm was preferred not to be hard coded in the algorithm C code

for lightening the C code and having the input data flexible. So the input data was

generated separately from the code compilation procedure. Consequently, in the third

step, the generated input data was loaded on board separately from the program.

15

4.5.2 Test configurations in Eclipse

As mentioned before, the reason why a bench test program is needed is because the

original C code of the algorithm lacks the code for some necessary configurations and

the time measurement. Among the lacking code, the time measurement code, the

RTEMS configuration code and some other program related code has been hard coded

in the initial development of the bench test program, so there is no need to add any

manual adjustment for those part of code. In this section the discussion of the test

configuration only focuses on the configurations for some time sensitive items.

There are three time sensitive items to be configured in the bench test program, which

are the FPU, the cache and the memory. The operation time performance of using

hardware FPU should be compared with that of using software FPU on the same

algorithm. By assigning ‘yes’ or ‘no’ to the variable called ‘FPU’ in the make file of the

bench test program, the FPU can be set yes (hardware) or no (software). Also the

different operation time performances due to different cache modes should be

investigated. The switch of cache mode is to comment or uncomment two instruction

lines in the bench test program. Considering that the memory is potentially time

sensitive, the operation time of different memories is planned to be measured and

evaluated in case. To switch between the different memories, the hardware of the

memory should be changed and some instructions in the bench test program should be

commented or uncommented. In order to perform those different scenarios, the three

items was configured properly according to that specific scenario.

4.5.3 Load input data and start execution

After the step in Section 4.5.2, the bench test program was built into an executable file.

After that, the prepared input data was loaded to the memory of the processor board

through the COLE Tools. Finally, the executable file of the bench test could be loaded

on-board and its execution was started from Eclipse.

4.5.4 Read out the result and analyze

In our project, the execution time was displayed on the screen of the lab computer and

the numerical computation output of the algorithm on board was read out from the

memory through COLE Tools. The output is saved in binary format which is supported

by MATLAB, which means it can be analyzed in MATLAB like any normal output.

The bench test result and analysis is presented in the next section.

16

5 Bench Test Result and Analysis

5.1 Introduction

In this bench test, firstly the processing time of simple memory reading/writing,

multiplication, division and cosine were tested. Then, it moved onto standard algorithm

inside the algorithm, FFT. Afterwards, the majority part of the algorithm—FCM and

SIM would be investigated. Finally, the relationship between MEX operations and on-

board operations was tested.

5.2 Basic operations

The processing time of some basic operations – memory reading/writing, multiplication,

division and cosine is shown in Table 5-1. As all the operations are the basic building

blocks in the algorithm, they could be used to check the processing time of all the sub-

algorithms (FFT, FCM and SIM). For example, it is used in Section 5.3.1.1 for the

evaluation of the time cost of FFT.

Table 5-1 Comprehensive comparison of the processing time of basic operations

(SRAM & Hardware FPU)

Operation
Vector length

of A or B or C
Time cost (ms) Complexness

Read/Write 65536 14 complex

Addition(A+B) 65536 65 complex

Multiplication(A.*B) 65536 94 complex

Division(A./B) 65536 299 complex

Cos(C)/Sin(C) 65536 276 real

The input for each operation is floating point random values.

5.3 FFT

In this section, floating point FFT and fixed point FFT are discussed. The processing

time and error are analyzed for both cases. All the tests in this section are based on

SRAM.

5.3.1 Floating point FFT

The C code for floating point FFT is generated from MATLAB. There are two kinds of

C code implementations. The first one is called fixed length FFT, which means for

different size of input, there will be a specific C-code file for that length. The second

one is a C-code file that can adapt up to a maximum size of input, which is called

general length FFT. The processing time of both implementations for FFT is

demonstrated in Section 5.3.1.1. Note that, the FFT is not optimized. It is directly

generated by MATLAB Coder.

17

5.3.1.1 Processing time of floating point FFT

The input signal in this section is a complex signal with unity amplitude and constant

frequency:

0

2

)(
F

F

nj

seAnx






 (5-1)

x(n) is the input data. n = 0: N-1, where N is the length of input data. A is the amplitude

of input data (A=1 in this case); Fs is the sampling frequency; 0F is the frequency of the

input signal (0F =100 in this case). According to the Nyquist Criterion, Fs should be

larger than the twice of 0F . Because N is always a power of 2 in our project, if Fs is also

a power of 2 and smaller than N, the input data will have integral number of time

periods.

As mentioned in Section 4.5.3, there are three parameters in the test environment that

need to be considered. The processing time regarding to different kinds of FPU and

memories are analyzed in Table 5-2 and Table 5-3, respectively.

Table 5-2 Processing time of fixed length FFT regarding to different FPU (ms)

(Fs=1023)

Condition

Length of Input

Software

FPU

Hardware

FPU

16384 4062 223

32768 8731 476

65536 18587 1010

131072 39409 2135

From this table, one can observe that the HW FPU is about 18 times faster than SW

FPU. For that reason, only HW FPU is used in the following tests.

Table 5-3 Processing time of general length FFT for different memories (ms) (Fs=1023)

Condition

Length of Input

SRAM SDRAM

16384 283 284

32768 594 598

65536 1245 1252

131072 2608 2620

As it can be seen in this table, the processing time operating on SRAM and SDRAM is

almost the same. That means the type of memory won’t influence processing time, so

that when selecting memories, the processing time is not necessary to be considered.

18

The processing time for fixed length and general length FFT is given in

Table 5-4.

Table 5-4 Processing time for fixed length and general length FFT (ms) Fs=1023

periods

Condition

Length of Input

Fixed Length

FFT

General

Length FFT

1024 9 12

16384 223 283

32768 476 594

65536 1010 1245

131072 2135 2608

As shown in this table, the processing time of general length FFT is 25% longer than the

fixed length FFT. The reason might be that, general length FFT adds some initial

operations around vector size check. Another reason probably is general length FFT add

more memory copy operations which cost time too. According to the test result, the

operating time of copying a 64K static complex vector to another memory address is

116ms, which is relatively long.

A model used to estimate FFT processing time is

 FNNBT /)(log2 (5-2)

Where B is an estimated constant, N is the input vector size, F is the system frequency

of the processor board (64MHz), and T is the processing time. From the processing time

of FFT with 16384 bit input data length in

Table 5-4, B can be computed. For fixed length FFT, B = 50.7; for general length FFT,

B =64.3; Since the general length FFT is more flexible than fixed length FFT, only

general length FFT is used in the following test.

With the computed B, the processing time of general length FFT is estimated in Figure

5-1 , shown in red line. The blue line shows the measured processing time.

19

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

FFT length of 1k 16k 32k 64k 128k

P
ro

c
e
s
s
in

g
 t

im
e
 i
n
 s

e
c
o
n
d
s

Processing time of different lengths FFT (Fs = 1023)

true processing time (on hardware)

estimated processing time

Figure 5-1 Processing time for general length FFT (Fs= 1023 periods)

As observed in Figure 5-1, the estimated ‘T’ from model (5-2) matches the tested

processing time from processor board.

When Fs is the power of 2 (e.g. 1024), the processing time will be different from when

Fs is not a power of 2 (e.g. 1023). Figure 5-1 shows the processing time of general

length FFT using the different input signal with Fs = 1024. With the model (5-2), the

estimated B = 85.5, illustrated in red line.

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

FFT length of 1k 16k 32k 64k 128k

P
ro

c
e
s
s
in

g
 t

im
e
 i
n
 s

e
c
o
n
d
s

Processing time of different lengths FFT (Fs = 1024)

true processing time (on hardware)

estimated processing time

Figure 5-2 Processing time for general length FFT (Fs = 1024 periods)

It can be seen that the processing time in Figure 5-2 is higher than the processing time

in Figure 5-1, which means the input signal with Fs=1023 is processed faster than it

with Fs=1024. In addition, when Fs is not a power of 2, its processing time is equivalent

to the case that the input signal is random noise:

20

)),1(),1((NrandnjNrandnAX  (5-3)

In other words, the processing time with random input signal is faster than the case that

the input signal has integral number of time periods. One possible reason for those

results is that when the input signal has integral number of waves, it will result in a peak

in its frequency spectrum. All the other non-peak points are very small numbers. The

FPU might take more time when calculate the small value data, which causes a longer

processing time for the input signal with integral number of waves. However, for the

time limitation, this has not been investigated further.

The FFT calculation flow can be expressed as Figure 5-3. For N-point FFT, there are

N2log stages of decimation, where each stage involves N/2 butterflies arithmetic.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

N
W

1

2

0

1
* XWX

N


2

0

1
* XWX

N


N

2
log

2

N

… ...

.

.

.

.

.

.

1
X

2
X

N
X

Figure 5-3 FFT calculation flow

As it can be seen in Figure 5-3, each butterfly arithmetic has one ‘pure complex

multiplication’ and two ‘pure complex additions/subtraction’. In the embedded

programming point of view, the procedure of a multiplication operation consists of two

parts. One part is to access the memory to read the two multiplicative operands and

write the product. The other part is the CPU calculation to multiply the two operands,

which is called ‘pure multiplication’ in this report. Simultaneously, the ‘pure addition’

means the CPU calculation for adding the two operands to compute the summation.

The N-point FFT calculation needs N
N

2log
2

 pure complex multiplications, NN 2log

pure complex additions and NN 2log read and write operations (shown in Table 5-5).

21

Table 5-5 Number of operations to compute an N-point complex FFT

Operations Number

pure complex multiplication N
N

2log
2

pure complex addition NN 2log

read(complex) NN 2log

write(complex) NN 2log

The processing time for FFT operation can be estimated by the number of operations in

Table 5-5 and computed with the data in Table 5-1.

Take 65536-point FFT for example. Suppose the processing time for FFT is fftT , and

the processing time of multiplication, addition, read and write is multiT , addT ,

readT and writeT , respectively.

 writereadaddmultifft TNNTNNTNNTN
N

T  2222 loglogloglog
2

 (5-4)

, where N=65536.

As it is written in Table 5-1, the processing time of complex multiplication, addition,

read and write for 65536 point vector is 94ms, 65, 14ms and 14ms, respectively. Each

complex multiplication includes one times of pure complex multiplication, two times of

reading and one time of writing. So that the processing time of pure complex

multiplication for 65536 point vector is 94-2*14-1*14=52ms. Analogously, the

processing time of pure complex addition is 65-2*14-1*14=23ms. (Shown in Table 5-6)

Table 5-6 The processing time of each operation to compute an 65536-point complex

FFT

Operations Size of input Processing time(ms)

pure complex multiplication 65536 52

pure complex addition 65536 23

Read/write(complex) 65536 14

With the Equation (5-4) and data above, fftT can be computed:

)(123214log14log23log52log
2

1
2222 msNNNNT fft 

The percentage of each operation in the view of processing time can be calculated.

(Shown in)

22

Table 5-7)

Table 5-7 The processing time percentage of each operation in complex FFT

Operations Percentage

pure complex multiplication 34%

pure complex addition 30%

Read and write(complex) 36%

As the value of T_fft is based on the data in Table 5-1, where the input data in Table 5-1

is random data, the estimated processing time for FFT is for random input data. Since

when Fs is not a power of 2, the processing time is equivalent to the case that the input

data is random noise, the value in Table 5-4 can be used to compare with the estimated

processing time. The measured processing time for general length FFT with 65536 point

input in Table 5-4 is 1245ms. As can be seen, it has a good match with the estimated

T_fft.

5.3.1.2 Error analysis of floating point FFT

For concision, there is no need to analyze the calculation error for every test and every

algorithm. Hence only FFT error analysis is displayed in detail in this report. The input

signals is like the Equation (5-1), where Fs=1024, A=1; N is 1K, 16K, 32K, 64K and

128K.

In further analysis of the calculation error, the normalized standard deviation error and

maximum error are calculated in the following way,

 1) Suppose error = absolute value of (hardware result-MATLAB result);

 2) ∆=exclude the peak value of error;

 3) Normalized standard deviation error (which is called ‘normalized Std error’ in

short) = std(∆)/max(truth data);

 4) Normalized max error = max (∆)/max(truth data).

Figure 5-4 is the FFT output of the on-board FFT calclulation. Figure 5-5 is the error

between the hardware result and the MATLAB result (∆). Figure 5-6 and Figure5-7 are

the error analysis in the form of normalized Std error and normalized max error.

Figure 5-4 improves the calculation result from the processor board is the same as the

result from MATLAB. The relationship between the peak values and their

corresponding input data length can be represented like the equation below:

)()(NPeakaaNPeak  (5-5)

, where ‘N’ is the length of input data, ‘a’ is an constant.

23

Figure 5-4 FFT calculation result from processor board

Figure 5-5 Error between the result from hardware and the MATLAB result

The plot in Figure 5-5 is the error ‘∆’ with different input data length. As can be seen,

‘∆’ increase when the length of input data increase, and they have the same scale factor.

Table 5-8 illustrates the Std error and max error of floating point FFT with different

lengths. The relationship of the error and the length of input data can be represented by

the following equation:

24

)(_)(_ NerrorStdaaNerrorStd  (5-6)

)(_)(_ NerrorMaxaaNerrorMax  (5-7)

, where ‘N’ is the length of input data; ‘a’ is a constant.

Table 5-8 Error of floating point FFT with different lengths

Size Std error Max error

1k 0.027e-004 0.379e-004

8k 0.077e-004 0.303e-005

16k 0.109e-004 0.606e-005

32k 0.154e-004 0.121e-006

64k 0.218e-004 0.242e-006

128k 0.308e-004 0.485e-006

With Equation (5-5) and Equation (5-6), one can compute the relation between

normalized Std error and the input data length like the following equation:

)(__
1

)(/)(_
1

)(/)(_

)(__

NerrorStdNormalized
a

NNerrorStd
a

aNaNerrorStd

aNerrorStdNormalized









 (5-8)

, where ‘N’ is the length of input data; ‘a’ is a constant.

The same as normalized Std error, the normalized max error could be represented as the

equation below:

)(max__)(max__ NerrorNormalizedaNerrorNormalized  (5-9)

The expectation of normalized Std error and normalized max error can be proved in

Figure 5-6 and Figure5-7.

25

0 20 40 60 80 100 120 140
10

-10

10
-9

10
-8

FFT length of 1k 8k 16k 32k 64k 128k

s
td

(d
if
f)

/m
a
x
(t

u
re

 v
a
lu

e
)

Error comparison in std value

Figure 5-6 FFT error analysis in normalized Std error

0 20 40 60 80 100 120 140
10

-13

10
-12

10
-11

10
-10

FFT length of 1k 8k 16k 32k 64k 128k

m
a
x
(d

if
f)

/m
a
x
(t

u
re

 v
a
lu

e
)

Error comparison in max value

Figure5-7 FFT error analysis in normalized max error

To be clearer, the value of the normalized floating point FFT errors is shown in Table

5-9.

Table 5-9 Normalized error of floating point FFT with different lengths

Size Normalized Std error Normalized Max error

1k 2.6234e-009 3.6976e-008

8k 9.3823e-010 3.6976e-008

16k 6.6397e-010 3.6976e-008

32k 4.6969e-010 3.6976e-008

64k 3.3218e-010 3.6976e-008

128k 2.3491e-010 3.6976e-008

26

5.3.2 Fixed point FFT

As described in Section 4.3, the comparison between fixed point and floating point FFT

is worth to investigate to see which format is the best for our case.

In this section, the test result of fixed point FFT was illustrated in order to compare to

floating point FFT. In Section 5.3.2.1, the processing time of 16-bit FFT and 32-bit FFT

was tested. Section 5.3.2.2 is to investigate the error of fixed point FFT. In the fixed

point FFT, integer numbers are used to represent -1.0 to +1.0, accordingly, the larger

range of integer values, the better accuracy it will have. It’s easy to observe that 16bit

integer is more susceptible to common numeric computational inaccuracies than 32bit

integer. In the consideration of the high requirement of the computation accuracy, the

16-bit FFT will not be involved in Section 5.3.2.2.

5.3.2.1 Processing time of fixed point FFT

The input signal in this section is a complex signal with constant frequency, like the

Equation (5-1), where Fs=1024.

Figure 5-8 and Table 5-10 shows the processing time of different input data length for

both 16bit FFT and 32bit FFT, where A= b2 , b=15.

1 8 16 32 64 128
0.0118
0.1398

0.2976

0.6312

1.3345

2.813

Processing time for different indata size

Indata Size(K)

P
ro

c
e
s
s
in

g
 t

im
e
 (

s
e
c
o
n
d
s
)

16bFFT

32bFFT

Figure 5-8 Processing time of fixed point FFT with different lengths

Table 5-10 Processing time (ms) of fixed point FFT with different lengths

Size 16bit FFT 32bit FFT

16384 274 297

32768 582 631

65536 1233 1334

131072 2604 2812

27

As can be seen in Figure 5-8 and Table 5-10, 32-bit fixed point FFT is a little bit slower

than 16-bit fixed point FFT. However, as 32bit FFT performs better in accuracy of the

computation, 32bit FFT is more preferred to use.

By applying the Equation (5-2), it can be obtained that, for 16-bit FFT, B is 80 and for

32-bit FFT, B is 87. As it is computed in Section 5.3.1.1, for fixed length floating point

FFT operating in hardware FPU with Fs equals to 1023, B = 50.7; For general length

FFT with the same condition, B = 64.3. As a result, comparing floating point FFT, fixed

point FFT is slower. There is no advantage of using fixed point FFT in the processing

time point of view.

5.3.2.2 Error analysis of fixed point FFT

Two parameters will influence the calculation error on the processor board. One is the

error due to different input data lengths of fixed point FFT, the other one is the error due

to input data amplitudes. The influence of both parameters was tested on hardware and

the investigation is given below.

Figure 5-9 and Table 5-11 illustrate the normalized Std error and max error of fixed

point FFT with different lengths. The input data is a complex signal with constant

frequency, as it is in Equation (5-1), where A= 302 , Fs=1024.

1 8 16 32 64 128
10

-10

10
-9

10
-8

Normalized Std error for different indata size

Indata Size(K)

s
td

(d
if
f)

/m
a
x
(t

ru
th

)

1 8 16 32 64 128
10

-9

10
-8

10
-7

Normalized Max error for different indata size

Indata Size(K)

m
a
x
(d

if
f)

/m
a
x
(t

ru
th

)

Figure 5-9 : Normalized error of fixed point FFT with different lengths

28

Table 5-11 Normalized error of fixed point FFT of different lengths

Size Normalized Std error Normalized Max error

1024 1.179e-009 4.165e-009

8192 1.090e-009 5.268e-009

16384 9.829e-010 5.268e-009

32768 8.758e-010 7.903e-009

65536 7.475e-010 7.903e-009

131072 6.302e-010 7.903e-009

The figure and table above indicate the normalized Std error decrease with the

increasing of the input data size. Meanwhile, the normalized max error is almost the

same due to different size of input data.

The dependency to input data amplitude on the error rate is shown in Figure 5-10 and

Table 5-12 Normalized error of different input data amplitudes. The input signal is a

complex signal with constant frequency, as it is in Equation (5-1), where A= b2 , b=30;

Fs=1024; N=8192.

As the range of 32bit integer is from − 2,147,483,648 to 2,147,483,647, there might be

overflow during the FFT calculation if the size of input vector is too big, so a scale

factor is applied in every FFT iteration (divided by two). However, the scale vector

influences the accuracy of result. On the other hand, the amplitude of input vector

influences the error, too. If the amplitude is large, the contrast between ‘∆’ and the

maximum value of FFT result will be very striking. In that case, with the increase of the

amplitude, the normalized Std error and max error will decrease. The test result can be

observed from Figure 5-10 and Table 5-12.

10 15 20 25 30
10

-10

10
-5

10
0

Normalized Std Error for different amplitude

b

s
td

(t
ru

th
-t

e
s
t)

/m
a
x
(t

ru
th

)

used scale factor

without scale

10 15 20 25 30
10

-10

10
-5

10
0

Normalized Max Error for different amplitude

b

m
a
x
(t

ru
th

-t
e
s
t)

/m
a
x
(t

ru
th

)

used scale factor

without scale

Figure 5-10 Normalized error comparison of different input data amplitudes (The number

in x axis is the log2 value of the amplitude.)

29

Table 5-12 Normalized error of different input data amplitudes

Amplitude

Std error Max error

Without scale With scale Without scale With scale

2^10 1.381e-005 0.001 6.741e-004 0.006

2^15 4.376e-007 3.545e-005 2.107e-005 1.779e-004

2^20 1.135e-006 5.395e-006

2^25 3.491e-008 1.686e-007

2^30 1.090e-009 5.268e-009

As expected, for the same input vector, without scale factor will result in smaller

normalized Std error and max error. Meanwhile, for input vectors with the same length

and different amplitude, the Std error and max error is reduced when the amplitude rise.

Comparing Table 5-11 and Table 5-12 with Table 5-9, the normalized error of fixed

point FFT is much larger than floating point FFT when the amplitude of input data is

less than 2^30. However, the amplitude of input data in Table 5-9 is 1, so that the

accuracy of floating point FFT is much better than fixed point FFT.

With the result of processing time and normalized error for floating point FFT and fixed

point FFT, one can draw the conclusion that there is no advantage of using fixed point

FFT comparing to floating point FFT.

5.4 FCM and SIM —processing time

The most time consuming part of FCM algorithm is FFT, thus FCM can be viewed as

the combination of several FFTs. As it is shown in

Figure 5-11, the processing time of FCM regarding to different input data length have

the same trend as the one in FFT.

1.6384 3.2768 6.5536 12.27613.1072

x 10
4

2.014

4.161

8.623

15.984

17.877

Processing time for different indata size(FCM)

Indata Size

P
ro

c
e
s
s
in

g
 t

im
e
 (

s
e
c
o
n
d
s
)

Figure 5-11 Processing time of FCM regarding to different input data length (SDRAM)

30

Figure 5-11 shows that with the increasing of input data size, the processing time of

FCM increases in scale. From Equation 5-2, the estimated constant B = 562.

The time-consuming calculations of SIM could be separated to two parts. One is FFT,

whose processing time will enhance with the increasing of input data length. The other

part is the combination of phase calculation, upsampling etc, which is constant due to

different input data length. The model used to estimate SIM processing time is

 FNNBCT /)(log2 (5-10)

Where N is the input vector size, F is the system frequency of the processor board

(64MHz), B is an estimated constant, C is the constant processing time for all size of

input data and T is the processing time. The processing time of SIM with different input

data lengths is shown in Figure 5-12.

1.6384 3.2768 6.5536 12.276

x 10
4

5.213

9.086

17.163

32.705

Processing time for different indata size(SIM)

Indata Size

P
ro

c
e
s
s
in

g
 t

im
e
 (

s
e
c
o
n
d
s
)

Figure 5-12 Processing time of SIM with different input data lengths (SDRAM)

With the value of first and second point in Figure 5-12, the parameters in Equation 5-3

can be computed: C = 1802 ms; B = 952.

5.5 Comparison between MEX-file computation time and on-board

computation time

As it is written in Section 4.3, MEX-file is a very excellent tool for algorithm

developing. In this section, the relationship between MEX computation time and on-

board computation time is described.

31

The scale factor in Table 5-13 and Table 5-15 is the On-board computation time divided

by MEX computation time, which indicates the relationship between on-board

computation time and MEX computation time. The MEX files runs on a computer with

Intel Core Quad CPU, whose clock speed is 3.00 GHZ.

Table 5-13 Compare the processing time of different functions between MEX-file and

hardware

Function

name
Size of data

MEX

computation

time (ms)

(On PC 2592)

HW

computation

time (ms)

Scale factor
Complexness of

input data

X+Y 65536 2.7 65 24 complex

fftcorr(X,Y) 65536 124 3736 30 complex

abs(X) 65536 4.3 132 31 complex

angle(X) 65536 5.4 792 146 complex

exp(1i*P) 65536 6.6 111 17 real

polyfit(t,P,1) 65536 7.3 627 80 real

In Table 5-14,the processing time of some basic MATLAB functions was tested. As can

be seen, the scale factor is diverse for different functions.

Table 5-15 Compare the processing time of different algorithms between MEX-file and

hardware

Function

name
Size of data

MEX

computation

time (ms)

(On PC 2592)

On-board

computation

time (ms)

Scale factor

Number of

equivalent FFT

(measured)

FFT 32768 22 598 27 1

FFT 65536 46 1252 27 1

FFT 122760 2343 1

FCM 32768 135 4161 31 7

FCM 65536 281 8623 31 7

FCM 122760 15984 7

SIM 32768 334 9086 27 15

SIM 65536 668 17163 27 14

SIM 122760 32705 14

As it is shown in Table 5-15, because FCM and SIM are based on FFT, they have the

similar scale factor, around 30. For the same algorithm, the scale factor is the same

regarding to different length of input data.

32

In conclusion, the relationship between MEX operation time and on-board operation

time is fixed for the same functions. Different functions result with different scale factor.

The scale factors for algorithms depend on what functions is included in each algorithm.

Another observation from the scale factor is that the processer board is more efficient

per CPU clock cycle. The clock speed of the computer that MEX files run on is 3GHz.

The clock speed of the processor board is 64MHz. The scale between the CPU clock

speed of the computer and processor board (3GHz/64MHz=47) is larger than the scale

factor (about 30), so that for one clock cycle, the processor board can manage more

operations than the computer.

33

6 Conclusion

6.1 Different parameters that influence the test results

When testing a specific algorithm, there are four factors that vary from different test

cases. These factors are the memory types (SRAM and SDRAM), cache modes, FPU

types (software FPU and hardware FPU) and input data. The processing time on-board

is the same no matter use which kind of memory. The caches modes and FPU types

have a significant influence on the processing time. The test bench executed with caches

enabled results with three times faster than the caches disabled case. Meanwhile, if the

test bench runs with hardware FPU, the processing time is ten times shorter than it runs

with software FPU. In conclusion, to get the fastest execution, one has to enable the

caches and use hardware FPU. The input values affect the processing time, too. When

the input data is an integral number of sine waves, the processing time is longer than the

case when input is not an integral number of sine waves or random signal(like Equation

5-3). This case has not been investigated further.

The data formats in algorithms also influent the test results. Comparing with the fixed

point format, the floating point format achieves better accuracy and faster execution

speed with hardware FPU. As a result, the floating point format is more preferred to use

than the fix point format.

6.2 The effectiveness of MEX files

As it is proved in Section 5.5 , the processing time of MEX files has a good match with

the on-board processing time. In that case, when the algorithm developers test their

algorithms, they can firstly convert these algorithms to MEX files and run the MEX

files in MATLAB. Then, the algorithms can be evaluated and optimized in MATLAB

instead of doing every step on hardware.

34

7 Future work

As mentioned in the beginning, for the time limitation, not the entire algorithm under

development was tested. Only two thirds of the algorithm was tested and analyzed,

which implies that the total execution time of the algorithm on the processor board is

still unknown. One of the future tasks is to finish the bench test of the complete

algorithm. The challenge for this future task is the capability of the automatic

conversion from MATLAB code to C code provided by the MATLAB Coder, since the

new MATLAB functions applied in the rest of the algorithm might not be supported by

the MATLAB Coder. If the bench test of the entire algorithm is successful, it would be

interesting to use the real signal as input data instead of the simulated input data from

MATLAB.

The other future task of interest is a deeper investigation of why the input values affect

the execution time. As Section 5.3.1.1 described, when the input signal is an integral

number of sine waves, its execution time is longer than the input signal is not an integral

number of sine waves or the input signal is random values. We preliminary think that

the reason might be related to how the hardware FPU works. To investigate it, first of

all, the execution time of the two kinds input signal when using software FPU should be

measured. If the execution time of the two scenarios is the same, the reason affecting a

different execution time is surely the way how hardware FPU works in.

This bench test is only a prototype. But it indicates a possibility of accelerating and

saving the labour in traditional development procedure of satellite signal processing. In

traditional development procedure, the algorithm should be coded into software by the

software department before it can be tested on the processor board. For the developer,

this waiting time is a kind of block. By using this bench test prototype, the block time

could be largely decreased, which helps the developer to obtain the on-board test result

quickly after he thinks of some new idea. Meanwhile, there is no need for the labour

work form the software department in the preliminary developing stage any more.

In addition, as a further development of the bench test program, it could be worthy to

try to develop a GUI of the program.

35

Reference

[1] Wikipedia, Eclipse (software)

http://en.wikipedia.org/wiki/Eclipse_%28software%29

[2] Brian Handley, Embedded Cross-Development with Eclipse,

http://www.macraigor.com/downloads/Macraigor_with_Eclipse.pdf

[3] Steven.W.Smith, Ph.D, The Scientist and Engineer’s Guide to Digital Signal

Processing ©1997-1998, Chapter 28,

http://www.dspguide.com/ch28/4.htm

[4] On-Line Applications Research Corporation ©1988-2007, RTEMS C User’s

Guide Edition 4.8.0, for RTEMS 4.8.0, 14 February 2008

[5] MATLAB Coder product description

http://www.mathworks.se/products/matlab-coder/description1.html

[6] Product Support, MEX-files Guide

http://www.mathworks.se/support/tech-notes/1600/1605.html#intro

[7] SPARC International, Inc. The SPARC Architecture Manual Version 8 ©1991,

1992

http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://www.macraigor.com/downloads/Macraigor_with_Eclipse.pdf
http://www.dspguide.com/ch28/4.htm
http://www.mathworks.se/products/matlab-coder/description1.html
http://www.mathworks.se/support/tech-notes/1600/1605.html#intro

