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Abstract

We present stochastic backpropagation, a novel maximum a posteriori detection method
for coherent optical communications with dual polarization and Multilevel quadrature
amplitude modulation formats (M-QAM) transmission. The proposed detector is shown
to outperform conventional backpropagation in a scenario where nonlinear phase noise is
the dominant impairment and polarization dependent loss (PDL) channels are existed.
We also provide a novel channel estimation method for unitary channel effect and a
ML-based channel estimation method for PDL channel.
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1
Introduction

Multilevel quadrature amplitude modulation formats (M-QAM) is widely used in the
coherent optical communication due to its ability to increase the spectral efficiency com-
paring to the traditional optical communication. However, as the minimum distance
decreases on the constellation, M-QAM is more sensitive to the noise and requires more
power to reach a certain bit-error-rate (BER). Some other characters of optical system
will also affect the results during the transmission, like high power will lead to increas-
ing intrachannel four-wave mixing which causes the nonlinear inter-symbol interference
(ISI), and self-phase modulation (SPM) [1].

This thesis is aimed to build a novel detector to solve both SPM noise and PDL
channel effect, the detector is built based on some techniques such as back propagation,
factor graph (FG) and Monte Carlo technique. In this thesis, we focus on a dual po-
larization 16-QAM system. The key components will be studied separately before the
whole system is taken into consider.

1.1 Coherent optical communication

Coherent technologies have been as a hot topic as the transmission-capacity increases
in wavelength-division multiplexed (WDM) systems [2]. In coherent optical communi-
cation, signal is encoded onto the electrical filed of the light wave. Polarization is one of
the main issues may take into consideration. A polarized signal is a wave which all the
electric components are in a fixed phase relationship. So phase and polarization are the
key obstacles for the implementation of the coherent receivers.

1.1.1 Nonlinear impairments

Both linear and nonlinear impairments are contained in optical communication model.
Linear impairments include chromatic dispersion (CD) and polarization mode dispersion
(PMD). Nonlinear impairments originate from Kerr effect, which is named after the
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CHAPTER 1. INTRODUCTION

Scottish Physicist John Kerr. It refers to the phenomenon that the refractive index of
the optical fiber varies as the launched power changes. Nonlinear impairments include
self phase modulation (SPM), cross phase modulation (XPM) and four wave mixing
(FWM).

Self-phase modulation (SPM) is interesting to study since it only can be partially
compensated while nonlinear inter-symbol interference (ISI) can be compensated for, as
shown in [3]. SPM causes the signal to change its own phase while travelling through
the fiber. In combination with amplified spontaneous emission (ASE) noise, SPM leads
to nonlinear phase noise (NLPN) [4], which in signal space can be viewed as symbols
elongated in the phase direction [1]. In this thesis work, the chromatic dispersion (CD)
is neglected so that NLPN is the dominant impairment for the communication system
[1, 5, 6].

An experimental investigation has showed that NLPN is a limiting factor [7] and
recent results indicate that NLPN is important up to 40 Gbaud [8]. To mitigate the
effect caused by NPLN, compensation have to be made at the receiver side. A stochastic
back propagation method based on factor graph and Monte carlo technique is studied
in this thesis to achieve the goal.

1.1.2 Memoryless linear impairments

Polarization dependent loss (PDL) channel is another dominant component which limits
the system performance. Polarization dependent loss is the ratio of the maximum and
the minimum power amplitude to the all polarization states. It is usually caused by
circular dichrosim, fiber bending, angled optical interfaces or oblique reflection [9].

Each optical device exhibits a polarization dependent transmission, the polarization
changes randomly over each fiber span. Generally, the PDL of each span cannot be
determined by simply adding all the PDL components together in this case which is
the worst situation. The total PDL depends on the polarization transformation of each
span. The BER of the system is highly affected by these. PDL is also the main source
of pulse distortion [10].

In fiber optical transmission, the devices have PDL are fibers, optical couplers, iso-
lators, WDM and photonic-detectors. The PDL of each component are different, it may
depend on the input wavelength of the source. The polarization along the fiber is unpre-
dictable and uncontrolled which will lead to the decrease of the quality of fiber optical
transmission. Therefore, the systems always require the device with the low PDL.

Consequently, the measurement of PDL has become a hot topic and attracted lots
of attention from manufacturers and researchers. The perfect estimation can highly
improve the quality of transmission.

Erbium-doped fiber amplifier (EDFA) is the most common amplifier that is used in
the fiber optical communication. EDFAs use a doped optical fiber as a gain medium
to amplify an optical signal. EDFAs have two major pumping bands 980 nm and 1480
nm. The 980 nm band has a higher absorption cross-section and is used in the low noise
situation, on the contrary, the 1480 nm band has a lower absorption cross-section and
used when high power is required.
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CHAPTER 1. INTRODUCTION

Additive white Gaussian noise (AWGN) is an ideal channel model in which the
added noise is wideband with constant spectral density and a Gaussian distribution of
amplitude. The AWGN channel is a good model deep space communication links. It is
not good for most terrestrial links because of multipath or interference. But AWGN is
commonly used to simulate background noise of the channel.

1.2 Thesis structure

After the introduction, we will give the system model we studied in this thesis, also with
the abstract of previously research achievements of coherent optical communication. The
details of factor graph and Monte Carlo technique are also contained in chapter 2.

Chapter 3 includes most parts of achievements in this thesis. We divided the whole
system into several key components and solve the problems separately. In the end, a
detector designed for the entire system will be built.

We present the results in chapter 4, analyze the performance by comparing the results
with some known methods and different simulation parameters.

Chapter 5 is the conclusion of this thesis study, followed by chapter 6, the future
work.
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2
Literature Review

In this chapter we will give all the basic knowledge for our study, including system
model, channel character, introduction of backpropagation, factor graph and Monte
Carlo technique, along with some previously research achievements of SPM and PDL
channel.

2.1 System model

TX

span

RX

n         SPM

loss

amplifierfiber

PDL

Figure 2.1: Optical transmission model

We consider a discrete-time multi-span polarization multiplexed coherent optical
communication system with optical dispersion compensation. The system model is given
in Figure 2.1. The long-haul transmission system contains many spans like this. At each
symbol period, we transmit a two-dimensional complex data vector a, a is drawn uni-
formly from a constellation Ω2 with average energy proportional to the input power Pin
per polarization.

Optical communication system consists of a single mode fiber (SMF) followed by a
dispersion compensating fiber (DCF) and an amplifier in each span. SMF and DCF
have two Kerr nonlinear parameters and two attenuation factors αsmf , αdcf . The DCF
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CHAPTER 2. LITERATURE REVIEW

is assumed to ideally compensate for the chromatic dispersion [1]. The signal power is
attenuated by e−ξ = e−(αsmfLsmf+αdcfLdcf) where Lsmf and Ldcf are the lengths of SMF and
DCF. The amplifier has a power gain G = e−ξ, in order to restore the signal power to the
levels in the transmitter side. The amplifier generates an amplified spontaneous emission
(ASE) noise, which can be modeled as an additive white Gaussian noise (AWGN) process.
The PDL channel exists between SPM and AWGN.

SPM, PDL channel and AWGN are three major components in this system. As we
are familiar to deal with additive white Gaussian noise, we focus our study on SPM and
PDL channel. To make the problem more clear, we isolate the nonlinear part and the
channel, then discuss them separately.

2.1.1 Non-linear optical communication system

TX RX

n

NL

Figure 2.2: Simplified transmission model for 1 span

If we only take SPM and AWGN into account, we can redraw the transmission system
for one span like Figure 2.2. The NL block represent the SPM effect of the fiber and n
is the ASE noise. The discrete-time signal at the output of the i-th span will be given
by

ri(t) = ri−1(t) exp
(
jγLeff ‖ri−1(t)‖2

)
+ ni(t), (2.1)

where r0(t) = s(t). For clarity, SPM is neglected in the DCF1, so γ = γsmf as γsmf is the
nonlinearity parameter of SMF, Leff is the effective length of the fiber, which is written
as Leff =

(
1− e−αL

)
/α, in which attenuation factor α = αsmf and length L = Lsmf , the

operator ‖ · ‖ represents the norm given by ‖x‖ :=
√
xHx and ni(t) is ASE noise, which

is modeled as a zero-mean and has power spectral density of N0 per polarization, the
noise is bandlimited to a bandwidth B.

2.1.2 PDL channel

Polarization dependent loss is defined as:

PDLdB = 10× log(
PMax

PMin
), (2.2)

1The input power to the DCF is low, so SPM is neglected.
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CHAPTER 2. LITERATURE REVIEW

In practical PDL channel is defined as:

HPDL = U×

[
1 0

0 γ̃

]
×UH, (2.3)

where U is a random unitary matrix2, γ̃3 is the polarization dependent attenuation
factor, it is in the range of 0 to 1, usually around 1.

This channel has several properties. The γ̃ matrix is a diagonal matrix. When γ̃
equals to 1, the PDL channel will no longer exist, as unitary matrix times its hermitian
is an identity matrix. This can be used to check if the channel estimation works well.
Another property is that γ̃ cannot be 0, in this thesis, we focus on the dual polarization,
there are always two lines of signals transporting together, if γ̃ is zero, there will be
unexpected mistake.

The PDL channel is added in each span of the fiber. Our task is to estimate and
equalize the channel through numbers of spans with the nonlinear phase noise effect. In
our study, γ̃ is considered as a constant for each span which value is near 1.

2.2 Previously research

As the new technology like erbium-doped fiber amplifier (EDFA), WDM and fiber non-
linearity management breakthrough, the capacity of the fiber has been growing fast in
past years. Meanwhile, the spectral efficiency for optical communication has also been
increasing.

In order to achieve high spectral efficiency, the study of coherent optical communica-
tions has attracted the attention from all over the world. The coherent optical receivers
have following advantages: by using phase modulation, the multilevel modulation format
can be introduced; the receiver sensitivity has improved since the ability of the phase
detection increased; the closely spaced WDM channels can be separated at the electrical
level as the frequency resolution at baseband is high; the local oscillator power can help
to achieve the shot-noise limited receiver sensitivity.

These are all attribute to the rapid growth of high-speed digital signal processing
(DSP). By using DSP, both the phase and polarization management can be done.

2.2.1 Previously research of SPM

Many studies have been done to analyze the effect of nonlinear phase noise and different
methods have been brought to mitigate the effect of NLPN at the receiver, including
different kind of compensation technique, MAP and ML detection and backpropagation.
Here we give a brief review of several typical methods.

2A unitary matrix has the character that U×UH = UH ×U = I, where I is an identity matrix and
UH is the Hermitian adjoint of U, both U and UH are square matrix

3For clarity, in this thesis γ represents the nonlinear parameter and γ̃ represents the PDL factor

6



CHAPTER 2. LITERATURE REVIEW

Electronic compensation technique

Optimal compensation using electronic circuits to mitigate NLPN for binary phase-shift
keying (BPSK) and differential quadrature phase-shift keying (DQPSK) was proposed
in [5]. In their study, the overall nonlinear phase shift is equal to:

ΦNL = γLeff{|E0 + n1|2 + |E0 + n1 + n2|2 + · · ·+ |E0 + n1 + n2 + · · ·+ nN|2}, (2.4)

where E0 is the transmitted signal, nk is the complex amplifier noise at the kth span, γ
is the nonlinear coefficient of the fiber and Leff is the effective length of the fiber. They
use a an optical phase-locked loop (PLL) in PSK system and a pair of interferometers in
DPSK to receive the in-phase and quadrature components of the received electric field.
They derived optimal compensator by finding a scale factor β which can minimize the
variance of the residual nonlinear phase shift ΦNL+βPN . The corrected phase estimate
is ΦR − βPN , where ΦR is the phase of the received electric field ER [5]. The optimal
scale factor is found to be

β = −γLeff
N + 1

2
· |E0|2 + (2N + 1)σ2/3

|E0|2 + Nσ2
≈ −γLeff

N + 1

2
. (2.5)

In their research, optimal compensation can halve the standard deviation (STD) of the
nonlinear phase noise, doubling the transmission distance in systems whose dominant
impairment is nonlinear phase noise [5]. Their method was extended to M -ary phase-
shift keying in [6].

Close-form detector

In [1], a close-form detector was derived for a polarization-multiplexed M-QAM system
with discrete amplification, limited by NLPN. The detector is based on maximum like-
lihood (ML) detection. They use the same system model as we mentioned in 2.1.1 and
get the receive signal for Na span by recursive calculation:

rk = sk exp

(
jγLeff

Na−1∑
i=0

‖ri,k‖2
)

+ wk, (2.6)

where sk =
√
Pinak (assuming negligible inter-symbol interference), wk ∼ CN (0,Naσ

2
ASEI),

and σ2
ASE = BN0 [1]. They derived the approximate likelihood function and used it as

a detector, which is given by

âk = arg max
ak∈Ω2

p(rk|ak) (2.7)

= arg max
ak∈Ω2

exp

(
− ‖sk‖

2

Naσ2
ASE

)
I0(|βk|)

I0(1/σ2
ψ)
. (2.8)

where I0(.) is the zeroth order modified Bessel function of the first kind, and

βk =
2rH
k ske

(jγLeffNa‖sk‖2+jφ̄)

Naσ2
ASE

+
1

σ2
ψ

. (2.9)

7
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where
φ̄ = γLeffσ

2
ASE(Na − 1)Na/2, (2.10)

and
σ2
ψ = 2γ2L2

eff ‖sk‖
2 σ2

ASE(Na − 1)Na(2Na − 1)/6, (2.11)

In their research, the closed-form detector provides the best complexity-performance
trade-off compared with a number of suboptimal detectors and a complex non-parametric
detector.

Adaptive MAP detection

An adaptive maximum a posteriori (MAP) detection scheme was investigated in [11].
They studied the performance of a MAP detection scheme with a look-up table for non-
linear inter-symbol interference compensation and showed that MAP detection can help
to increase spectral efficiency and improve nonlinearity tolerance in long-haul transmis-
sions [11].

Digital backpropagation

Backpropagation was proposed as a universal technique for jointly compensating lin-
ear and nonlinear impairments in [12] and [13]. The use of digital backpropagation in
conjunction with coherent detection to mitigate fiber nonlinearity and dispersion jointly
is studied in [3]. They proposed a solution of the inverse nonlinear Schröinger equa-
tion (NLSE) by using noniterative asymmetric split-step Fourier method (SSFM). BP
has been shown to enable higher launched power and longer system reach in dense
wavelength-division-multiplexed (WDM) transmission over zero-dispersion fiber [12].

Backpropagation learning algorithm contains two parts: propagation and weight up-
date. Each propagation involves forward propagation and backward propagation. In this
thesis, forward propagation is the transmission process and the backward propagation is
the detection process. By using backpropagation, we can detect the original transmitted
signals from the receive signals. To achieve this goal, we need to analyze the transmission
system and calculate the update weight. This is done by using factor graph and Monte
Carlo techniques.

In this thesis, we compare our detector with a backpropagation detector. The back-
propagation detector only considers the deterministic part of the nonlinearity while
ignore the effects in nonlinear part caused by AWGN noise. The system model is
r = s exp(jγLeffNa ‖s‖2) + n, the detector is given by

âk = arg min
ak∈Ω2

∥∥∥rk − sk exp(jγLeffNa ‖sk‖2)
∥∥∥2
. (2.12)

2.2.2 Previously research of PDL channel

The research and development in optical fiber communication started around 1970s [2].
There are two basic methods to measure PDL of the device, the polarization scanning

8
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technique and the Mueller method. At some specific wavelengths polarization scanning
technique is more suitable. For a wavelength range, the Mueller method gives a better
performance.

Polarization scanning technique

The polarization scanning technique is a non-deterministic method based on the mea-
surement of the maximum and minimum power amplitude. The device under test (DUT)
is exposed to all stated of polarization state. The polarization is controlled by a polar-
ization controller that can be deterministically or randomly. Then the maximum and
minimum is measured over time. And the PDL is calculated by its definition. But we
cannot tell when there is a change, whether it caused by the PDL of the DUT or the
input power of the device.

In order to get a precise measurement, the input power must be stable, the source
must have high degree of polarization, the loss in the polarization controller must be
small, also the detector must have low polarization dependent responsitivity, as these
will largely influence the detection of the PDL.

In practical, the errors from the scanning time and the measuring time are limited,
which means the longer the polarization scanning takes, the more accurate the measure-
ment of PDL is.

Besides setting the scanning time, it is important to set a correct scanning rate as
well. The faster scanning rate will generate more polarization state then the measuring
time will decrease. But if the rate is too fast, the results may get worse.

Mueller method

Mueller method is a different approach from polarization scanning technique, as it is a
deterministic method and measures the PDL of a DUT from its Mueller matrix.

Mueller method only exposes the source to four polarization states, linear horizontal
polarized (LHP), linear vertical polarized (LVP), linear +45 degrees (L +45), right hand
circular (RHC). PDL is calculated from the information obtained by these states.

The Mueller matrix indicates the polarization and power properties of the DUT. The
relationship between input Stokes vector, output Stokes vectors and the Mueller matrix
is

Sout = M× Sin, (2.13)

The Mueller matrix is a 4 by 4 matrix. The first row coefficients of the Mueller
matrix describe the total optical power are required in calculating the PDL of the DUT.

S = m11S0in + m12S1in + m13S2in + m14S3in, (2.14)

9
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where m11...m14 are the first row coefficients, and input Stokes Vectors are:

LHP : S0in =


Pin1

Pin1

0

0

LVH : S1in =


Pin2

−Pin2

0

0

L+45 : S2in =


Pin3

0

Pin3

0

RHC : S3in =


Pin4

0

0

Pin4

 ,
(2.15)

Output Stokes Vectors for four polarizations are:

Pout1 = m11Pin1 + m12Pin2 (2.16)

Pout2 = m11Pin1 −m12Pin2

Pout3 = m11Pin3 + m13Pin3

Pout4 = m11Pin4 + m14Pin4.

Determining all the power values needs following steps. First, four polarization states
must be taken measurement individually, in order to get the different input powers.
Second, the DUT is inserted and the output powers corresponding to four polarization
states must be recorded.

It should be noticed that the power and wavelength for PDL measurement must be
in the same condition.

Solving the equation system for m11...m14 of the Mueller matrix yields:


m11

m12

m13

m14

 =


1
2

(
Pout1
Pin1

+ Pout2
in2

)
1
2

(
Pout1
Pin1

− Pout2
in2

)
Pout3
Pin3

−m11

Pout4
Pin4

−m11

 , (2.17)

Then the maximum and minimum transmissions through DUT can be derived as:

PMax = m11 +
√

m2
12 + m2

13 + m2
14 (2.18)

PMin = m11 −
√

m2
12 + m2

13 + m2
14,

By the definition, the PDL of the DUT can be calculated.
The Mueller method has some specific requirements on the polarization controller.

It helps to generate four polarization states. It contains a polarizer and a retarder.
The polarizer generates the linear polarization state, and the rotation of the retarder
generates other polarization states. The angular of the controller will affect the accurate
of the measurement.

The polarization controller also provides some loss. It will affect the measurement of
the reference power.
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Comparison

Generally, the polarization scanning technique is suitable for PDL measurement for single
wavelength, and the Mueller method is capable for a wavelength range. The polarization
scanning technique exposes the source to all the polarization states, so it can measure
the PDL at a certain wavelength at one time. And it is easy to implement and doesn’t
take too complicated math work. On the contract, the Mueller method requires many
wavelength points, it suitable for several channels.

In this thesis, we only have to take care of the PDL channel, which means the PDL
is known to us. And we neglect all the noise introduced by the devices to simplify the
simulation.

2.3 Factor Graph and Monte Carlo technique

As we mentioned above, factor graph and Monte Carlo technique are two very important
techniques in this thesis, almost all the research works are based on them. We use factor
graph to analysis the transmission system and use Monte Carlo technique to calculate
the results of backpropagation. Before we can start derive the detector, we need to give
some introductions for these two techniques.

2.3.1 Factor Graph

Factor graph is a particular type of graphical model that represents the factorization of
a function. Suppose there is a function f : X1 × X2 × · · · × XN → R, which is factorized
to K factors,

f(x1,x2,...,xN) =
K∏
k=1

fk(sk), (2.19)

where fk(·) is a real-valued function and sk ⊆ {x1,x2,...,xN} is the kth variable subset.
The factor graph of this factorization is created as follows. First, We create an edge
(drawn as a line) for every variable, and a node (drawn as a circle or a square) for every
factor. If a certain variable appears in a certain factor, we attach the corresponding edge
to the corresponding node. In our study, an edge can be attached only to two nodes,
which means there is no branch in the factor graph in this thesis.

TX

n
         SPM

loss

ampli!er!ber

a x1 r1 x2 r2

RX

n
         SPM

loss

ampli!er!ber

Figure 2.3: Transmission model for 2 spans.
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CHAPTER 2. LITERATURE REVIEW

If we substitute f(·) and fk(·) with probability density functions, we can get the
corresponding factorized representation of a certain distribution. For the system model
given by Figure 2.3,(where the PDL channel is ignored) the factorization representation
of the distribution p(a,x1,r1,x2|r2) is given by

p(a,x1,r1,x2|r2) ∝ p(a)p(x1|a)p(r1|x1)p(x2|r1)p(r2|x2), (2.20)

where ∝ denotes quality up to a multiplicative constant. The corresponding factor graph
is shown in Figure 2.4.

Figure 2.4: Factor graph of p(a,x1,r1,x2|r2).

The arrow refers to the messages which are computed as follow: given a factor f(·)
with variables x and y, and an incoming message m(x), then the out going message is
given by

m(y) = C

∫
f(x,y)m(x)dx, (2.21)

where C is a normalization constant and the integration interval is the domain of x. Some
factors may only have one variable (the factors on the boundary), if so, m(y) = Cf(y) (if
y is the only variable).

2.3.2 Monte Carlo technique

Monte Carlo techniques gives an innovation method to solve complex integration and
optimization compare to traditional Bayesian estimation. The essential idea is represent-
ing distributions as a list of samples on which integration and optimization are based.
The definition of particle representation is given as follows: suppose we have a random
variable Z which defined over a set Z. A particle representation of a distributionpZ(z)
is a set of L couples (w(l),z(l)), with Σlw

(l) = 1, for any integrable function f(z) from
Z → C,

I = EZ{f(Z)}, (2.22)

can be approximated by

IL =
L∑
l=1

w(l)f(z(l)), (2.23)

where z(l) is named a properly weighted sample with weight w(l).

12



CHAPTER 2. LITERATURE REVIEW

Then we introduce an alternative notation for continuous Z:

pZ(z) ≈
L∑
l=1

w(l)δ(z− z(l)), (2.24)

where δ(·) is the Dirac distribution. On the contrary, the notation of discrete Z is given
by

pZ(z) ≈
L∑
l=1

w(l)I{z = z(l)}, (2.25)

where, for a proposition X, I{X} is the indicator function, defined as I{X} = 1 when
X is true and I{X} = 0 when X is false. With Mote Carlo technique, we can easily
compute the expectation EZ{f(Z)}.

13



3
Data detection

In this thesis, we simulate a coherent optical communication system of dual polarization
16-QAM by using FG, Monte-Carlo technique and back propagation. We simplify the
problem by dividing the complicated system into separate components and organized
the process in four steps.

3.1 Linear unitary channel

First, we build a simple transmission system by ignoring both the nonlinear noise and
PDL channel effect. This can considered as the nonlinear parameter γ = 0 and the
PDL channel is simplified to a unitary channel. Using this simplified model, we give
a solution of channel estimation and data detection by factor graph and Monte Carlo
technique. These estimation and detection methods are the bases of this thesis. The
model is a transmission system with linear noise and unitary channel effects, which is
shown in Figure 3.1.

TX U1

n1

RXU2

n2

Figure 3.1: System model for 2 spans

The U block represent the unitary channel and n is the ASE noise of the fiber. For
each span, the unitary channels are independent and different. Since the optical channel
varies slowly, we treat the unitary channel as constant matrix in our simulation.

14



CHAPTER 3. DATA DETECTION

Assuming that the original signal is s0, the output of the first span x1 is given by

x1 = U1(s0 + n1) (3.1)

= U1s0 + U1n1, (3.2)

where U1 is the unitary channel of the first span and n1 is the corresponding ASE
noise. In 3.2, we can calculate the mean and variance of U1n1. Since n1 has zero mean
and a variance var{n1}, the expectation of U1n1 is E{U1n1} = E{U1}E{n1} = 0, the
variance of U1n1 is var{U1n1} = E{(U1n1)2}− (E{U1n1})2, where E{U1n1} = 0 and
(U1n1)2 = nH

1 U
H
1 U1n1 = n2

1, so var{U1n1} = E{n2
1} = var{n1}. After the derivation

above, we can conclude that U1n1 is still an additive white Gaussian noise with the
same mean and variance of n1, then 3.2 can be simplified to

x1 = U1s0 + n1, (3.3)

Then the output of the second span x2 is given by

x2 = U2(x1 + n2) (3.4)

= U2(U1s0 + n1 + n2) (3.5)

= U2U1s0 + n1 + n2, (3.6)

where we also use the conclusion above. In 3.6, U2U1 is still a unitary matrix since
(U2U1)H(U2U1) = UH

1 U
H
2 U2U1 = I. So 3.6 can be rewrite as

x2 = Us0 + n1 + n2, (3.7)

where U = U2U1 is a unitary matrix. We can easily extend the result to k-th span:

xk = Us0 + n1 + n2 + · · ·+ nk (3.8)

= U(s0 + U(n1 + n2 + · · ·+ nk)) (3.9)

= U(s0 + n1 + n2 + · · ·+ nk), (3.10)

where U = Uk . . .U2U1, here we use the character that UH is also a unitary matrix
to derive 3.10. Now the system model for k spans is reorganized as Figure 3.2.

TX RXU

n

Figure 3.2: Simplified system model for k spans

The system model for k spans is exactly the same as for 1 span, the only differences
are the values of noise n and channel U. In this model, n = n1 + n2 + · · · + nk and
U = Uk . . .U2U1.
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CHAPTER 3. DATA DETECTION

3.1.1 Channel estimation

Assume that the input signal is s, the output variable of the system is r and the variable
x is given by x = s + n. The receive signal is given by

r = U(s + n) (3.11)

= Ux, (3.12)

where we can get the channel estimation method since

U = rx−1, (3.13)

where we assumed that both r and x are 2 × 2 square matrices, x−1 is the inverse
matrix of x. We send a number of fixed signals which is known as training symbols, use
these training symbols estimate the channel. In 3.13, r is known as the receive signal,
but x is a variable that cannot be measured. However, we can compute the estimation
of x by using Monte Carlo technique instead of using the exact value. Then the channel
estimation equation is given by

Û = E(r)E(x)−1, (3.14)

where E(r) and E(x) are the estimation of r and x, Û is the estimated channel.
E(x) = E(s) + E(n), where E(n) = 0. To make sure 3.14 works well, the determinant
of E(s) should be a non-zero value.

The zero-forcing equalizer is given by

w = ÛH, (3.15)

If the estimation of the channel is perfect, which means Û = U then the output of
the equalizer is given by

x̂ = ÛHr (3.16)

= ÛHUx (3.17)

= x. (3.18)

3.1.2 Data detection

Assume that we have perfect knowledge of the channel, the transmission system will
become to a simple AWGN model, backpropagation is then used to perform data detec-
tion. It works as follow: first, for each received signal ri (after equalization), M sam-

ples(particles) are generated as r
(l)
i , l = 1,2 . . .M, then the samples are sent to backward

transmission in the system. Since the system only contains AWGN noise, the output

of the backward transmission is a
(l)
i = r

(l)
i + n where a

(l)
i is a bunch of samples which

can be considered as the prediction of the original transmitted signal si. We calculate
the distribution (mean and variance) of the samples and substitute all the possible orig-
inal signal into the distribution. The results are in direct proportion to the probability

16



CHAPTER 3. DATA DETECTION

p(si|ri) which means the signal gives the maximum value of the distribution function is
the result of the detection. Our detector is called stochastic backpropagation.

Here we discuss a little bit of the number M , generally speaking, the bigger M is
the better result we get since more information of the function are collected from the
particles. However, the result varies very slowly after M reaches a certain number1. The
system will be become less efficiency if we continue increase M and will not give good
performance if M is not big enough.

3.2 Non-linear unitary channel

After simulated the system of linear noise and unitary channel effect, we built a system
contains the nonlinear part and white Gaussian noise with the unitary channel effect. It
can be considered as we change the nonlinear parameter γ from 0 to a non-zero constant.
The system model is shown in Figure 3.3.

TX U1

n1

NL1 RXU2

n2

NL2

Figure 3.3: System model for 2 spans

Assuming that the original signal is s0, the output of the first span x1 is given by

x1 = U1(s0 exp(jγLeff ‖s0‖2) + n1) (3.19)

= U1s0 exp(jγLeff ‖s0‖2) + n1, (3.20)

In 3.20, we used the conclusion from the above section that U1n1 = n1. The output
of 2 spans is then given by

x2 = U2x1 exp(jγLeff ‖x1‖2) + n2, (3.21)

If s1 , s0 exp(jγLeff ‖s0‖2)+n1, then x1 = U1s1 and ‖x1‖2 = ‖U1s1‖2 = (s1)HUH
1 U1s1 =

(s1)Hs1 = ‖s1‖2. So 3.21 can be rewrite as

x2 = U2U1s1 exp(jγLeff ‖s1‖2) + n2 (3.22)

= U
(
s1 exp(jγLeff ‖s1‖2) + n2

)
, (3.23)

where U = U2U1. From the derivation above, we find that unitary channel has no
effect on nonlinear noise, so we reorganize the system model as Figure 3.4.

U is the only channel effect in the system and we use the same method as above to
estimate it.

1In this thesis, M = 100 is considered to be sufficient
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TX RX

n1

NL1 NLk

nk

U

Figure 3.4: System model for k spans

3.2.1 Data detection

Assume that we have the perfect knowledge of the unitary channel, the only problem
left is how to deal with the nonlinear noise. With stochastic backpropagation tech-
nique, we compensate the nonlinear noise for each span. The nonlinear noise can be
considered as a rotation in constellation without changing the signal energy. For a non-
linear component rk = sk exp(jγLeff ‖sk‖2), the original signal sk can be regenerated as
sk = rk exp(−jγLeff ‖rk‖2). As we said above, the nonlinear noise will not change the
signal energy which means ‖sk‖2 = ‖rk‖2.

Combining the methods we gave in linear noise system, we can describe the back
propagation method as follow. After channel equalization, we generate particles for each
received signal rk then send the particles to backward transmission. For each span, the
transmission model is xk = rk + n, ak = xk exp(−jγLeff ‖xk‖2). After the transmission
process is finished, we can get the prediction of the original transmitted signal. The
detection method is same as we provide in the first section.

In this step, we compare our method with two existed techniques, the regular maxi-
mum likelihood (RML) detector and the back propagation method we provided in chap-
ter 2. The RML detector simply ignores the nonlinear noise, considers the system as
rk = sk + n. The detector is given by

âk = arg min
ak∈Ω2

‖rk − sk‖2 , (3.24)

3.3 Linear non-unitary channel

The third step is mainly about the estimation for PDL channel. The system we discussed
here only consist channels and white Gaussian noise. For each span the signal goes
through the channel first then the noise is added. The signal is dual polarization QPSK.
The original signal is s0, the polarization dependent attenuation factor γ̃ for PDL is
fixed and all the channels have the same value. Figure 3.5 shows the system model for
two spans.
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Figure 3.5: System model for 2 span

3.3.1 Channel estimation

The signal passed the first channel is

r1 = H1s0 + n1, (3.25)

where H1 is the first channel and n1 is the added noise with noise covariance matrix
N0/L, N0 is the noise variance, L is number of spans. In our simulation, N0 is 1, L is 22.

The signal passed the second channel is

r2 = H2r1 + n2 = H2H1s0 + (H2n1 + n2) , (3.26)

The noise covariance matrix for this case is

(H2n1 + n2)× (H2n1 + n2)H (3.27)

= (H2n1 + n2)×
(
nH

1 HH
2 + nH

2

)
= H2

(
N0

L

)
HH

2 +
N0

L
,

So the signal after passing i-th span is

ri = Hiri−1 + ni, (3.28)

and the noise covariance matrix is

Σ = Hi...H2

(
N0

L

)
HH

2 ...H
H
i + ...+ Hi

(
N0

L

)
HH
i +

N0

L
, (3.29)

the total channel we wish to estimate is the multiplication of all the channel per span,
the total channel is

Htotal = HiHi−1...H2H1, (3.30)

The noise covariance matrix has an interesting property. After passing 22 of spans,

it is nearly stable. After simulation, when γ̃ equals to 0.99, Σ is around

[
0.9 0

0 0.9

]
,

when γ̃ equals to 0.9, Σ is around

[
0.4 0

0 0.4

]
.
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We use maximum likelihood function of the posteriori probability to estimate the
channel. The original dual polarization signal is jointly Gaussian, so the maximum
likelihood function is

r̂ = arg max p(r|Htotals0) = (r−Htotals0)HΣ−1(r−Htotals0), (3.31)

where r is the received signal, s0 is the original signal, Σ is the noise covariance matrix,
Htotal is the total channel we have to estimate. The function derives:

r̂ = arg max p(r|Htotals0) (3.32)

= rHΣ−1r + sH
0 HH

totalΣ
−1Htotals0 − sH

0 HH
totalΣ

−1r− rHΣ−1Htotals0,

In order to maximum the function, we take the derivatives of this function, and set
it equals to 0 to calculate the estimated channel. And according to the simulation, the
noise covariance matrix Σ can be considered as a fixed matrix β. So the function can be
written as

∂ arg max p(r|Htotals0)

∂Htotal
= 0 (3.33)(

(β−1)
H

+ β−1
)

Htotals0s
H
0 =

(
(β−1)

H
+ β−1

)
rsH

0 ,

So the estimated channel is
Hesti = rs0(s0s

H
0 )−1, (3.34)

It is just a function of received signal and original signal, doesn’t relate to the noise.
And the estimated channel is a scaled identity matrix.

3.3.2 Data detection

We presented two kinds of equalizers, zero forcing (ZF) equalizer and minimum mean
square error (MMSE) equalizer in detecting the data.

Zero forcing (ZF) equalizer simply applies the inverse of the channel to the received
signal. It is a form of linear equalization which is widely used in the communication
systems[14]. For the estimated channel Hesti, CZF is the equalization matrix, it is defined
as

CZF = Hesti
−1, (3.35)

It should be noted that, ZF equalization is not suitable for most applications, as even
the channel impulse has finite length, the impulse response of the ZF equalizer is infinite;
and ZF equalizer neglects the effects of the noise.

Minimum mean square error (MMSE) equalizer may be a better solution. MMSE
equalizer minimizes the mean square error (MSE) of the transmitted data. MSE is a
risk function. It is related to the expectation of the squared error loss, and measures the
average of the square errors. It is defined as[14]

CMMSE =
HH

esti

‖Hesti‖2 + Σ2

σs2

, (3.36)
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where Σ is the noise covariance matrix, which is considered to be a fixed matrix and can
be obtained from the simulation. σs

2 is the variance of the modulated symbols.
In the general cases, the MMSE equalizer should have a better performance than the

ZF equalizer, as the MMSE equalizer takes the effects of the noise into consideration. But
in the multi-spans PDL channel, these two equalizers have nearly the same performance
when estimating the same channel under the same circumstance. This may due to the
noise.

We built a similar system to check this assumption. Instead of passing the channel
first, the signal is firstly added the noise then passing the PDL channel. So the received
signal after passing the first span is rewritten as

r1 = H1(s0 + n1), (3.37)

so now the noise covariance matrix is H1

(
N0
L

)
HH

1 .
The signal passing the second span is

r2 = H2(r1 + n2) = H2H1s0 + (H2H1n1 + H2n2), (3.38)

and the noise covariance matrix is

(H2H1n1 + H2n2)× (H2H1n1 + H2n2)H (3.39)

= (H2H1n1 + H2n2)× (nH
1 HH

1 HH
2 + nH

2 HH
2 )

= H2H1

(
N0

L

)
HH

1 HH
2 + H2

(
N0

L

)
HH

2 ,

The received signal after passing the i-th span is

ri = Hi(ri−1 + ni), (3.40)

the noise variance matrix Σ for the total system is

Σ = Hi...H1

(
N0

L

)
HH

1 HH
i + ...+ HiHi−1

(
N0

L

)
HH
i−1HH

i + Hi

(
N0

L

)
HH
i , (3.41)

The channel is estimated in the same way by using the same calculation, the estimated
channel is still

ˆHesti = rs0(s0s
H
0 )−1, (3.42)

and the Σ is still nearly a fixed matrix after passing several spans.
In this case, the performance of the MMSE equalizer has a clear improvement, is

much better than the ZF equalizer. Comparing with the previous case, we can easily
figure out that the difference in the noise covariance matrix Σ is the key issue.

In the second case, each component of the Σ matrix is affected by the first the
channel. The noise will contribute more in the transmission. Since the MMSE equalizer
is an estimation dealing with the noise. So the estimation in the second case for MMSE
equalizer is better.
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Since the ZF and MMSE equalizer has the same performance, we may implement ZF
equalizer in practical, as it is easier to apply and has less computing complexity.

In both cases, the regular maximum likelihood (ML) detector is implemented to check
the BER of the transmission.

Besides, the quality of transmission largely depends on the value of polarization
dependent attenuation factor γ̃. When γ̃ is high, near 1, the BER can easily reach 0.001,
that is the reason that we all wish the attenuation of the channel to be less.

3.4 Non-linear non-unitary channel

In the end, the nonlinear noise is added to the non-unitary system, the system model
for 1 span is shown in Figure 3.6.

TX RXPDL

n

NL

Figure 3.6: System model for 1 span

The NL block is the nonlinear phase noise, the PDL block represents the PDL channel
effect, n is the AWGN noise. The PDL channel is the multiplication of a random unitary
matrix, an attenuation Γ matrix and the hermitian of the unitary matrix.

3.4.1 Data detection

The channel estimation here is a little bit different here. since the nonlinearity and the Γ
matrix is existed, we can not apply the method we provided in the previous section. Due
to the limitation of research period, we only provide the data detection method here.

Assuming that we have the prefect knowledge of the PDL channel, which means we
know not only the value of Γ, but also every unitary matrix in each span. With the
stochastic backpropagation technology, the detection part is almost the same with the
non-linear unitary channel, the only difference is there is a PDL channel component in
each span. We generate bunch of samples from the backward transmission, and then the
distribution of these samples were calculated. The original signals are then substituted
to the distribution. The maximum value indicates the most probably prediction.
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4
Performance analysis

Here we discuss the numerous results, like the lowest BER we can achieve, the perfor-
mance of the detector comparing with others, something interesting on the constellation,
the least number of training symbols we need to estimate the channel, the components
of the training symbols and so on.

There are some common parameters for all the simulation, we simulate at 14 Gbaud
per polarization, with Na = 22 spans, M = 100 particles, N0 = 4.9 × 10−7 W/Hz, the
nonlinear parameter γ = 1.25 W−1km−1, Leff = 17.36 km.

4.1 Linear unitary channel

We assume that transmitted signals are dual polarization 16-QAM. The input power is
from −10 dBm to −2 dBm. According to the analysis in chapter 3, the system is a
normal AWGN model if we gain perfect knowledge of the unitary channels. So we can
compare our simulation result with the theoretical value of symbol error rate (SER) for
16-QAM. If the two results are approximate to each other, then we can conclude that
the channel estimation is good enough and stochastic backpropagation method with FG
and Monte Carlo technique is a correct solution.

4.1.1 Simulation results and performance analysis

The theoretical SER performance for M-QAM is given by

Ps = 1−

(
1− 2(

√
M − 1)√
M

Q

(√
3SNR

M − 1

))2

, (4.1)

where M is the modulation factor which in this case is 16, SNR is the Signal-to-Noise
Ratio which is SNR = Es/N0, where Es is the average symbol energy and N0 is the noise
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variance, Q is the Q-function given by

Q(x) =
1√
2π

∫ ∞
x

e−
x2

2 dx. (4.2)

Assume we have perfect knowledge of the channel, we get the simulation results as
follow:
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Figure 4.1: SER as a function of Pin with perfect channel knowledge

We can find that the two curves almost overlap each other, which mean the stochastic
backpropagation method performs very well when we ignore the channel effect. When
Pin = −2 dBm, the theoretical SER is about 9.3×10−4 and the stochastic backpropaga-
tion SER is 1.1× 10−3. These simulation results proved that we can use the stochastic
backpropagation method as the data detection solution. The reason why the stochastic
backpropagation is a little worse than the theoretical value is because the particle rep-
resentation does not contains all the information of the transmission function since the
number of particles is limited.

The simulation results with channel effect is shown in Figure 4.2
Since the stochastic backpropagation results are still very close to the theoretical

curve, we can conclude that the method we provided in chapter 3 is a right solution
for linear noise and unitary channel system. When Pin = −2 dBm, the stochastic
backpropagation SER is still 1.1× 10−3. The simulation result is same as before, which
mean the channel estimation is almost perfect in this situation.
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Figure 4.2: SER as a function of Pin with unitary channel effect

4.1.2 Channel estimation results

Since we transmit dual-polarization 16-QAM signals, the unitary channel is a 2 × 2
matrix. If the transmitted signals and the receive signals are also 2 × 2 matrices, we
can easily compute Û from equation 3.14. This gives us the method of how to choose
training symbols, assume the number of training symbols is 1000, the training symbols
should be chosen like [

s1x · · · s1x s2x · · · s2x

s1y · · · s1y s2y · · · s2y

]
There are 1000 dual polarization training symbols, contain 500 s1 and 500 s2. s1x, s1y,

s2x and s2y are chosen from the 16-QAM constellation separately. In channel estimation
process, we calculate the mean value of the first 500 symbols and the last 500 symbols,
then we can get E(x), which is a 2 dimensional square matrix. Using the similar method,
we get E(r). Then we estimate the channel by equation 3.14.

In the simulation above, we use 1000 training symbols, which is considered to be
sufficient to get good estimation of the channel. However, we want to use as less training
symbols as we can to improve the efficiency of the system in practise. For this purpose,
we need to find out the relationship between the number of training symbols Nt and the
estimation results. Here we fix the input power to −2 dBm, which gives the theoretical
SER Ps = 9.3 × 10−4. We change the number of training symbols from 10 to 1000,
calculate SER for these values, the results is given in Figure 4.3.

We can find that SER varies slow after Nt reaches 600. When Nt is bigger that 800,
the results are less than 2× 10−3. For practical use, 700 or 800 should be a good choice
if we take the transmission energy and time cost into account.
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Figure 4.3: SER as a function of Nt

4.2 Non-linear unitary channel

4.2.1 Simulation results and performance analysis

The simulation environment is the same as linear noise, unitary channel system. By
applying the methods in chapter 3, we get a result of SER against the input power of
dBm for RML, backpropagation and stochastic backpropagation. Same as the above
section, we give the results with prefect channel estimation first.

From Figure 4.4 we can tell that RML detector gives the worst performance, this is
predictable since it does not take SPM into account. The backpropagation detector is
much better that RML, because its post-compensation of the phase shift. As the input
power becomes bigger, the nonlinear phase noise effect increases while AWGN noise
effect decreases. When SNR is low, the AWGN noise is the dominant component in the
system, so the SER becomes lower when input power increases. When SNR is high,
the nonlinear phase noise becomes the dominant components and cause the performance
degrades. The oscillation in the curve is caused by the interaction between linear noise
and SPM[1]. The stochastic backpropagation detector we provided in this thesis gives
the best performance of these three detector. It considers not only the nonlinearity but
also the linear noise interaction. The lowest SER we achieved is about 3.98×10−4, when
Pin = 4 dBm.

The results with channel estimation by 1000 training symbols are shown in Fig-
ure 4.5 We can find that the results of RML and backpropagation detector are almost
same as before, while the performance of stochastic backpropagation detector degraded.
Especially when SNR is high, the SER of backpropagation detector increases very fast.
However, the stochastic backpropagation detector still gives the lowest SER compare to
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Figure 4.4: SER as a function of Pin without channel effect
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Figure 4.5: SER as a function of Pin for nonlinear noise unitary channel system
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other detector. The minimum value is 5.8× 10−4 when Pin = 5 dBm

4.2.2 Channel estimation results

As we discussed in the above section, the channel estimation method we provided in
chapter 3 works very well in linear noise system, so the possible reason that the perfor-
mance becomes worse is the nonlinear phase noise effect the channel estimation results.
To verify this assumption,we simulate the channel estimation results. We fix the input
power to 5.5 dBm, which gives the SER Ps = 9.2× 10−4 when there is no channel effect.
We change the number of training symbols from 10 to 1000, calculate SER for these
values, the results is given in Figure 4.6.
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Figure 4.6: SER as a function of Nt

If we compare Figure 4.6 and Figure 4.3, we can find that the results are almost
the same, especially when Nt > 600, which means the channel estimation performance
is still good. So the real reason cause the detection performance degradation is the
detector is quite sensitive to the minor errors of channel estimation. Since we use the
stochastic backpropagation method, the minor errors will be enlarged in every span,
after transmitted through 22 spans, the errors are big enough to effect the detection.
This effect is more obvious when nonlinear phase noise dominant the system, because
the nonlinear phase noise is a deterministic function, so the error cannot be eliminate.
That is why the SER decreases fast when SNR becomes bigger.

4.3 Linear non-unitary channel

We will discuss performances of the MMSE and ZF equalizers of two different channels.
Besides the simulation results of different γ̃ will also be mentioned.
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4.3.1 simulation results

The following five figures show the simulation results of linear PDL channel. The com-
munication system is set up with 22 fiber spans, the input power is from −10dB to 25dB,
and the detector is the regular ML detector. Figure 4.7 shows the result for γ̃ equals to
0.99, the signal is dual polarization QPSK signal, the perfect knowledge of the channel
is known and both ZF and MMSE equalizer are applied.
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Figure 4.7: SER as a function of Pin for dual polarization QPSK, γ̃ = 0.99.

Figure 4.8 shows the result for γ̃ equals to 0.9, the signal is dual polarization QPSK
signal, the perfect knowledge of the channel is known and both ZF and MMSE equalizers
are applied, but the channel is the noise-added first PDL channel which mentioned in
section 3.2.

Figure 4.9 and Figure 4.10 show the results for γ̃ equals to 0.99, the signal is dual
polarization QPSK signal, ZF and MMSE equalizers are applied individually with the
estimation of the channel.

Figure 4.11 shows the result for γ̃ equals to 0.99, the signal is dual polarization
16-QAM signal, the perfect knowledge of the channel is unknown and ZF equalizer is
applied.

4.3.2 Performance analysis

Figure 4.7 and Figure 4.8 show the performances of ZF and MMSE equalizers of the
two different channels, one is the channel we use, the other is a channel for comparison.
Figure 4.7 shows that MMSE and ZF equalizers have the same performance. The atten-
uation fact γ̃ is 0.99, so comparing with the Figure 4.8 the AWGN curve is little higher,
in Figure 4.7 to maintain SER of 10−3 the power we need is 10.16dB in Figure 4.8 is
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Figure 4.8: SER as a function of Pin for dual polarization QPSK, γ̃ = 0.9.

−10 −5 0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

S
E

R

P
in

 (dB)

 

 

ZF

Estimation

AWGN

Figure 4.9: SER as a function of Pin for dual polarization QPSK, γ̃ = 0.99.
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Figure 4.10: SER as a function of Pin for dual polarization QPSK, γ̃ = 0.99.
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Figure 4.11: SER as a function of Pin for dual polarization 16-QAM, γ̃ = 0.99.
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10.39dB. In Figure 4.8 the MMSE equalizer has a much better performance than the
ZF equalizer, this is due to the noise as we have proved in the data detection section. In
both these figures, the channel is known, the equalizer is built on the perfect knowledge
of the channel.

Figure 4.9 and Figure 4.10 show that on the same channel with the same estima-
tion, the ZF equalizer and MMSE equalizer has nearly the same performance. In these
situations, the channels are unknown.

Figure 4.11 shows the performance of ZF equalizer for 16-QAM signal. 16-QAM
requires more power to maintain low SER, as it is more sensitive to the channel losses,
the points on the constellation are more dense than QPSK. The SER of 10−3 requires
input power of 18dB. As the ZF equalizer and the MMSE equalizer has the same
performance, in the estimation, ZF equalizer is used, as it is easier to fulfill.

4.4 Non-linear non-unitary channel

In this section, the modulation format is dual polarization 16-QAM.

4.4.1 Simulation results and performance analysis

The value of γ̃ will effect the simulation results. We expect that the bigger γ̃ will give us
the better performance. So we set γ̃ = 0.9, γ̃ = 0.99, γ̃ = 0.999 and γ̃ = 1 and compare
the simulation results. Figure 4.12 is the SER against the input power for the system
with prefect channel knowledge.
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Figure 4.12: SER as a function of Pin with prefect channel knowledge
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It is shown in the figure that our prediction is correct, when γ̃ is bigger, the per-
formance is obviously better. When γ̃ = 0.9, the performance of the detector is really
bad, the lowest SER is 0.0757. When γ̃ = 0.99, the lowest SER we reached is 8× 10−4

and when γ̃ = 0.999 the lowest SER is 4.7× 10−4, the corresponding input power is −4
dBm. When γ̃ = 1, the lowest SER is 4.6× 10−4. Which means the performance of the
detector will not increase obviously after γ̃ reaches 0.999. If we compare with the results
for nonlinear noise, unitary channel system, the results of nonlinear non-unitary system
is still acceptable when γ̃ = 0.999.
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5
Conclusion

We provide a detector of coherent optical communication system with SPM and PDL
channel effect. The detection process contains two essential parts: channel estimation
and data detection. To simplify the problem we also considered several transmission
model with different combination of noise and channel.

5.1 Unitary channel estimation

The estimation of unitary channel is based on the channel character and Monte Carlo
technique. We send training symbols to gain knowledge of the channel, use a simple
method to calculate the estimation. As the results shows, the estimation method works
well for both linear and nonlinear noise environments. We also discussed about the
number of training symbols and the results for perfect channel estimation.

5.2 Non-unitary channel estimation

The channel estimation is suitable for a memoryless channel with AWGN noise. We
have also explained the reason that why the performance of the ZF equalizer and MMSE
equalizer are the same. From the simulation, we can get a reasonable result of the SER
against the input power.

5.3 Data detection with backpropagation

We use factor graph to analyze the system, use particle representation to collect informa-
tion, use Monte Carlo method to generate stochastic distribution. We start our research
with the traditional AWGN system and then extend our method to the communica-
tion system with nonlinear phase noise and PDL channel effect. The backpropagation
method gives better performance comparing to other detection method provided in this
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thesis when nonlinearity is considered and still has a good performance even we combine
the PDL channel effect.
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6
Future Work

In the previous sections, we have discussed the basic principle of backpropagation de-
tector for a coherent optical communication system. In order to simplify the simulation,
we neglect the effects such as intersymbol interference (ISI) and the noise introduced by
the components of the optical fiber. In the future work, such affects should be taken
into the consideration.

6.1 Channel estimation for nonlinear non-unitary system

In the last part of our thesis, we only provide the data detection method without channel
estimation. In practical work, the channel information is unknown so an estimation
method must be applied. Since the attenuation fact γ̃ is easy to measure, the major
problem is how to estimate the unitary channels in each span.

6.2 ISI

Intersymbol interference (ISI) is a kind of signal distortion, in which the signal interferes
with the subsequent signals. ISI add noise during the transmission, so the communication
will be less reliable. ISI is usually caused by the multipath propagation and bandlimited
channels. In this thesis, the ISI is mainly caused by the multipath propagation, as the
dual polarization sends two different signals through the same fiber. The cause of this
is reflection. Since these paths have the different lengths, the signal will be delayed by
the reflection, and the baseband signal will spread to the sub-band. The phase of the
received signal will be highly affected by these. In practice the ISI is also caused by
dispersive effects such as Circular Dichroism (CD) and PMD.

The basic concept to prevent the ISI is adding the guard-band during the transmis-
sion, but these will reduce the spectrum efficiency. Another ways to fight against ISI are
applying adaptive equalization and using error correcting codes. An adaptive equalizer is
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an equalizer can adapt the properties of the time-varying of a channel. Error correction
is the correction and reconstruction of the original signal.

6.3 Other problems

As mentioned in the previous section, all the noise introduced by the components of the
transmission line were neglected. So in the future work, these noises should be added.
For instance, the receiver noise, there are three basic sources of noises added to a received
signal, shot noise (photoelectron noise) which arises from the particle properties if the
light, thermal noise (circuit noise) which aries from the random movement of the electron
due to the temperature and optical noise (photon noise). All these will affect the results
of the transmission.
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