

__

Method for calibration of off-line generated robot program

Master of Science Thesis

GUSTAV BERGSTRÖM

Department of AUTOMATIC CONTROL
Division of AUTOMATION AND MECHATRONICS
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, 2011
Report No. EX099/2011

__

__

 Page 1

Table of contents

1 Background __2

1.1 “Teach in” programming __ 2

1.2 Offline programming__ 6

1.3 Potential economic savings ___ 9

1.4 Robot control system ___ 10

1.5 Robot coordinate system __ 16

1.6 Robot calibration methods __ 19

2 Problem definition __27

2.1 Calibration theory ___ 28

2.2 Calibration of work object coordinate system___________________________________ 30

3 Limitations __31

4 Method ___32

4.1 Determine the centre point __ 32

4.2 Linear least square___ 40

4.3 Evaluation of the centre of sphere algorithm ___________________________________ 44

4.4 Calibration of tool centre point___ 49

4.5 Centre of sphere ___ 54

5 Evaluation___58

5.1 Test equipment__ 58

5.2 Evaluation - TCP calibration __ 59

5.3 Evaluation - centre of sphere __ 63

6 Discussion___83

References___85

7 Appendix __86

7.1 TCP_Calibration_2.mod __ 86

7.2 Get_sphere_points2.mod __ 93

7.3 Linear_Least_squares_QR.mod ___ 100

7.4 Estimate_centre_of_sphere_QR_2.mod_______________________________________ 106

__

__

 Page 2

1 Background

In order to control a robot, a Cartesian coordinates system is used to define the
position of the robot arm. This Cartesian coordinate system is more or less
unique for each robot. Under the condition that identical position is entered in two
different robots, the robots will in most cases not end up in the same physical
position. This is explained by the fact that Cartesian coordinate among robots
does not have perfect identical origin of the coordinates and orientation. Further
on, with respect of the robot foot the coordinates are in most cases not perfect
linearly distributed.

1.1 “Teach in” programming

Traditionally by using “teach in” programming method, mechanical imperfections
have not been a major issue. This can be explained by the fact that teach in
programming is using the actual robot and work piece to obtain the positions.
Teach in programming of a robot works like this.

1. The robot is physically moved to the desire position by using a joy-stick or

pushbuttons on a handheld device.
2. When desired orientation and position accuracy have been obtained, the

position and orientation is stored in the robot program.
3. This process is repeated until every position in the robot program has been

taught.

__

__

 Page 3

This means in a “taught in” robot program, the stored positions in the controller
may not correspond with the physical positions. Most likely there will be deviation
errors. However, the deviation errors between values stored in the controller and
the physical position values can be excluded as long as the robot repeats with
high accuracy to the position.

Figure 1
This illustration shows the differences between the positions stored in the
robot control system and the true physical coordinates. The true physical
coordinates can be interpreted as the coordinates which are used for
create a robot program offline.

__

__

 Page 4

In teach in programming, the nonlinear influences on the axis movements can be
reduced by adding way points. By distributing the way points along the desired
linearly movement, the robot is forced to pass each one of them. Due to this fact,
the nonlinear influences therefore are reduced.

However, a “taught in” program will be unique for the particular robot. If the robot
is replaced by another, the stored positions in the robot program may not be
applicable. This is explained by the fact that the distribution of the Cartesian
positions is unique for each individual robot. Each individual programmed position
which requires high accuracy then has to be programmed by physically moving
the robot to the desired position.

Figure 2
This illustration shows that a nonlinear robot axis movement can be
interpreted by the robot controller as linear. By adding way points a long the
desired movement, the nonlinear influences can be reduce in a “taught in
program”.

__

__

 Page 5

To summarize, traditionally robot programs have been calibrated based on the
actual physical model. Therefore, deviations between the reality and the servo
controller have not been an issue for programming of robots. This is explained by
the high position repeatability of the robot. In other words, the robot will at high
accuracy return to a defined position. However, there are a couple of
disadvantages with the “teach in” method.

• The calibration can not be done until the physical robot installation is in
place.

• It can be time consuming.
• Robot programming know-how is needed.
• The taught in positions are only applicable for the particular robot.
• If the relationship between the robot and the fixture is changed, each one

of the robot positions has to be modified.

Imagine a car body spot welding line like in figure 3, the programs often consist of
significant number of robot positions. Depending on the number of robots and
positions in each robot program, the fine tuning of the robots programs in this
spot welding line is a significant part of the commissioning phase.
In order, to cut expense and shorten the commissioning phase, it is desirable to
find a fast and accurate method for calibration of robot program.

Figure 3
This figure shows a car body spot welding
production line.

__

__

 Page 6

Figure 4
This figure shows a complete robot installation created by PC based
graphical tool.

Figure 5
A robot with origin of the coordinates
system at the robot foot

1.2 Offline programming

Due to the fact that it is desired to
shorten the programming phase, it has
become more common to create robot
programs offline by using a PC-based
graphic tool. By using this tool, the
main programming can be made
before the physical model is in place.
A complete robot installation can be
built up based on cad drawings. In
figure 4, an offline generated model of
a robot installation is shown. The
dimensions and shapes of the objects
are based on the CAD drawings.

In most cases the coordinates system has its origin at the robot foot, see figure 5.
The desired robot positions can therefore be based on the locations of the objects
in this virtually built up production cell.

__

__

 Page 7

This means that the robot program is generated based on the virtually built up
installation. The offline generated positions then will be transferred to the robot
servo controller. In comparison to teach in programming where the programming
is based on the physical model in reality.

However, the virtually generated robot program can in most cases not directly be
transferred in to the servo controller and then be used by the robot in the real
physical environment. The programmed positions will most likely deviate in the
real physical environment. Due to this fact, the programmed positions in the
physical installation have to be calibrated.

__

__

 Page 8

Figure 6
Any deviation in position or orientation
of the robot’s installation base in
comparison to the virtually created
installation will generate discrepancies
on positions and orientations of work
objects.

The deviations can be split up in to two categories, deviations related to the robot
and deviations due to differences between the virtually generated robot
installation and the real physical environment.

Deviations related to the robot are:

• Position and orientation deviation errors of the robot coordinate system in
respect of the robot foot. Such errors can be caused by the tolerances in
robots mechanical structure.

• Nonlinear robot movements. In the off line generated program the robot is

considered to have perfect linear movements.

Deviation related to the offline generated robot installation and the physical
installation is:

• Position and orientation

discrepancies of the work objects
in the physical environment
compared to the virtual built up
robot installation.

__

__

 Page 9

1.3 Potential economic savings

Investing in robot automation is in many cases an investment in uptime and
quality assurance. Compared to a human being, a robot can operate continuously
day and night without need for breaks. The robot will also perform its task more or
less identically each time. Any deviations due to human mistakes will therefore be
eliminated.

As rule of thumb, the value generated in car production line is estimated to
50 000 sek per minute. This is more or less valid for producing standard as well
for premium cars. This is explained by the fact that a standard car in general has
shorter execution time than a premium car. Based on this fact, the cost due
production downtime will in short period of time reach significant figures.

The loss due to production down time can in most cases never be regained. In
other words, what is lost is lost. The goal from this point of view therefore is to
minimize production downtime.

The same conclusion can be drawn when considering product defects due to
quality issues. If the produced product does not reach the quality tolerances, the
outcome is that it has to be scrapped. This means that failure to reach quality
requirements can be considered as production downtime.

With a fast and simple calibration method the following savings will be obtained.

• If the robot breaks down, the robot can be replaced. After conducted

calibration production can be resumed with minimum loss of production
time.

• The calibration of the robot program can be verified at scheduled intervals.

This means that the quality of the robot movements can be ensured by
frequent calibration. This means economical savings due to reduced cost
of poor quality

• Fast calibration will also allow reduce the transition time of introducing and

changing fixtures. Shorter transitions will then reduce the cost due to
downtime.

• The programming can be done in such a manner that the robot can be

replaced without the need to retune every programmed position.

__

__

 Page 10

Figure 7
This figure shows the main
overview of the robot control
system.

1.4 Robot control system

In figure 7, a main overview of the robot
control system is shown. In order to
control the robot arms, the robot needs
instructions. For an ABB controller, these
instructions are programmed by the user
in the high level programming language
RAPID. High level program language
means that the program is quite user
friendly.

1.4.1 RAPID

Rapid is the program language used to
control ABB robots. The program allows
control of the robot axes movements,
mathematical calculations, I/O signals etc.
The syntax of the program is similar to
Basic.

Path positions in Rapid motion control
instructions are compiled and transferred
to the interpolator and path robot path
planner.

__

__

 Page 11

1.4.2 Interpolator and path planner

The interpolator in collaboration with the path planner converts the positions in
Cartesian coordinates into corresponding joint angle references. These
calculations are internally supervised in order to prevent hazardous path
references due to internal numerical calculation error.

Depending on the ordered instruction, the path planner will plan the path in
different manners. In general the path planning consists of three different modes;
joint movement, linear movement and circular movement.

Joint movement

Joint movement is used to instruct the robot to move from one position to another
as fast as possible. This is obtained by minimizing the repositioning of the axes
angle. This means that the movement of the tool centre point between the points
in most cases will not be linear. In other words, the movement of the tool centre
point between the points can not be controlled by this instruction.

Linear movement

Linear movement will instruct the robot to interpolate the tool centre point linearly
between two positions at a constant programmed speed. Compared with the joint
movement instructions this instruction requires a lot more data processing.

Circular movements

Circular movement will instruct the robot to move the tool on a circle arc. The
instruction is based on three positions. Start position, bending radius position and
end position. During the movement, the orientation is in most cases unchanged
relative to the circle.

__

__

 Page 12

1.4.3 Servo controller

The joint references are further modified in the servo controller. As an additional
precaution, the Servo also supervises movements with respect to numerical
calculation errors. The servo also supervises the axes movements based on the
joints angles values. Actual position, speed, torque values are continuously
sampled and compared with reference values predicted by a virtual model of the
mechanical robot. Collision is detected by a sudden difference between the actual
and predicted torque required to maintain the programmed motion.

In most cases the robot has six independent axes. In order to control the robot to
the desired position of each axis; the closed loop method is used. The closed
loop function is based on PID (Proportional Integral Derivative) controller.

Proportional term

The proportional effect will increase the output proportionally to the actual position
error. By changing the proportional gain the responses of the controller can be
adjusted. However, a pure proportional controller may not converge to the target
value; instead the controller will converge to a steady state error.

 Figure 8
 This figure shows a block diagram of a closed loop PID controller.

__

__

 Page 13

Integral term

The integral term is calculated by summing position errors over a period of time.
The integral effect will then accelerate the processes towards the set point as
long as the error remains. On The steady state error which often occurs in a pure
proportional controller will be eliminated.

Derivative term

By using the derivative term, the rate of change can be adjusted. This term is
determined by calculating the slope of the error.

1.4.4 Axis computer

The joint reference values are transferred to the axes computer. In the axes
computer, the main control loops are located. The axes computer also supervises
and processes the joint feedback values from the joint position measurement
system.

__

__

 Page 14

1.4.5 Drive system

The drive system is the unit in the control system which supplies the electrical
power to the robot motors. The control is obtained by the variable frequency
method. This means that the system controls the frequency of the electrical
power supplied to the alternate current motor. In other words, the rotation speed
of the motor will be controlled as function of provided frequency of the electrical
power.

Figure 9
This figure shows a main overview of the drive system.

1. The three phase alternate current is rectified in to positive and negative
direct currents.

2. The direct current is converted in to AC power using an inverter switching

circuit.

3. The switching circuit mainly consists of IGBT, insulated-gate bipolar
transistors. These transistors are in turn controlled by logic signals.

__

__

 Page 15

Figure 10
This figure shows the mechanical
structure of robot. At each axis, a
resolver is returning the angular
position.

Figure 11
This figure shows potential deviations
between the axes in the robot’s
mechanical structure.

1.4.6 Manipulator

In order to control the arms of the
robot, each axis is equipped with a
resolver which is an analogue device
that returns the angular position of
the robot axis. The position
information is used to calculate
position errors fed into the PID
regulator of the servo controller.

However, if the robot is programmed
repeatedly to the identical position,
the robot may not end up to the
physical identical position even if all
resolvers are returning the correct
feedback values. This is explained
by the fact that there is no possibility
to measure the deviations which
may occur between the resolvers.
Such deviations could be generated
by thermal expansion and flexibility
of the robot arms, play in gearboxes
etc. In figure 11, an illustration of
these deviations are shown. The
conclusion is that the resolver values
may not show the complete picture.
However, if the operating conditions
for the robot do not change, the
repeatability to the programmed
position is very high.

__

__

 Page 16

1.5 Robot coordinate system

In order to determine and control the position of the robot, a three dimensional
Cartesian coordinate system is used. The overlaying coordinate system is named
World Coordinate System. In this coordinate system several others can be
expressed, these systems are:

• Base coordinate system
• Wrist coordinate system
• Tool coordinate system
• User and object coordinate systems

Figure 12
The relations between the robot coordinate systems.

__

__

 Page 17

1.5.1 Base coordinate system

The base coordinate system defines the position and orientation of the robot fin
the world coordinate system. As default, the base coordinate system is equivalent
with the world coordinate system.

1.5.2 Wrist coordinate system

The wrist coordinate system defines the
position of the wrist in the world
coordinate system. This coordinate
system is static on the mounting flange.

Figure 13
Base coordinate system for two robots are expressed in the world
coordinate system

Figure 14
Origin of wrist coordinate system

__

__

 Page 18

Figure 16
This figure shows the user and object coordinate
system which is expressed in the world coordinate
system.

1.5.3 Tool coordinate system

The tool coordinate system is
used to define how tools are
positioned and oriented with respect to
the mounting flange.

Path positions defined in Rapid
programs describe how the tool
coordinate system should be position
and oriented with respect to world or
other used reference coordinate
systems.

1.5.4 User and object coordinate
systems

The combination of the user and
object coordinate system is
called work object. The user
frame is defining a cartesian
coordinate system in the world
coordinate system. In turn, the
object coordinate system is then
expressed with respect to the
user system.

These two coordinate systems
are in many cases used to
calibrate robot coordinates to
programmed paths. By
expressing programmed
positions with respect to the
object coordinate system, all path
positions may be calibrated by
tuning the work object to the
actual relationship between the
robot foot and the fixture.

Figure 15
Tool coordinate system is
expressed in the wrist coordinate
system.

__

__

 Page 19

Figure 17
This figure shows a tapered
tool mounted on the robot
tool flange. Another
tapered tool is mounted on
the object fixture. By
moving the peak of the
robot’s tapered tool above
the peak of the fixed
tapered tool as close as
possible, the reference
position can be determined.

1.6 Robot calibration methods

In order to determine the location of an object in the robot’s coordinate system,
several methods are currently used. In this chapter a couple of different methods
are presented.

1.6.1 Manual calibration

Traditionally manual methods have been used.
In short, these methods consist of moving the
robot to reference points defining the work
object. By using tapered tools, the edges are
placed in front of each other. The position of the
object can then be determined.

However, manual calibration methods are not
very efficient when there are high demands on
accuracy. The results of manual calibration
methods tend to be individual. In other words,
the result of the calibration can vary depending
on the individual person. Due to these facts, it is
more or less impossible to evaluate and
estimate the capability of this method.

In many cases, this may still be a suitable
calibration method. Especially when the robot
application does not require high accuracy. From
a cost competitive point of view, a manual
calibration method is most likely the most
suitable solution.

Advantages

• Simple
• Cost competitive

Disadvantages

• Operator dependent method
• Time consuming

__

__

 Page 20

1.6.2 Bulls eye – calibration of TCP

Bull’s eye is a calibration device which determines
the TCP (Tool Centre Point) and orientation of a
robot tool. The TCP which is the origin of the tool
coordinate system is defined with respect of the
origin of the wrist coordinate system. The method
does only work on tool’s which has a concentric
portion along its centreline.

The method is based on laser technology. By
moving the robot’s tool through the laser beam,
the physical width of the concentric portions of the
tool can be determined given that the nominal
geometry of the tool is known. By measuring slices
of the width, the centreline can be determined.
Based on the determined centre line, the tool
orientation is set. Finally, the end of the tool will be
determined.

To summarise, Bulls eye can determine the
centreline and the end of tool. Based on this fact,
the method can not find the centre point of a probe
sphere. However, it will determine the X, Y centre
line and the end of the tool in Z-axis. In other
words, the TCP can be mathematically determined
if radius of the probe is well known, please see
figure 18.2.

Advantages

• Define TCP accurate in X and Y axis in the
tool coordinate system.

• Determines the orientation of the concentric
centre line

Disadvantages

• Relative expensive
• Set up phase.
• Can only be used for concentric tools.

Figure 18.1
Bulls eye installation.

Figure 18.2
Calibration the TCP of a
spherical probe by
using bulls eye.

__

__

 Page 21

1.6.3 Calibration by Force Control

Force control calibration is designed to
use as an add-on for robots equipped with
the ABB force control function package
which monitors applied forces on an
objects using external sensors. In other
words the robot can “feel” how much force
is applied on to the object. The function is
mainly intended to be used for finishing
processes such as deburring, grinding
and polishing.

In the basic configuration the Force
Control system is able to detect and
calibrate the tool centre point of the
attached tool automatically. As an
additional option, the work piece can be
defined as well. This is possible by
defining the position of thee stationary
reference tips on the work object.

Advantages

• It is accurate, according to the
product specification the TCP is
defined within +/- 0.05-0.15mm
depending on robot model.

• It can be used to calibrate work
objects.

• Operator independent.

Disadvantages

• Requires additional equipments, as
for example the TCP measurement
receiver.

• Can not be used without the force
control functional package.

Figure 19.1
Force control calibration device.

Figure 19.3
Three reference tips for calibrating
a work object by force control
o.

Figure 19.2
The “cube” for the TCP
calibration.

__

__

 Page 22

Figure 20.1
Laser LAB calibration equipments.

Figure 20.2
By using five sensors, the position of the
spherical object can be determined.

1.6.4 Laser LAB

Laser lab is a laser based
calibration technology. The
method consists of a measuring
device called “Laser LAB” and a
measuring sphere. The Laser
LAB measuring device consists
of five individual laser sensors.
The laser sensors are
positioned as a pentagon in the
device and are aligned so that
the five laser rays will intersect
in one common point.

By positioning the sphere in the
laser device, positions on the
surface of the sphere can be
determined in three
dimensions. This is obtained by
measuring the distances from
each one of the five sensors.
By obtaining surface points, the
position of the sphere can be
determined.

Advantages

• Highly accurate,
according to the product
specification +/- 0.1mm.

• Measure TCP as well as
fixtures.

• Operator independent.
• Easy to operate.

Disadvantages

• Requires additional equipments.
• Setup phase.
• Investment.

__

__

 Page 23

Figure 21
In this figured the robot’s TCP is
measured by a laser tracker.
The robot is instructed to move to
100 different positions. At each
position the laser tracker
determines the actual position in the
reference space. By comparing the
actual and the theoretical values the
compensations can be calculated.

1.6.5 ABB Absolute accuracy

Absolute accuracy is a laser based
method. By using a laser tracker, a
number of coordinate positions are
determined in the robot’s working area.
By comparing the theoretical positions in
the robot controller and actual position of
the robot’s mounting flange, a set of
corrections to the transformation
parameters from the robot axes to the
servo controller can be defined. These
parameters will compensate the robot‘s
positioning and thereby its movements.
In other words, after the calibration the
actual position of the mounting flange
will more or less correspond to the
position value in the robot controller.

According to the product specification,
the parameters take into account both
the mechanical imperfections in the
pattern of the movements and the
bending or distortions downwards
caused by loads.

Advantages

• Highly accurate according to the product specification within 0.2-0.3mm.
• Reduces axis non linearity. According to the product specification the

average deviation is reduced to 0.5mm.
• Operator independent.

Disadvantages

• Requires additional equipments.
• Expensive.
• Significant setup phase.
• Special competence required.
• Special environmental conditions required.

__

__

 Page 24

Figure 22
This figure shows the reference system
for the Pos Eye optical sensor.

1.6.6 PosEye®

A PosEye®-system measures the
position and orientation of the sensor
with respect to a reference system
consisting of known patterns. The
measurement principle is similar to
global positioning system. If the
sensor or the reference system, or
both, are moving is a matter of
choice. Most other 3 to 6 degrees of
freedom measurement systems uses
methods where the object of interest
is focused on at a distance –
outside-in-systems. These methods
may have some advantages but the
method does also imply that it is
hard to produce high accuracy measurements on the orientation of the object and
to cover full re-orientations of the object. PosEye® is an inside-out-system that
delivers excellent measurements of the orientation, as well as very good position
measurements. The PosEye®-sensor is placed at the point of interest. On a robot
this will in most cases be on the mounting flange. The references are passive
fixes in the surroundings like black spots on a white background.

Advantages

• Highly accurate.
• Measures six degrees of freedom. This means that both the position and

the orientation can be measured.

Disadvantages
• Additional equipment required.
• The sensor requires visual sight to the references.
• Reference spots have to be placed on solid environment; any movement

will have an influence of the measurement.
• Requires special competence.
• Initial setup phase.
• Investment.

__

__

 Page 25

Figure 23
When the two spherical
objects get in contact, a
electrical circuit is
established. At this point an
I/O value is changed and the
current position is stored.

1.6.7 ABB Navigator

Robot calibration is usually done by localizing calibration points using the robot as
measurement equipment. Navigator is an automated, very accurate and user
independent technique that replaces these manual steps.

The standard idea of localizing calibration
points is used by Navigator as well.
However, instead of letting the user
manually point out positions the robot is
equipped with a spherical probe tool and
the robot cell is prepared with mounting
holes on the fixture for spherical objects.
The calibration is performed by letting the
robot locate the spherical objects on the
fixture. The sensor mechanism is tactile,
i.e. the touch between objects is
determined and causes the robot to stop.
The fixed sphere is connected to ground,
and a voltage is applied to the spherical
probe. The tactile touch is detected when
an electrical circuit is established.

Advantages
• Operator independent method.
• Relative easy to operate, no special

competence is needed.

Disadvantages
• Additional equipment required.
• Requires voltage supply to the spherical probe.
• An accurate method in order to calibrate the TCP of the spherical probe is

required.

__

__

 Page 26

1.6.8 Summary of calibration methods

Presented calibration methods are more or less weaker and stronger in different
aspects. What is common for the calibration methods with superior accuracy are
that they are in general expensive; requires additional equipment, time
consuming setup phase and special competence. On the other hand, the
cheapest calibration method which is the “teach in” manual calibration method
does not ensure any accuracy at all. On top of this, it also depends a lot on the
operator. From this point of view, this calibration method can be time consuming.
If desirable accuracy has not been achieved the process has to be repeated
again. In many production environments, the fact is that lost time is equal to lost
money.

In this thesis, an operator friendly, cost competitive and accurate calibration
method will be evaluated. This calibration method is very similar to the Navigator
calibration method. By obtaining positions around of a fixed sphere; the centre
position of the fixed sphere can be determined. This means that a reference
position has been obtained. The main difference is that it will not require
additional equipments in form of power supply and I/O connections as the
Navigator calibration method requires.

The main advantages with this method would be:

• It is economical competitive in comparison to most other calibration
methods.

• In comparison to other calibration methods, very limited additional

equipment is required. This also means faster setup and commission
phase.

• It will be easy to operate, no need for special competence. The calibration

may for example be conducted by a robot operator.

• Flexible and reduced start up time. Recalibration of work objects can be
conducted at scheduled interval. By recalibrating work objects at set time
interval, the continuous position accuracy can be ensured.

• Software will be built in the robot program language rapid. This means that

no addition devices complicated installations and setups are required.

__

__

 Page 27

Figure 24
In this figure, an identical object has been
defined in two Cartesian coordinate
systems. Reference points are located on
the object. These positions have different
coordinates in the two coordinate systems.
The calibration transform is the best fit
transformation from nominal virtual
references to actual physical references

2 Problem definition

The calibration problem mainly consists of
determining the true location of a physical
object in the robot’s coordinate system.
This is required due to the fact that every
single robot more or less has unique
Cartesian coordinate system.
For example, a robot trajectory has been
programmed around the edges of an
object. This particular object is modelled
in a CAD drawing. The location of the
object has been virtually defined with
respect to robot coordinates when the
program was designed. However, in this
case the virtually defined location of the
object does not correspond to the true
location of the object in the robot’s
coordinate system. This means that the
object has to be calibrated in the true
coordinate system.

One method to calibrate the object is by
implementing reference points on the
object. These reference points have been
defined on the cad drawing as well as on
the physical object. By letting the robot
locate these reference positions; the
location of the object can be determined.
In order to determine the orientation of
the object at least three positions are
required.

Based on the defined true positions of the
reference points on the physical object,
the virtual programmed robot path can be
modified. In other words, the virtually
designed robot programmed can be used.

__

__

 Page 28

2.1 Calibration theory

Imagine a linear robot axis movement which has been programmed offline. As
earlier mentioned, in reality the robot axis movement is not perfectly linear.
However, the servo controller will interpret the movements as perfect linear
movements. The consequence of this fact is shown in figure 25.1, the
programmed trajectory deviates from the true robot path.

Consider a work object which have been defined and programmed offline. In
other words, the position of the object in relation to the robot has been set based
on a virtual CAD drawing. In such a case, the programmed robot trajectory in
reality will deviate from the desired programmed trajectory. As a consequence,
the robot will in reality not move to the positions which has been programmed
virtually offline. In order to correct this deviation, the position of the work object
has to be calibrated.

Figure 25.2
This figure shows a local work object which has been programmed offline. As shown,
the position of the work object does not correspond to the actual path. Therefore a
local calibration based on the local best fit of the actual path has to be done.

Figure 25.1
This figure shows the deviation between an offline programmed path and the
true physical robot path.

__

__

 Page 29

By calibrating the robot to this position, the robot will reach this position. A good
correction therefore has been obtained close to the origin of the work object.

However, consider that there is an additional work object positioned in the robot’s
working area. This object is according to the CAD model equally aligned as object
1 in figure 25.3. However, there is a significant distance between the two objects.
In many cases, the robot will not have correct trajectory for the second object.
This is explained by the fact that the robot’s true linear trajectory somewhat
deviate from a perfect linear movement. In other words, the calibration of the first
work object will in many cases not be suitable for additional work objects.

In order to calibrate several work objects, local coordinate system has to be
created for each one. In figure 25.4 local coordinate system has been created for
work object 1 and work object 2. Each one of these work objects has been
individually calibrated. In other words, the local coordinate system will be a best fit
approximation for the local nonlinearity.

Within the local coordinate systems, the deviations due to nonlinear movements
will be reduced. However, the work objects do have some limits. The work objects
can not be too wide. If they are too wide, the nonlinear axis movements may
cause undesirable position deviations.

Figure 25.3
This figure shows a calibrated work object which has been calibrated locally based
on the local actual path.

Figure 25.4
Two work objects which have been calibrated by create local coordinate
system for each one.

__

__

 Page 30

2.2 Calibration of work object coordinate system

Calibration of a frame will be based
on reference positions. In the robot
program language Rapid this is
obtained by the command
DefAccFrame. The command uses
two sets of positions. One set of
positions is the reference positions;
the second set of positions is used to
define a work object frame. This
work object frame will be the
calibrated frame. This method
compares the relation between the
nominal virtual reference positions
and the located actual located
positions. The calibration transform
is the best fit transformation from
nominal virtual references to actual
physical references

The objective in this thesis is to
evaluate the performance of a
method for determine reference
positions. If the accuracy is good
enough; the method can be applied
with the built in command
DefAccFrame. With this command,
the frame then can be calibrated by
the best fit method.

Figure 26
This figure shows how the function is using two
sets of reference points. These two sets will be
used in order to calibrate a work object frame.
By using these points, the DefAccFunction will
determine a best fit estimation of the object
frame expressed in the world coordinate
system.

__

__

 Page 31

3 Limitations

• Evaluation tests have only been conducted by the robot model IRB1600ID.
• Tests have not considered significant external loads on the robot.
• Metallic spheres will be considered as more or less perfect spheres.
• Measurement results do not take in to consideration the potential effect of

material heat expansion of the robot arms.

__

__

 Page 32

Figure 27
This figure shows a perfect sphere
partly covered by a point cloud.

4 Method

In this section, a method used to determine the reference position is described.
The objective is to find the centre of a sphere by locating positions around it. By
using at least four positions around the sphere, the centre point of the sphere can
be determined. By that a reference point in the physical real model has been
determined.

4.1 Determine the centre point

Due to measurement errors in
the model the received values
will not be exact. In other
words, the distance to the
centre point will not be constant
due to the variations.

As shown in figure 27, a great
number of positions around a
sphere are distributed. The
distance to the true centre point
is individual for each position.
Based on this fact, the
conclusion is that the equation
system will not have an exact
solution. An optimization or best
fit method in order to estimate
the centre point is required.
Based on a set of positions, the
least square optimization or
best fit method can be applied.

__

__

 Page 33

Figure 28
This figure shows a perfect sphere with
radius R. Four positions have been
obtained around the sphere. The distance
from each one of these points deviates all
from the radius of the sphere R.

4.1.1 Optimization goal

In order to find the best fit of the
centre point, the optimization
goal is to minimize the sum of
squared radius error. This gives
the following equation.

Minimize E = �n=1 (Rn - R)²

Where

 Rn= �((Xn-X) ²+(Yn-Y) ²+(Zn-Z) ²)

X, Y and Z parameters will
represent the best fit values for
the centre position of the sphere
and R the best fit radius. This is a
function of second order. In other
words, the least square problem
has to be solved by a nonlinear
method.

In figure 28, number of points P1
to P4 is located around a perfect
sphere. Each one of these
positions somewhat deviates
from the optimal radius R. Every
single deviation can therefore be
expressed as the error:

en = Rn - R.

However, in order to only get positive deviation values, the power of two is added
to the function, this gives

En = en² = (Rn - R) ².

In order to determine the best fit of R, the goal is to minimize the sum of squared
deviation errors, E1 + E2 +…+En.

__

__

 Page 34

Figure 29
A flow chart of the applied optimization or best fit method. The method is built on
the Gauss Newton method. An initial iteration value is given by apply an
approximation with the linear least square method.

__

__

 Page 35

4.1.2 Gauss Newton method

Due to the fact that the optimization function is of second order, the Gauss
Newton algorithm has been chosen. This is an iterative algorithm which is based
on Newton’s method. The choice of this algorithm has been based the following
facts:

• Efficient, finds optimum in relative few numbers of iterations.
• It behaves well near the optimal point.
• It does not require a second order derivate.
• Each iterative step will be solved by the linear least square algorithm.

The Gauss Newton method goal is:

 Min E=ep(x) 2=eTe

The Gauss Newton method is built on Newton’s method:

 X(k+1) = Xk+ �

Where � stands for Newton’s optimal direction. � is given by:

 � = - HE

 -1*gE

HE is the hessian matrix of the function E. The hessian matrix is approximated as:

 HE = d2E/dxidxj � 2*JTJ Where J is the Jacobian matrix.

 gE is the gradient of the function E which gives:

 gE = dE/dxi = 2*de/dxi*ep(x) = 2*JT ep(x)

At this stage the gradient of E and the hessian matrix of E are determined, this
finally gives.

 X(k+1) = Xk+ �; where �=- (JTJ)-1* JT ep(x)

At each iteration, the optimal direction � will be given by solving -(JTJ)-1* JT ep(x).
This function is equivalent to solve a linear least square problem.

__

__

 Page 36

The Jacobian matrix J is given by:

 de1/dX de1/dY de1/dZ de1/dR
 dE2/dX de2/dY de2/dZ de2/dR
 …. …. …. ….
 den/dX den/dY den/dZ den/dR

 In other terms:

 -(X1-X)/R1 -(Y1-Y)/R1 -(Z1-Z)/R1 1
 -(X2-X)/R2 -(Y2-Y)/R2 -(Z2-Z)/R2 1

 …. …. …. ….

 -(Xn-X)/Rn -(Yn-Y)/Rn -(Zn-Z)/Rn 1

Where

 Rn= �((Xn-X) ²+(Yn-Y) ²+(Zn-Z) ²)

The iteration start with an initial guess of the vector Xi = [Xk, Yk, Zk, Rk]. Based on
this guess, the new reference values for Xi = [Xk, Yk, Zk, Rk] will be updated
according to:

 X(k+1) = Xk + � Xk
 Y(k+1) = Yk + � Yk
 Z(k+1) = Zk + � Zk

 R(k+1):= Rk + � rk

This process will be repeated until the function has fulfilled the convergence
criterion. In other words, when all values in the vector � gets below the set
convergence threshold criteria.

The convergence threshold level is set based on the requirements of the
application. Further iterations will improve the final solution. However, the
improvements of the solution are due to convexity of the function minor than the
threshold level. In other words, if the threshold level is set based on sufficient
accuracy, further iterations will insignificantly improve the solution.

__

__

 Page 37

4.1.3 Gauss Newton conditions

The Gauss Newton is an unconstrained convex optimization method. In other
words; the method will only find the global optimal minimum or mathematically
expressed, converge towards the global minimum under the condition that:

• Initial iteration value is set in region where the function to optimize is
convex.

• The global minimum has to be located in this particular convex region.

In figure 30, a general three
dimensional graph is shown. This
graph consists of several optimal
minimums, local as well as global. This
means that from a global point of view
the shown function is not convex. In
other words, the Gauss Newton
method would converge in to different
solutions depending on the start
iteration point.

Based on these facts, the Gauss
Newton method can not in general be
applied on such a function. A
determined solution can be local
minimum as well as global minimum.
However, under condition that the start
point is located within the convex
region where the global minimum is
located, the method will converge
towards this point.

Figure 30
This figure shows a three dimensional
graph which contain several local
minimum points. However, the graph
has only one global minimum.

__

__

 Page 38

Figure 31
The figure shows two perfect spheres
which are in contact with each other.
Given that the spheres are perfect
the distance between their centre
points can be determined by adding
their radius i.e. R1 + R2.

4.1.4 Gauss Newton initial iteration value

In order to ensure that the Gauss Newton starts to iterate in the region where the
global minimum is located, the start iteration point has to be near the optimal
minimum. This has been generated by applying an approximation that distance
between the centre point and the points around the sphere are identical for all
positions around the sphere. In other words, this mathematical expression does
not take in to consideration deviation of the radius.

4.1.5 Derivate centre point equation

The undetermined centre point is given by
the three dimensional frame coordinates:

 X: Cx Y: Cy Z: Cz

Points around the sphere are given by
three dimensional coordinates. The
distance to the centre of the sphere point is
equal for all four points.

1. P1 = X1 Y1 Z1

2. P2 = X2 Y2 Z2

3. P3 = X3 Y3 Z3

4. P4 = X4 Y4 Z4

By applying Euclidian distance theorem on
all four points, following four equations are
derived:

1. (R1+R2)²=(X1-CX)²+(Y1-CY)²+(Z1-CZ)²

2. (R1+R2)²=(X2-CX)²+(Y2-CY)²+(Z2-CZ)²

3. (R1+R2)²=(X3-CX)²+(Y3-CY)²+(Z3-CZ)²

4. (R1+R2)²=(X4-CX)²+(Y4-CY)²+(Z4-CZ)²

__

__

 Page 39

By substituting the equations 2 in to1, 3 in to 2 and 4 in to 3, following three
equations are derived.

1. 2(X2-X1)CX+2(Y2-Y1)CY+2(Z2-Z1)CZ=X2²-X1²+Y2²-Y1²+Z2²-Z1²

2. 2(X3-X2)CX+2(Y3-Y2)CY+2(Z3-Z2)CZ=X3²-X2²+Y3²-Y2²+Z3²-Z2²

3. 2(X4-X3)CX+2(Y4-Y3)CY+2(Z4-Z3)CZ=X4²-X3²+Y4²-Y3²+Z4²-Z3²

The linear equation system which can be expressed as:

A*c=B
A c B

The solution to c (Cx, Cy and Cy) will then be given by solving:

 c =A-1 * B

The advantage is that this is a linearly equation system. The solution will be found
by determine the solution to Cx, Cy and Cz. Therefore, an approximate solution to
the centre point can be been determined by using the linear least square method.
This approximation will then be used as the initial iteration point for the Gauss
Newton method.

__

__

 Page 40

4.2 Linear least square

The linear least square method is used to approximate the parameters of an over
determined linear equation systems. If the linear equation system has an exact
solution the following condition is fulfilled:

 Ax-b = 0

If there is no exact solution, the function can be expressed as:

 Ax-b = E

In this equation E stands for the error. By adding power of two, the function will
express the error as a parable. The values will then only be positive.

 E² = ||Ax-b|| ²

This is a convex function. Given a convex function, a local minimum is also the
global minimum. The global minimum is therefore determined by the condition:

 dE²/dx = 0

 dE²/dx = 2ATAx-2ATb=0

 ATAx = ATb

Finally the best approximation will be given by the least square equation:

 x= (ATA)-1*ATb

__

__

 Page 41

4.2.1 Numerical computing stability

In theory an equation system Ax=b will be solved by Gaussian elimination.
However in practice, this is not in every case a suitable method. The computed
solution can easily be incorrect due to the fact that a computer can not handle an
infinite number of digits. At each computing operation, the result must be
considered from the point of round off error. For example, a computer which only
can handle three digits will round off a computing operation like this:

 0.437 + 0.00159 = 0.438

As the example shows, the impact of the last two digits in the smaller number has
not affected the solution. If round off error like this are multiplied over and over
again it can have a significant impact on the accuracy of the final solution. Each
individual round off error will contribute to the final solution. Due to this fact, the
development must be considered to the following two facts

• Ill conditioned matrices are highly sensitive too small changes.
• Weak computing algorithms can ruin well conditioned matrices.

The theoretical equation in order to solve a linear least square problem is given
by the normal equation:

 x= (ATA)-1*ATb

However, from a practical computing point of view, this function is not optimal.
Solving a linear equation system by the matrix inverse operation requires a lot of
computing operations. On top of that, it is also less accurate than Gaussian
elimination. The fact is that the normal equation, i.e. the product of product is
always less well conditioned than the original over determined equation system.
The condition number for the normal equation is given by:

 �(ATA) = �(A)2

This shows the condition number will be squared which can have a significant
impact on the final solution.

__

__

 Page 42

4.2.2 QR factorization

In order to increase the numerical stability, QR factorization has been chosen. QR
factorization creates one orthogonal matrix and one upper triangular matrix based
on the matrix A. The two created matrices fulfil the following condition:

 A=QR

In the equation above Q stands for an orthogonal matrix and R an upper triangular
matrix. Due to the special properties of matrix QR, the substitute in the linear least
square equation turns out as:

 x= (ATA)-1ATb

 A=QR

 x= (RTQTQR) -1RTQTb

 Due to Q is orthogonal, the product:

 QTQ = I

 Where matrix I stands for the identity matrix.

 x= (RTR) -1RTQTb

Finally due to R is upper triangular and invertible, the product:

R-1R=I

Finally, the following equation is derived.

 x=R-1QTb

This equation provides advantages compared to the mathematical approach to the
least square equation i.e. x= (ATA)-1ATb.

• The amount of computations is significantly reduced.
• The equation x=R-1QTb is as well conditioned as the original problem.

__

__

 Page 43

4.2.3 Grahm-Schmidt orthogonalization

Determine the orthogonal matrix Q and the upper triangular matrix R is obtained by
the Gram Schmidt algorithm. In mathematical theory, the Grahm Schmidt algorithm
is an excellent method to create QR factorization. In practical computing, the
algorithm is not numerically stable due to round off errors. One way to significantly
reduce the influence of round off error is obtained by the MGS algorithm, i.e.
Modified Gram Schmidt algorithm. Therefore the MGS algorithm has been chosen
to create orthogonal and upper triangular matrices.

The MGS algorithm:

 ak

(1)= ak, k=1:n
 FOR k = 1:n
 r k k = || ak

(k)
 ||2

 qk = ak
(k)

 / r k k
 FOR j = k+1:n
 rkj = q k

T aj
(k)

 aj
(k+1)= aj,

(k)
 - rkjq k

 END
 END

4.2.4 Back solve algorithm

The final solution of the vector x is determined by applying the back solve algorithm
on the equation system Rx = QTb. This is a fast and efficient method to solve an
equations system which consists of an upper triangular matrix.

The back solve algorithm:

 FOR i = 1:n
 FOR j = 1+1:n
 bi = - aij xj
 END
 xi = bi/aii
 END

__

__

 Page 44

Figure 32
This figure shows a perfect
sphere. The position on the
surface of the sphere is
given by a vector with length
R which starts from the
centre.

4.3 Evaluation of the centre of sphere algorithm

The evaluation has been conducted in Robot studio. The algorithms have been
implemented in the robot program language Rapid.

4.3.1 Simulation of efficiency

In order to analyze the efficiency of the best fit method, simulation tests have
been conducted in order to verify the accuracy. The simulation is based on the
following expression of X, Y and Z in Cartesian coordinates.

 X = R*sin�*sin�
 Y = R*sin�*cos�
 Z = R*cos�

By choose radius, the angles � and �, a
position on the sphere can be obtained.
By adding a disturbance to the radius, a
deviation at each position is obtained.

 X = (R+disturbance)*sin�*sin�
 Y = (R+disturbance)*sin�*cos�
 Z = (R+disturbance)*cos�

__

__

 Page 45

Euclidian distance

-5

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9

Actual distribution Normal distribution

Chart 1
The histogram shows the distribution of data from the optimal point which in this
case is zero. In the chart the blue line represent the actual distribution of the data,
the pink line shows an ideal normal distribution. The normal distribution is based
on the average value and the standard deviation of the actual data. The actual
distribution deviates very little from the idea normal distribution. Due to this fact,
the confidence interval of the distribution can approximately be treated as normal
distributed.

4.3.2 Simulation results

In order to verify the distribution of the results, the best fit method has been
simulated. The simulation was conducted with applied disturbances to the radius.
The disturbance is normal distributed and has a mean value equal to zero and a
standard deviation of 0.01. (The disturbance values have been created by the
data analysis function in MS Excel). The distribution of the accuracy is presented
as the deviation in X, Y and Z axis values from the optimal value. In this
simulation the optimal value is the given centre point without applied disturbance
to the radius. This gives the equation:

Euclidian distance = �((Xi-Xcentre)²+ (Yi-Ycentre) ²+(Zi-Zcentre)²)

__

__

 Page 46

As shown in chart 2, the values of a normal distribution are at 68.2% within +/-
one standard deviation from the mean �. However, when evaluating the
efficiency of the best fit method, all values on the left side of the mean � actually
are closer to the optimal solution than �. This is explained by the fact that the
error is represented as the distance from the optimal value. In other words, 50%
of the values are closer to the optimal value than the mean value �. Due to this
fact; the confidence interval then will be given by:

Mean value: �
Standard deviation: 	

• � � 0,1% + 2,1% + 13,6% + 34,1% � 50%
• � + 1	 � 50% + 34,1% � 84,1%
• � + 2	 � 50% + 34,1% + 13,6% � 97,7%
• � + 3	 � 50% + 34,1% + 13,6% + 2,1% � 99,9%

Chart 2
This chart shows the confidence interval of a normal distribution expressed
as a function of the standard deviation 	.

__

__

 Page 47

In the two charts 3.1 and 3.2, the efficiency of the best fit method has been
simulated. Each of the two graphs shows the confidence interval with four different
disturbances applied. The four disturbances are all normal distributed and have
standard deviation 0.05, 0.10, 0.15 and 0.20. The confidence interval is presented as
a function of number of measurement points on a sphere. The ideal value is zero
which means the closer deviation is to zero, the better is the performance of the
method.

As shown in the charts, the slope is rather steep until eight measurements. In other
words, the improvement of the accuracy is most significant up to this number of
measurements. This means that more than eight measurements will not improve the
accuracy at the same rate. This is more or less valid for all four simulated
disturbances.

The amount of measurements which is needed depends on the accuracy of the robot
and the required accuracy for the application. However, in order to benefit from the
early improvements, it is recommended to use at least eight measurements at this
particular application.

Confidence interval = � + 	 = 84,1%

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30

Number of measurements on sphere

D
ev

ia
tio

n
fr

om
 tr

ue
 c

en
tr

e
va

lu
e

STDEV 0.20 STDEV 0.15 STDEV 0.10 STDEV 0.05

Chart 3.1
This graph shows the performance of the
best fit method as function of measurements
around a sphere. The deviation is presented
at a confidence interval of 84%.

Confidence interval = � + 2	 = 97,7%

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30

Number of measurements on sphere

D
ev

ia
tio

n
fr

om
 tr

ue
 c

en
tr

e
va

lu
e

STDEV 0.20 STDEV 0.15 STDEV 0.10 STDEV 0.05

Chart 3.2
This graph shows the performance of the best fit
method as function of measurements around a
sphere. The deviation is presented at a
confidence interval of 98%.

__

__

 Page 48

4.3.3 Gauss Newton iterations

In order to determine how many iterations the Gauss Newton algorithm in general
requires for this application, the convergence of the method has been monitored.
The evaluation was made with parameters which correspond to the application. In
chart X, the convergence of the function is plotted as function of iterations. The
values are presented as the result of the following function.

Value = �(XiX²+YiY ²+ZiZ ²+ PiR ²)

As shown in chart 4, the Gauss Newton algorithm converges rapidly when applied
in this application. Already after two iterations, the convergence values are
smaller than 0,001. In other words, further iterations will refine the final values
with accuracy smaller than 0,001mm. Therefore, further iterations will
insignificantly improve the solution; the found optimal value is good enough.
Sufficient convergence therefore has been achieved.

Convergence of the Gauss Newton algorithm

0,00001

0,0001

0,001

0,01

0,1

1

1 2 3 4 5

Iterations

V
al

u
e

 Chart 4

This chart shows the convergence of the Gauss Newton as a function
of iterations when used in this application.

__

__

 Page 49

Figure 33
This figure shows different definition of
the TCP in the spherical probe. The
spherical probe is mounted on the
robot’s tool mounting flange.

• TCP 1: Well defined TCP in the
centre of the sphere

• TCP 2: Inadequate defined TCP,
not in the centre of the sphere.

4.4 Calibration of tool centre point

In order to achieve the best possible
result of measured positions, it is
crucial that the TCP (Tool centre
point) is as correctly defined as
possible. In other words, it has to be
defined in the very centre of the robot
spherical probe tool.

The TCP is where the controller will
read the position. In other words, the
position of the tool centre point will be
expressed in the robot’s Cartesian
coordinate system in three dimensions
X, Y and Z axes.

If the TCP has been inadequate
defined, the read positions in space
will not be trustful. The radius will not
be constant and the determined centre
point will be incorrect. This deviation is
visually shown in figure 33.

However, under the condition that the
TCP is perfectly defined in the centre
of the sphere probe, every given point
around the measured sphere will in
theory have identical distance to the
centre of the measured sphere. In
other words, the radius to the centre
point for every read position then will
be the identical.

However, in reality it is not very likely that the TCP will be perfectly defined in the
centre of the spherical probe. As a consequence, each received position around
the measured cell sphere will consist of a deviation from the true ideal position.
Based on this fact, this deviation has to be taken in to consideration when the
final centre position has been determined.

__

__

 Page 50

4.4.1 Calibration of TCP

The TCP of the sphere probe tool will be given by letting the robot push in to a
fixed hole while soft servo is activated. By using soft servo, the spherical robot
tool will be directed and finally seated in the centre of the hole. The contact will be
established without trigger a collision alarm. In other words, the soft servo allows
deviations from the defined programmed trajectory by deactivating the
proportional part of the PID position control. By repeating this procedure with
different orientations of the tool and read the final position the TCP will be
defined.

Under condition that the TCP (Tool Centre Point) is correctly defined, the
received positions in Cartesian coordinates shall be identical or have insignificant
difference among the received positions. As already mentioned, the received
robtarget positions will have identical centre point; however the orientation of the
tool will vary.

Figure 34.1
The spherical probe is positioned
above the calibration cup.

Figure 34.2
The spherical probe is pushed down in
the calibration cup.

__

__

 Page 51

Figure 36
In this figure, the reorientation of the spherical probe is shown. At each
reorientation, the probe is pushed down in the calibration cup. By repeating this
process at least four times, a TCP in the centre of the probe sphere can be
determined.

Figure 35
As shown in this figure, the spherical probe is positioned above the fixture. By
activate soft servo the probe is moved down in to the fixation. The probe is guided
by the edges of the fixture in to the centre. Finally, the probe will be seated in the
centre of the fixation. Due to the probe is spherical; the position in Cartesian
coordinates of perfectly defined TCP shall be the identical independently of the
orientation of the probe. This implies that the spherical probe is properly seated in
the fixture.

__

__

 Page 52

Under the condition that the tool centre point is not defined in the centre of the
spherical probe, the received positions in Cartesian coordinates from the TCP will
not be identical. The received points will build a portion of a sphere. The centre
point to this portion of sphere will correspond to centre point of the probe. In other
words the true centre point of the robot tool sphere is determined when the tool is
properly seated in the hole.

Figure 37
In this figure, the tool centre point calibration principle is shown in two
dimensions. By reorient the spherical probe, the robot will be
positioned at equivalent radius. These three positions will build a part
of a circle. By using these positions, the centre of the circle can be
determined. The method is equivalent for three dimensions; instead of
determine the centre of circle the method is determining the centre of
a sphere.

Due to the physical limitations of orientating the probe sphere, the
positions will only be given on a part of circle. In other words, the
impact of measurement error is significant greater than if three
positions were retrieved on larger span around the circle.

In the calibration of the centre point of the probe which is in three
dimensions, the probe is reoriented in to number of different positions.
Each measurement positions are obtained by store the position of
tool0. In other words, the origin of the robot’s wrist coordinates system
expressed in the world coordinate system.

__

__

 Page 53

When defining a robot tool, the
dimension has to be expressed in
the wrist Cartesian coordinate
system, see figure 38. This means
that the centre point of the spherical
probe tool has to be defined in this
Cartesian coordinate system.

However, the centre point can only
be determined when the spherical
probe is properly seated in
calibration position. On top of that,
this centre point is expressed in the
world coordinate system.

The defined sphere centre point will
also define the TCP. Finally the
point will be given by the difference
between the location of origin of the
wrist coordinate system in the world
coordinate system and the location
of the determined centre position
defined in the world coordinate
system, see figure 39. The tool0
position with smallest error will be
used in order to determine the
position of the TCP.

Figure 38
Cross section of the spherical probe
tool mounted on the mounting flange of
the robot tool.

Figure 39
By compare the best fit of the tool0 and
the determined position, the tool centre
point can be defined.

__

__

 Page 54

Figure 40
This figure shows the spherical
probe and the fixed sphere. The
spherical probe is mounted on
the tool mounting flange.

4.5 Centre of sphere

In this section, the used method to determine the centre of fixed sphere is
presented.

4.5.1 Measurement positions

In order to determine the centre of the
sphere, at least four Cartesian coordinate
positions around a sphere are required.
The radius to the centre of the fixed
sphere has to be more or less identical for
all positions. By moving a sphere probe in
to contact with a fixed sphere these
positions can be obtained. By activating
soft servo on all robot axes, the spherical
probe mounted on the robot mounting
flange will smoothly get in contact with an
object. The contact will be established
without trigger a collision alarm. In other
words, the soft servo allows deviations
from the defined programmed trajectory
by deactivating the proportional part of the
PID position control.

The robot is programmed to move the
spherical probe to different positions
around the sphere. By using more than
four positions, the impact of position deviation errors can be reduced. In order to
reduce the impact of the play in the gear trains and measurement errors, the
positions around the sphere have been distributed in order to get as large span
around the sphere as possible.

__

__

 Page 55

Figure 42
Cartesian coordinates expressed as
the radius from a centre point.

Figure 41
This figure shows the spherical
probe positioned above the fixed
sphere.

The process starts by receiving a
reference position. This position will be
obtained by manually move the spherical
probe in to position. This position is
vertically above the fixed sphere, as
shown in figure 41. The probe has to be
positioned very close to the sphere. The
orientation of the spherical probe has to
be set in order to correspond to the
normal of the surface of the fixed sphere.

This means that that the nominal centre
of the fixed spheres more or less is
located in positive Z-axis direction in the
tool coordinate system. Based on this
position a reference point which is located
near centre of the sphere is set. This has
been made by adding a set distance in
positive Z-axis of the reference position.

The reference positions around the
sphere are obtained by the formulas.

 X = R*sin�*sin�
 Y = R*sin�*cos�
 Z = R*cos�

__

__

 Page 56

The probe is moved to the start position by choosing � and � angles and an outer
radius. When in position, the probe will be moved in a vector which point at the
nominal reference centre position. Finally the probe will get in contact with the
fixed sphere. The vector has been obtained by using the same � and � angles
but with decreased radius. This radius has been set within the radius of the fixed
sphere. In other words, the probe will be moved towards the centre until it gets in
contact.

By repeating this process with various angles, the positions around the sphere
are obtained. The � angle which determines the position in the x, y plane will
increase 80º after each measurement. The � angle which determines the position
in Z-axis is set to a maximum of 110 º. By dividing this value by the number of
measurements; the positions are evenly distributed on the Z-axis. The pattern of
the retrieved positions around the sphere will be distributed as a spiral spring.
Minimum measurement positions the method can handle is 4 and maximum has
been set to 100.

Figure 43.1
This figure shows how the probe is
approaching the reference point
which is set approximately.

Figure 43.2
The probe starts on top of the
sphere. Last measurement will be
made at angle of 110degres in
relation to the start position.

__

__

 Page 57

4.5.2 Soft servo

The soft servo built in function in Rapid permits to soften the robot axes. This is
obtained by reducing the proportional effect of the robot‘s PID controller. As a
consequence, the step response will be delayed. The soft servo function can be
independently activated on each axis. Deviations from the programmed path will
not trigger any alarm.

This function can be used to approach an object which has an unknown position
but within a defined range. Instead of a sudden impact which normally would
trigger a collision alarm and stop of program execution; the robot will smoothly get
in contact with the surface of the object in the defined direction.

Figure 44
In this figure the function of the soft servo is shown. The robot is programmed to
linearly move from point A to be B. Position B is located within the radius of the
fixed sphere. In other words, the robot’s probe is programmed to collide with the
fixed sphere. Normally, this will trigger a collision alarm. However, by activating soft
servo during the movement, the robot will move in to the surface smoothly without
trigger a collision alarm. The applied contact force will increase as function of the
distance between the contact position and the programmed position B.

__

__

 Page 58

5 Evaluation

In this section, the efficiency of the TCP calibration and the centre of sphere
method have been evaluated based on repeatability tests. These tests have been
conducted in actual test equipment.

5.1 Test equipment

The repeatability and verification tests have been conducted by an IRB1600ID
which is shown in figure 45.1. What makes this robot unique is that the process
cable is routed within the upper arm and through the mounting flange. Due to this
fact, this robot has been developed for mainly be used in Arc Welding and similar
applications.

According to the product specification sheet, the robot has a position repeatability
of 0,02mm and a path accuracy of 0,48mm. However, the particular test robot did
suffer a play in gear train of axis five. Neither does it have the option absolute
accuracy. In other words, nonlinearities in axis movements have not been
mathematically reduced.

Repetition test has been made by a sphere probe mounted as robot tool and a
fixed sphere in steel. The spherical shape of these two pieces is considered to be
perfect.

Figure 45.1
Actual test robot,
IRB1600ID

Figure 45.3
Installation of test
equipment.

Figure 45.2
Test equipments.
The spherical probe has a
radius of 5mm and the
fixed sphere 10mm

__

__

 Page 59

5.2 Evaluation - TCP calibration

Due to the fact that the tool centre point
will have an impact on all
measurements, it is important that the
tool centre point is positioned in the very
centre of the spherical probe as
possible. Based on this fact, a great
number of measurements positions have
been used to evaluate this method.
In total, 80 measurement positions have
been used to define the tool centre point
at each repeat.

The positions have been evenly
distributed according to the pattern
which is shown by figures 46.1 and 46.2.
The orientation of the sphere probe tool
is at maximum leaned 25 degrees
relative the tool’s X, Y plane, see figure
46.1. The samples are retrieved by
moving the orientation in a straight line in
four different directions in the X, Y plane.

Figure 47
Reorienting tool in the
reference fixation hole.

Figure 46.1
Reorientation of the tool in respect
of the normal of the reference
fixation hole.

Figure 46.2
Measurement sample pattern
showed in X, Y axis of tool
coordinate system.

__

__

 Page 60

5.2.1 TCP calibration - test results

The result is based on 500 repeats of the calibration process. The distributions of
the determined X, Y and Z of the TCP coordinates are shown in charts 5.1- 5.3.
The values are compared with normal distribution based on the actual data from
the measurements

A
s

s
h
o
w
n

i
n

c
h
a
r
t
s

TCP: Z axis

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

Actual distribution Normal distribution

Chart 5.3
Histogram of deviations of the Z-
axis position value

TCP: Y axis

-50

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

Actual distribution Normal distribution

Chart 5.2
Histogram of deviations of the Y-
axis position value

In charts 5.1 - 5.3 the blue line
represents the actual distribution of
the measurements. The pink line
shows an ideal normal distribution
based on the average value and
standard distribution of the actual
data.

As shown in charts 5.1 and 5.2, the
X and Y values do deviate from an
ideal normal distribution. The Z axis
values have a distribution which is
very close to an ideal normal
distribution.

TCP: X axis

-50

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

Actual distribution Normal distribution

Chart 5.1
Histogram of deviations of the X-
axis position value

__

__

 Page 61

 X axis values

In table 1.1, the confidence interval of the
measurements in X-axis is shown. The
distribution is not ideal normal distributed.
However, at two and three sigma the confidence
interval of a normal distribution will be a fairly
good approximation of the confidence interval.

Y axis values

In table 1.2, the confidence interval of the
measurements Y-axis is shown. The distribution
is not ideal normal distributed. However, at two
and three sigma the confidence interval of a
normal distribution will be a fairly good
approximation of the confidence interval.

Z axis values

In table 1.3, the confidence interval of the
measurements Z-axis is shown. As the
distribution is nearly ideal, the confidence
interval can be approximated at one sigma.

Std dev TCP: Y [mm]

1	 � 68.2% N/A

2	 � 95.4% +/- 1.80

3	 � 99.6% +/- 2.70

 Table 1.2

Std dev TCP: X [mm]

1	 � 68.2% N/A

2	 � 95.4% +/- 0.55

3	 � 99.6% +/- 0.81

 Table 1.1

Std dev TCP: Z [mm]

1	 � 68.2% +/- 0.05

2	 � 95.4% +/- 0.10

3	 � 99.6% +/- 0.15

 Table 1.3

Chart 6
Confidence interval of a normal distribution
as a function of the standard deviation 	.

__

__

 Page 62

TCP calibration – final evaluation

As shown in the table, the desired max deviation has been defined to +/- 0.10mm.
Only the Z-axis fulfils this requirement. Most likely, the measurements would have
been more satisfying if another robot with less play in the gear train of axis five
had been used. The physical limitations of the orientation of the spherical probe
also cause the measurement range to be limited. If it was possible to measure on
a wider range, the results would most likely be improved.

Based on these figures, this TCP calibration method of the spherical probe is not
recommended. The presented deviations among the repeated measurements are
too great.

 Max dev 1� � 68% 2� � 95%

X-axis +/- 0.10 [mm] +/- 0.27 [mm] +/- 0.55 [mm]

Y-axis +/- 0.10 [mm] +/- 0.90 [mm] +/- 1.80 [mm]

Z-axis +/- 0.10 [mm] +/- 0.05 [mm] +/- 0.10 [mm]

Table 2
This table shows the deviations of the defined TCP based on the conducted
measurements.

__

__

 Page 63

5.3 Evaluation - centre of sphere

In order to evaluate the efficiency of the
centre of sphere method in reality,
repeatability tests have been conducted.
These tests were done by repeatedly
measure the fixed sphere with the
spherical probe. The centre position and
radius of the fixed sphere is estimated.
The position of the fixed sphere is
determined by X, Y and Z Cartesian
coordinates in the robot’s world
coordinate system.

At these evaluation tests, the TCP of the
spherical probe has been defined by the
“Bulls eye” TCP calibration method. This
calibration method is described in section
1.6.2.

5.3.1 Centre of sphere - constant start
angle

In this section, charts of the measurements of the estimated centre point is shown
in X, Y and Z axis, euclidian distance and the determined radius are presented.
The charts represent data from 1000 repeats. The start angle of the approaching
movements around the sphere is programmed to be identical at each repeat. At
each repeat, eight measurements are obtained on the fixed sphere. The positions
are obtained according to the description in section 4.5.1.

However, due to the effect of soft servo, the positions when the probe and sphere
gets in contact with each other will somewhat deviate. This means that an
inadequate defined TCP and the play at axis gear trains will have an impact.
However, these variations are considered to be minor. Therefore, the impact of
these deviations has been negligible at this repeatability test.

Figure 48
The installation for the
repeatability tests.

__

__

 Page 64

Histogram: X

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

 Chart 7.2
The shape of the histogram based on true values is nearly perfect normal
distributed. Therefore, the evaluation has approximated the results as a normal
distribution.

Estimated centre point: X-axis

1215

1215,2

1215,4

1215,6

1215,8

1216

1216,2

1216,4

1216,6

1216,8

1217

0 200 400 600 800 1000 1200

Chart 7.1
In this chart, the centre point X in axis of the 1000 repeats is shown.
The results show a stabile trend.

__

__

 Page 65

Estimated centre point: Y-axis

44

44,2

44,4

44,6

44,8

45

45,2

45,4

45,6

45,8

46

0 200 400 600 800 1000 1200

Chart 8.1
In this chart, the centre point of the Y axis value of the 1000 repeats is shown.
At about 300 measurements the pattern starts to descend until about 500
measurements. A part from this deviation the trend is stabile.

Histogram: Y

-50

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

Chart 8.2
The shape of the histogram based on true values is not normal distributed.
However at two sigma, the normal distribution will be a fairly good approximation.

__

__

 Page 66

Estimated centre point: Z-axis

240

240,2

240,4

240,6

240,8

241

241,2

241,4

241,6

241,8

242

0 200 400 600 800 1000 1200

Chart 9.1
In this chart, the centre point Z value of the 1000 repeats is shown.
The results do show a stabile trend.

Histogram: Z

-50

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

Chart 9.2
The shape of the histogram based on true values is nearly perfect normal
distributed. Therefore, the evaluation has approximated the results as normal
distributed

__

__

 Page 67

Histogram: Distance = sqrt((X-Xave)^2+(Y-Yave)^2+(Z-Zave)^2))

0

50

100

150

200

250

300

350

400

-3 -2 -1 0 1 2 3

True distribution Normal distribution

Chart 10.2
The shape of the histogram based on true values is nearly normal
distributed. Therefore, the evaluation has approximated the results as
normal distributed

Distance = sqrt((X-Xave)^2+(Y-Yave)^2+(Z-Zave)^2))

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16
0,18

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961

Chart 10.1
In this chart, the determined centre point is presented as the Euclidian
distance based on 1000 repeats. The Euclidian distance is calculated from
the average value of the X, Y and Z axis positions.

__

__

 Page 68

Radius

13

13,1

13,2

13,3

13,4

13,5

13,6

13,7

13,8

13,9

14

0 200 400 600 800 1000 1200

Chart 11.1
In this chart, the measured radius based on 1000 repeats is shown. The
results decrease until 500 measurements. After 500 measurements the trend
is stabile.

Histogram: Radius

-50

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

Chart 11.2
The shape of the histogram based on true values is nearly perfect normal
distributed. Therefore, the evaluation has approximated the results as a normal
distribution.

__

__

 Page 69

 1� � 68% 2� � 95% 3� � 99%

X-axis [mm] ±0.026 ±0.053 ±0.079

Y-axis [mm] N/A ±0.144 ±0.215

Z-axis [mm] ±0.043 ±0.087 ±0.130

Distance¹ [mm] ±0.031 ±0.062 ±0.093

Radius² [mm] ±0.046 ±0.092 ±0.139

1) Average euclidian distance measured to 0.082 mm
2) Average radius measured to 13.572 mm

Table 3
The table shows the measured deviation from the average values at the constant
start angle repeatability test. The deviation is expressed in different confidence
interval. As shown in the table the deviation is greatest at the Y-axis values.

As the average Euclidian distance from the centre point is 0,082mm. The figures
in table 3 gives that the centre position is determined at a confidence interval of
84% within a radius of 0.113mm and at 98% within a radius of 0.144.

__

__

 Page 70

5.3.2 Centre of sphere - shifting start angle

In order to verify the influence of the
play in the gear train of axis five and
the potential impact of an inadequate
definition of TCP, shifting start angles
have been used. At this repeatability
test, the start angle is increased by 45
degrees after each measurement. This
means that after eight conducted
measurements, the measurements will
restart all over again at the initial start
angle. In reality, this is not very likely
that the calibration method will be
used in this manner. The calibration
will likely be used with constant start
angle.

In comparison to the repeatability test
with the constant start angle test,
inadequate definition of the TCP will
have an impact in this test. The
measurement positions will be
different as the start angle shifts with
45º degrees.

This test will show how significant the play and a potential incorrect definition of
the TCP will affect the estimated centre position. Depending on how the wrist is
oriented against sphere, the play will have different influences on the estimated
radius. However, the definition of the TCP will not have an impact on the
measured radius. The results are based on 880 repeats. At each repeat, eight
positions are obtained on the fixed sphere. The positions are obtained according
to the description in 4.5.1.

Figure 49
This figure shows the shifting start
angles of the sphere probe.

__

__

 Page 71

Estimated centre point: X-axis

1216,1

1216,15

1216,2

1216,25

1216,3

1216,35

1216,4

1216,45

1216,5

1216,55

0 20 40 60 80 100 120

Chart 12.1
In this chart 100 of the 880 repeats are shown. The pattern is periodical. This is likely
explained by the fact that the start angle increases by 45º after each measurement.
This mean that the start angle returns to same angle after eight times. The results
show a fairly stabile trend.

Histogram X

-50

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

Chart 12.2
The shape of the histogram is based on the actual rue values. The shape is nearly
normal distributed. In the evaluation, the results have been approximated the results
as normal distributed.
.

__

__

 Page 72

Estimated centre point: Y-axis

44,3

44,4

44,5

44,6

44,7

44,8

44,9

45

45,1

45,2

45,3

45,4

0 20 40 60 80 100 120

Chart 13.1
In this chart 100 of the 880 repeats are shown. The pattern is periodical. The periodical
repeats are likely explained by the fact that the start angle increases by 45º after each
measurement. This mean that the start angle returns to same angle after eight times.
The results show a stabile trend.

Histogram Y

-50

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

Chart 13.2
The shape of the histogram based on actual true values. The true values nearly
form a normal distribution. The result has been evaluated the results as a normal
distribution as an approximation.

__

__

 Page 73

Estimated centre point: Z-axis

240,8

240,9

241

241,1

241,2

241,3

241,4

241,5

241,6

241,7

241,8

0 20 40 60 80 100 120

Chart 14.1
In this chart 100 of the 880 repeats are shown. The pattern is periodical, this is likely
explained by the fact that the start angle increases by 45º after each measurement.
This mean that the start angle returns to same angle after eight times. The results
show slight increasing trend likely caused by thermal expansion

Histogram Z

-50

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

Chart 14.2
The shape of the histogram is based on true the values. The shape is not normal
distributed. However at two sigma, the normal distribution will be fairly good
approximation.

__

__

 Page 74

Distance = sqrt((X-Xave)^2+(Y-Yave)^2+(Z-Zave)^2)

0

0,1

0,2

0,3

0,4

0,5

0,6

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Chart 15.1
In this chart 100 of the 880 repeats are shown. The Euclidian distance is calculated
from the average value of the X, Y and Z axis positions. The pattern is periodical, this
is likely explained by the fact that the start angle increases by 45º after each
measurement.

Histogram: Distance = sqrt((X-Xave)^2+(Y-Yave)^2+(Z-Zave)^2)

-50

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

Chart 15.2
The shape of the histogram based on true values is nearly normal
distributed. Therefore, the evaluation has approximated the results as
normal distributed.

__

__

 Page 75

Radius

13,45

13,5

13,55

13,6

13,65

13,7

13,75

13,8

13,85

0 20 40 60 80 100 120

Chart 16.1
In this chart 100 of the 880 repeats are shown. The pattern is periodical, this is likely
explained by the fact that the start angle increases by 45º after each measurement.
This mean that the start angle returns to same angle after eight times. The results do
shows a slightly decreasing trend.

Histogram Radius

-50

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution

Chart 16.2
The shape of the histogram based on true values is not normal distributed.
However, at two sigma or at 95%, the normal distribution will be fairly good
approximation.

__

__

 Page 76

 1� � 68% 2� � 95% 3� � 99%

X-axis [mm] ±0.132 ±0.270 ±0.396

Y-axis [mm] ±0.245 ±0.490 ±0.735

Z-axis [mm] N/A ±0.215 ±0.323

Distance¹ [mm] ±0.136 ±0.272 ±0.409

Radius² [mm] N/A ±0.107 ±0.161

1) Average euclidian distance measured to 0.332 mm
2) Average radius measured to 13.623 mm

Table 4
This table shows the measured deviations with respect to the average values at shifted
start angle. The deviations are expressed in different confidence interval. The figures
show that the greatest deviations are in the Y-axis. This deviation is probably greatest
due to the play in the gear train of axis five.

As the average Euclidian distance from the centre point is 0.332mm. The figures in
table 4 gives that the centre position is determined at a confidence interval of 84%
within a radius of 0.468mm.

__

__

 Page 77

Centre of sphere- comparison, constant vs. shifting start angle

In this table, the deviations of the constant and the shifted start angle
measurements are shown. The values are presented at confidence interval of
95%. As shown in this table, the deviation difference between the constant and
shifted measurements is most significant for the X, Y and Z position values.

Among the determined centre position, the Y axis value has the largest deviation
error. Compared to the X and Z values, the X value has a deviation which is more
than 100% greater for the shifted measurements. Most likely this is explained by
the orientation of the wrist during the measurements. At particular measurements
the play in the gear trains will have more significant impact on the Y axis position
values than compared to X and Y position values. It is also possible that the
deviation has been caused by an incorrect definition of the TCP.

In charts 17.1-19.2, the constant and the shifted 45 degrees start angle is
presented in three different planes X-Y, X-Z and Y-Z. The scale of the axes in the
charts is more or less identical. In the three charts which represent the results
from the 45 degrees shifting start angle measurements, clear isolated islands are
shown. These islands represent the measurements at each periodic 45 degree
start angle. The deviation within each isolated island is more or less equivalent to
the deviation at the constant start angle. These results confirm that the method is
robust.

At confidence interval
2� � 95% Constant Shifted Difference

X-axis [mm] +/- 0.053 +/- 0.270
 0.217

Y-axis [mm] +/- 0.144 +/- 0.490
 0.346

Z-axis [mm] +/- 0.087 +/- 0.215
 0.128

Table 5

__

__

 Page 78

Constant: XY

44,5

44,6

44,7

44,8

44,9

45

45,1

45,2

45,3

45,4

45,5

1215,7 1215,8 1215,9 1216 1216,1 1216,2

Chart 17.1
Deviation in X and Y axis at
constant start angle.

Shifting 45: XY

44,3

44,4

44,5

44,6

44,7

44,8

44,9

45

45,1

45,2

45,3

45,4

1216,1 1216,2 1216,3 1216,4 1216,5 1216,6

Chart 17.2
Deviation in X and Y axis at
shifting 45 start angle.

Constant: XZ

240,3

240,5

240,7

240,9

241,1

241,3

241,5

1215,7 1215,8 1215,9 1216 1216,1 1216,2

Chart 18.1
Deviation in X and Z axis at
constant start angle

Constant: YZ

240,3

240,5

240,7

240,9

241,1

241,3

241,5

44,4 44,6 44,8 45 45,2 45,4 45,6

Chart 19.1
Deviation in Y, and Z axis at
constant start angle

Shifting 45: YZ

240,8

240,9

241

241,1

241,2

241,3

241,4

241,5

241,6

241,7

241,8

44,2 44,4 44,6 44,8 45 45,2 45,4

Chart 19.2
Deviation in Y and Z axis at
shifting 45 start angle.

Shifting 45: XZ

240,8

240,9

241

241,1

241,2

241,3

241,4

241,5

241,6

241,7

241,8

1216,1 1216,2 1216,3 1216,4 1216,5 1216,6

Chart 18.2
Deviation in X and Z axis at 45
degree shifting start angle.

__

__

 Page 79

5.3.3 Evaluation of measured radius

Table 6
In this table a comparison of the radius between the constant and shifting start
angle measurements are shown. These results confirm that the measured radius
is more or less identical in the constant and shifted measurements.

All measured radius values are smaller
than the true radius which is 15mm.This
is the sum of the radius of the probe and
the fixed sphere, 5mm and respectively
10mm. Most likely the deviation can be
explained by the play in the axes gear
trains. As shown in the table 6 the
measured radius does never get close
to the true radius.

During the conducted tests, the
orientation of the probe is programmed
to be identical relative the sphere at
each position. This means that an
inadequate defined TCP should not
have an influence on the determined
radius. On the other hand, an
inadequate definition of the TCP will
affect the position of the determined
centre point.

Radius Average 1� � 68% 2� � 95% 3� � 99%

Constant [mm] 13.572 ±0.046 ±0.092 ±0.139

45º shifting [mm] 13.623 ±0.054 ±0.107 ±0.161

Figure 50
This figure shows the sphere probe
and the fixed sphere in contact with
each other. The sphere probe has
radius 5mm and the fixed sphere has
radius of 10mm.

__

__

 Page 80

Due to the fact that all measured values of the radius are smaller than 15mm.
This indicates that the deviation has been induced by the play in the gear trains. If
the deviation was caused by the definition of the TCP or nonlinearities of the axis
movements, the measured radius could in fact become greater than 15mm.

Based on the finding that the measured radius is smaller than the actual true
radius, the true location of the centre point can not be guarantied. As shown in
figure 51, the true centre point may deviate in respect of the measured centre
point.

In this figure, the cross section of two spheres is shown. The red circle represents
the actual true sphere which has a radius of 15mm. The blue circle represents the
measured sphere which has an average radius of 13.6mm. Under condition that
the centre point of the two circles are perfect aligned in respect of the X-axis, the
maximum deviations of the centre point in Z-axis will be the difference of the
radius, in this case 1.4mm. This means that the true location can not be ensured.
However, based on the deviations of the Euclidian distance to the measured

Figure 51

__

__

 Page 81

centre point, the method will repeatedly provide this point at certain accuracy.
This may not be the true centre point of the fixed sphere but the method will
return the same position with very high accuracy. In other, words, the influence by
the gear train play is more or less identical at each repeated measurement.

5.3.4 Calibration possibilities

Based on the fact that the method does not provide the true location of the centre
point of the fixed sphere in the world coordinates system; the method can not
directly be used to transfer an offline generated program to the physical
installation under the condition that very high accuracy is required. However due
to the fact that the same position repeated at high accuracy; the method can be
used in following manner.

1. A number of reference positions are determined on the physical fixture by

determine the centre of fixed spheres.

2. One position of the offline generated program is then fine tuned with
respect to the determined reference positions of the fixture frame. The rest
of the robot program path positions automatically will be modified in
equivalent manner. This implies that the work object is not too wide. If too
wide, nonlinear axis movement may cause to great path deviations.

3. If the installation has to be recalibrated, the reference positions on the
work fixture only have to be determined.

This calibration method can also be used in the traditionally “teach in” manner.

1. A number of reference positions are defined with this method on a work
fixture.

2. When these reference positions have been determined, adjustment of
positions by teach in programming of the actual work object can be
conducted.

3. If the installation has to be recalibrated, the reference positions on the
work fixture are determined once again.

__

__

 Page 82

5.3.5 Centre of sphere - final evaluation

In the section where constant and shifted start angle are compared shows that
the calibration method is less accurate if when the start angle is shifted. In reality,
the calibration method will most likely be used with constant start angle. On top of
this, a robot installation is most likely built up and programmed. The relative
position fluctuations of the installation will then be a matter of millimetres and a
couple of degrees. The configuration of the robot axes will therefore be more or
less identical. Based on this fact, the values which are shown at the constant start
angle will represent the repeated accuracy of this calibration method.

An industrial robot can be used in many different applications. Depending on the
application the requirements of the accuracy will vary. Unfortunately, it does not
exist a common standard for the level of accuracy depending of the application. In
table 6, estimations of the required accuracy for different applications are
presented. These values have to be considered as a general rule of thumb. The
values also complies the complete robot process. This means for example that
the tolerances of the work piece itself have to be taken in to consideration. As
shown, the calibration method based on the repeated accuracy will be suitable for
most of the presented applications

Application Required
accuracy [mm]

Conf int. 84%
+/- 0.113 [mm]

Conf int. 98%
+/- 0.144 [mm]

 Arc welding +/- 0.4 OK OK

 Spot welding +/- 0.7 OK OK

 Material handling +/- 2.0 OK OK

 Water cutting +/- 0.2 OK OK

 Laser cutting +/- 0.2 OK OK

 Machining +/- 1.0 OK OK

 Palletising +/- 5.0 OK OK

Table 6
Requirements of accuracy presented as a function of the application.

__

__

 Page 83

6 Discussion

The goal of this thesis is to evaluate a simple calibration method that enables to
transfer an offline generated robot program to the physical installation.
Traditionally this is done by adjusting the robot path positions by “Teach in”. This
is possible due to the fact that the robot has very good position repeatability.
However, this method can be time consuming and therefore it is desired to find
alternative solutions which replace the position fine tuning step.

The key for this task is to determine reference positions on the work object fixture
at high accuracy. If this can be obtained, the offline program can be transferred to
the reality by calibrating fixture coordinate system. The evaluated method is
based on the fact that when two perfect spheres which are in contact with each
other in theory will have identical distance between their centre points. Under the
condition that at least four positions around the fixed sphere have been obtained,
the centre position of it can be determined. In a robot installation this is obtained
by mounting a spherical probe as robot tool and a spherical object on the work
piece fixture.

One of the conditions for this method is that the centre position in the spherical
probe is defined at high accuracy. In order to define this position, a method which
does not add any external equipment was evaluated. In short, this method guides
the spherical probe on the robot in to identical position at different orientations.
Unfortunately the results from the repeatability measurements do not support this
method for calibration. The min/ max deviation level was achieved in Z-axis but
not in X-axis and Y-axis. Potentially this method would have been applicable if it
was possible to more widely spread out the measurement range. Instead of this
method, the bull’s eye method is suggested in order to find the centre of spherical
probe on the robot. Unfortunately the Bulls eye method means an additional
investment.

In order to evaluate the efficiency of the method which determines the centre of a
fixed sphere, repetition tests were conducted. At these tests the centre of the
spherical probe was defined with bull’s eye method. The result from these tests
confirmed that the method is robust. The measured radius of the fixed sphere
somewhat deviated from the actual true radius. This indicates that the true centre
point can not be guaranteed. However, the precision of the repeated centre
position is very accurate and good enough for many common robot applications.

__

__

 Page 84

The method has a limit under condition that high accuracy is required. The
repositions of the fixture with respect to the robot can then not be too great. If the
fixture position variations are too great, different kind of errors from the robot
structure will have an influence on the result. However, this should not be a major
issue due to the fact that reposition of fixtures in applications which demands high
accuracy in most cases is a matter of millimetres.

Under condition that high accuracy is required; the conclusion based on the
repeatability test results is that this calibration method can not be used to directly
transfer an offline generated programming in to the physical installation. This is
based on the fact that the method does not measure the radius of the sphere at
sufficient accuracy.

Even if the calculated centre point of the fixed sphere is not absolute accurate it is
still repeatable. This means that the method can be used to find reference
positions on a work fixture. By fine tuning one position of the offline generated
program in the calibrated fixture frame, the rest of the robot program path
positions automatically will be calibrated. However, this implies that the work
object is not too wide. If too wide, robot nonlinearities may cause too great path
deviations.

The method can also be used in traditional manner based on the high
repeatability. By first calibrate a fixture coordinate system and then perform “tech
in” programming, the program is generated with respect to the calibrate fixture
coordinate system. As the reference positions on the fixture are known, the
method can therefore be run in order to calibrate the fixture if required.

__

__

 Page 85

References

• Convex optimization, Stephen P. Boyd, Lieven Vandenberghe.

ISBN 0521833787

• Fitting of Circles and Ellipses, BIT 34 (1994), pp. 558-578. Walter Gander,
Gene H. Golub, Rolf Strebel September 26, 1994

• Linear algebra and its application, Third Edition Gilbert Strang.
 ISBN 015551005-3

• Solving linear least squares problem by Gram-Schmidt orthogonalization.

Åke Björck BIT 7 (1967)

• Numerical methods for least squares problems, Åke Björck

ISBN 0898713609

• Accuracy and stability of numerical algorithms, Nicholas J. Higham
 ISBN-10:0898715210

• Kinematische Kalibrierung von Industrierobotern, Ulrich Wiest, Universität

Karlsruhe 2001.

__

__

 Page 86

7 Appendix

7.1 TCP_Calibration_2.mod

MODULE TCP_calibration_2

!--------------- Variables -----------------

! Meas_Sphere "Binzel robot studio"
PERS tooldata Meas_Sphere1:=[TRUE,[[40.0001,3,320],[0.983132,-
0.00145,0.176582,0.0476255]],[1.5,[10,0,110],[1,0,0,0],0.01,0.01,0.01]];

! Bulls eye tool 2011-07-08
! PERS tooldata Meas_Sphere1:=[TRUE,[[43.0001,-
0.4,320.6002],[0.986,0,0.165,0]],[1.5,[10,0,110],[1,0,0,0],0.01,0.01,0.01]];

! Meas_Sphere "Binzel labbrobot"
PERS tooldata Meas_Sphere2:=[TRUE,[[43,-0.17,320.227],[0.983132,-
0.00145,0.176582,0.0476255]],[0.3,[0,0,100],[1,0,0,0],0,0,0]];

! Test tool
PERS tooldata T_tool:=[TRUE,[[49.8707,-
4.06615,315.983],[0.986,0,0.165,0]],[1.5,[10,0,110],[1,0,0,0],0.01,0.01,0.01]]
;

PERS robtarget Pref;

LOCAL VAR speeddata v_slow := [5, 5, 200, 15]; ! Set speeddata for
approching the hole
LOCAL VAR speeddata v_norm := [30, 5, 200, 15]; ! Set general speeddata

!LOCAL VAR speeddata v_slow := [2000, 500, 200, 15]; ! Set speeddata for
approching the hole
!LOCAL VAR speeddata v_norm := [2000, 500, 200, 15]; ! Set general speeddata

LOCAL VAR jointtarget joints{100};
LOCAL VAR robtarget Tool0_points{100};
LOCAL VAR robtarget Fake_points{100};
LOCAL VAR pose Cali_TCP{100};

LOCAL VAR string joints_pos_str;

LOCAL VAR iodev Pos_file;
LOCAL VAR string FilePath:="TCP_biglog";

!--------------- End of variables -----------------

__

__

 Page 87

PROC Bort_main()

 VAR num Counter:=1000;
 VAR num repeats;

 repeats:=counter;

 FOR i4 FROM 1 TO counter DO
 IF i4=1
 THEN
 Pref:=CRobT(\Tool:=Meas_Sphere1);
 ENDIF
 Get_TCP_points 80;

 Calib_TCP Tool0_points, 80;

 !Calib_TCP_NEW joints;
 TEST_New_TCP;

 repeats:=repeats-1;
 TPWrite "Repeats remain= "\Num:=repeats;
 ENDFOR
 Stop;
ENDPROC

PROC Get_TCP_points(num meas)

 VAR robtarget Calib_pos;
 VAR robtarget Tool0_RobT;
 VAR num pos_index:=0;

 VAR string joints_pos_str;

 VAR num max_reor_angle_x:=25;
 VAR num max_reor_angle_y:=25;
 VAR num reor_angle;

 VAR num repos;

 ! Activate soft servo on all six axes
 SoftAct 1, 50\Ramp:=150;
 SoftAct 2, 30\Ramp:=100;
 SoftAct 3, 30\Ramp:=100;
 SoftAct 4, 30\Ramp:=150;
 SoftAct 5, 30\Ramp:=150;
 SoftAct 6, 50\Ramp:=150;

 !TPReadFK repos, "Do you need new reference position?", stEmpty,
stEmpty, stEmpty, "Yes", "No";

__

__

 Page 88

 !IF repos=4
 ! THEN
 ! Jog to postion above caibration hole.
 ! Stop;
 !Pref:=CRobT(\Tool:=Meas_Sphere1);
 ! ELSE
 !MoveL Pref, v2000, fine, Meas_Sphere1;
 !ENDIF

!--- Get TCP points -----

 joints_pos_str:=CDate()+" "+CTime()+" ";

 FOR i1 FROM 1 TO meas/4 DO

 reor_angle:=max_reor_angle_x*cos(180*i1/(meas/3));

 pos_index:=pos_index+1;
 TPWrite "Measurement "+NumToStr(Pos_index,0)+" of
"+NumToStr(meas,0);

 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=reor_angle,\Ry:=0,\Rz:=0);
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1;

 Calib_pos:=RelTool(Pref,0,0,10,\Rx:=reor_angle,\Ry:=0,\Rz:=0);
 MoveL Calib_pos, v_slow, fine, Meas_Sphere1;
 Waittime(1);
 Tool0_points{pos_index}:=CRobT(\Tool:=tool0);

 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=reor_angle,\Ry:=0,\Rz:=0);
 MoveL Calib_pos, v_norm, z1, Meas_Sphere1;

 ENDFOR

 Calib_pos:=RelTool(Pref,0,0,0);
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1;

 FOR i2 FROM meas/4+1 TO meas*2/4 DO

 reor_angle:=max_reor_angle_y*cos(180*i2/(meas/4));

 pos_index:=pos_index+1;
 TPWrite "Measurement "+NumToStr(Pos_index,0)+" of
"+NumToStr(meas,0);

 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=0,\Ry:=reor_angle,\Rz:=0);
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1;

 Calib_pos:=RelTool(Pref,0,0,10,\Rx:=0,\Ry:=reor_angle,\Rz:=0);
 MoveL Calib_pos, v_slow, fine, Meas_Sphere1;
 Waittime(1);

__

__

 Page 89

 Tool0_points{pos_index}:=CRobT(\Tool:=tool0);

 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=0,\Ry:=reor_angle,\Rz:=0);
 MoveL Calib_pos, v_norm, z1, Meas_Sphere1;

 ENDFOR

 Calib_pos:=RelTool(Pref,0,0,0);
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1;

 FOR i3 FROM meas*2/4+1 TO meas*3/4 DO

 reor_angle:=max_reor_angle_y*cos(180*i3/(meas/4));

 pos_index:=pos_index+1;
 TPWrite "Measurement "+NumToStr(Pos_index,0)+" of
"+NumToStr(meas,0);

 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=reor_angle,\Ry:=0,\Rz:=45);
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1;

 Calib_pos:=RelTool(Pref,0,0,10,\Rx:=reor_angle,\Ry:=0,\Rz:=45);
 MoveL Calib_pos, v_slow, fine, Meas_Sphere1;
 Waittime(1);
 Tool0_points{pos_index}:=CRobT(\Tool:=tool0);

 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=reor_angle,\Ry:=0,\Rz:=45);
 MoveL Calib_pos, v_norm, z1, Meas_Sphere1;
 ENDFOR

 Calib_pos:=RelTool(Pref,0,0,0);
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1;

 FOR i4 FROM meas*3/4+1 TO meas DO

 reor_angle:=max_reor_angle_y*cos(180*i4/(meas/4));

 pos_index:=pos_index+1;
 TPWrite "Measurement "+NumToStr(Pos_index,0)+" of
"+NumToStr(meas,0);

 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=0,\Ry:=reor_angle,\Rz:=45);
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1;

 Calib_pos:=RelTool(Pref,0,0,10,\Rx:=0,\Ry:=reor_angle,\Rz:=45);
 MoveL Calib_pos, v_slow, fine, Meas_Sphere1;
 Waittime(1);
 Tool0_points{pos_index}:=CRobT(\Tool:=tool0);

 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=0,\Ry:=reor_angle,\Rz:=45);
 MoveL Calib_pos, v_norm, z1, Meas_Sphere1;

__

__

 Page 90

 ENDFOR

 Calib_pos:=RelTool(Pref,0,0,0);
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1;

!--- Return to start position -----

 MoveL Pref,v_norm,Z1,Meas_Sphere1;

 SoftDeact \Ramp:=150;

ENDPROC

PROC Calib_TCP_NEW(VAR jointtarget xJoints{*})

 VAR num Maxerr;
 VAR num Meanerr;

 MToolTCPCalib xJoints{1}, xJoints{3}, xJoints{2}, xJoints{4},
Meas_Sphere2, Maxerr, Meanerr;

 joints_pos_str:=" Meas_Sphere2
"+NumToStr(Meas_Sphere2.tframe.trans.x,3)+"
"+NumToStr(Meas_Sphere2.tframe.trans.y,3)+"
"+NumToStr(Meas_Sphere2.tframe.trans.z,3)+" Maxerr "+NumToStr(Maxerr,3)+"
Meanerr "+NumToStr(Meanerr,3);

 ! Open posistion file
 Open FilePath, Pos_file\Append;
 Write Pos_file, joints_pos_str \NoNewLine;
 ! Close position file
 Close Pos_file;

 TPWrite "Meas_Sphere2="\Pos:=Meas_Sphere2.tframe.trans;
 TPWrite "Maxerr ="\Num:=Maxerr;
 TPWrite "Meanerr ="\Num:=Meanerr;

ENDPROC

! Calibrates the TCP. Argument one is the estimated expressend in World
coordinates. Argument two is the position of tool0.
PROC Calib_TCP(VAR robtarget Tool0_points{*}, num meas)

 VAR pose E_TCP;
 VAR pose Tool0_pose;
 VAR pose Cali_TCP_final;

 VAR num X_TCP_final:=0;
 VAR num Y_TCP_final:=0;
 VAR num Z_TCP_final:=0;

__

__

 Page 91

 VAR num Maxerr;
 VAR num Meanerr;

 VAR num Rerror_ref;
 VAR num Rerror_test;

 VAR string M_2;
 VAR string T_t;

 VAR pose Cali_TCP;

 VAR iodev Pos_file2;
 VAR string FilePath2:="TCP_poslog";
 VAR string TCP_str;

 FilePath2:=FilePath2+"_"+CDate()+".log";

 ! Least square estimation based on Tool0 points, part of a Sphere

 ECOS_QR Tool0_points, meas;
 !Stop;

 ! Find best tool0 point

 ! Rerror_ref:=abs(Radius-sqrt(pow(ECP_QR_RobT.trans.x-
Tool0_points{1}.trans.x,2)+pow(ECP_QR_RobT.trans.y-
Tool0_points{1}.trans.y,2)+pow(ECP_QR_RobT.trans.z-
Tool0_points{1}.trans.z,2)));
 ! Meas_Sphere2.tframe.trans:=[ECP_QR_RobT.trans.x-
Tool0_points{1}.trans.x,ECP_QR_RobT.trans.y-
Tool0_points{1}.trans.y,ECP_QR_RobT.trans.z-Tool0_points{1}.trans.z];
 ! Meas_Sphere2.tframe.rot:=E_TCP.rot;

 E_TCP.trans:=ECP_QR_RobT.trans; ! Get estimated cenre point
based on QR factorixation
 E_TCP.rot:=Meas_Sphere1.tframe.rot;

 Tool0_pose.trans:=Tool0_points{1}.trans;
 Tool0_pose.rot:=Tool0_points{1}.rot;

 Cali_TCP:= PoseMult(PoseInv(Tool0_pose), E_TCP);

 Rerror_ref:=abs(Radius-
sqrt(pow(Cali_TCP.trans.x,2)+pow(Cali_TCP.trans.y,2)+pow(Cali_TCP.trans.z,2)))
;

 Meas_Sphere2.tframe.rot:=Meas_Sphere1.tframe.rot;
 Meas_Sphere2.tframe.trans:=Cali_TCP.trans;

 TPWrite "Start Meas_sphere2 = "\Pos:=Meas_Sphere2.tframe.trans;

 FOR index FROM 2 TO meas DO

__

__

 Page 92

 Tool0_pose.trans:=Tool0_points{index}.trans;
 Tool0_pose.rot:=Tool0_points{index}.rot;

 Cali_TCP:= PoseMult(PoseInv(Tool0_pose), E_TCP);

 Rerror_test:=abs(Radius-
sqrt(pow(Cali_TCP.trans.x,2)+pow(Cali_TCP.trans.y,2)+pow(Cali_TCP.trans.z,2)))
;

 !TPWrite "Rerror_test= "\Num:=Rerror_test;
 !TPWrite "Rerror_ref= "\Num:=Rerror_ref;

 IF Rerror_ref > Rerror_test
 THEN

 Meas_Sphere2.tframe.trans:=Cali_TCP.trans;

 Rerror_ref := Rerror_test;

 TPWrite "Radius error = "\Num:=Rerror_test;

 ENDIF
 ENDFOR

 TPWrite "Final Meas_sphere2 = "\Pos:=Meas_Sphere2.tframe.trans;

 Open FilePath2, Pos_file2\Append;

 TCP_str:="Radius "+NumToStr(Radius,6)+"Tool_TCP
"+NumToStr(Meas_Sphere2.tframe.trans.x,6)+"
"+NumToStr(Meas_Sphere2.tframe.trans.y,6)+"
"+NumToStr(Meas_Sphere2.tframe.trans.z,6);

 Write Pos_file2, TCP_str;

 Close Pos_file2;

ENDPROC

PROC TEST_New_TCP()

 VAR robtarget P1;
 VAR robtarget P2;
 VAR robtarget P3;

 TPWrite "Meas_sphere2";
 P1:=RelTool(Pref,0,0,-50);
 MoveJ P1, v_norm, fine, Meas_Sphere2;

__

__

 Page 93

 P2:=RelTool(Pref,0,0,-50,\Rx:=0,\Ry:=0,\Rz:=45);
 MoveL P2, v_norm, fine, Meas_Sphere2;

 P3:=RelTool(Pref,0,0,-50,\Rx:=0,\Ry:=30,\Rz:=0);
 MoveL P3, v_norm, fine, Meas_Sphere2;

 MoveL P1, v_norm, fine, Meas_Sphere2;

! TPWrite "T_tool";
! P1:=RelTool(Pref,0,0,-50);
! MoveJ P1, v_norm, fine, T_tool;

! P2:=RelTool(Pref,0,0,-50,\Rx:=0,\Ry:=0,\Rz:=45);
! MoveL P2, v_norm, fine, T_tool;

! P3:=RelTool(Pref,0,0,-50,\Rx:=0,\Ry:=30,\Rz:=0);
! MoveL P3, v_norm, fine, T_tool;

! MoveL P1, v_norm, fine, T_tool;

 MoveL Pref, v_norm, fine, Meas_Sphere1;

ENDPROC

ENDMODULE

7.2 Get_sphere_points2.mod

MODULE Get_sphere_points_2

!Drop down i Z-axis
LOCAL VAR num Cz:=15;

LOCAL VAR speeddata v_AS := [5, 10, 200, 15]; ! Set speeddata for
approching the sphere
LOCAL VAR speeddata v_GEN := [30, 10, 200, 15]; ! Set general speeddata

!LOCAL VAR speeddata v_AS := [2000, 10, 200, 15]; ! Set speeddata
for approching the sphere
!LOCAL VAR speeddata v_GEN := [2000, 10, 200, 15]; ! Set general speeddata

VAR robtarget PointXYZ{100};
LOCAL VAR jointtarget joints{100};

VAR robtarget measpos{10};

! Trap routin parameters
LOCAL VAR num Trigglevel:=110; ! What is
the percentage of reduced distance to trigg search stop

__

__

 Page 94

LOCAL VAR num Itimer_frequency:=0.25; ! Itimer interupt
frequency
LOCAL VAR num Start_supervise:=4;! When shall the program start to supervise
the speed
LOCAL VAR intnum Speed_supervision;
LOCAL VAR intnum time_int;
LOCAL VAR dionum High:=1;
LOCAL VAR dionum Low:=0;
LOCAL VAR signaldi Signal_DI;
LOCAL VAR signaldo Signal_DO;
LOCAL VAR num Counter;
LOCAL VAR robtarget P1_supervision;
LOCAL VAR robtarget P2_supervision;

!--------------- Functions -----------------

!Calculate theata angle
FUNC num theata_angle(num order,num N)
 RETURN 110*(order)/N;
ENDFUNC

!Calculate phi angle
FUNC num phi_angle(num order)
 RETURN 80*(order-1);
ENDFUNC

!--------------- End of functions -----------------

PROC Fmain()

 VAR robtarget Pref_sphere;

 Pref_sphere:=CRobT(\Tool:=Meas_Sphere2);
 !Numer of measurements, Outer radius, Inner radius, Top_radius, Refpos
 MAS 20, 40, 20, Pref_sphere, 10;
 Stop;
ENDPROC

! Move Around Sphere
PROC MAS(num NOM, num OuterRad, num InnerRad, robtarget P_referens, num
start_phi)

 VAR robtarget P_centre_sphere;
 VAR robtarget P_OuterRad;
 VAR robtarget P_SemiRad;
 VAR robtarget P_InnerRad;
 VAR robtarget P_Start;
 VAR robtarget P_End;

 VAR num pos_index:=0;

__

__

 Page 95

 VAR num fk;

 VAR num rad_sphere:=10;

 ! Pos file variables
 VAR iodev Pos_file;
 !VAR string FilePath:="Sphere_positions";

 VAR string joints_str;
 VAR string positions_str;
 ! End of pos file variables

 !IDELETE Speed_supervision;
 !CONNECT Speed_supervision WITH Flag_speed_change;
 !ISleep Speed_supervision;
 AliasIO IO_Signal_DI, Signal_DI;
 AliasIO IO_Signal_DO, Signal_DO;

 ! Activate soft servo
 SoftAct 1, 40 \Ramp:=150;
 SoftAct 2, 40 \Ramp:=150;
 SoftAct 3, 40 \Ramp:=150;
 SoftAct 4, 40 \Ramp:=150;
 SoftAct 5, 40 \Ramp:=150;
 SoftAct 6, 40 \Ramp:=150;

 joints_str:=CDate()+" "+CTime()+" ";
 Open FilePath, Pos_file\Append;
 Write Pos_file, joints_str \NoNewLine;
 Close Pos_file;

 ! Find position on top of sphere

 P_OuterRad:=RelTool(P_referens,0,0,0);
 P_InnerRad:=RelTool(P_referens,0,0,5);

 MoveJ P_OuterRad, v_GEN, fine, Meas_Sphere2;
 !MoveL P_InnerRad,v_AS,fine,Meas_Sphere2;

 Counter:=0;
 SetDO Signal_DO, High;
! WaitTime 2;
 SetDO Signal_DO, Low;
! WaitTime 2;
 ! Connect trap routine
! CONNECT Speed_supervision WITH Flag_speed_change;
! ITimer Itimer_frequency, Speed_supervision;

__

__

 Page 96

! SearchL \SStop, Signal_DI\Flanks, PointXYZ{pos_index}, P_InnerRad, v_AS,
Meas_Sphere2;
! MoveL P_InnerRad,v_AS,fine,Meas_Sphere2;
! IDELETE Speed_supervision;

 WaitTime(0.1);

 ! Get ref position on top of fixed sphere
 !P_centre_sphere:=CRobT(\Tool:=Meas_Sphere2);

 !Shift ref pos close to centre of sphere
 !P_centre_sphere:=RelTool(P_centre_sphere, 0, 0, rad_sphere+5);
 P_centre_sphere:=RelTool(P_referens, 0, 0, rad_sphere+5);

 !MoveJ P_OuterRad,v_GEN,fine,Meas_Sphere2;

 ! Get positions around the sphere
 FOR i1 FROM 1 TO NOM DO

 pos_index:=pos_index+1;

! TPWrite "Theata " \Num:=theata_angle(i1, NOM);
! TPWrite "10*cos(Theata) " \Num:=10*cos(theata_angle(i1, NOM));
! TPWrite "Phi " \Num:=phi_angle(i1);

 IF i1=1
 THEN
 P_Start:=RelTool(P_referens, OuterRad*sin(theata_angle(i1,
NOM))*sin(start_phi+phi_angle(i1)), OuterRad*sin(theata_angle(i1,
NOM))*cos(start_phi+phi_angle(i1)), 0);
 MoveL P_Start,v_GEN,fine,Meas_Sphere2;
 ENDIF

! P_OuterRad:=RelTool(P_centre_sphere, OuterRad*sin(theata_angle(i1,
NOM))*sin(phi_angle(i1)), OuterRad*sin(theata_angle(i1,
NOM))*cos(phi_angle(i1)), -OuterRad*cos(theata_angle(i1, NOM))
\Rx:=10*sin(phi_angle(i1)) \Ry:=10*cos(phi_angle(i1)));
! P_SemiRad:=RelTool(P_centre_sphere,
0.3*OuterRad*sin(theata_angle(i1, NOM))*sin(phi_angle(i1)),
0.3*OuterRad*sin(theata_angle(i1, NOM))*cos(phi_angle(i1)), -
0.3*OuterRad*cos(theata_angle(i1, NOM)) \Rx:=10*sin(phi_angle(i1))
\Ry:=10*cos(phi_angle(i1)));
! P_InnerRad:=RelTool(P_centre_sphere, InnerRad*sin(theata_angle(i1,
NOM))*sin(phi_angle(i1)), InnerRad*sin(theata_angle(i1,
NOM))*cos(phi_angle(i1)), -InnerRad*cos(theata_angle(i1, NOM))
\Rx:=10*sin(phi_angle(i1)) \Ry:=10*cos(phi_angle(i1)));

 P_OuterRad:=RelTool(P_centre_sphere, OuterRad*sin(theata_angle(i1,
NOM))*sin(start_phi+phi_angle(i1)), OuterRad*sin(theata_angle(i1,
NOM))*cos(start_phi+phi_angle(i1)), -OuterRad*cos(theata_angle(i1, NOM)));

__

__

 Page 97

 P_SemiRad:=RelTool(P_centre_sphere,
0.3*OuterRad*sin(theata_angle(i1, NOM))*sin(start_phi+phi_angle(i1)),
0.3*OuterRad*sin(theata_angle(i1, NOM))*cos(start_phi+phi_angle(i1)), -
0.3*OuterRad*cos(theata_angle(i1, NOM)));
 P_InnerRad:=RelTool(P_centre_sphere, InnerRad*sin(theata_angle(i1,
NOM))*sin(start_phi+phi_angle(i1)), InnerRad*sin(theata_angle(i1,
NOM))*cos(start_phi+phi_angle(i1)), -InnerRad*cos(theata_angle(i1, NOM)));

 MoveL P_OuterRad,v_GEN,fine,Meas_Sphere2;

 Counter:=0;

 ! Connect trap routine
 SetDO Signal_DO, Low;
! MoveL P_SemiRad,v_AS,fine,Meas_Sphere2;
! CONNECT Speed_supervision WITH Flag_speed_change;
! ITimer Itimer_frequency, Speed_supervision;
! SearchL \SStop, Signal_DI, PointXYZ{pos_index}, P_InnerRad, v_AS,
Meas_Sphere2;
 MoveL P_InnerRad,v_AS,fine,Meas_Sphere2;
! IDELETE Speed_supervision;

 WaitTime(1);

 joints{pos_index} := CJointT();
 PointXYZ{pos_index}:=CRobT(\Tool:=Meas_Sphere2);

 ! Open posistion file
 Open FilePath, Pos_file\Append;
 joints_str:=" Joint"+NumToStr(pos_index,0)+"
"+NumToStr(joints{pos_index}.robax.rax_1,5)+"
"+NumToStr(joints{pos_index}.robax.rax_2,5)+"
"+NumToStr(joints{pos_index}.robax.rax_3,5)+"
"+NumToStr(joints{pos_index}.robax.rax_4,5)+"
"+NumToStr(joints{pos_index}.robax.rax_5,5)+"
"+NumToStr(joints{pos_index}.robax.rax_6,5);
 Write Pos_file, joints_str \NoNewLine;
 positions_str:=" Pos"+NumToStr(pos_index,0)+"
"+NumToStr(PointXYZ{pos_index}.trans.x,6)+"
"+NumToStr(PointXYZ{pos_index}.trans.y,6)+"
"+NumToStr(PointXYZ{pos_index}.trans.z,6);
 Write Pos_file, positions_str \NoNewLine;
 ! Close position file
 Close Pos_file;

 MoveJ P_OuterRad,v_GEN,fine,Meas_Sphere2;

 IF i1=NOM
 THEN

__

__

 Page 98

 P_End:=RelTool(P_referens, OuterRad*sin(theata_angle(i1,
NOM))*sin(start_phi+phi_angle(i1)), OuterRad*sin(theata_angle(i1,
NOM))*cos(start_phi+phi_angle(i1)), -5);
 MoveL P_End,v_GEN,fine,Meas_Sphere2;
 ENDIF

 ENDFOR

 MoveL RelTool(P_referens,0,0,0),v_GEN,fine,Meas_Sphere2;

 SoftDeact;

 ! Open posistion file
! Open FilePath, Pos_file\Append;
! Write Pos_file, " ";
 ! Close position file
! Close Pos_file;

 ERROR
 IF ERRNO=ERR_WHLSEARCH
 THEN
 !StorePath;
 MoveJ P_OuterRad,v_GEN,fine,Meas_Sphere2;
 !RestoPath;
 RETRY;
 ELSEIF ERRNO=ERR_SIGSUPSEARCH
 THEN
 TPWrite "The signal of the SearchL instruction is already high!";
 TPReadFK fk,"Try again after manual reset of
signal?","YES","stEmpty","stEmpty","stEmpty","NO";
 IF fk = 1
 THEN
 MoveJ P_OuterRad,v_GEN,fine,Meas_Sphere2;
 RETRY;
 ELSE
 Stop;
 ENDIF
 ENDIF

ENDPROC

LOCAL TRAP Flag_speed_change

 VAR num Dist_diff;

 Dist_diff:=v_AS.v_tcp*Itimer_frequency*Trigglevel/100; !Set
distance diff
 !Dist_diff:=Trigglevel;

 P1_supervision:=CRobT(\Tool:=Meas_Sphere2);

__

__

 Page 99

 IF Counter > Start_supervise
 THEN
 IF Distance(P2_supervision.trans, P1_supervision.trans) <
Dist_diff
 THEN
 !TPReadFK repos, "Set DO 1", stEmpty, stEmpty,
stEmpty, "Yes", "No";
 TPWrite "-----------------";
 TPWrite "Contact!!!!!!!!!!";
 SetDO Signal_DO, High;
 ENDIF
 ENDIF

 TPWrite "Distance " \Num:=Distance(P2_supervision.trans,
P1_supervision.trans);
 TPWrite "Dist diff " \Num:=Dist_diff;
 TPWrite "Counter " \Num:=Counter;
! TPWrite "P1 " \Pos:=P1_supervision.trans;
! TPWrite "P2 " \Pos:=P2_supervision.trans;
 P2_supervision:=P1_supervision;
 Counter:=Counter+1;

 RETURN;
ENDTRAP
ENDMODULE

__

__

 Page 100

7.3 Linear_Least_squares_QR.mod

MODULE Linear_Least_squares_QR

!--------------- Variables -----------------

! Declares dimension of matrices
LOCAL VAR num m;
LOCAL VAR num n;
LOCAL VAR num p;

LOCAL VAR robtarget PointsXYZ{5};

! Declaration of matrices

!LOCAL VAR num A_matrix{5,4}:=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,1,-
1,1]];
!LOCAL VAR num B_matrix{5,1}:=[[2],[1],[3],[1],[1]];

LOCAL VAR num
V_matrix{100,4}:=[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0
,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0
,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0
,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0
,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0]];
LOCAL VAR num
Q_matrix{100,4}:=[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0
,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0
,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0
,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0
,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0]];

__

__

 Page 101

LOCAL VAR num R_matrix{4,4}:=[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]];
LOCAL VAR num QTB_matrix{4,1};

! Linear least square solution
VAR num LLS_X{10};

!--------------- Procedures --------------------------

!PROC main()

!LLS_QR A_matrix, B_matrix;
!STOP;

!ENDPROC

! Main procedure for linear least square QR based on modified Gram Schmidt. xm
defines amount of rows. xn defines amount of columns.
PROC LLS_QR(VAR num xA_matrix{*,*}, VAR num xB_matrix{*,*}, num xm, num xn)

 !Set dimensions for m
 !m:=DIM(xA_matrix,1);
 m:=xm;

 !Set dimensions for n
 !n:=DIM(xA_matrix,2);
 n:=xn;

 !Set dimensions for p
 !p:=DIM(xB_matrix,2);
 p:=1;

 QR_MOD_GRAM_SCHMIDT xA_matrix, m, n;
 Build_QTB_matrix Q_matrix, xB_matrix;
 Back_solve R_matrix, QTB_matrix;

 ECP_QR_RobT:=PointsXYZ{1};
 ECP_QR_RobT.trans:=ECP_QR_pos;

ENDPROC

! FIND Q AND R MATRICES BY MODIFIED GRAM-SCHMIDT (STABLE)
LOCAL PROC QR_MOD_GRAM_SCHMIDT(num xA_matrix{*,*},num m, num n)

 VAR num temp;

 FOR index1 FROM 1 TO m DO
 FOR index2 FROM 1 TO n DO
 V_matrix{index1,index2}:=xA_matrix{index1,index2};
 ENDFOR
 ENDFOR

__

__

 Page 102

 FOR index3 FROM 1 TO n DO

 temp:=0;
 FOR index4 FROM 1 TO m DO

 temp:=temp+pow(V_matrix{index4,index3},2);

 ENDFOR

 R_matrix{index3,index3}:=sqrt(temp);

 FOR index5 FROM 1 TO m DO

 Q_matrix{index5,index3}:=V_matrix{index5,index3}/R_matrix{index3,index3}
;

 ENDFOR

 IF index3<n THEN

 FOR index6 FROM index3+1 TO n DO

 R_matrix{index3,index6}:=0;
 FOR index7 FROM 1 TO m DO
 !TPWrite "index3 " \Num:=index3;
 !TPWrite "index6 " \Num:=index6;
 !TPWrite "index7 " \Num:=index7;

 !TPWrite "V_matrix "
+NumToStr(index7,0)+","+NumToStr(index6,0)+" = "
\Num:=V_matrix{index7,index6};

 R_matrix{index3,index6}:=R_matrix{index3,index6}+(Q_matrix{index7,index3
}*V_matrix{index7,index6});
 ENDFOR
 !TPWrite "R_matrix "
+NumToStr(index3,0)+","+NumToStr(index6,0)+" = " \Num:=temp;
 !Stop;

 FOR index8 FROM 1 TO m DO
 temp:=0;

 !TPWrite "R_matrix"
+NumToStr(index3,0)+","+NumToStr(index6,0)+" = "
\Num:=R_matrix{index3,index6};
 !TPWrite "Q_matrix"
+NumToStr(index8,0)+","+NumToStr(index3,0)+" = "
\Num:=Q_matrix{index8,index3};

 temp:=R_matrix{index3,index6}*Q_matrix{index8,index3};

__

__

 Page 103

 !TPWrite "V_matrix före "
+NumToStr(index8,0)+","+NumToStr(index6,0)+" = "
\Num:=V_matrix{index8,index6};
 V_matrix{index8,index6}:=
V_matrix{index8,index6}-temp;
 !TPWrite "Minus "
+NumToStr(index8,0)+","+NumToStr(index6,0)+" = " \Num:=temp;
 !TPWrite "V_matrix efter "
+NumToStr(index8,0)+","+NumToStr(index6,0)+" = "
\Num:=V_matrix{index8,index6};
 !Stop;

 ENDFOR
 ENDFOR

 ENDIF
 ENDFOR

 FOR index10 FROM 1 TO n DO
 FOR index11 FROM 1 TO n DO
 !TPWrite "R_matrix "
+NumToStr(index10,0)+","+NumToStr(index11,0)+" = "
\Num:=R_matrix{index10,index11};
 ENDFOR
 ENDFOR
 !Stop;
 FOR index13 FROM 1 TO n DO
 FOR index12 FROM 1 TO m DO
 !TPWrite "Q_matrix "
+NumToStr(index12,0)+","+NumToStr(index13,0)+" = "
\Num:=Q_matrix{index12,index13};
 ENDFOR
 ENDFOR
 !Stop;
ENDPROC

LOCAL PROC Build_QTB_matrix(VAR num xQ_matrix{*,*}, VAR num xB_matrix{*,*})

 VAR num temp;
 VAR num QT{100,100};

 !Transponate Q matrix
 FOR i1 FROM 1 TO m DO
 FOR i2 FROM 1 TO n DO
 QT{i2,i1}:=xQ_matrix{i1,i2};
 ENDFOR
 ENDFOR

 !TPWrite "A_matrix m dim= " \Num:=m;
 !TPWrite "A_matrix n dim= " \Num:=n;

__

__

 Page 104

 !Stop;

 FOR index1 FROM 1 TO p DO
 FOR index2 FROM 1 TO n DO
 temp:=0;
 FOR index3 FROM 1 TO m DO

 temp:=temp+QT{index2,index3}*xB_matrix{index3,index1};
 ENDFOR
 QTB_matrix{index2,index1}:=temp;
 ENDFOR
 ENDFOR

ENDPROC

! Back solve
LOCAL PROC Back_solve(VAR num xUTR_matrix{*,*}, VAR num xB_vector{*,*})

 VAR string FilePath:="D:/Simulation";
 VAR iodev Pos_file;
 VAR string ECP_X;
 VAR string ECP_Y;
 VAR string ECP_Z;

 !VAR num m:=0;
 !VAR num n:=0;

 VAR num sum;
 VAR num INVi2;

 VAR num x{10};

 !m:=DIM(xUTR_matrix,1);
 !n:=DIM(xUTR_matrix,2);

 !TPWrite "m " \Num:=m;
 !TPWrite "n " \Num:=n;
 !Stop;

 FOR k FROM 1 TO n-1 DO
 !TPWrite "k " \Num:=k;
 FOR i1 FROM k+1 TO n DO
 ! TPWrite "i " \Num:=i1;
 xb_vector{i1,1}:=xb_vector{i1,1}-
xUTR_matrix{i1,k}*xb_vector{i1,1};
 ENDFOR
 ENDFOR

 x{n}:=xb_vector{n,1}/xUTR_matrix{n,n};
 !TPWrite "x " \Num:=x{n};

__

__

 Page 105

 !Stop;

 FOR i2 FROM 1 TO n-1 DO

 INVi2:=n-i2;
 ! TPWrite "INVi2 " \Num:=INVi2;

 sum:=xb_vector{INVi2,1};

 FOR j FROM INVi2 TO n DO

 sum:=sum-xUTR_matrix{INVi2,j}*x{j};

 ENDFOR

 x{INVi2}:=sum/xUTR_matrix{INVi2,INVi2};

 ENDFOR

 FOR index FROM 1 TO n DO
 LLS_X{index}:=x{index};
 !TPWrite "LLS_x: " \Num:=LLS_X{index};
 ENDFOR

! Open FilePath, Pos_file\Append;

! Write Pos_file, ECP_X \NoNewLine;
! Write Pos_file, ECP_Y \NoNewLine;
! Write Pos_file, ECP_Z;
! Close Pos_file;

 !Stop;
ENDPROC

!--------------- End of procedures -----------------
ENDMODULE

__

__

 Page 106

7.4 Estimate_centre_of_sphere_QR_2.mod

MODULE Estimate_centre_of_sphere_QR_2

!--------------- Variables -----------------

! Estimated centre point

VAR pos ECP_QR_pos;
VAR robtarget ECP_QR_RobT;
VAR num Radius;
VAR num converg{4};

! Declares dimension of matrices
LOCAL VAR num m;
LOCAL VAR num n;
LOCAL VAR num p;

LOCAL VAR robtarget tPointsXYZ{5};

! Declaration of matrices
LOCAL VAR num A_matrix{100,3};
!LOCAL VAR num A_matrix{4,3}:=[[9,0,26,3],[12,0,-7,],[0,4,4],[0,-3,-3]];
!LOCAL VAR num B_matrix{4,1}:=[[1],[2],[3],[5]];
LOCAL VAR num B_matrix{100,1};

LOCAL VAR num J_matrix{100,4};
LOCAL VAR num D_matrix{4,1}:=[[1],[2],[3],[5]];

LOCAL VAR num R0;
LOCAL VAR num Di_vector{100,1};

PERS tooldata
test_tool:=[TRUE,[[0,0,100],[1,0,0,0]],[0.3,[0,0,100],[1,0,0,0],0,0,0]];

!--------------- End of variables -----------------

!--------------- Functions -----------------

! Excecute calculation Xn(n+1)^2-Xn^2+Y(n+1)^2-Yn^2+Z(n+1)^2-Zn^2
LOCAL FUNC num B_row(Pos P1, Pos P2)
 RETURN Pow(P2.x,2)-Pow(P1.x,2)+Pow(P2.y,2)-Pow(P1.y,2)+Pow(P2.z,2)-
Pow(P1.z,2);
ENDFUNC

! Excecute calculation 2x(X(n+1)-Xn)
LOCAL FUNC num A_row(num P1, num P2)

__

__

 Page 107

 RETURN 2*(P2-P1);
ENDFUNC

! Calculate determinant of 2x2 matrix A.
LOCAL FUNC num DET2x2(num A11, num A22, num A21, num A12)
 RETURN A11*A22-(A12*A21);
ENDFUNC

! Excecute calculation
LOCAL FUNC num Calc_Ri(num Xi, num X0, num Yi, num Y0, num Zi, num Z0)
 RETURN sqrt(pow(Xi-X0,2)+pow(Yi-Y0,2)+pow(Zi-Z0,2));
ENDFUNC

!--------------- End of functions -----------------

PROC gMain()

 VAR num Xi{4};

 !VAR num xA_matrix{5,4}:=[[1,0,0,0],[1.2,-0.9,0,0],[0,1,1,0],[0,1,-
1,1],[0,0,2,1]];
 !VAR num xB_matrix{5,1}:=[[1],[0],[2],[1.1],[3]];

 Xi{1}:=-1;
 Xi{2}:=1;
 Xi{3}:=5;
 Xi{4}:=1;

 tPointsXYZ{1}.trans:=[0,0,6];

 tPointsXYZ{2}.trans:=[0,0,2];

 tPointsXYZ{3}.trans:=[-0.1,2,4];

 tPointsXYZ{4}.trans:=[0.1,-2,4];

 tPointsXYZ{5}.trans:=[2.1,0,4];

 !ECOS_QR tPointsXYZ;

 !LLS_QR xA_matrix, xB_matrix;

 !Gauss_Newton tPointsXYZ, Xi, 3, 10;

 Stop;
ENDPROC

!--------------- Procedures -----------------------

! Main procedure for Estimate centre of sphere

__

__

 Page 108

PROC ECOS_QR(VAR robtarget PointsXYZ{*}, num meas)

 Build_A_matrix PointsXYZ, meas;
 Build_B_matrix PointsXYZ, meas;
! TPWrite "DIM(PointsXYZ,1): " \Num:=DIM(PointsXYZ,1)-1;
! TPWrite "DIM(A_matrix,2): " \Num:=DIM(A_matrix,2);
! Stop;

 !Least square QR Ax=b , Rows , Columns
 LLS_QR A_matrix, B_matrix, meas-1, DIM(A_matrix,2);

! TPWrite "LLS_x: " \Num:=LLS_X{1};
! TPWrite "LLS_y: " \Num:=LLS_X{2};
! TPWrite "LLS_z: " \Num:=LLS_X{3};
! TPWrite "LLS_r: " \Num:=LLS_X{4};
 LLS_X{4}:=25;
 !Stop;

 !Gauss Newton
 Gauss_Newton PointsXYZ, LLS_x, 3, meas;

ENDPROC

! Builds B Matrix, Set number of decimals by the varibel digits
LOCAL PROC Build_B_matrix(VAR robtarget xPointsXYZ{*}, VAR num xMeas)
 FOR index FROM 1 TO xMeas-1 DO
 B_matrix{index,1}:=B_row(xPointsXYZ{index}.trans,
xPointsXYZ{index+1}.trans);
 ENDFOR

 !FOR i1 FROM 1 TO m DO
 ! FOR i2 FROM 1 TO 1 DO
 !TPWrite "B_matrix " +NumToStr(i1,0)+","+NumToStr(i2,0)+" =
" \Num:=B_matrix{i1,i2};
 ! ENDFOR
 !ENDFOR
 !Stop;

ENDPROC

! Builds A matrix, Set number of decimals by the varibel digits
LOCAL PROC Build_A_matrix(VAR robtarget xPointsXYZ{*}, VAR num xMeas)
 FOR index FROM 1 TO xMeas-1 DO
 A_matrix{index,1}:=A_row(xPointsXYZ{index}.trans.x,
xPointsXYZ{index+1}.trans.x);
 A_matrix{index,2}:=A_row(xPointsXYZ{index}.trans.y,
xPointsXYZ{index+1}.trans.y);
 A_matrix{index,3}:=A_row(xPointsXYZ{index}.trans.z,
xPointsXYZ{index+1}.trans.z);
 ENDFOR

__

__

 Page 109

 !FOR i1 FROM 1 TO m DO
 ! FOR i2 FROM 1 TO n DO
 ! TPWrite "A_matrix " +NumToStr(i1,0)+","+NumToStr(i2,0)+" = "
\Num:=A_matrix{i1,i2};
 ! ENDFOR
 !ENDFOR
 !Stop;

ENDPROC

!Build Jacobian matrix
LOCAL PROC Build_J_Di(VAR robtarget xPointsXYZ{*},VAR num X0{*}, var num
xMeas)

 VAR num Xi;
 VAR num Yi;
 VAR num Zi;

 FOR index FROM 1 TO xMeas DO

 Xi:=xPointsXYZ{index}.trans.x;
 Yi:=xPointsXYZ{index}.trans.y;
 Zi:=xPointsXYZ{index}.trans.z;

 ! Create Jacobian matrix
 J_matrix{index,1}:=-(Xi-X0{1})/Calc_Ri(Xi, X0{1}, Yi, X0{2}, Zi,
X0{3});
 ! TPWrite "J_matrix{index,1} = " \Num:=J_matrix{index,1};
 J_matrix{index,2}:=-(Yi-X0{2})/Calc_Ri(Xi, X0{1}, Yi, X0{2}, Zi,
X0{3});
 ! TPWrite "J_matrix{index,2} = " \Num:=J_matrix{index,2};
 J_matrix{index,3}:=-(Zi-X0{3})/Calc_Ri(Xi, X0{1}, Yi, X0{2}, Zi,
X0{3});
 ! TPWrite "J_matrix{index,3} = " \Num:=J_matrix{index,3};
 J_matrix{index,4}:=-1;
 ! TPWrite "J_matrix{index,4} = " \Num:=J_matrix{index,4};
 !Stop;
 ! Create -Di matrix
 Di_vector{index,1}:=-((Calc_Ri(Xi, X0{1}, Yi, X0{2},Zi, X0{3})-
X0{4}));

 ENDFOR

ENDPROC

! Gauss Newton

__

__

 Page 110

PROC Gauss_Newton(VAR robtarget xPointsXYZ{*}, VAR num xLLS_x{*}, num
iterations, num xMeas)

 VAR num X_old{4};
 VAR num X_new{4};

 ! Declare Ro startvalue
 !R0:=sqrt((pow(xLLS_x{1},2)+pow(xLLS_x{2},2)+pow(xLLS_x{3},2)-
xLLS_x{4}));
 !TPWrite "R0: " \Num:=R0;
 R0:=25;

 ! Declare start values
 X_new{1}:=xLLS_x{1};
 TPWrite "Start value X: " \Num:=X_new{1};
 X_new{2}:=xLLS_x{2};
 TPWrite "Start value Y: " \Num:=X_new{2};
 X_new{3}:=xLLS_x{3};
 TPWrite "Start value Z: " \Num:=X_new{3};

 X_new{4}:=Distance(xPointsXYZ{1}.trans,[xLLS_x{1},xLLS_x{2},xLLS_x{3}]);
 TPWrite "Start value R: "
\Num:=Distance(xPointsXYZ{1}.trans,[xLLS_x{1},xLLS_x{2},xLLS_x{3}]);

 FOR index FROM 1 TO iterations DO

 ! Create Jacobian matrices J, Di
 Build_J_Di xPointsXYZ, X_new, xMeas;

 ! Conduct linear least square
 LLS_QR J_matrix, Di_vector, xMeas, 4;
 ! Update with new value guess

 X_old{1}:=X_new{1};
 X_old{2}:=X_new{2};
 X_old{3}:=X_new{3};
 X_old{4}:=X_new{4};

 X_new{1}:=X_new{1}+LLS_X{1};
 X_new{2}:=X_new{2}+LLS_X{2};
 X_new{3}:=X_new{3}+LLS_X{3};
 X_new{4}:=X_new{4}+LLS_X{4};

 !TPWrite "Grad X = " \Num:=LLS_X{1};
 !TPWrite "Grad Y = " \Num:=LLS_X{2};
 !TPWrite "Grad Z = " \Num:=LLS_X{3};
 !TPWrite "Grad rad = " \Num:=LLS_X{4};
 !Stop;

__

__

 Page 111

 !TPWrite "ABS(X_new{1})-ABS(X_old{1}) = "
\Num:=(ABS(X_new{1})-ABS(X_old{1}));
 !TPWrite "ABS(X_new{2})-ABS(X_old{2}) = "
\Num:=(ABS(X_new{2})-ABS(X_old{2}));
 !TPWrite "ABS(X_new{3})-ABS(X_old{3}) = "
\Num:=(ABS(X_new{3})-ABS(X_old{3}));
 !TPWrite "ABS(X_new{4})-ABS(X_old{4}) = "
\Num:=(ABS(X_new{4})-ABS(X_old{4}));

 ENDFOR

 TPWrite "Convergence X = " \Num:=LLS_X{1};
 IF ABS(LLS_X{1}) < 0.001
 THEN
 TPWrite "Covergence X OK";
 ELSE
 TPWrite "Covergence error X";
 Stop;
 ENDIF

 TPWrite " Convergence Y = " \Num:=LLS_X{2};
 IF ABS(LLS_X{2}) < 0.001
 THEN
 TPWrite "Covergence Y OK";
 ELSE
 TPWrite "Covergence error Y";
 Stop;
 ENDIF

 TPWrite " Convergence Z = " \Num:=LLS_X{3};
 IF ABS(LLS_X{3}) < 0.001
 THEN
 TPWrite "Covergence Z OK";
 ELSE
 TPWrite "Covergence error Z";
 Stop;
 ENDIF

 TPWrite " Convergence Radius = " \Num:=LLS_X{4};
 IF ABS(LLS_X{4}) < 0.001
 THEN
 TPWrite "Covergence Radius OK";
 ELSE
 TPWrite "Covergence error radius";
 Stop;
 ENDIF

 ECP_QR_pos.x:=X_new{1};
 ECP_QR_pos.y:=X_new{2};
 ECP_QR_pos.z:=X_new{3};

 ECP_QR_RobT.trans.x:=ECP_QR_pos.x;

__

__

 Page 112

 ECP_QR_RobT.trans.y:=ECP_QR_pos.y;
 ECP_QR_RobT.trans.z:=ECP_QR_pos.z;

 TPWrite "Final X = " \Num:=X_new{1};
 TPWrite "Final Y = " \Num:=X_new{2};
 TPWrite "Final Z = " \Num:=X_new{3};
 TPWrite "Final radius = " \Num:=X_new{4};

 Radius:=X_new{4};
 converg{1}:=LLS_X{1};
 converg{1}:=LLS_X{1};
 converg{1}:=LLS_X{1};
 converg{1}:=LLS_X{1};

ENDPROC

!--------------- End of procedures -----------------
ENDMODULE

