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1 Background 
 
In order to control a robot, a Cartesian coordinates system is used to define the 
position of the robot arm. This Cartesian coordinate system is more or less 
unique for each robot. Under the condition that identical position is entered in two 
different robots, the robots will in most cases not end up in the same physical 
position. This is explained by the fact that Cartesian coordinate among robots 
does not have perfect identical origin of the coordinates and orientation. Further 
on, with respect of the robot foot the coordinates are in most cases not perfect 
linearly distributed. 
 

1.1  “Teach in” programming 
 
Traditionally by using “teach in” programming method, mechanical imperfections 
have not been a major issue. This can be explained by the fact that teach in 
programming is using the actual robot and work piece to obtain the positions. 
Teach in programming of a robot works like this.  

 
1. The robot is physically moved to the desire position by using a joy-stick or 

pushbuttons on a handheld device.  
2. When desired orientation and position accuracy have been obtained, the 

position and orientation is stored in the robot program.   
3. This process is repeated until every position in the robot program has been 

taught. 
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This means in a “taught in” robot program, the stored positions in the controller 
may not correspond with the physical positions. Most likely there will be deviation 
errors. However, the deviation errors between values stored in the controller and 
the physical position values can be excluded as long as the robot repeats with 
high accuracy to the position.  
 
 

 
 

 
Figure 1 
This illustration shows the differences between the positions stored in the 
robot control system and the true physical coordinates. The true physical 
coordinates can be interpreted as the coordinates which are used for 
create a robot program offline. 
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In teach in programming, the nonlinear influences on the axis movements can be 
reduced by adding way points. By distributing the way points along the desired 
linearly movement, the robot is forced to pass each one of them. Due to this fact, 
the nonlinear influences therefore are reduced.  
 
 

 
 
However, a “taught in” program will be unique for the particular robot. If the robot 
is replaced by another, the stored positions in the robot program may not be 
applicable. This is explained by the fact that the distribution of the Cartesian 
positions is unique for each individual robot. Each individual programmed position 
which requires high accuracy then has to be programmed by physically moving 
the robot to the desired position. 
 

 
Figure 2 
This illustration shows that a nonlinear robot axis movement can be 
interpreted by the robot controller as linear. By adding way points a long the 
desired movement, the nonlinear influences can be reduce in a “taught in 
program”. 
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To summarize, traditionally robot programs have been calibrated based on the 
actual physical model. Therefore, deviations between the reality and the servo 
controller have not been an issue for programming of robots. This is explained by 
the high position repeatability of the robot. In other words, the robot will at high 
accuracy return to a defined position. However, there are a couple of 
disadvantages with the “teach in” method.  
 

• The calibration can not be done until the physical robot installation is in 
place.   

• It can be time consuming. 
• Robot programming know-how is needed. 
• The taught in positions are only applicable for the particular robot. 
• If the relationship between the robot and the fixture is changed, each one 

of the robot positions has to be modified. 
 
 

 
 

Imagine a car body spot welding line like in figure 3, the programs often consist of 
significant number of robot positions. Depending on the number of robots and 
positions in each robot program, the fine tuning of the robots programs in this 
spot welding line is a significant part of the commissioning phase.  
In order, to cut expense and shorten the commissioning phase, it is desirable to 
find a fast and accurate method for calibration of robot program.  

 
Figure 3 
This figure shows a car body spot welding 
production line. 
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Figure 4 
This figure shows a complete robot installation created by PC based 
graphical tool.  

 
Figure 5 
A robot with origin of the coordinates 
system at the robot foot 

 
 
 
 
  
 

1.2 Offline programming 
 
Due to the fact that it is desired to 
shorten the programming phase, it has 
become more common to create robot 
programs offline by using a PC-based 
graphic tool. By using this tool, the 
main programming can be made 
before the physical model is in place. 
A complete robot installation can be 
built up based on cad drawings. In 
figure 4, an offline generated model of 
a robot installation is shown. The 
dimensions and shapes of the objects 
are based on the CAD drawings. 
  
In most cases the coordinates system has its origin at the robot foot, see figure 5. 
The desired robot positions can therefore be based on the locations of the objects 
in this virtually built up production cell.  
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This means that the robot program is generated based on the virtually built up 
installation. The offline generated positions then will be transferred to the robot 
servo controller. In comparison to teach in programming where the programming 
is based on the physical model in reality.  
 

 
 
 
However, the virtually generated robot program can in most cases not directly be 
transferred in to the servo controller and then be used by the robot in the real 
physical environment. The programmed positions will most likely deviate in the 
real physical environment. Due to this fact, the programmed positions in the 
physical installation have to be calibrated.  
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Figure 6 
Any deviation in position or orientation 
of the robot’s installation base in 
comparison to the virtually created 
installation will generate discrepancies 
on positions and orientations of work 
objects. 

The deviations can be split up in to two categories, deviations related to the robot 
and deviations due to differences between the virtually generated robot 
installation and the real physical environment.  
 
Deviations related to the robot are:  
 

• Position and orientation deviation errors of the robot coordinate system in 
respect of the robot foot. Such  errors can be caused by the tolerances in 
robots mechanical structure.  

 
• Nonlinear robot movements. In the off line generated program the robot is 

considered to have perfect linear movements.  
 

Deviation related to the offline generated robot installation and the physical 
installation is: 

 
• Position and orientation 

discrepancies of the work objects 
in the physical environment 
compared to the virtual built up 
robot installation.  
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1.3 Potential economic savings 
 

Investing in robot automation is in many cases an investment in uptime and 
quality assurance. Compared to a human being, a robot can operate continuously 
day and night without need for breaks. The robot will also perform its task more or 
less identically each time. Any deviations due to human mistakes will therefore be 
eliminated. 
 
As rule of thumb, the value generated in car production line is estimated to 
50 000 sek per minute. This is more or less valid for producing standard as well 
for premium cars. This is explained by the fact that a standard car in general has 
shorter execution time than a premium car. Based on this fact, the cost due 
production downtime will in short period of time reach significant figures.  

 
The loss due to production down time can in most cases never be regained. In 
other words, what is lost is lost. The goal from this point of view therefore is to 
minimize production downtime.   
 
The same conclusion can be drawn when considering product defects due to 
quality issues. If the produced product does not reach the quality tolerances, the 
outcome is that it has to be scrapped. This means that failure to reach quality 
requirements can be considered as production downtime.  

 
With a fast and simple calibration method the following savings will be obtained. 

 
• If the robot breaks down, the robot can be replaced. After conducted 

calibration production can be resumed with minimum loss of production 
time.  

 
• The calibration of the robot program can be verified at scheduled intervals. 

This means that the quality of the robot movements can be ensured by 
frequent calibration. This means economical savings due to reduced cost 
of poor quality 

 
• Fast calibration will also allow  reduce the transition time of introducing and 

changing fixtures. Shorter transitions will then reduce the cost due to 
downtime. 

 
• The programming can be done in such a manner that the robot can be 

replaced without the need to retune every programmed position. 
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Figure 7 
This figure shows the main 
overview of the robot control 
system. 

1.4 Robot control system 
 

In figure 7, a main overview of the robot 
control system is shown. In order to 
control the robot arms, the robot needs 
instructions. For an ABB controller, these 
instructions are programmed by the user 
in the high level programming language 
RAPID. High level program language 
means that the program is quite user 
friendly.  

 

1.4.1 RAPID 
 
Rapid is the program language used to 
control ABB robots. The program allows 
control of the robot axes movements, 
mathematical calculations, I/O signals etc. 
The syntax of the program is similar to 
Basic.  
 
Path positions in Rapid motion control 
instructions  are compiled and transferred 
to the interpolator and path robot path 
planner.  
 
 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 11 
  
   

1.4.2 Interpolator and path planner 
 

The interpolator in collaboration with the path planner converts the positions in 
Cartesian coordinates into corresponding joint angle references. These 
calculations are internally supervised in order to prevent hazardous path 
references due to internal numerical calculation error. 

 
Depending on the ordered instruction, the path planner will plan the path in 
different manners. In general the path planning consists of three different modes; 
joint movement, linear movement and circular movement.  

 
Joint movement 
 
Joint movement is used to instruct the robot to move from one position to another 
as fast as possible. This is obtained by minimizing the repositioning of the axes 
angle. This means that the movement of the tool centre point between the points 
in most cases will not be linear. In other words, the movement of the tool centre 
point between the points can not be controlled by this instruction. 
 
 
Linear movement 
 
Linear movement will instruct the robot to interpolate the tool centre point linearly 
between two positions at a constant programmed speed. Compared with the joint 
movement instructions this instruction requires a lot more data processing. 

 
 
Circular movements 
 
Circular movement will instruct the robot to move the tool on a circle arc. The 
instruction is based on three positions. Start position, bending radius position and 
end position. During the movement, the orientation is in most cases unchanged 
relative to the circle.  
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1.4.3 Servo controller 
 
 

The joint references are further modified in the servo controller. As an additional 
precaution, the Servo also supervises movements with respect to numerical 
calculation errors. The servo also supervises the axes movements based on the 
joints angles values. Actual position, speed, torque values are continuously 
sampled and compared with reference values predicted by a virtual model of the 
mechanical robot. Collision is detected by a sudden difference between the actual 
and predicted torque required to maintain the programmed motion. 
 
In most cases the robot has six independent axes. In order to control the robot to 
the desired position of each axis; the closed loop method is used. The closed 
loop function is based on PID (Proportional Integral Derivative) controller.  
 
 

 
 
Proportional term 

 
The proportional effect will increase the output proportionally to the actual position 
error. By changing the proportional gain the responses of the controller can be 
adjusted. However, a pure proportional controller may not converge to the target 
value; instead the controller will converge to a steady state error.  
 

 
    Figure 8  
    This figure shows a block diagram of a closed loop PID controller. 
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Integral term 
 
The integral term is calculated by summing position errors over a period of time. 
The integral effect will then accelerate the processes towards the set point as 
long as the error remains. On The steady state error which often occurs in a pure 
proportional controller will be eliminated. 
 
Derivative term 
 
By using the derivative term, the rate of change can be adjusted. This term is 
determined by calculating the slope of the error. 
 
 

1.4.4 Axis computer 
 
The joint reference values are transferred to the axes computer. In the axes 
computer, the main control loops are located. The axes computer also supervises 
and processes the joint feedback values from the joint position measurement 
system.  
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1.4.5 Drive system  
 

The drive system is the unit in the control system which supplies the electrical 
power to the robot motors. The control is obtained by the variable frequency 
method. This means that the system controls the frequency of the electrical 
power supplied to the alternate current motor. In other words, the rotation speed 
of the motor will be controlled as function of provided frequency of the electrical 
power.  
 
 

 
 
 

 
 
Figure 9 
This figure shows a main overview of the drive system. 
 

1. The three phase alternate current is rectified in to positive and negative 
direct currents.  

 
2. The direct current is converted in to AC power using an inverter switching 

circuit.  
 

3. The switching circuit mainly consists of IGBT, insulated-gate bipolar 
transistors. These transistors are in turn controlled by logic signals. 
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Figure 10 
This figure shows the mechanical 
structure of robot. At each axis, a 
resolver is returning the angular 
position. 

 
Figure 11 
This figure shows potential deviations 
between the axes in the robot’s 
mechanical structure. 
 

1.4.6 Manipulator 
 
In order to control the arms of the 
robot, each axis is equipped with a 
resolver which is an analogue device 
that returns the angular position of 
the robot axis. The position 
information is used to calculate 
position errors fed into the PID 
regulator of the servo controller. 
 
However, if the robot is programmed 
repeatedly to the identical position, 
the robot may not end up to the 
physical identical position even if all 
resolvers are returning the correct 
feedback values. This is explained 
by the fact that there is no possibility 
to measure the deviations which 
may occur between the resolvers. 
Such deviations could be generated 
by thermal expansion and flexibility 
of the robot arms, play in gearboxes 
etc. In figure 11, an illustration of 
these deviations are shown. The 
conclusion is that the resolver values 
may not show the complete picture. 
However, if the operating conditions 
for the robot do not change, the 
repeatability to the programmed 
position is very high. 
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1.5 Robot coordinate system 
 
In order to determine and control the position of the robot, a three dimensional 
Cartesian coordinate system is used. The overlaying coordinate system is named 
World Coordinate System. In this coordinate system several others can be 
expressed, these systems are: 
 

• Base coordinate system 
• Wrist coordinate system 
• Tool coordinate system 
• User and object coordinate systems 

 

 
  
 
   

 
 
Figure 12  
The relations between the robot coordinate systems.  
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1.5.1 Base coordinate system 
 
The base coordinate system defines the position and orientation of the robot fin 
the world coordinate system. As default, the base coordinate system is equivalent 
with the world coordinate system. 

 

 
1.5.2 Wrist coordinate system 

 
The wrist coordinate system defines the 
position of the wrist in the world 
coordinate system. This coordinate 
system is static on the mounting flange. 
   
   
  
 
   

 
Figure 13 
Base coordinate system for two robots are expressed in the world 
coordinate system 

 
Figure 14 
Origin of wrist coordinate system 
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Figure 16 
This figure shows the user and object coordinate 
system which is expressed in the world coordinate 
system. 

1.5.3 Tool coordinate system 
 
The tool coordinate system is  
used to define how tools are 
positioned and oriented with respect to 
the mounting flange. 
 
Path positions defined in Rapid 
programs describe how the tool 
coordinate system should be position 
and oriented with respect to world or 
other used reference coordinate 
systems. 
 
 
 
 
 

1.5.4 User and object coordinate 
systems 
 
The combination of the user and 
object coordinate system is 
called work object. The user 
frame is defining a cartesian 
coordinate system in the world 
coordinate system. In turn, the 
object coordinate system is then 
expressed with respect to the 
user system. 
 
These two coordinate systems 
are in many cases used to 
calibrate robot coordinates to 
programmed paths. By 
expressing programmed 
positions with respect to the 
object coordinate system, all path 
positions may be calibrated by 
tuning the work object to the 
actual relationship between the 
robot foot and the fixture. 

 
Figure 15 
Tool coordinate system is 
expressed in the wrist coordinate 
system. 
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Figure 17 
This figure shows a tapered 
tool mounted on the robot 
tool flange. Another 
tapered tool is mounted on 
the object fixture. By 
moving the peak of the 
robot’s tapered tool above 
the peak of the fixed 
tapered tool as close as 
possible, the reference 
position can be determined. 
 

1.6  Robot calibration methods 
 

In order to determine the location of an object in the robot’s coordinate system, 
several methods are currently used. In this chapter a couple of different methods 
are presented. 

 

1.6.1 Manual calibration 
 
Traditionally manual methods have been used. 
In short, these methods consist of moving the 
robot to reference points defining the work 
object. By using tapered tools, the edges are 
placed in front of each other. The position of the 
object can then be determined. 
 
However, manual calibration methods are not 
very efficient when there are high demands on 
accuracy. The results of manual calibration 
methods tend to be individual. In other words, 
the result of the calibration can vary depending 
on the individual person. Due to these facts, it is 
more or less impossible to evaluate and 
estimate the capability of this method. 
 
In many cases, this may still be a suitable 
calibration method. Especially when the robot 
application does not require high accuracy. From 
a cost competitive point of view, a manual 
calibration method is most likely the most 
suitable solution.  
 
Advantages  
 

• Simple 
• Cost competitive 

 
Disadvantages 
 

• Operator dependent method 
• Time consuming 
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1.6.2 Bulls eye – calibration of TCP 
 

Bull’s eye is a calibration device which determines 
the TCP (Tool Centre Point) and orientation of a 
robot tool. The TCP which is the origin of the tool 
coordinate system is defined with respect of the 
origin of the wrist coordinate system. The method 
does only work on tool’s which has a concentric 
portion along its centreline.  
 
The method is based on laser technology. By  
moving the robot’s tool through the laser beam, 
the physical width of the concentric portions of the 
tool can be determined given that the nominal 
geometry of the tool is known. By measuring slices 
of the width, the centreline can be determined. 
Based on the determined centre line, the tool 
orientation is set. Finally, the end of the tool will be 
determined. 
 
To summarise, Bulls eye can determine the 
centreline and the end of tool. Based on this fact, 
the method can not find the centre point of a probe 
sphere. However, it will determine the X, Y centre 
line and the end of the tool in Z-axis. In other 
words, the TCP can be mathematically determined 
if radius of the probe is well known, please see 
figure 18.2. 

 
Advantages 
 

• Define TCP accurate in X and Y axis in the 
tool coordinate system.  

• Determines the orientation of the concentric 
centre line 

 
Disadvantages 
 

• Relative expensive 
• Set up phase. 
• Can only be used for concentric tools. 

 

 
Figure 18.1 
Bulls eye installation. 

 
Figure 18.2 
Calibration the TCP of a 
spherical probe by 
using bulls eye. 
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1.6.3 Calibration by Force Control 
 

Force control calibration is designed to 
use as an add-on for robots equipped with 
the ABB force control function package 
which monitors applied forces on an 
objects using external sensors. In other 
words the robot can “feel” how much force 
is applied on to the object. The function is 
mainly intended to be used for finishing 
processes such as deburring, grinding 
and polishing. 
 
In the basic configuration the Force 
Control system is able to detect and 
calibrate the tool centre point of the 
attached tool automatically. As an 
additional option, the work piece can be 
defined as well. This is possible by 
defining the position of thee stationary 
reference tips on the work object.  

 
Advantages 
 

• It is accurate, according to the 
product specification the TCP is 
defined within +/- 0.05-0.15mm 
depending on robot model. 

• It can be used to calibrate work 
objects. 

• Operator independent. 
 
Disadvantages 
 

• Requires additional equipments, as 
for example the TCP measurement 
receiver. 

• Can not be used without the force 
control functional package.  

 

 
Figure 19.1 
Force control calibration device. 
 

 
Figure 19.3 
Three reference tips for calibrating 
a work object by force control 
o. 

 
Figure 19.2 
The “cube” for the TCP 
calibration. 
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Figure 20.1 
Laser LAB calibration equipments. 
 
 
 

 
Figure 20.2 
By using five sensors, the position of the 
spherical object can be determined. 
 

1.6.4 Laser LAB 
 
Laser lab is a laser based 
calibration technology. The 
method consists of a measuring 
device called “Laser LAB” and a 
measuring sphere. The Laser 
LAB measuring device consists 
of five individual laser sensors. 
The laser sensors are 
positioned as a pentagon in the 
device and are aligned so that 
the five laser rays will intersect 
in one common point.  
 
By positioning the sphere in the 
laser device, positions on the 
surface of the sphere can be 
determined in three 
dimensions. This is obtained by 
measuring the distances from 
each one of the five sensors. 
By obtaining surface points, the 
position of the sphere can be 
determined.  
 
 
Advantages 
 

• Highly accurate, 
according to the product 
specification +/- 0.1mm. 

• Measure TCP as well as 
fixtures. 

• Operator independent.  
• Easy to operate. 

 
Disadvantages 
 

• Requires additional equipments. 
• Setup phase.  
• Investment. 
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Figure 21 
In this figured the robot’s TCP is 
measured by a laser tracker. 
The robot is instructed to move to 
100 different positions. At each 
position the laser tracker 
determines the actual position in the 
reference space. By comparing the 
actual and the theoretical values the 
compensations can be calculated. 
 
 

1.6.5 ABB Absolute accuracy 
  

Absolute accuracy is a laser based 
method.  By using a laser tracker, a 
number of coordinate positions are 
determined in the robot’s working area. 
By comparing the theoretical positions in 
the robot controller and actual position of 
the robot’s mounting flange, a set of 
corrections to the transformation 
parameters from the robot axes to the 
servo controller can be defined. These 
parameters will compensate the robot‘s 
positioning and thereby its movements. 
In other words, after the calibration the 
actual position of the mounting flange 
will more or less correspond to the 
position value in the robot controller.  
 
According to the product specification, 
the parameters take into account both 
the mechanical imperfections in the 
pattern of the movements and the 
bending or distortions downwards 
caused by loads. 

 
 

Advantages 
 

• Highly accurate according to the product specification within 0.2-0.3mm.  
• Reduces axis non linearity. According to the product specification the 

average deviation is reduced to 0.5mm.  
• Operator independent. 

 
Disadvantages 
 

• Requires additional equipments. 
• Expensive. 
• Significant setup phase. 
• Special competence required. 
• Special environmental conditions required. 
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Figure 22 
This figure shows the reference system 
for the Pos Eye optical sensor. 

    

1.6.6 PosEye® 
 

A PosEye®-system measures the 
position and orientation of the sensor 
with respect to a reference system 
consisting of known patterns. The 
measurement principle is similar to 
global positioning system. If the 
sensor or the reference system, or 
both, are moving is a matter of 
choice. Most other 3 to 6 degrees of 
freedom measurement systems uses 
methods where the object of interest 
is focused on at a distance – 
outside-in-systems. These methods 
may have some advantages but the 
method does also imply that it is 
hard to produce high accuracy measurements on the orientation of the object and 
to cover full re-orientations of the object. PosEye® is an inside-out-system that 
delivers excellent measurements of the orientation, as well as very good position 
measurements. The PosEye®-sensor is placed at the point of interest. On a robot 
this will in most cases be on the mounting flange. The references are passive 
fixes in the surroundings like black spots on a white background. 

 
Advantages  

• Highly accurate. 
• Measures six degrees of freedom. This means that both the position and 

the orientation can be measured. 
  

Disadvantages 
• Additional equipment required. 
• The sensor requires visual sight to the references. 
• Reference spots have to be placed on solid environment; any movement 

will have an influence of the measurement.  
• Requires special competence. 
• Initial setup phase. 
• Investment. 
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Figure 23 
When the two spherical 
objects get in contact, a 
electrical circuit is 
established. At this point an 
I/O value is changed and the 
current position is stored. 
 

1.6.7 ABB Navigator 
 

Robot calibration is usually done by localizing calibration points using the robot as 
measurement equipment. Navigator is an automated, very accurate and user 
independent technique that replaces these manual steps. 
 
The standard idea of localizing calibration 
points is used by Navigator as well. 
However, instead of letting the user 
manually point out positions the robot is 
equipped with a spherical probe tool and 
the robot cell is prepared with mounting 
holes on the fixture for spherical objects. 
The calibration is performed by letting the 
robot locate the spherical objects on the 
fixture. The sensor mechanism is tactile, 
i.e. the touch between objects is 
determined and causes the robot to stop. 
The fixed sphere is connected to ground, 
and a voltage is applied to the spherical 
probe. The tactile touch is detected when 
an electrical circuit is established. 

 
 

Advantages  
• Operator independent method. 
• Relative easy to operate, no special 

competence is needed. 
 

Disadvantages 
• Additional equipment required. 
• Requires voltage supply to the spherical probe. 
• An accurate method in order to calibrate the TCP of the spherical probe is 

required. 
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1.6.8 Summary of calibration methods 
 
Presented calibration methods are more or less weaker and stronger in different 
aspects. What is common for the calibration methods with superior accuracy are 
that they are in general expensive; requires additional equipment, time 
consuming setup phase and special competence. On the other hand, the 
cheapest calibration method which is the “teach in” manual calibration method 
does not ensure any accuracy at all. On top of this, it also depends a lot on the 
operator. From this point of view, this calibration method can be time consuming. 
If desirable accuracy has not been achieved the process has to be repeated 
again. In many production environments, the fact is that lost time is equal to lost 
money.   
 
In this thesis, an operator friendly, cost competitive and accurate calibration 
method will be evaluated.  This calibration method is very similar to the Navigator 
calibration method. By obtaining positions around of a fixed sphere; the centre 
position of the fixed sphere can be determined. This means that a reference 
position has been obtained.  The main difference is that it will not require 
additional equipments in form of power supply and I/O connections as the 
Navigator calibration method requires.  
  
The main advantages with this method would be: 
 

• It is economical competitive in comparison to most other calibration 
methods.  

 
• In comparison to other calibration methods, very limited additional 

equipment is required. This also means faster setup and commission 
phase. 

 
• It will be easy to operate, no need for special competence. The calibration 

may for example be conducted by a robot operator.  
 

• Flexible and reduced start up time. Recalibration of work objects can be 
conducted at scheduled interval. By recalibrating work objects at set time 
interval, the continuous position accuracy can be ensured. 

 
• Software will be built in the robot program language rapid. This means that 

no addition devices complicated installations and setups are required. 
 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 27 
  
   

 
Figure 24 
In this figure, an identical object has been 
defined in two Cartesian coordinate 
systems. Reference points are located on 
the object. These positions have different 
coordinates in the two coordinate systems. 
The calibration transform is the best fit 
transformation from nominal virtual 
references to actual physical references 

2 Problem definition 
 
The calibration problem mainly consists of 
determining the true location of a physical 
object in the robot’s coordinate system. 
This is required due to the fact that every 
single robot more or less has unique 
Cartesian coordinate system.  
For example, a robot trajectory has been 
programmed around the edges of an 
object. This particular object is modelled 
in a CAD drawing.  The location of the 
object has been virtually defined with 
respect to robot coordinates when the 
program was designed. However, in this 
case the virtually defined location of the 
object does not correspond to the true 
location of the object in the robot’s 
coordinate system. This means that the 
object has to be calibrated in the true 
coordinate system. 
 
One method to calibrate the object is by 
implementing reference points on the 
object. These reference points have been 
defined on the cad drawing as well as on 
the physical object.  By letting the robot 
locate these reference positions; the 
location of the object can be determined.  
In order to determine the orientation of 
the object at least three positions are 
required.  
 
Based on the defined true positions of the 
reference points on the physical object, 
the virtual programmed robot path can be 
modified. In other words, the virtually 
designed robot programmed can be used.  
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2.1 Calibration theory 
 

Imagine a linear robot axis movement which has been programmed offline. As 
earlier mentioned, in reality the robot axis movement is not perfectly linear. 
However, the servo controller will interpret the movements as perfect linear 
movements. The consequence of this fact is shown in figure 25.1, the 
programmed trajectory deviates from the true robot path. 

 
 
 

 
 

Consider a work object which have been defined and programmed offline. In 
other words, the position of the object in relation to the robot has been set based 
on a virtual CAD drawing. In such a case, the programmed robot trajectory in 
reality will deviate from the desired programmed trajectory. As a consequence, 
the robot will in reality not move to the positions which has been programmed 
virtually offline. In order to correct this deviation, the position of the work object 
has to be calibrated. 

 

 

 
Figure 25.2 
This figure shows a local work object which has been programmed offline. As shown, 
the position of the work object does not correspond to the actual path. Therefore a 
local calibration based on the local best fit of the actual path has to be done. 

Figure 25.1 
This figure shows the deviation between an offline programmed path and the 
true physical robot path. 
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By calibrating the robot to this position, the robot will reach this position. A good 
correction therefore has been obtained close to the origin of the work object.  

 

 
However, consider that there is an additional work object positioned in the robot’s 
working area. This object is according to the CAD model equally aligned as object 
1 in figure 25.3. However, there is a significant distance between the two objects. 
In many cases, the robot will not have correct trajectory for the second object. 
This is explained by the fact that the robot’s true linear trajectory somewhat 
deviate from a perfect linear movement. In other words, the calibration of the first 
work object will in many cases not be suitable for additional work objects. 

 

 
In order to calibrate several work objects, local coordinate system has to be 
created for each one. In figure 25.4 local coordinate system has been created for 
work object 1 and work object 2. Each one of these work objects has been 
individually calibrated. In other words, the local coordinate system will be a best fit 
approximation for the local nonlinearity. 
 
Within the local coordinate systems, the deviations due to nonlinear movements 
will be reduced. However, the work objects do have some limits. The work objects 
can not be too wide. If they are too wide, the nonlinear axis movements may 
cause undesirable position deviations. 

 
Figure 25.3 
This figure shows a calibrated work object which has been calibrated locally based 
on the local actual path. 
 

 
Figure 25.4 
Two work objects which have been calibrated by create local coordinate 
system for each one.  
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2.2 Calibration of work object coordinate system 
 

Calibration of a frame will be based 
on reference positions. In the robot 
program language Rapid this is 
obtained by the command 
DefAccFrame. The command uses 
two sets of positions. One set of 
positions is the reference positions; 
the second set of positions is used to 
define a work object frame. This 
work object frame will be the 
calibrated frame. This method 
compares the relation between the 
nominal virtual reference positions 
and the located actual located 
positions.  The calibration transform 
is the best fit transformation from 
nominal virtual references to actual 
physical references 
 
The objective in this thesis is to 
evaluate the performance of a 
method for determine reference 
positions. If the accuracy is good 
enough; the method can be applied 
with the built in command 
DefAccFrame. With this command, 
the frame then can be calibrated by 
the best fit method. 
 
 
 
 

  

 
Figure 26 
This figure shows how the function is using two 
sets of reference points. These two sets will be 
used in order to calibrate a work object frame.  
By using these points, the DefAccFunction will 
determine a best fit estimation of the object 
frame expressed in the world coordinate 
system. 
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3 Limitations 
 

• Evaluation tests have only been conducted by the robot model IRB1600ID.  
• Tests have not considered significant external loads on the robot. 
• Metallic spheres will be considered as more or less perfect spheres. 
• Measurement results do not take in to consideration the potential effect of 

material heat expansion of the robot arms. 
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Figure 27 
This figure shows a perfect sphere  
partly covered by a point cloud. 

4 Method 
 
In this section, a method used to determine the reference position is described. 
The objective is to find the centre of a sphere by locating positions around it. By 
using at least four positions around the sphere, the centre point of the sphere can 
be determined. By that a reference point in the physical real model has been 
determined. 

 

4.1 Determine the centre point 
 

Due to measurement errors in 
the model the received values 
will not be exact. In other 
words, the distance to the 
centre point will not be constant 
due to the variations.  
 
As shown in figure 27, a great 
number of positions around a 
sphere are distributed. The 
distance to the true centre point 
is individual for each position.  
Based on this fact, the 
conclusion is that the equation 
system will not have an exact 
solution. An optimization or best 
fit method in order to estimate 
the centre point is required. 
Based on a set of positions, the 
least square optimization or 
best fit method can be applied.  
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Figure 28 
This figure shows a perfect sphere with 
radius R.  Four positions have been 
obtained around the sphere. The distance 
from each one of these points deviates all 
from the radius of the sphere R. 
 
 

4.1.1 Optimization goal 
 

In order to find the best fit of the 
centre point, the optimization 
goal is to minimize the sum of 
squared radius error. This gives 
the following equation. 
 
Minimize E = �n=1 (Rn - R)² 
 

Where 
   

 Rn= �( (Xn-X) ²+(Yn-Y) ²+(Zn-Z) ²) 
 

X, Y and Z parameters will 
represent the best fit values for 
the centre position of the sphere 
and R the best fit radius. This is a 
function of second order. In other 
words, the least square problem 
has to be solved by a nonlinear 
method. 
 

In figure 28, number of points P1 
to P4 is located around a perfect 
sphere. Each one of these 
positions somewhat deviates 
from the optimal radius R. Every 
single deviation can therefore be 
expressed as the error: 
 

en = Rn - R.  
 

However, in order to only get positive deviation values, the power of two is added 
to the function, this gives  
 

En = en² = (Rn - R) ².  
 

In order to determine the best fit of R, the goal is to minimize the sum of squared 
deviation errors, E1 + E2 +…+En. 
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Figure 29 
A flow chart of the applied optimization or best fit method. The method is built on 
the Gauss Newton method. An initial iteration value is given by apply an 
approximation with the linear least square method. 
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4.1.2 Gauss Newton method 
 

Due to the fact that the optimization function is of second order, the Gauss 
Newton algorithm has been chosen. This is an iterative algorithm which is based 
on Newton’s method. The choice of this algorithm has been based the following 
facts: 

 
• Efficient, finds optimum in relative few numbers of iterations. 
• It behaves well near the optimal point. 
• It does not require a second order derivate. 
• Each iterative step will be solved by the linear least square algorithm. 

 
The Gauss Newton method goal is: 

 
   Min E=ep(x) 2=eTe 
 

The Gauss Newton method is built on Newton’s method: 
   
   X(k+1) = Xk+ � 

 
Where � stands for Newton’s optimal direction.  � is given by:  
 
 � = - HE

 -1*gE 
 
HE is the hessian matrix of the function E. The hessian matrix is approximated as: 
 
 HE = d2E/dxidxj  � 2*JTJ  Where J is the Jacobian matrix. 

 
 gE is the gradient of the function E which gives: 
 
 gE = dE/dxi = 2*de/dxi*ep(x) = 2*JT ep(x) 

 
At this stage the gradient of E and the hessian matrix of E are determined, this 
finally gives. 
 
 X(k+1) = Xk+ �;   where  �=- (JTJ)-1* JT ep(x) 

 
At each iteration, the optimal direction � will be given by solving -(JTJ)-1* JT ep(x). 
This function is equivalent to solve a linear least square problem. 
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The Jacobian matrix J is given by: 
   
   de1/dX  de1/dY  de1/dZ  de1/dR 
   dE2/dX de2/dY  de2/dZ  de2/dR 
        ….       ….      ….       …. 
   den/dX  den/dY  den/dZ  den/dR 

 

  In other terms: 
 

   -(X1-X)/R1 -(Y1-Y)/R1 -(Z1-Z)/R1        1 
   -(X2-X)/R2 -(Y2-Y)/R2 -(Z2-Z)/R2        1 

        ….       ….      ….       ….    

   -(Xn-X)/Rn -(Yn-Y)/Rn -(Zn-Z)/Rn        1 
 

Where 
   

   Rn= �( (Xn-X) ²+(Yn-Y) ²+(Zn-Z) ²) 
  
 

The iteration start with an initial guess of the vector Xi = [ Xk, Yk, Zk, Rk ]. Based on 
this guess, the new reference values for Xi = [ Xk, Yk, Zk, Rk ] will be updated 
according to: 

 
   X(k+1) = Xk + � Xk  
   Y(k+1) = Yk + � Yk 
   Z(k+1) = Zk + � Zk 

   R(k+1):= Rk + � rk  
 
 
This process will be repeated until the function has fulfilled the convergence 
criterion. In other words, when all values in the vector � gets below the set 
convergence threshold criteria.  
 
The convergence threshold level is set based on the requirements of the 
application. Further iterations will improve the final solution. However, the 
improvements of the solution are due to convexity of the function minor than the 
threshold level. In other words, if the threshold level is set based on sufficient 
accuracy, further iterations will insignificantly improve the solution. 
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4.1.3 Gauss Newton conditions  
 
The Gauss Newton is an unconstrained convex optimization method. In other 
words; the method will only find the global optimal minimum or mathematically 
expressed, converge towards the global minimum under the condition that: 
 

• Initial iteration value is set in region where the function to optimize is 
convex. 

• The global minimum has to be located in this particular convex region. 
 

In figure 30, a general three 
dimensional graph is shown.  This 
graph consists of several optimal 
minimums, local as well as global. This 
means that from a global point of view 
the shown function is not convex. In 
other words, the Gauss Newton 
method would converge in to different 
solutions depending on the start 
iteration point.   
 
Based on these facts, the Gauss 
Newton method can not in general be 
applied on such a function. A 
determined solution can be local 
minimum as well as global minimum. 
However, under condition that the start 
point is located within the convex 
region where the global minimum is 
located, the method will converge 
towards this point. 

 
 

  
Figure 30 
This figure shows a three dimensional 
graph which contain several local 
minimum points. However, the graph 
has only one global minimum.   
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Figure 31 
The figure shows two perfect spheres 
which are in contact with each other. 
Given that the spheres are perfect 
the distance between their centre 
points can be determined by adding 
their radius i.e. R1 + R2.  

4.1.4 Gauss Newton initial iteration value 
 

In order to ensure that the Gauss Newton starts to iterate in the region where the 
global minimum is located, the start iteration point has to be near the optimal 
minimum. This has been generated by applying an approximation that distance 
between the centre point and the points around the sphere are identical for all 
positions around the sphere. In other words, this mathematical expression does 
not take in to consideration deviation of the radius.  
 

4.1.5 Derivate centre point equation  
 

The undetermined centre point is given by 
the three dimensional frame coordinates: 
  
 X: Cx Y: Cy Z: Cz 

 
Points around the sphere are given by 
three dimensional coordinates. The 
distance to the centre of the sphere point is 
equal for all four points. 

 
1. P1 = X1 Y1 Z1 
 

2. P2 = X2 Y2 Z2 
 

3. P3 = X3 Y3 Z3 
 

4. P4 = X4 Y4 Z4 

 
 
By applying Euclidian distance theorem on 
all four points, following four equations are 
derived: 
 
1. (R1+R2)²=(X1-CX)²+(Y1-CY)²+(Z1-CZ)² 
 

2. (R1+R2)²=(X2-CX)²+(Y2-CY)²+(Z2-CZ)² 
 

3. (R1+R2)²=(X3-CX)²+(Y3-CY)²+(Z3-CZ)² 
 

4. (R1+R2)²=(X4-CX)²+(Y4-CY)²+(Z4-CZ)² 
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By substituting the equations 2 in to1, 3 in to 2 and 4 in to 3, following three 
equations are derived. 

 
1. 2(X2-X1)CX+2(Y2-Y1)CY+2(Z2-Z1)CZ=X2²-X1²+Y2²-Y1²+Z2²-Z1² 
 

2. 2(X3-X2)CX+2(Y3-Y2)CY+2(Z3-Z2)CZ=X3²-X2²+Y3²-Y2²+Z3²-Z2² 
 

3. 2(X4-X3)CX+2(Y4-Y3)CY+2(Z4-Z3)CZ=X4²-X3²+Y4²-Y3²+Z4²-Z3² 
 
The linear equation system which can be expressed as:  
 

A*c=B  
A         c    B 

 
 
The solution to c (Cx, Cy and Cy) will then be given by solving:  

 
 c =A-1 * B 

 
The advantage is that this is a linearly equation system. The solution will be found 
by determine the solution to Cx, Cy and Cz. Therefore, an approximate solution to 
the centre point can be been determined by using the linear least square method. 
This approximation will then be used as the initial iteration point for the Gauss 
Newton method. 
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4.2 Linear least square 
 

The linear least square method is used to approximate the parameters of an over 
determined linear equation systems. If the linear equation system has an exact 
solution the following condition is fulfilled: 
 
 Ax-b = 0  

 
If there is no exact solution, the function can be expressed as:  
 

   Ax-b = E  
 
In this equation E stands for the error. By adding power of two, the function will 
express the error as a parable. The values will then only be positive. 
 

   E² = ||Ax-b|| ² 
 

This is a convex function. Given a convex function, a local minimum is also the 
global minimum. The global minimum is therefore determined by the condition: 
  

   dE²/dx = 0 
 
 dE²/dx = 2ATAx-2ATb=0 
 
 ATAx = ATb 
 
Finally the best approximation will be given by the least square equation:   
 
 x= (ATA)-1*ATb 
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4.2.1 Numerical computing stability  
 

In theory an equation system Ax=b will be solved by Gaussian elimination. 
However in practice, this is not in every case a suitable method. The computed 
solution can easily be incorrect due to the fact that a computer can not handle an 
infinite number of digits. At each computing operation, the result must be 
considered from the point of round off error. For example, a computer which only 
can handle three digits will round off a computing operation like this: 

 
  0.437 + 0.00159 = 0.438 

  
As the example shows, the impact of the last two digits in the smaller number has 
not affected the solution. If round off error like this are multiplied over and over 
again it can have a significant impact on the accuracy of the final solution. Each 
individual round off error will contribute to the final solution. Due to this fact, the 
development must be considered to the following two facts 

 
• Ill conditioned matrices are highly sensitive too small changes. 
• Weak computing algorithms can ruin well conditioned matrices.  

 
The theoretical equation in order to solve a linear least square problem is given 
by the normal equation: 

 
 x= (ATA)-1*ATb 

 
However, from a practical computing point of view, this function is not optimal. 
Solving a linear equation system by the matrix inverse operation requires a lot of 
computing operations. On top of that, it is also less accurate than Gaussian 
elimination. The fact is that the normal equation, i.e. the product of product is 
always less well conditioned than the original over determined equation system. 
The condition number for the normal equation is given by: 

 
  �(ATA) = �(A)2 

 

This shows the condition number will be squared which can have a significant 
impact on the final solution.  
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4.2.2 QR factorization  
 

In order to increase the numerical stability, QR factorization has been chosen. QR 
factorization creates one orthogonal matrix and one upper triangular matrix based 
on the matrix A. The two created matrices fulfil the following condition: 

 
  A=QR 

 
In the equation above Q stands for an orthogonal matrix and R an upper triangular 
matrix. Due to the special properties of matrix QR, the substitute in the linear least 
square equation turns out as: 

 
   x= (ATA)-1ATb 
 
   A=QR 
 
   x= (RTQTQR) -1RTQTb 
 
   Due to Q is orthogonal, the product: 
 
    QTQ = I  
 
   Where matrix I stands for the identity matrix. 
 
   x= (RTR) -1RTQTb  

 
Finally due to R is upper triangular and invertible, the product:  
 
R-1R=I  
 
Finally, the following equation is derived. 

 
   x=R-1QTb 
 

This equation provides advantages compared to the mathematical approach to the 
least square equation i.e.  x= (ATA)-1ATb. 

 
• The amount of computations is significantly reduced. 
• The equation x=R-1QTb is as well conditioned as the original problem. 
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4.2.3 Grahm-Schmidt orthogonalization  
 

Determine the orthogonal matrix Q and the upper triangular matrix R is obtained by 
the Gram Schmidt algorithm. In mathematical theory, the Grahm Schmidt algorithm 
is an excellent method to create QR factorization.  In practical computing, the 
algorithm is not numerically stable due to round off errors. One way to significantly 
reduce the influence of round off error is obtained by the MGS algorithm, i.e. 
Modified Gram Schmidt algorithm. Therefore the MGS algorithm has been chosen 
to create orthogonal and upper triangular matrices.  
 
The MGS algorithm: 

 
   ak

(1)= ak, k=1:n 
   FOR k = 1:n 
    r k k = || ak

(k)
 ||2 

    qk = ak
(k)

  / r k k 
    FOR j = k+1:n 
     rkj = q k

T aj
(k) 

     aj
(k+1)= aj,

(k)
 - rkjq k 

    END 
   END 
 

4.2.4 Back solve algorithm 
 

The final solution of the vector x is determined by applying the back solve algorithm 
on the equation system Rx = QTb. This is a fast and efficient method to solve an 
equations system which consists of an upper triangular matrix.  
 
The back solve algorithm: 

 
   

  FOR i = 1:n 
   FOR j = 1+1:n 
    bi  = - aij xj 
   END 
   xi = bi/aii 
  END 
 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 44 
  
   

Figure 32 
This figure shows a perfect 
sphere. The position on the 
surface of the sphere is 
given by a vector with length 
R which starts from the 
centre. 
 
 

4.3 Evaluation of the centre of sphere algorithm 
 

The evaluation has been conducted in Robot studio. The algorithms have been 
implemented in the robot program language Rapid. 
 

4.3.1 Simulation of efficiency 
 

In order to analyze the efficiency of the best fit method, simulation tests have 
been conducted in order to verify the accuracy. The simulation is based on the 
following expression of X, Y and Z in Cartesian coordinates. 
 
 X = R*sin�*sin�  
 Y = R*sin�*cos�  
 Z = R*cos�  
 
By choose radius, the angles � and �, a 
position on the sphere can be obtained. 
By adding a disturbance to the radius, a 
deviation at each position is obtained.  

  
 X = (R+disturbance)*sin�*sin�  
 Y = (R+disturbance)*sin�*cos� 
 Z = (R+disturbance)*cos� 
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Chart 1 
The histogram shows the distribution of data from the optimal point which in this 
case is zero. In the chart the blue line represent the actual distribution of the data, 
the pink line shows an ideal normal distribution. The normal distribution is based 
on the average value and the standard deviation of the actual data. The actual 
distribution deviates very little from the idea normal distribution. Due to this fact, 
the confidence interval of the distribution can approximately be treated as normal 
distributed. 
 

4.3.2 Simulation results 
 

In order to verify the distribution of the results, the best fit method has been 
simulated. The simulation was conducted with applied disturbances to the radius. 
The disturbance is normal distributed and has a mean value equal to zero and a 
standard deviation of 0.01. (The disturbance values have been created by the 
data analysis function in MS Excel).  The distribution of the accuracy is presented 
as the deviation in X, Y and Z axis values from the optimal value. In this 
simulation the optimal value is the given centre point without applied disturbance 
to the radius. This gives the equation: 
 

Euclidian distance = �( (Xi-Xcentre)²+ (Yi-Ycentre) ²+(Zi-Zcentre)²) 
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As shown in chart 2, the values of a normal distribution are at 68.2% within +/-
one standard deviation from the mean �. However, when evaluating the 
efficiency of the best fit method, all values on the left side of the mean � actually 
are closer to the optimal solution than �. This is explained by the fact that the 
error is represented as the distance from the optimal value. In other words, 50% 
of the values are closer to the optimal value than the mean value �. Due to this 
fact; the confidence interval then will be given by: 

 
Mean value:   � 
Standard deviation: 	 
 

• � �  0,1% + 2,1% + 13,6% + 34,1%   � 50%  
• � + 1	 �  50% + 34,1%    � 84,1% 
• � + 2	 � 50% + 34,1% + 13,6%   � 97,7% 
• � + 3	 � 50% + 34,1% + 13,6% + 2,1%  � 99,9%  
 

 
Chart 2 
This chart shows the confidence interval of a normal distribution expressed 
as a function of the standard deviation 	. 
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In the two charts 3.1 and 3.2, the efficiency of the best fit method has been 
simulated. Each of the two graphs shows the confidence interval with four different 
disturbances applied. The four disturbances are all normal distributed and have 
standard deviation 0.05, 0.10, 0.15 and 0.20. The confidence interval is presented as 
a function of number of measurement points on a sphere. The ideal value is zero 
which means the closer deviation is to zero, the better is the performance of the 
method.  
 
As shown in the charts, the slope is rather steep until eight measurements. In other 
words, the improvement of the accuracy is most significant up to this number of 
measurements. This means that more than eight measurements will not improve the 
accuracy at the same rate. This is more or less valid for all four simulated 
disturbances.  
 
The amount of measurements which is needed depends on the accuracy of the robot 
and the required accuracy for the application. However, in order to benefit from the 
early improvements, it is recommended to use at least eight measurements at this 
particular application. 
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Chart 3.1  
This graph shows the performance of the 
best fit method as function of measurements 
around a sphere. The deviation is presented 
at a confidence interval of 84%. 
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0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30

Number of measurements on sphere

D
ev

ia
tio

n 
fr

om
 tr

ue
 c

en
tr

e 
va

lu
e

STDEV 0.20 STDEV 0.15 STDEV 0.10 STDEV 0.05
 

Chart 3.2  
This graph shows the performance of the best fit 
method as function of measurements around a 
sphere. The deviation is presented at a 
confidence interval of 98%. 
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4.3.3 Gauss Newton iterations 
 

In order to determine how many iterations the Gauss Newton algorithm in general 
requires for this application, the convergence of the method has been monitored. 
The evaluation was made with parameters which correspond to the application. In 
chart X, the convergence of the function is plotted as function of iterations. The 
values are presented as the result of the following function. 

Value = �( XiX²+YiY ²+ZiZ ²+ PiR ²) 

 
 

As shown in chart 4, the Gauss Newton algorithm converges rapidly when applied 
in this application. Already after two iterations, the convergence values are 
smaller than 0,001. In other words, further iterations will refine the final values 
with accuracy smaller than 0,001mm. Therefore, further iterations will 
insignificantly improve the solution; the found optimal value is good enough. 
Sufficient convergence therefore has been achieved.  
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 Chart 4 
 
This chart shows the convergence of the Gauss Newton as a function 
of iterations when used in this application. 
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Figure 33 
This figure shows different definition of 
the TCP in the spherical probe. The 
spherical probe is mounted on the 
robot’s tool mounting flange. 
 

• TCP 1: Well defined TCP in the 
centre of the sphere 

• TCP 2: Inadequate defined TCP, 
not in the centre of the sphere. 

4.4 Calibration of tool centre point  
 

In order to achieve the best possible 
result of measured positions, it is 
crucial that the TCP (Tool centre 
point) is as correctly defined as 
possible. In other words, it has to be 
defined in the very centre of the robot 
spherical probe tool.  
 
The TCP is where the controller will 
read the position. In other words, the 
position of the tool centre point will be 
expressed in the robot’s Cartesian 
coordinate system in three dimensions 
X, Y and Z axes. 
 
If the TCP has been inadequate 
defined, the read positions in space 
will not be trustful. The radius will not 
be constant and the determined centre 
point will be incorrect. This deviation is 
visually shown in figure 33.    
 
However, under the condition that the 
TCP is perfectly defined in the centre 
of the sphere probe, every given point 
around the measured sphere will in 
theory have identical distance to the 
centre of the measured sphere. In 
other words, the radius to the centre 
point for every read position then will 
be the identical. 
 
However, in reality it is not very likely that the TCP will be perfectly defined in the 
centre of the spherical probe. As a consequence, each received position around 
the measured cell sphere will consist of a deviation from the true ideal position. 
Based on this fact, this deviation has to be taken in to consideration when the 
final centre position has been determined. 
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4.4.1 Calibration of TCP 
 
 

The TCP of the sphere probe tool will be given by letting the robot push in to a 
fixed hole while soft servo is activated. By using soft servo, the spherical robot 
tool will be directed and finally seated in the centre of the hole. The contact will be 
established without trigger a collision alarm. In other words, the soft servo allows 
deviations from the defined programmed trajectory by deactivating the 
proportional part of the PID position control. By repeating this procedure with 
different orientations of the tool and read the final position the TCP will be 
defined.  
 
 

 
 
Under condition that the TCP (Tool Centre Point) is correctly defined, the 
received positions in Cartesian coordinates shall be identical or have insignificant 
difference among the received positions. As already mentioned, the received 
robtarget positions will have identical centre point; however the orientation of the 
tool will vary. 
 

 
Figure 34.1 
The spherical probe is positioned 
above the calibration cup. 

 
Figure 34.2 
The spherical probe is pushed down in 
the calibration cup. 
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Figure 36 
In this figure, the reorientation of the spherical probe is shown. At each 
reorientation, the probe is pushed down in the calibration cup. By repeating this 
process at least four times, a TCP in the centre of the probe sphere can be 
determined. 
 
 

 
 
Figure 35 
As shown in this figure, the spherical probe is positioned above the fixture. By 
activate soft servo the probe is moved down in to the fixation. The probe is guided 
by the edges of the fixture in to the centre. Finally, the probe will be seated in the 
centre of the fixation. Due to the probe is spherical; the position in Cartesian 
coordinates of perfectly defined TCP shall be the identical independently of the 
orientation of the probe. This implies that the spherical probe is properly seated in 
the fixture.  
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Under the condition that the tool centre point is not defined in the centre of the 
spherical probe, the received positions in Cartesian coordinates from the TCP will 
not be identical. The received points will build a portion of a sphere. The centre 
point to this portion of sphere will correspond to centre point of the probe. In other 
words the true centre point of the robot tool sphere is determined when the tool is 
properly seated in the hole. 
 
 

  

 
Figure 37 
In this figure, the tool centre point calibration principle is shown in two 
dimensions. By reorient the spherical probe, the robot will be 
positioned at equivalent radius. These three positions will build a part 
of a circle. By using these positions, the centre of the circle can be 
determined. The method is equivalent for three dimensions; instead of 
determine the centre of circle the method is determining the centre of 
a sphere. 
 
Due to the physical limitations of orientating the probe sphere, the 
positions will only be given on a part of circle. In other words, the 
impact of measurement error is significant greater than if three 
positions were retrieved on larger span around the circle.  
 
In the calibration of the centre point of the probe which is in three 
dimensions, the probe is reoriented in to number of different positions. 
Each measurement positions are obtained by store the position of 
tool0. In other words, the origin of the robot’s wrist coordinates system 
expressed in the world coordinate system.    
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When defining a robot tool, the 
dimension has to be expressed in 
the wrist Cartesian coordinate 
system, see figure 38. This means 
that the centre point of the spherical 
probe tool has to be defined in this 
Cartesian coordinate system.  
 
However, the centre point can only 
be determined when the spherical 
probe is properly seated in 
calibration position. On top of that, 
this centre point is expressed in the 
world coordinate system.  
 
The defined sphere centre point will 
also define the TCP. Finally the 
point will be given by the difference 
between the location of origin of the 
wrist coordinate system in the world 
coordinate system and the location 
of the determined centre position 
defined in the world coordinate 
system, see figure 39. The tool0 
position with smallest error will be 
used in order to determine the 
position of the TCP. 
 

 
Figure 38 
Cross section of the spherical probe 
tool mounted on the mounting flange of 
the robot tool. 

 
Figure 39  
By compare the best fit of the tool0 and 
the determined position, the tool centre 
point can be defined. 
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Figure 40 
This figure shows the spherical 
probe and the fixed sphere. The 
spherical probe is mounted on 
the tool mounting flange. 

4.5 Centre of sphere 
 
In this section, the used method to determine the centre of fixed sphere is 
presented. 

 

4.5.1 Measurement positions  
 
In order to determine the centre of the 
sphere, at least four Cartesian coordinate 
positions around a sphere are required. 
The radius to the centre of the fixed 
sphere has to be more or less identical for 
all positions. By moving a sphere probe in 
to contact with a fixed sphere these 
positions can be obtained. By activating 
soft servo on all robot axes, the spherical 
probe mounted on the robot mounting 
flange will smoothly get in contact with an 
object. The contact will be established 
without trigger a collision alarm. In other 
words, the soft servo allows deviations 
from the defined programmed trajectory 
by deactivating the proportional part of the 
PID position control.  
 
The robot is programmed to move the 
spherical probe to different positions 
around the sphere. By using more than 
four positions, the impact of position deviation errors can be reduced. In order to 
reduce the impact of the play in the gear trains and measurement errors, the 
positions around the sphere have been distributed in order to get as large span 
around the sphere as possible.  
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Figure 42 
Cartesian coordinates expressed as 
the radius from a centre point. 

 
Figure 41 
This figure shows the spherical 
probe positioned above the fixed 
sphere. 

The process starts by receiving a 
reference position. This position will be 
obtained by manually move the spherical 
probe in to position. This position is 
vertically above the fixed sphere, as 
shown in figure 41. The probe has to be 
positioned very close to the sphere. The 
orientation of the spherical probe has to 
be set in order to correspond to the 
normal of the surface of the fixed sphere. 
 
This means that that the nominal centre 
of the fixed spheres more or less is 
located in positive Z-axis direction in the 
tool coordinate system. Based on this 
position a reference point which is located 
near centre of the sphere is set. This has 
been made by adding a set distance in 
positive Z-axis of the reference position.  
 
The reference positions around the 
sphere are obtained by the formulas. 
 
 
 X = R*sin�*sin�  
 Y = R*sin�*cos� 
 Z = R*cos� 
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The probe is moved to the start position by choosing � and � angles and an outer 
radius. When in position, the probe will be moved in a vector which point at the 
nominal reference centre position. Finally the probe will get in contact with the 
fixed sphere. The vector has been obtained by using the same � and � angles 
but with decreased radius. This radius has been set within the radius of the fixed 
sphere. In other words, the probe will be moved towards the centre until it gets in 
contact. 
 

 
By repeating this process with various angles, the positions around the sphere 
are obtained. The � angle which determines the position in the x, y plane will 
increase 80º after each measurement. The � angle which determines the position 
in Z-axis is set to a maximum of 110 º.  By dividing this value by the number of 
measurements; the positions are evenly distributed on the Z-axis. The pattern of 
the retrieved positions around the sphere will be distributed as a spiral spring. 
Minimum measurement positions the method can handle is 4 and maximum has 
been set to 100.  

 
Figure 43.1 
This figure shows how the probe is 
approaching the reference point 
which is set approximately. 

 
Figure 43.2 
The probe starts on top of the 
sphere. Last measurement will be 
made at angle of 110degres in 
relation to the start position. 
 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 57 
  
   

4.5.2 Soft servo  
 

The soft servo built in function in Rapid permits to soften the robot axes. This is 
obtained by reducing the proportional effect of the robot‘s PID controller. As a 
consequence, the step response will be delayed. The soft servo function can be 
independently activated on each axis. Deviations from the programmed path will 
not trigger any alarm. 
 
This function can be used to approach an object which has an unknown position 
but within a defined range. Instead of a sudden impact which normally would 
trigger a collision alarm and stop of program execution; the robot will smoothly get 
in contact with the surface of the object in the defined direction. 
 

 
 
   

Figure 44 
In this figure the function of the soft servo is shown. The robot is programmed to 
linearly move from point A to be B. Position B is located within the radius of the 
fixed sphere. In other words, the robot’s probe is programmed to collide with the 
fixed sphere. Normally, this will trigger a collision alarm. However, by activating soft 
servo during the movement, the robot will move in to the surface smoothly without 
trigger a collision alarm. The applied contact force will increase as function of the 
distance between the contact position and the programmed position B. 
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5 Evaluation 
 
In this section, the efficiency of the TCP calibration and the centre of sphere 
method have been evaluated based on repeatability tests. These tests have been 
conducted in actual test equipment. 

5.1 Test equipment  

    
The repeatability and verification tests have been conducted by an IRB1600ID 
which is shown in figure 45.1. What makes this robot unique is that the process 
cable is routed within the upper arm and through the mounting flange. Due to this 
fact, this robot has been developed for mainly be used in Arc Welding and similar 
applications.  
 

According to the product specification sheet, the robot has a position repeatability 
of 0,02mm and a path accuracy of 0,48mm. However, the particular test robot did 
suffer a play in gear train of axis five. Neither does it have the option absolute 
accuracy. In other words, nonlinearities in axis movements have not been 
mathematically reduced. 
 

Repetition test has been made by a sphere probe mounted as robot tool and a 
fixed sphere in steel. The spherical shape of these two pieces is considered to be 
perfect.  

 
Figure 45.1 
Actual test robot, 
IRB1600ID 

 
Figure 45.3 
Installation of test 
equipment. 

 
Figure 45.2 
Test equipments. 
The spherical probe has a 
radius of 5mm and the 
fixed sphere 10mm 
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5.2 Evaluation - TCP calibration 
 

Due to the fact that the tool centre point 
will have an impact on all 
measurements, it is important that the 
tool centre point is positioned in the very 
centre of the spherical probe as 
possible. Based on this fact, a great 
number of measurements positions have 
been used to evaluate this method. 
In total, 80 measurement positions have 
been used to define the tool centre point 
at each repeat.  
 
The positions have been evenly 
distributed according to the pattern 
which is shown by figures 46.1 and 46.2. 
The orientation of the sphere probe tool 
is at maximum leaned 25 degrees 
relative the tool’s X, Y plane, see figure 
46.1. The samples are retrieved by 
moving the orientation in a straight line in 
four different directions in the X, Y plane. 
 

 

 
Figure 47 
Reorienting tool in the 
reference fixation hole. 

 
Figure 46.1 
Reorientation of the tool in respect 
of the normal of the reference 
fixation hole. 

 
Figure 46.2 
Measurement sample pattern 
showed in X, Y axis of tool 
coordinate system. 
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5.2.1 TCP calibration - test results 
 

The result is based on 500 repeats of the calibration process. The distributions of 
the determined X, Y and Z of the TCP coordinates are shown in charts 5.1- 5.3. 
The values are compared with normal distribution based on the actual data from 
the measurements  
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Chart 5.3 
Histogram of deviations of the Z-
axis position value 
 

TCP: Y axis
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Chart 5.2 
Histogram of deviations of the Y-
axis position value 
 

In charts 5.1 - 5.3 the blue line 
represents the actual distribution of 
the measurements. The pink line 
shows an ideal normal distribution 
based on the average value and 
standard distribution of the actual 
data.  
 
As shown in charts 5.1 and 5.2, the 
X and Y values do deviate from an 
ideal normal distribution. The Z axis 
values have a distribution which is 
very close to an ideal normal 
distribution. 
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Chart 5.1  
Histogram of deviations of the X-
axis position value 
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 X axis values 
 
In table 1.1, the confidence interval of the 
measurements in X-axis is shown. The 
distribution is not ideal normal distributed. 
However, at two and three sigma the confidence 
interval of a normal distribution will be a fairly 
good approximation of the confidence interval. 

 
 

Y axis values 
 
In table 1.2, the confidence interval of the 
measurements Y-axis is shown. The distribution 
is not ideal normal distributed. However, at two 
and three sigma the confidence interval of a 
normal distribution will be a fairly good 
approximation of the confidence interval. 
 

 
Z axis values 
 
In table 1.3, the confidence interval of the 
measurements Z-axis is shown. As the 
distribution is nearly ideal, the confidence 
interval can be approximated at one sigma.   

Std dev TCP: Y [mm] 

1	 � 68.2% N/A 

2	 � 95.4% +/- 1.80 

3	 � 99.6% +/- 2.70 

   Table 1.2 

Std dev TCP: X [mm] 

1	 � 68.2% N/A 

2	 � 95.4% +/- 0.55 

3	 � 99.6% +/- 0.81 

   Table 1.1 

Std dev TCP: Z [mm] 

1	 � 68.2% +/- 0.05 

2	 � 95.4% +/- 0.10 

3	 � 99.6% +/- 0.15 

   Table 1.3 

 
Chart 6  
Confidence interval of a normal distribution 
as a function of the standard deviation 	.  
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TCP calibration – final evaluation 
 

 
 
As shown in the table, the desired max deviation has been defined to +/- 0.10mm. 
Only the Z-axis fulfils this requirement. Most likely, the measurements would have 
been more satisfying if another robot with less play in the gear train of axis five 
had been used. The physical limitations of the orientation of the spherical probe 
also cause the measurement range to be limited. If it was possible to measure on 
a wider range, the results would most likely be improved.  
 
Based on these figures, this TCP calibration method of the spherical probe is not 
recommended. The presented deviations among the repeated measurements are 
too great.  
 

 Max dev 1� � 68% 2� � 95% 

X-axis +/- 0.10 [mm] +/- 0.27 [mm] +/- 0.55 [mm] 

Y-axis +/- 0.10 [mm] +/- 0.90 [mm] +/- 1.80 [mm] 

Z-axis +/- 0.10 [mm] +/- 0.05 [mm] +/- 0.10 [mm] 

Table 2 
This table shows the deviations of the defined TCP based on the conducted 
measurements.  
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5.3 Evaluation - centre of sphere  
 

In order to evaluate the efficiency of the 
centre of sphere method in reality, 
repeatability tests have been conducted. 
These tests were done by repeatedly 
measure the fixed sphere with the 
spherical probe. The centre position and 
radius of the fixed sphere is estimated. 
The position of the fixed sphere is 
determined by X, Y and Z Cartesian 
coordinates in the robot’s world 
coordinate system. 
 
At these evaluation tests, the TCP of the 
spherical probe has been defined by the 
“Bulls eye” TCP calibration method.  This 
calibration method is described in section 
1.6.2. 
 

5.3.1 Centre of sphere - constant start 
angle 

 
In this section, charts of the measurements of the estimated centre point is shown 
in X, Y and Z axis, euclidian distance and the determined radius are presented. 
The charts represent data from 1000 repeats. The start angle of the approaching 
movements around the sphere is programmed to be identical at each repeat. At 
each repeat, eight measurements are obtained on the fixed sphere. The positions 
are obtained according to the description in section 4.5.1. 
 
However, due to the effect of soft servo, the positions when the probe and sphere 
gets in contact with each other will somewhat deviate. This means that an 
inadequate defined TCP and the play at axis gear trains will have an impact. 
However, these variations are considered to be minor. Therefore, the impact of 
these deviations has been negligible at this repeatability test. 

 
Figure 48 
The installation for the 
repeatability tests. 
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 Chart 7.2 
The shape of the histogram based on true values is nearly perfect normal 
distributed. Therefore, the evaluation has approximated the results as a normal 
distribution. 

Estimated centre point: X-axis

1215

1215,2

1215,4

1215,6

1215,8

1216

1216,2

1216,4

1216,6

1216,8

1217

0 200 400 600 800 1000 1200

 
Chart 7.1 
In this chart, the centre point X in axis of the 1000 repeats is shown.  
The results show a stabile trend. 
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Estimated centre point: Y-axis
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Chart 8.1 
In this chart, the centre point of the Y axis value of the 1000 repeats is shown.  
At about 300 measurements the pattern starts to descend until about 500 
measurements. A part from this deviation the trend is stabile.  
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Chart 8.2 
The shape of the histogram based on true values is not normal distributed. 
However at two sigma, the normal distribution will be a fairly good approximation. 
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Chart 9.1 
In this chart, the centre point Z value of the 1000 repeats is shown.  
The results do show a stabile trend. 
 

Histogram: Z
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Chart 9.2 
The shape of the histogram based on true values is nearly perfect normal 
distributed. Therefore, the evaluation has approximated the results as normal 
distributed 
 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 67 
  
   

Histogram: Distance = sqrt((X-Xave)^2+(Y-Yave)^2+(Z-Zave)^2) )

0

50

100

150

200

250

300

350

400

-3 -2 -1 0 1 2 3

True distribution Normal distribution
 

Chart 10.2 
The shape of the histogram based on true values is nearly normal 
distributed. Therefore, the evaluation has approximated the results as 
normal distributed 
 

Distance = sqrt((X-Xave)^2+(Y-Yave)^2+(Z-Zave)^2) )

0
0,02
0,04
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0,08
0,1

0,12
0,14
0,16
0,18

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961

 
Chart 10.1 
In this chart, the determined centre point is presented as the Euclidian 
distance based on 1000 repeats. The Euclidian distance is calculated from 
the average value of the X, Y and Z axis positions. 
 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 68 
  
   

 

Radius

13

13,1

13,2

13,3

13,4

13,5

13,6

13,7

13,8

13,9

14

0 200 400 600 800 1000 1200

 
Chart 11.1 
In this chart, the measured radius based on 1000 repeats is shown. The 
results decrease until 500 measurements. After 500 measurements the trend 
is stabile.  
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Chart 11.2 
The shape of the histogram based on true values is nearly perfect normal 
distributed. Therefore, the evaluation has approximated the results as a normal 
distribution. 
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 1� � 68% 2� � 95% 3� � 99% 

X-axis [mm] ±0.026  ±0.053 ±0.079 

Y-axis [mm] N/A ±0.144 ±0.215 

Z-axis [mm] ±0.043 ±0.087 ±0.130 

Distance¹  [mm] ±0.031 ±0.062 ±0.093 

Radius²  [mm] ±0.046 ±0.092 ±0.139 

  
1) Average euclidian distance measured to 0.082 mm 
2) Average radius measured to 13.572 mm 
 
Table 3 
The table shows the measured deviation from the average values at the constant 
start angle repeatability test. The deviation is expressed in different confidence 
interval. As shown in the table the deviation is greatest at the Y-axis values.  
 
As the average Euclidian distance from the centre point is 0,082mm. The figures 
in table 3 gives that the centre position is determined at a confidence interval of 
84% within a radius of 0.113mm and at 98% within a radius of 0.144. 
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5.3.2 Centre of sphere - shifting start angle 
 

In order to verify the influence of the 
play in the gear train of axis five and 
the potential impact of an inadequate 
definition of TCP, shifting start angles 
have been used. At this repeatability 
test, the start angle is increased by 45 
degrees after each measurement. This 
means that after eight conducted 
measurements, the measurements will 
restart all over again at the initial start 
angle. In reality, this is not very likely 
that the calibration method will be 
used in this manner. The calibration 
will likely be used with constant start 
angle.  

 
In comparison to the repeatability test 
with the constant start angle test, 
inadequate definition of the TCP will 
have an impact in this test. The 
measurement positions will be 
different as the start angle shifts with 
45º degrees. 
 
This test will show how significant the play and a potential incorrect definition of 
the TCP will affect the estimated centre position. Depending on how the wrist is 
oriented against sphere, the play will have different influences on the estimated 
radius. However, the definition of the TCP will not have an impact on the 
measured radius. The results are based on 880 repeats. At each repeat, eight 
positions are obtained on the fixed sphere. The positions are obtained according 
to the description in 4.5.1. 
 

 
Figure 49 
This figure shows the shifting start 
angles of the sphere probe. 
 
 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 71 
  
   

 

 

Estimated centre point: X-axis

1216,1

1216,15

1216,2

1216,25

1216,3

1216,35

1216,4

1216,45

1216,5

1216,55

0 20 40 60 80 100 120

 
Chart 12.1 
In this chart 100 of the 880 repeats are shown. The pattern is periodical. This is likely 
explained by the fact that the start angle increases by 45º after each measurement. 
This mean that the start angle returns to same angle after eight times. The results 
show a fairly stabile trend. 
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Chart 12.2  
The shape of the histogram is based on the actual rue values. The shape is nearly 
normal distributed. In the evaluation, the results have been approximated the results 
as normal distributed. 
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Estimated centre point: Y-axis
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Chart 13.1 
In this chart 100 of the 880 repeats are shown. The pattern is periodical. The periodical 
repeats are likely explained by the fact that the start angle increases by 45º after each 
measurement. This mean that the start angle returns to same angle after eight times. 
The results show a stabile trend. 
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Chart 13.2 
The shape of the histogram based on actual true values. The true values nearly 
form a normal distribution. The result has been evaluated the results as a normal 
distribution as an approximation. 
 

 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 73 
  
   

 

Estimated centre point: Z-axis

240,8

240,9

241

241,1

241,2

241,3

241,4

241,5

241,6

241,7

241,8

0 20 40 60 80 100 120

 
Chart 14.1 
In this chart 100 of the 880 repeats are shown. The pattern is periodical, this is likely 
explained by the fact that the start angle increases by 45º after each measurement. 
This mean that the start angle returns to same angle after eight times. The results 
show slight increasing trend likely caused by thermal expansion 
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Chart 14.2 
The shape of the histogram is based on true the values. The shape is not normal 
distributed. However at two sigma, the normal distribution will be fairly good 
approximation. 
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Distance = sqrt((X-Xave)^2+(Y-Yave)^2+(Z-Zave)^2) 
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Chart 15.1  
In this chart 100 of the 880 repeats are shown. The Euclidian distance is calculated 
from the average value of the X, Y and Z axis positions. The pattern is periodical, this 
is likely explained by the fact that the start angle increases by 45º after each 
measurement.  
 

Histogram: Distance = sqrt((X-Xave)^2+(Y-Yave)^2+(Z-Zave)^2) 

-50

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9

True distribution Normal distribution
 

Chart 15.2 
The shape of the histogram based on true values is nearly normal 
distributed. Therefore, the evaluation has approximated the results as 
normal distributed. 
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Chart 16.1 
In this chart 100 of the 880 repeats are shown. The pattern is periodical, this is likely 
explained by the fact that the start angle increases by 45º after each measurement. 
This mean that the start angle returns to same angle after eight times. The results do 
shows a slightly decreasing trend.  
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Chart 16.2 
The shape of the histogram based on true values is not normal distributed. 
However, at two sigma or at 95%, the normal distribution will be fairly good 
approximation. 
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 1� � 68% 2� � 95% 3� � 99% 

X-axis [mm] ±0.132 ±0.270 ±0.396 

Y-axis [mm] ±0.245 ±0.490 ±0.735 

Z-axis [mm] N/A ±0.215 ±0.323 

Distance¹ [mm] ±0.136 ±0.272 ±0.409 

Radius² [mm] N/A ±0.107 ±0.161 

 
1) Average euclidian distance measured to 0.332 mm 
2) Average radius measured to 13.623 mm 
 
Table 4 
This table shows the measured deviations with respect to the average values at shifted 
start angle. The deviations are expressed in different confidence interval. The figures 
show that the greatest deviations are in the Y-axis. This deviation is probably greatest 
due to the play in the gear train of axis five. 

As the average Euclidian distance from the centre point is 0.332mm. The figures in 
table 4 gives that the centre position is determined at a confidence interval of 84% 
within a radius of 0.468mm. 
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Centre of sphere- comparison, constant vs. shifting start angle 

In this table, the deviations of the constant and the shifted start angle 
measurements are shown. The values are presented at confidence interval of 
95%. As shown in this table, the deviation difference between the constant and 
shifted measurements is most significant for the X, Y and Z position values.  
 
Among the determined centre position, the Y axis value has the largest deviation 
error. Compared to the X and Z values, the X value has a deviation which is more 
than 100% greater for the shifted measurements. Most likely this is explained by 
the orientation of the wrist during the measurements. At particular measurements 
the play in the gear trains will have more significant impact on the Y axis position 
values than compared to X and Y position values. It is also possible that the 
deviation has been caused by an incorrect definition of the TCP.  
 
In charts 17.1-19.2, the constant and the shifted 45 degrees start angle is 
presented in three different planes X-Y, X-Z and Y-Z. The scale of the axes in the 
charts is more or less identical. In the three charts which represent the results 
from the 45 degrees shifting start angle measurements, clear isolated islands are 
shown. These islands represent the measurements at each periodic 45 degree 
start angle. The deviation within each isolated island is more or less equivalent to 
the deviation at the constant start angle. These results confirm that the method is 
robust. 
 

At confidence interval  
2� � 95% Constant Shifted Difference 

X-axis [mm] +/- 0.053 +/- 0.270 
 0.217 
 

Y-axis [mm] +/- 0.144 +/- 0.490 
 0.346 
 

Z-axis [mm] +/- 0.087 +/- 0.215 
 0.128 
 

Table 5 
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Chart 17.1  
Deviation in X and Y axis at 
constant start angle. 
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Chart 17.2  
Deviation in X and Y axis at 
shifting 45 start angle. 
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Chart 18.1  
Deviation in X and Z axis at 
constant start angle 
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Chart 19.1  
Deviation in Y, and Z axis at 
constant start angle 
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Chart 19.2  
Deviation in Y and Z axis at 
shifting 45 start angle. 
 

Shifting 45: XZ
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Chart 18.2  
Deviation in X and Z axis at 45 
degree shifting start angle. 
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5.3.3 Evaluation of measured radius 

 
Table 6 
In this table a comparison of the radius between the constant and shifting start 
angle measurements are shown. These results confirm that the measured radius 
is more or less identical in the constant and shifted measurements. 
 
All measured radius values are smaller 
than the true radius which is 15mm.This 
is the sum of the radius of the probe and 
the fixed sphere, 5mm and respectively 
10mm. Most likely the deviation can be 
explained by the play in the axes gear 
trains. As shown in the table 6 the 
measured radius does never get close 
to the true radius.  
 
During the conducted tests, the 
orientation of the probe is programmed 
to be identical relative the sphere at 
each position. This means that an 
inadequate defined TCP should not 
have an influence on the determined 
radius. On the other hand, an 
inadequate definition of the TCP will 
affect the position of the determined 
centre point. 
 

Radius Average 1� � 68% 2� � 95% 3� � 99% 

Constant [mm] 13.572 ±0.046 ±0.092 ±0.139 

45º shifting [mm] 13.623 ±0.054 ±0.107 ±0.161 

 

 
Figure 50 
This figure shows the sphere probe 
and the fixed sphere in contact with 
each other. The sphere probe has 
radius 5mm and the fixed sphere has 
radius of 10mm.  
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Due to the fact that all measured values of the radius are smaller than 15mm. 
This indicates that the deviation has been induced by the play in the gear trains. If 
the deviation was caused by the definition of the TCP or nonlinearities of the axis 
movements, the measured radius could in fact become greater than 15mm. 

 
Based on the finding that the measured radius is smaller than the actual true 
radius, the true location of the centre point can not be guarantied. As shown in 
figure 51, the true centre point may deviate in respect of the measured centre 
point. 

 

 
In this figure, the cross section of two spheres is shown. The red circle represents 
the actual true sphere which has a radius of 15mm. The blue circle represents the 
measured sphere which has an average radius of 13.6mm. Under condition that 
the centre point of the two circles are perfect aligned in respect of the X-axis, the 
maximum deviations of the centre point in Z-axis will be the difference of the 
radius, in this case 1.4mm. This means that the true location can not be ensured. 
However, based on the deviations of the Euclidian distance to the measured 

 
Figure 51 
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centre point, the method will repeatedly provide this point at certain accuracy. 
This may not be the true centre point of the fixed sphere but the method will 
return the same position with very high accuracy. In other, words, the influence by 
the gear train play is more or less identical at each repeated measurement.  

 

5.3.4 Calibration possibilities 
 
Based on the fact that the method does not provide the true location of the centre 
point of the fixed sphere in the world coordinates system; the method can not 
directly be used to transfer an offline generated program to the physical 
installation under the condition that very high accuracy is required. However due 
to the fact that the same position repeated at high accuracy; the method can be 
used in following manner. 

 
1. A number of reference positions are determined on the physical fixture by 

determine the centre of fixed spheres.  

2. One position of the offline generated program is then fine tuned with 
respect to the determined reference positions of the fixture frame. The rest 
of the robot program path positions automatically will be modified in 
equivalent manner. This implies that the work object is not too wide. If too 
wide, nonlinear axis movement may cause to great path deviations.   

3. If the installation has to be recalibrated, the reference positions on the 
work fixture only have to be determined. 

 
This calibration method can also be used in the traditionally “teach in” manner.  

 

1. A number of reference positions are defined with this method on a work 
fixture. 

2. When these reference positions have been determined, adjustment of 
positions by teach in programming of the actual work object can be 
conducted. 

3. If the installation has to be recalibrated, the reference positions on the 
work fixture are determined once again.  
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5.3.5 Centre of sphere - final evaluation 
 

In the section where constant and shifted start angle are compared shows that 
the calibration method is less accurate if when the start angle is shifted. In reality, 
the calibration method will most likely be used with constant start angle. On top of 
this, a robot installation is most likely built up and programmed. The relative 
position fluctuations of the installation will then be a matter of millimetres and a 
couple of degrees. The configuration of the robot axes will therefore be more or 
less identical. Based on this fact, the values which are shown at the constant start 
angle will represent the repeated accuracy of this calibration method.  
 

 
An industrial robot can be used in many different applications. Depending on the 
application the requirements of the accuracy will vary. Unfortunately, it does not 
exist a common standard for the level of accuracy depending of the application. In 
table 6, estimations of the required accuracy for different applications are 
presented. These values have to be considered as a general rule of thumb. The 
values also complies the complete robot process. This means for example that 
the tolerances of the work piece itself have to be taken in to consideration. As 
shown, the calibration method based on the repeated accuracy will be suitable for 
most of the presented applications  

Application Required 
accuracy [mm] 

Conf int. 84%  
+/- 0.113 [mm] 

Conf int. 98%  
+/- 0.144 [mm] 

 Arc welding +/- 0.4 OK OK 

 Spot welding +/- 0.7 OK OK 

 Material handling +/- 2.0 OK OK 

 Water cutting +/- 0.2 OK OK 

 Laser cutting +/- 0.2 OK OK 

 Machining +/- 1.0 OK OK 

 Palletising +/- 5.0 OK OK 

Table 6 
Requirements of accuracy presented as a function of the application.  
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6 Discussion  
 

The goal of this thesis is to evaluate a simple calibration method that enables to 
transfer an offline generated robot program to the physical installation. 
Traditionally this is done by adjusting the robot path positions by “Teach in”. This 
is possible due to the fact that the robot has very good position repeatability. 
However, this method can be time consuming and therefore it is desired to find 
alternative solutions which replace the position fine tuning step. 
 
The key for this task is to determine reference positions on the work object fixture 
at high accuracy. If this can be obtained, the offline program can be transferred to 
the reality by calibrating fixture coordinate system. The evaluated method is 
based on the fact that when two perfect spheres which are in contact with each 
other in theory will have identical distance between their centre points. Under the 
condition that at least four positions around the fixed sphere have been obtained, 
the centre position of it can be determined. In a robot installation this is obtained 
by mounting a spherical probe as robot tool and a spherical object on the work 
piece fixture. 
 
One of the conditions for this method is that the centre position in the spherical 
probe is defined at high accuracy. In order to define this position, a method which 
does not add any external equipment was evaluated. In short, this method guides 
the spherical probe on the robot in to identical position at different orientations. 
Unfortunately the results from the repeatability measurements do not support this 
method for calibration. The min/ max deviation level was achieved in Z-axis but 
not in X-axis and Y-axis. Potentially this method would have been applicable if it 
was possible to more widely spread out the measurement range. Instead of this 
method, the bull’s eye method is suggested in order to find the centre of spherical 
probe on the robot. Unfortunately the Bulls eye method means an additional 
investment.  
 
In order to evaluate the efficiency of the method which determines the centre of a 
fixed sphere, repetition tests were conducted. At these tests the centre of the 
spherical probe was defined with bull’s eye method. The result from these tests 
confirmed that the method is robust. The measured radius of the fixed sphere 
somewhat deviated from the actual true radius. This indicates that the true centre 
point can not be guaranteed. However, the precision of the repeated centre 
position is very accurate and good enough for many common robot applications. 
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The method has a limit under condition that high accuracy is required. The 
repositions of the fixture with respect to the robot can then not be too great. If the 
fixture position variations are too great, different kind of errors from the robot 
structure will have an influence on the result. However, this should not be a major 
issue due to the fact that reposition of fixtures in applications which demands high 
accuracy in most cases is a matter of millimetres.  
 
Under condition that high accuracy is required; the conclusion based on the 
repeatability test results is that this calibration method can not be used to directly 
transfer an offline generated programming in to the physical installation. This is 
based on the fact that the method does not measure the radius of the sphere at 
sufficient accuracy. 

 
Even if the calculated centre point of the fixed sphere is not absolute accurate it is 
still repeatable. This means that the method can be used to find reference 
positions on a work fixture. By fine tuning one position of the offline generated 
program in the calibrated fixture frame, the rest of the robot program path 
positions automatically will be calibrated. However, this implies that the work 
object is not too wide. If too wide, robot nonlinearities may cause too great path 
deviations.   
 
The method can also be used in traditional manner based on the high 
repeatability. By first calibrate a fixture coordinate system and then perform “tech 
in” programming, the program is generated with respect to the calibrate fixture 
coordinate system. As the reference positions on the fixture are known, the 
method can therefore be run in order to calibrate the fixture if required. 
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7 Appendix 
 

7.1 TCP_Calibration_2.mod 
 
MODULE TCP_calibration_2 
 
!--------------- Variables ----------------- 
 
! Meas_Sphere "Binzel robot studio" 
PERS tooldata Meas_Sphere1:=[TRUE,[[40.0001,3,320],[0.983132,-
0.00145,0.176582,0.0476255]],[1.5,[10,0,110],[1,0,0,0],0.01,0.01,0.01]]; 
 
! Bulls eye tool 2011-07-08 
! PERS tooldata Meas_Sphere1:=[TRUE,[[43.0001,-
0.4,320.6002],[0.986,0,0.165,0]],[1.5,[10,0,110],[1,0,0,0],0.01,0.01,0.01]]; 
 
! Meas_Sphere "Binzel labbrobot" 
PERS tooldata Meas_Sphere2:=[TRUE,[[43,-0.17,320.227],[0.983132,-
0.00145,0.176582,0.0476255]],[0.3,[0,0,100],[1,0,0,0],0,0,0]]; 
 
! Test tool 
PERS tooldata T_tool:=[TRUE,[[49.8707,-
4.06615,315.983],[0.986,0,0.165,0]],[1.5,[10,0,110],[1,0,0,0],0.01,0.01,0.01]]
; 
 
PERS robtarget Pref; 
 
LOCAL VAR speeddata v_slow := [5, 5, 200, 15 ];  ! Set speeddata for 
approching the hole 
LOCAL VAR speeddata v_norm := [30, 5, 200, 15 ]; ! Set general speeddata 
 
!LOCAL VAR speeddata v_slow := [2000, 500, 200, 15 ]; ! Set speeddata for 
approching the hole 
!LOCAL VAR speeddata v_norm := [2000, 500, 200, 15 ]; ! Set general speeddata 
 
LOCAL VAR jointtarget joints{100}; 
LOCAL VAR robtarget Tool0_points{100}; 
LOCAL VAR robtarget Fake_points{100}; 
LOCAL VAR pose Cali_TCP{100}; 
 
LOCAL VAR string joints_pos_str; 
 
LOCAL VAR iodev Pos_file;  
LOCAL VAR string FilePath:="TCP_biglog"; 
 
 
!--------------- End of variables ----------------- 
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PROC Bort_main() 
 
 VAR num Counter:=1000; 
 VAR num repeats; 
  
 repeats:=counter; 
  
 FOR i4 FROM 1 TO counter DO 
  IF i4=1  
  THEN 
   Pref:=CRobT(\Tool:=Meas_Sphere1); 
  ENDIF 
  Get_TCP_points 80; 
   
  Calib_TCP Tool0_points, 80; 
   
  !Calib_TCP_NEW joints; 
  TEST_New_TCP; 
   
  repeats:=repeats-1; 
  TPWrite "Repeats remain= "\Num:=repeats; 
 ENDFOR 
 Stop; 
ENDPROC 
 
 
PROC Get_TCP_points(num meas) 
 
 VAR robtarget Calib_pos; 
 VAR robtarget Tool0_RobT; 
 VAR num pos_index:=0; 
  
 VAR string joints_pos_str; 
  
 VAR num max_reor_angle_x:=25; 
 VAR num max_reor_angle_y:=25; 
 VAR num reor_angle; 
 
  
 VAR num repos; 
  
 ! Activate soft servo on all six axes 
 SoftAct 1, 50\Ramp:=150; 
 SoftAct 2, 30\Ramp:=100; 
 SoftAct 3, 30\Ramp:=100; 
 SoftAct 4, 30\Ramp:=150; 
 SoftAct 5, 30\Ramp:=150; 
 SoftAct 6, 50\Ramp:=150; 
  
 !TPReadFK repos, "Do you need new reference position?", stEmpty, 
stEmpty, stEmpty, "Yes", "No"; 
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 !IF repos=4  
 ! THEN 
   ! Jog to postion above caibration hole. 
 !  Stop; 
   !Pref:=CRobT(\Tool:=Meas_Sphere1); 
 ! ELSE 
   !MoveL Pref, v2000, fine, Meas_Sphere1; 
 !ENDIF 
   
!--- Get TCP points  ----- 
  
 joints_pos_str:=CDate()+" "+CTime()+" "; 
  
 FOR i1 FROM 1 TO meas/4 DO 
   
   reor_angle:=max_reor_angle_x*cos(180*i1/(meas/3)); 
    
   pos_index:=pos_index+1; 
   TPWrite "Measurement "+NumToStr(Pos_index,0)+" of 
"+NumToStr(meas,0); 
  
 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=reor_angle,\Ry:=0,\Rz:=0); 
   MoveL Calib_pos, v_norm, fine, Meas_Sphere1; 
  
 Calib_pos:=RelTool(Pref,0,0,10,\Rx:=reor_angle,\Ry:=0,\Rz:=0); 
   MoveL Calib_pos, v_slow, fine, Meas_Sphere1; 
   Waittime(1); 
   Tool0_points{pos_index}:=CRobT(\Tool:=tool0); 
  
 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=reor_angle,\Ry:=0,\Rz:=0); 
   MoveL Calib_pos, v_norm, z1, Meas_Sphere1; 
       
 ENDFOR 
  
 Calib_pos:=RelTool(Pref,0,0,0); 
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1; 
  
 FOR i2 FROM meas/4+1 TO meas*2/4 DO 
   
   reor_angle:=max_reor_angle_y*cos(180*i2/(meas/4)); 
    
   pos_index:=pos_index+1; 
   TPWrite "Measurement "+NumToStr(Pos_index,0)+" of 
"+NumToStr(meas,0); 
  
 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=0,\Ry:=reor_angle,\Rz:=0); 
   MoveL Calib_pos, v_norm, fine, Meas_Sphere1; 
  
 Calib_pos:=RelTool(Pref,0,0,10,\Rx:=0,\Ry:=reor_angle,\Rz:=0); 
   MoveL Calib_pos, v_slow, fine, Meas_Sphere1; 
   Waittime(1); 
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   Tool0_points{pos_index}:=CRobT(\Tool:=tool0); 
  
 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=0,\Ry:=reor_angle,\Rz:=0); 
   MoveL Calib_pos, v_norm, z1, Meas_Sphere1; 
       
 ENDFOR 
  
 Calib_pos:=RelTool(Pref,0,0,0); 
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1; 
  
 FOR i3 FROM meas*2/4+1 TO meas*3/4 DO 
   
   reor_angle:=max_reor_angle_y*cos(180*i3/(meas/4)); 
    
   pos_index:=pos_index+1; 
   TPWrite "Measurement "+NumToStr(Pos_index,0)+" of 
"+NumToStr(meas,0); 
  
 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=reor_angle,\Ry:=0,\Rz:=45); 
   MoveL Calib_pos, v_norm, fine, Meas_Sphere1; 
  
 Calib_pos:=RelTool(Pref,0,0,10,\Rx:=reor_angle,\Ry:=0,\Rz:=45); 
   MoveL Calib_pos, v_slow, fine, Meas_Sphere1; 
   Waittime(1); 
   Tool0_points{pos_index}:=CRobT(\Tool:=tool0); 
  
 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=reor_angle,\Ry:=0,\Rz:=45); 
   MoveL Calib_pos, v_norm, z1, Meas_Sphere1; 
 ENDFOR 
  
 Calib_pos:=RelTool(Pref,0,0,0); 
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1; 
  
 FOR i4 FROM meas*3/4+1 TO meas DO 
   
   reor_angle:=max_reor_angle_y*cos(180*i4/(meas/4)); 
    
   pos_index:=pos_index+1; 
   TPWrite "Measurement "+NumToStr(Pos_index,0)+" of 
"+NumToStr(meas,0); 
  
 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=0,\Ry:=reor_angle,\Rz:=45); 
   MoveL Calib_pos, v_norm, fine, Meas_Sphere1; 
  
 Calib_pos:=RelTool(Pref,0,0,10,\Rx:=0,\Ry:=reor_angle,\Rz:=45); 
   MoveL Calib_pos, v_slow, fine, Meas_Sphere1; 
   Waittime(1); 
   Tool0_points{pos_index}:=CRobT(\Tool:=tool0); 
  
 Calib_pos:=RelTool(Pref,0,0,0,\Rx:=0,\Ry:=reor_angle,\Rz:=45); 
   MoveL Calib_pos, v_norm, z1, Meas_Sphere1; 
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 ENDFOR 
   
 Calib_pos:=RelTool(Pref,0,0,0); 
 MoveL Calib_pos, v_norm, fine, Meas_Sphere1; 
 
!--- Return to start position ----- 
    
 MoveL Pref,v_norm,Z1,Meas_Sphere1; 
  
 SoftDeact \Ramp:=150; 
       
ENDPROC 
 
 
PROC Calib_TCP_NEW(VAR jointtarget xJoints{*}) 
 
 VAR num Maxerr; 
 VAR num Meanerr; 
   
 MToolTCPCalib xJoints{1}, xJoints{3}, xJoints{2}, xJoints{4}, 
Meas_Sphere2, Maxerr, Meanerr; 
  
 joints_pos_str:=" Meas_Sphere2 
"+NumToStr(Meas_Sphere2.tframe.trans.x,3)+" 
"+NumToStr(Meas_Sphere2.tframe.trans.y,3)+" 
"+NumToStr(Meas_Sphere2.tframe.trans.z,3)+" Maxerr "+NumToStr(Maxerr,3)+" 
Meanerr "+NumToStr(Meanerr,3); 
  
 !  Open posistion file 
 Open FilePath, Pos_file\Append; 
 Write Pos_file, joints_pos_str  \NoNewLine; 
 !  Close position file 
 Close Pos_file; 
  
 TPWrite "Meas_Sphere2="\Pos:=Meas_Sphere2.tframe.trans; 
 TPWrite "Maxerr ="\Num:=Maxerr; 
 TPWrite "Meanerr ="\Num:=Meanerr; 
  
ENDPROC 
 
! Calibrates the TCP. Argument one is the estimated expressend in World 
coordinates. Argument two is the position of tool0. 
PROC Calib_TCP(VAR robtarget Tool0_points{*}, num meas) 
  
 VAR pose E_TCP; 
 VAR pose Tool0_pose; 
 VAR pose Cali_TCP_final; 
  
 VAR num X_TCP_final:=0; 
 VAR num Y_TCP_final:=0; 
 VAR num Z_TCP_final:=0; 
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 VAR num Maxerr; 
 VAR num Meanerr; 
  
 VAR num Rerror_ref; 
 VAR num Rerror_test; 
  
 VAR string M_2; 
 VAR string T_t; 
  
 VAR pose Cali_TCP; 
  
 VAR iodev Pos_file2;  
 VAR string FilePath2:="TCP_poslog"; 
 VAR string TCP_str; 
 
 FilePath2:=FilePath2+"_"+CDate()+".log"; 
  
 ! Least square estimation based on Tool0 points, part of a Sphere 
  
 ECOS_QR Tool0_points, meas; 
 !Stop; 
  
 ! Find best tool0 point 
  
 ! Rerror_ref:=abs(Radius-sqrt(pow(ECP_QR_RobT.trans.x-
Tool0_points{1}.trans.x,2)+pow(ECP_QR_RobT.trans.y-
Tool0_points{1}.trans.y,2)+pow(ECP_QR_RobT.trans.z-
Tool0_points{1}.trans.z,2))); 
 ! Meas_Sphere2.tframe.trans:=[ECP_QR_RobT.trans.x-
Tool0_points{1}.trans.x,ECP_QR_RobT.trans.y-
Tool0_points{1}.trans.y,ECP_QR_RobT.trans.z-Tool0_points{1}.trans.z]; 
 ! Meas_Sphere2.tframe.rot:=E_TCP.rot; 
  
 E_TCP.trans:=ECP_QR_RobT.trans;  ! Get estimated cenre point 
based on QR factorixation 
 E_TCP.rot:=Meas_Sphere1.tframe.rot; 
 
 Tool0_pose.trans:=Tool0_points{1}.trans;  
 Tool0_pose.rot:=Tool0_points{1}.rot; 
  
 Cali_TCP:= PoseMult(PoseInv(Tool0_pose), E_TCP); 
  
 Rerror_ref:=abs(Radius-
sqrt(pow(Cali_TCP.trans.x,2)+pow(Cali_TCP.trans.y,2)+pow(Cali_TCP.trans.z,2)))
; 
  
 Meas_Sphere2.tframe.rot:=Meas_Sphere1.tframe.rot; 
 Meas_Sphere2.tframe.trans:=Cali_TCP.trans; 
  
 TPWrite "Start Meas_sphere2 = "\Pos:=Meas_Sphere2.tframe.trans; 
 
 FOR index FROM 2 TO meas DO 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 92 
  
   

  
  Tool0_pose.trans:=Tool0_points{index}.trans;  
  Tool0_pose.rot:=Tool0_points{index}.rot; 
    
  Cali_TCP:= PoseMult(PoseInv(Tool0_pose), E_TCP); 
  
  Rerror_test:=abs(Radius-
sqrt(pow(Cali_TCP.trans.x,2)+pow(Cali_TCP.trans.y,2)+pow(Cali_TCP.trans.z,2)))
; 
   
  !TPWrite "Rerror_test= "\Num:=Rerror_test; 
  !TPWrite "Rerror_ref= "\Num:=Rerror_ref; 
   
   
  IF  Rerror_ref > Rerror_test 
  THEN 
      
   Meas_Sphere2.tframe.trans:=Cali_TCP.trans; 
    
   Rerror_ref := Rerror_test; 
    
   TPWrite "Radius error = "\Num:=Rerror_test; 
    
    
  ENDIF 
 ENDFOR 
  
 TPWrite "Final Meas_sphere2 = "\Pos:=Meas_Sphere2.tframe.trans; 
  
 Open FilePath2, Pos_file2\Append; 
  
 TCP_str:="Radius "+NumToStr(Radius,6)+"Tool_TCP 
"+NumToStr(Meas_Sphere2.tframe.trans.x,6)+" 
"+NumToStr(Meas_Sphere2.tframe.trans.y,6)+" 
"+NumToStr(Meas_Sphere2.tframe.trans.z,6); 
 
 Write Pos_file2, TCP_str; 
  
 Close Pos_file2; 
     
ENDPROC 
 
PROC TEST_New_TCP() 
 
 VAR robtarget P1; 
 VAR robtarget P2; 
 VAR robtarget P3; 
 
 TPWrite "Meas_sphere2"; 
 P1:=RelTool(Pref,0,0,-50); 
 MoveJ P1, v_norm, fine, Meas_Sphere2; 
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 P2:=RelTool(Pref,0,0,-50,\Rx:=0,\Ry:=0,\Rz:=45); 
 MoveL P2, v_norm, fine, Meas_Sphere2; 
  
 P3:=RelTool(Pref,0,0,-50,\Rx:=0,\Ry:=30,\Rz:=0); 
 MoveL P3, v_norm, fine, Meas_Sphere2; 
  
 MoveL P1, v_norm, fine, Meas_Sphere2; 
  
! TPWrite "T_tool"; 
! P1:=RelTool(Pref,0,0,-50); 
! MoveJ P1, v_norm, fine, T_tool; 
  
! P2:=RelTool(Pref,0,0,-50,\Rx:=0,\Ry:=0,\Rz:=45); 
! MoveL P2, v_norm, fine, T_tool; 
  
! P3:=RelTool(Pref,0,0,-50,\Rx:=0,\Ry:=30,\Rz:=0); 
! MoveL P3, v_norm, fine, T_tool; 
  
! MoveL P1, v_norm, fine, T_tool; 
  
 MoveL Pref, v_norm, fine, Meas_Sphere1; 
  
ENDPROC 
 
ENDMODULE 

 

7.2 Get_sphere_points2.mod 
 
MODULE Get_sphere_points_2 
 
!Drop down i Z-axis 
LOCAL VAR num Cz:=15; 
 
LOCAL VAR speeddata v_AS := [5, 10, 200, 15 ];  ! Set speeddata for 
approching the sphere 
LOCAL VAR speeddata v_GEN := [30, 10, 200, 15 ]; ! Set general speeddata 
 
!LOCAL VAR speeddata v_AS := [2000, 10, 200, 15 ];  ! Set speeddata 
for approching the sphere 
!LOCAL VAR speeddata v_GEN := [2000, 10, 200, 15 ]; ! Set general speeddata 
 
VAR robtarget PointXYZ{100}; 
LOCAL VAR jointtarget joints{100}; 
 
VAR robtarget measpos{10}; 
 
! Trap routin parameters 
LOCAL VAR num Trigglevel:=110;      ! What is 
the percentage of reduced distance to trigg search stop 
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LOCAL VAR num Itimer_frequency:=0.25;    ! Itimer interupt 
frequency 
LOCAL VAR num Start_supervise:=4;! When shall the program start to supervise 
the speed 
LOCAL VAR intnum Speed_supervision; 
LOCAL VAR intnum time_int; 
LOCAL VAR dionum High:=1; 
LOCAL VAR dionum Low:=0; 
LOCAL VAR signaldi Signal_DI; 
LOCAL VAR signaldo Signal_DO; 
LOCAL VAR num Counter; 
LOCAL VAR robtarget P1_supervision; 
LOCAL VAR robtarget P2_supervision; 
 
!--------------- Functions ----------------- 
 
!Calculate theata angle 
FUNC num theata_angle(num order,num N) 
 RETURN 110*(order)/N; 
ENDFUNC 
 
!Calculate phi angle 
FUNC num phi_angle(num order) 
 RETURN 80*(order-1); 
ENDFUNC 
 
!--------------- End of functions ----------------- 
 
 
PROC Fmain() 
  
 VAR robtarget Pref_sphere; 
  
 Pref_sphere:=CRobT(\Tool:=Meas_Sphere2); 
 !Numer of measurements, Outer radius, Inner radius, Top_radius, Refpos 
 MAS 20, 40, 20, Pref_sphere, 10; 
 Stop; 
ENDPROC 
 
 
! Move Around Sphere 
PROC MAS(num NOM, num OuterRad, num InnerRad, robtarget P_referens, num 
start_phi) 
  
 VAR robtarget P_centre_sphere; 
 VAR robtarget P_OuterRad; 
 VAR robtarget P_SemiRad; 
 VAR robtarget P_InnerRad; 
 VAR robtarget P_Start; 
 VAR robtarget P_End; 
  
 VAR num pos_index:=0; 
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 VAR num fk; 
  
 VAR num rad_sphere:=10; 
  
 ! Pos file variables 
 VAR iodev Pos_file;  
 !VAR string FilePath:="Sphere_positions"; 
  
 VAR string joints_str; 
 VAR string positions_str; 
 ! End of pos file variables  
 
  
  
 !IDELETE Speed_supervision; 
 !CONNECT Speed_supervision WITH Flag_speed_change; 
 !ISleep Speed_supervision; 
 AliasIO IO_Signal_DI, Signal_DI; 
 AliasIO IO_Signal_DO, Signal_DO; 
 
 ! Activate soft servo 
 SoftAct 1, 40 \Ramp:=150; 
 SoftAct 2, 40 \Ramp:=150; 
 SoftAct 3, 40 \Ramp:=150; 
 SoftAct 4, 40 \Ramp:=150; 
 SoftAct 5, 40 \Ramp:=150; 
 SoftAct 6, 40 \Ramp:=150; 
  
 joints_str:=CDate()+" "+CTime()+" "; 
 Open FilePath, Pos_file\Append; 
 Write Pos_file, joints_str \NoNewLine; 
 Close Pos_file; 
  
 
 ! Find position on top of sphere 
 
 P_OuterRad:=RelTool(P_referens,0,0,0); 
 P_InnerRad:=RelTool(P_referens,0,0,5); 
  
 MoveJ P_OuterRad, v_GEN, fine, Meas_Sphere2; 
 !MoveL P_InnerRad,v_AS,fine,Meas_Sphere2; 
   
 Counter:=0; 
 SetDO Signal_DO, High; 
! WaitTime 2; 
 SetDO Signal_DO, Low; 
! WaitTime 2; 
 ! Connect trap routine 
! CONNECT Speed_supervision WITH Flag_speed_change; 
! ITimer Itimer_frequency, Speed_supervision; 
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! SearchL \SStop, Signal_DI\Flanks, PointXYZ{pos_index}, P_InnerRad, v_AS, 
Meas_Sphere2; 
! MoveL P_InnerRad,v_AS,fine,Meas_Sphere2; 
! IDELETE Speed_supervision; 
   
 WaitTime(0.1); 
  
 ! Get ref position on top of fixed sphere 
 !P_centre_sphere:=CRobT(\Tool:=Meas_Sphere2); 
  
 !Shift ref pos close to centre of sphere 
 !P_centre_sphere:=RelTool(P_centre_sphere, 0, 0, rad_sphere+5); 
 P_centre_sphere:=RelTool(P_referens, 0, 0, rad_sphere+5); 
    
 !MoveJ P_OuterRad,v_GEN,fine,Meas_Sphere2; 
   
 
  
 ! Get positions around the sphere 
 FOR i1 FROM 1 TO NOM DO 
  
  pos_index:=pos_index+1; 
   
!  TPWrite "Theata " \Num:=theata_angle(i1, NOM); 
!  TPWrite "10*cos(Theata) " \Num:=10*cos(theata_angle(i1, NOM)); 
!  TPWrite "Phi " \Num:=phi_angle(i1); 
   
  IF i1=1  
  THEN 
   P_Start:=RelTool(P_referens, OuterRad*sin(theata_angle(i1, 
NOM))*sin(start_phi+phi_angle(i1)), OuterRad*sin(theata_angle(i1, 
NOM))*cos(start_phi+phi_angle(i1)), 0); 
   MoveL P_Start,v_GEN,fine,Meas_Sphere2; 
  ENDIF 
   
!  P_OuterRad:=RelTool(P_centre_sphere, OuterRad*sin(theata_angle(i1, 
NOM))*sin(phi_angle(i1)), OuterRad*sin(theata_angle(i1, 
NOM))*cos(phi_angle(i1)), -OuterRad*cos(theata_angle(i1, NOM)) 
\Rx:=10*sin(phi_angle(i1)) \Ry:=10*cos(phi_angle(i1))); 
!  P_SemiRad:=RelTool(P_centre_sphere, 
0.3*OuterRad*sin(theata_angle(i1, NOM))*sin(phi_angle(i1)), 
0.3*OuterRad*sin(theata_angle(i1, NOM))*cos(phi_angle(i1)), -
0.3*OuterRad*cos(theata_angle(i1, NOM)) \Rx:=10*sin(phi_angle(i1)) 
\Ry:=10*cos(phi_angle(i1))); 
!  P_InnerRad:=RelTool(P_centre_sphere, InnerRad*sin(theata_angle(i1, 
NOM))*sin(phi_angle(i1)), InnerRad*sin(theata_angle(i1, 
NOM))*cos(phi_angle(i1)), -InnerRad*cos(theata_angle(i1, NOM)) 
\Rx:=10*sin(phi_angle(i1)) \Ry:=10*cos(phi_angle(i1))); 
  
  P_OuterRad:=RelTool(P_centre_sphere, OuterRad*sin(theata_angle(i1, 
NOM))*sin(start_phi+phi_angle(i1)), OuterRad*sin(theata_angle(i1, 
NOM))*cos(start_phi+phi_angle(i1)), -OuterRad*cos(theata_angle(i1, NOM))); 
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  P_SemiRad:=RelTool(P_centre_sphere, 
0.3*OuterRad*sin(theata_angle(i1, NOM))*sin(start_phi+phi_angle(i1)), 
0.3*OuterRad*sin(theata_angle(i1, NOM))*cos(start_phi+phi_angle(i1)), -
0.3*OuterRad*cos(theata_angle(i1, NOM))); 
  P_InnerRad:=RelTool(P_centre_sphere, InnerRad*sin(theata_angle(i1, 
NOM))*sin(start_phi+phi_angle(i1)), InnerRad*sin(theata_angle(i1, 
NOM))*cos(start_phi+phi_angle(i1)), -InnerRad*cos(theata_angle(i1, NOM)));  
   
  MoveL P_OuterRad,v_GEN,fine,Meas_Sphere2; 
   
   
  Counter:=0; 
 
  ! Connect trap routine 
  SetDO Signal_DO, Low; 
!  MoveL P_SemiRad,v_AS,fine,Meas_Sphere2; 
!  CONNECT Speed_supervision WITH Flag_speed_change; 
!  ITimer Itimer_frequency, Speed_supervision; 
!  SearchL \SStop, Signal_DI, PointXYZ{pos_index}, P_InnerRad, v_AS, 
Meas_Sphere2; 
  MoveL P_InnerRad,v_AS,fine,Meas_Sphere2; 
!  IDELETE Speed_supervision; 
   
  WaitTime(1); 
   
  joints{pos_index} := CJointT(); 
  PointXYZ{pos_index}:=CRobT(\Tool:=Meas_Sphere2); 
    
  !  Open posistion file 
  Open FilePath, Pos_file\Append; 
  joints_str:=" Joint"+NumToStr(pos_index,0)+" 
"+NumToStr(joints{pos_index}.robax.rax_1,5)+" 
"+NumToStr(joints{pos_index}.robax.rax_2,5)+" 
"+NumToStr(joints{pos_index}.robax.rax_3,5)+" 
"+NumToStr(joints{pos_index}.robax.rax_4,5)+" 
"+NumToStr(joints{pos_index}.robax.rax_5,5)+" 
"+NumToStr(joints{pos_index}.robax.rax_6,5); 
  Write Pos_file, joints_str \NoNewLine; 
  positions_str:=" Pos"+NumToStr(pos_index,0)+" 
"+NumToStr(PointXYZ{pos_index}.trans.x,6)+" 
"+NumToStr(PointXYZ{pos_index}.trans.y,6)+" 
"+NumToStr(PointXYZ{pos_index}.trans.z,6); 
  Write Pos_file, positions_str \NoNewLine; 
  !  Close position file 
  Close Pos_file; 
 
  MoveJ P_OuterRad,v_GEN,fine,Meas_Sphere2; 
   
  IF i1=NOM  
  THEN 
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   P_End:=RelTool(P_referens, OuterRad*sin(theata_angle(i1, 
NOM))*sin(start_phi+phi_angle(i1)), OuterRad*sin(theata_angle(i1, 
NOM))*cos(start_phi+phi_angle(i1)), -5); 
   MoveL P_End,v_GEN,fine,Meas_Sphere2; 
  ENDIF 
   
 ENDFOR 
  
 MoveL RelTool(P_referens,0,0,0),v_GEN,fine,Meas_Sphere2; 
  
 SoftDeact; 
  
 !  Open posistion file 
! Open FilePath, Pos_file\Append; 
! Write Pos_file, " "; 
 !  Close position file 
! Close Pos_file; 
  
 ERROR 
 IF ERRNO=ERR_WHLSEARCH  
 THEN 
 !StorePath; 
 MoveJ P_OuterRad,v_GEN,fine,Meas_Sphere2; 
 !RestoPath; 
 RETRY; 
 ELSEIF ERRNO=ERR_SIGSUPSEARCH  
  THEN 
  TPWrite "The signal of the SearchL instruction is already high!"; 
  TPReadFK fk,"Try again after manual reset of 
signal?","YES","stEmpty","stEmpty","stEmpty","NO"; 
  IF fk = 1  
   THEN 
   MoveJ P_OuterRad,v_GEN,fine,Meas_Sphere2; 
   RETRY; 
   ELSE 
   Stop; 
  ENDIF 
 ENDIF 
    
ENDPROC 
 
 
LOCAL TRAP Flag_speed_change 
  
 VAR num Dist_diff; 
   
 Dist_diff:=v_AS.v_tcp*Itimer_frequency*Trigglevel/100;  !Set 
distance diff 
 !Dist_diff:=Trigglevel; 
  
 P1_supervision:=CRobT(\Tool:=Meas_Sphere2);  
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 IF Counter > Start_supervise 
  THEN 
  IF Distance(P2_supervision.trans, P1_supervision.trans) < 
Dist_diff 
   THEN 
    !TPReadFK repos, "Set DO 1", stEmpty, stEmpty, 
stEmpty, "Yes", "No"; 
    TPWrite "-----------------"; 
    TPWrite "Contact!!!!!!!!!!"; 
    SetDO Signal_DO, High; 
  ENDIF 
 ENDIF 
  
 TPWrite "Distance " \Num:=Distance(P2_supervision.trans, 
P1_supervision.trans); 
 TPWrite "Dist diff " \Num:=Dist_diff; 
 TPWrite "Counter " \Num:=Counter; 
! TPWrite "P1 " \Pos:=P1_supervision.trans; 
! TPWrite "P2 " \Pos:=P2_supervision.trans; 
 P2_supervision:=P1_supervision; 
 Counter:=Counter+1; 
  
 RETURN; 
ENDTRAP 
ENDMODULE 
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7.3 Linear_Least_squares_QR.mod 
 
MODULE Linear_Least_squares_QR 
 
!--------------- Variables ----------------- 
 
 
! Declares dimension of matrices 
LOCAL VAR num m; 
LOCAL VAR num n; 
LOCAL VAR num p; 
 
LOCAL VAR robtarget PointsXYZ{5}; 
 
! Declaration of matrices 
 
!LOCAL VAR num A_matrix{5,4}:=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,1,-
1,1]]; 
!LOCAL VAR num B_matrix{5,1}:=[[2],[1],[3],[1],[1]]; 
 
LOCAL VAR num 
V_matrix{100,4}:=[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0
,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0
,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0
,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0
,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0]]; 
LOCAL VAR num 
Q_matrix{100,4}:=[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0
,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0
,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0
,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0
,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0
],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0
,0]]; 



 
   
______________________________________________________________________________ 
 

______________________________________________________________________________ 
 
 Page 101 
  
   

LOCAL VAR num R_matrix{4,4}:=[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]; 
LOCAL VAR num QTB_matrix{4,1}; 
 
! Linear least square solution 
VAR num LLS_X{10}; 
 
!--------------- Procedures -------------------------- 
 
!PROC main() 
 
!LLS_QR A_matrix, B_matrix; 
!STOP; 
 
!ENDPROC 
 
! Main procedure for linear least square QR based on modified Gram Schmidt. xm 
defines amount of rows. xn defines amount of columns. 
PROC LLS_QR(VAR num xA_matrix{*,*}, VAR num xB_matrix{*,*}, num xm, num xn) 
  
 !Set dimensions for m 
 !m:=DIM(xA_matrix,1); 
 m:=xm; 
  
 !Set dimensions for n 
 !n:=DIM(xA_matrix,2); 
 n:=xn; 
  
 !Set dimensions for p 
 !p:=DIM(xB_matrix,2); 
 p:=1; 
  
 QR_MOD_GRAM_SCHMIDT xA_matrix, m, n; 
 Build_QTB_matrix Q_matrix, xB_matrix; 
 Back_solve R_matrix, QTB_matrix;  
  
 ECP_QR_RobT:=PointsXYZ{1}; 
 ECP_QR_RobT.trans:=ECP_QR_pos;  
  
ENDPROC 
 
 
! FIND Q AND R MATRICES BY MODIFIED GRAM-SCHMIDT (STABLE) 
LOCAL PROC QR_MOD_GRAM_SCHMIDT(num xA_matrix{*,*},num m, num n) 
 
 VAR num temp; 
 
 FOR index1 FROM 1 TO m DO 
  FOR index2 FROM 1 TO n DO 
   V_matrix{index1,index2}:=xA_matrix{index1,index2}; 
  ENDFOR 
 ENDFOR 
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 FOR index3 FROM 1 TO n DO 
   
  temp:=0; 
  FOR index4 FROM 1 TO m DO 
    
   temp:=temp+pow(V_matrix{index4,index3},2); 
    
  ENDFOR 
   
  R_matrix{index3,index3}:=sqrt(temp); 
   
  FOR index5 FROM 1 TO m DO 
    
  
 Q_matrix{index5,index3}:=V_matrix{index5,index3}/R_matrix{index3,index3}
; 
    
  ENDFOR 
   
  IF index3<n THEN 
    
   FOR index6 FROM index3+1 TO n DO 
   
    R_matrix{index3,index6}:=0; 
    FOR index7 FROM 1 TO m DO 
     !TPWrite "index3 " \Num:=index3; 
     !TPWrite "index6 " \Num:=index6; 
     !TPWrite "index7 " \Num:=index7; 
      
     !TPWrite "V_matrix " 
+NumToStr(index7,0)+","+NumToStr(index6,0)+" = " 
\Num:=V_matrix{index7,index6}; 
     
    
 R_matrix{index3,index6}:=R_matrix{index3,index6}+(Q_matrix{index7,index3
}*V_matrix{index7,index6}); 
    ENDFOR 
    !TPWrite "R_matrix " 
+NumToStr(index3,0)+","+NumToStr(index6,0)+" = " \Num:=temp; 
    !Stop; 
    
    FOR index8 FROM 1 TO m DO 
     temp:=0; 
       
     !TPWrite "R_matrix" 
+NumToStr(index3,0)+","+NumToStr(index6,0)+" = " 
\Num:=R_matrix{index3,index6}; 
     !TPWrite "Q_matrix" 
+NumToStr(index8,0)+","+NumToStr(index3,0)+" = " 
\Num:=Q_matrix{index8,index3}; 
    
 temp:=R_matrix{index3,index6}*Q_matrix{index8,index3}; 
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     !TPWrite "V_matrix före " 
+NumToStr(index8,0)+","+NumToStr(index6,0)+" = " 
\Num:=V_matrix{index8,index6}; 
     V_matrix{index8,index6}:= 
V_matrix{index8,index6}-temp; 
     !TPWrite "Minus " 
+NumToStr(index8,0)+","+NumToStr(index6,0)+" = " \Num:=temp; 
     !TPWrite "V_matrix efter " 
+NumToStr(index8,0)+","+NumToStr(index6,0)+" = " 
\Num:=V_matrix{index8,index6}; 
     !Stop; 
      
    ENDFOR 
   ENDFOR 
    
  ENDIF 
 ENDFOR  
 
  
 FOR index10 FROM 1 TO n DO 
  FOR index11 FROM 1 TO n DO 
   !TPWrite "R_matrix " 
+NumToStr(index10,0)+","+NumToStr(index11,0)+" = " 
\Num:=R_matrix{index10,index11}; 
  ENDFOR 
 ENDFOR 
 !Stop; 
 FOR index13 FROM 1 TO n DO 
  FOR index12 FROM 1 TO m DO 
   !TPWrite "Q_matrix " 
+NumToStr(index12,0)+","+NumToStr(index13,0)+" = " 
\Num:=Q_matrix{index12,index13}; 
  ENDFOR  
 ENDFOR 
 !Stop; 
ENDPROC 
 
 
LOCAL PROC Build_QTB_matrix(VAR num xQ_matrix{*,*}, VAR num xB_matrix{*,*}) 
  
 VAR num temp; 
 VAR num QT{100,100}; 
  
 !Transponate Q matrix 
 FOR i1 FROM 1 TO m DO 
  FOR i2 FROM 1 TO n DO 
   QT{i2,i1}:=xQ_matrix{i1,i2}; 
  ENDFOR 
 ENDFOR 
  
 !TPWrite "A_matrix m dim= " \Num:=m; 
 !TPWrite "A_matrix n dim= " \Num:=n; 
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 !Stop; 
  
 FOR index1 FROM 1 TO p DO 
  FOR index2 FROM 1 TO n DO 
   temp:=0; 
   FOR index3 FROM 1 TO m DO 
    
 temp:=temp+QT{index2,index3}*xB_matrix{index3,index1}; 
   ENDFOR 
   QTB_matrix{index2,index1}:=temp; 
  ENDFOR 
 ENDFOR 
  
ENDPROC 
 
 
! Back solve 
LOCAL PROC Back_solve(VAR num xUTR_matrix{*,*}, VAR num xB_vector{*,*}) 
  
 VAR string FilePath:="D:/Simulation"; 
 VAR iodev Pos_file; 
 VAR string ECP_X; 
 VAR string ECP_Y; 
 VAR string ECP_Z; 
  
  
 !VAR num m:=0; 
 !VAR num n:=0; 
  
 VAR num sum; 
 VAR num INVi2; 
  
 VAR num x{10}; 
  
 !m:=DIM(xUTR_matrix,1); 
 !n:=DIM(xUTR_matrix,2); 
  
 !TPWrite "m " \Num:=m; 
 !TPWrite "n " \Num:=n; 
 !Stop;  
  
  FOR k FROM 1 TO n-1 DO 
  !TPWrite "k " \Num:=k; 
  FOR i1 FROM k+1 TO n DO 
  ! TPWrite "i " \Num:=i1; 
    xb_vector{i1,1}:=xb_vector{i1,1}-
xUTR_matrix{i1,k}*xb_vector{i1,1}; 
   ENDFOR 
  ENDFOR 
  
 x{n}:=xb_vector{n,1}/xUTR_matrix{n,n}; 
 !TPWrite "x " \Num:=x{n}; 
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 !Stop; 
  
 FOR i2 FROM 1 TO n-1 DO 
   
  INVi2:=n-i2; 
 ! TPWrite "INVi2 " \Num:=INVi2; 
   
  sum:=xb_vector{INVi2,1}; 
   
  FOR j FROM INVi2 TO n DO 
   
   sum:=sum-xUTR_matrix{INVi2,j}*x{j}; 
   
  ENDFOR 
   
  x{INVi2}:=sum/xUTR_matrix{INVi2,INVi2}; 
   
 ENDFOR 
  
 FOR index FROM 1 TO n DO 
  LLS_X{index}:=x{index}; 
  !TPWrite "LLS_x:  " \Num:=LLS_X{index}; 
 ENDFOR 
  
 
  
! Open FilePath, Pos_file\Append;  
  
! Write Pos_file, ECP_X \NoNewLine; 
! Write Pos_file, ECP_Y \NoNewLine; 
! Write Pos_file, ECP_Z; 
! Close Pos_file; 
 
 !Stop; 
ENDPROC 
 
 
!--------------- End of procedures ----------------- 
ENDMODULE 
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7.4 Estimate_centre_of_sphere_QR_2.mod 
 
MODULE Estimate_centre_of_sphere_QR_2 
 
 
!--------------- Variables ----------------- 
 
! Estimated centre point  
 
VAR pos ECP_QR_pos; 
VAR robtarget ECP_QR_RobT; 
VAR num Radius; 
VAR num converg{4}; 
 
! Declares dimension of matrices 
LOCAL VAR num m; 
LOCAL VAR num n; 
LOCAL VAR num p; 
 
LOCAL VAR robtarget tPointsXYZ{5}; 
 
! Declaration of matrices 
LOCAL VAR num A_matrix{100,3}; 
!LOCAL VAR num A_matrix{4,3}:=[[9,0,26,3],[12,0,-7,],[0,4,4],[0,-3,-3]]; 
!LOCAL VAR num B_matrix{4,1}:=[[1],[2],[3],[5]]; 
LOCAL VAR num B_matrix{100,1}; 
 
LOCAL VAR num J_matrix{100,4}; 
LOCAL VAR num D_matrix{4,1}:=[[1],[2],[3],[5]]; 
 
LOCAL VAR num R0; 
LOCAL VAR num Di_vector{100,1}; 
 
PERS tooldata 
test_tool:=[TRUE,[[0,0,100],[1,0,0,0]],[0.3,[0,0,100],[1,0,0,0],0,0,0]]; 
 
 
 
!--------------- End of variables ----------------- 
 
!--------------- Functions ----------------- 
 
! Excecute calculation Xn(n+1)^2-Xn^2+Y(n+1)^2-Yn^2+Z(n+1)^2-Zn^2 
LOCAL FUNC num B_row(Pos P1, Pos P2) 
 RETURN Pow(P2.x,2)-Pow(P1.x,2)+Pow(P2.y,2)-Pow(P1.y,2)+Pow(P2.z,2)-
Pow(P1.z,2); 
ENDFUNC 
 
! Excecute calculation 2x(X(n+1)-Xn) 
LOCAL FUNC num A_row(num P1, num P2) 
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 RETURN 2*(P2-P1); 
ENDFUNC 
 
! Calculate determinant of 2x2 matrix A.  
LOCAL FUNC num DET2x2(num A11, num A22, num A21, num A12) 
 RETURN A11*A22-(A12*A21); 
ENDFUNC 
 
 
! Excecute calculation  
LOCAL FUNC num Calc_Ri(num Xi, num X0, num Yi, num Y0, num Zi, num Z0 ) 
 RETURN sqrt(pow(Xi-X0,2)+pow(Yi-Y0,2)+pow(Zi-Z0,2)); 
ENDFUNC 
 
!--------------- End of functions ----------------- 
 
PROC gMain() 
 
 VAR num Xi{4}; 
  
 !VAR num xA_matrix{5,4}:=[[1,0,0,0],[1.2,-0.9,0,0],[0,1,1,0],[0,1,-
1,1],[0,0,2,1]]; 
 !VAR num xB_matrix{5,1}:=[[1],[0],[2],[1.1],[3]]; 
  
 Xi{1}:=-1; 
 Xi{2}:=1; 
 Xi{3}:=5; 
 Xi{4}:=1; 
  
 
 tPointsXYZ{1}.trans:=[0,0,6]; 
  
 tPointsXYZ{2}.trans:=[0,0,2]; 
  
 tPointsXYZ{3}.trans:=[-0.1,2,4]; 
  
 tPointsXYZ{4}.trans:=[0.1,-2,4]; 
  
 tPointsXYZ{5}.trans:=[2.1,0,4]; 
   
 !ECOS_QR tPointsXYZ; 
  
 !LLS_QR xA_matrix, xB_matrix; 
  
 !Gauss_Newton tPointsXYZ, Xi, 3, 10; 
  
 Stop; 
ENDPROC 
 
!--------------- Procedures ----------------------- 
 
! Main procedure for Estimate centre of sphere  
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PROC ECOS_QR(VAR robtarget PointsXYZ{*}, num meas) 
   
 Build_A_matrix PointsXYZ, meas; 
 Build_B_matrix PointsXYZ, meas; 
! TPWrite "DIM(PointsXYZ,1):  " \Num:=DIM(PointsXYZ,1)-1; 
! TPWrite "DIM(A_matrix,2):  " \Num:=DIM(A_matrix,2); 
! Stop; 
  
 !Least square QR Ax=b , Rows , Columns 
 LLS_QR A_matrix, B_matrix, meas-1, DIM(A_matrix,2); 
  
! TPWrite "LLS_x:  " \Num:=LLS_X{1}; 
! TPWrite "LLS_y:  " \Num:=LLS_X{2}; 
! TPWrite "LLS_z:  " \Num:=LLS_X{3}; 
! TPWrite "LLS_r:  " \Num:=LLS_X{4}; 
 LLS_X{4}:=25; 
 !Stop; 
  
 !Gauss Newton 
 Gauss_Newton PointsXYZ, LLS_x, 3, meas; 
  
ENDPROC 
 
 
! Builds B Matrix, Set number of decimals by the varibel digits 
LOCAL PROC Build_B_matrix(VAR robtarget xPointsXYZ{*}, VAR num xMeas) 
 FOR index FROM 1 TO xMeas-1 DO 
  B_matrix{index,1}:=B_row(xPointsXYZ{index}.trans, 
xPointsXYZ{index+1}.trans);  
 ENDFOR 
  
 !FOR i1 FROM 1 TO m DO 
 ! FOR i2 FROM 1 TO 1 DO 
   !TPWrite "B_matrix " +NumToStr(i1,0)+","+NumToStr(i2,0)+" = 
" \Num:=B_matrix{i1,i2}; 
 ! ENDFOR 
 !ENDFOR 
 !Stop; 
   
ENDPROC 
 
 
! Builds A matrix, Set number of decimals by the varibel digits 
LOCAL PROC Build_A_matrix(VAR robtarget xPointsXYZ{*}, VAR num xMeas) 
 FOR index FROM 1 TO xMeas-1 DO 
  A_matrix{index,1}:=A_row(xPointsXYZ{index}.trans.x, 
xPointsXYZ{index+1}.trans.x); 
  A_matrix{index,2}:=A_row(xPointsXYZ{index}.trans.y, 
xPointsXYZ{index+1}.trans.y); 
  A_matrix{index,3}:=A_row(xPointsXYZ{index}.trans.z, 
xPointsXYZ{index+1}.trans.z); 
 ENDFOR 
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 !FOR i1 FROM 1 TO m DO 
 ! FOR i2 FROM 1 TO n DO 
  ! TPWrite "A_matrix " +NumToStr(i1,0)+","+NumToStr(i2,0)+" = " 
\Num:=A_matrix{i1,i2}; 
 ! ENDFOR 
 !ENDFOR 
 !Stop; 
 
ENDPROC 
 
 
 
 
!Build Jacobian matrix 
LOCAL PROC Build_J_Di(VAR robtarget xPointsXYZ{*},VAR num X0{*}, var num 
xMeas) 
 
 VAR num Xi; 
 VAR num Yi; 
 VAR num Zi; 
  
 FOR index FROM 1 TO xMeas DO 
   
  Xi:=xPointsXYZ{index}.trans.x; 
  Yi:=xPointsXYZ{index}.trans.y; 
  Zi:=xPointsXYZ{index}.trans.z; 
  
  ! Create Jacobian matrix 
  J_matrix{index,1}:=-(Xi-X0{1})/Calc_Ri( Xi, X0{1}, Yi, X0{2}, Zi, 
X0{3}); 
  ! TPWrite "J_matrix{index,1} = " \Num:=J_matrix{index,1}; 
  J_matrix{index,2}:=-(Yi-X0{2})/Calc_Ri( Xi, X0{1}, Yi, X0{2}, Zi, 
X0{3}); 
  ! TPWrite "J_matrix{index,2} = " \Num:=J_matrix{index,2}; 
  J_matrix{index,3}:=-(Zi-X0{3})/Calc_Ri( Xi, X0{1}, Yi, X0{2}, Zi, 
X0{3}); 
  ! TPWrite "J_matrix{index,3} = " \Num:=J_matrix{index,3}; 
  J_matrix{index,4}:=-1; 
  ! TPWrite "J_matrix{index,4} = " \Num:=J_matrix{index,4}; 
  !Stop; 
  ! Create -Di matrix 
  Di_vector{index,1}:=-((Calc_Ri( Xi, X0{1}, Yi, X0{2},Zi, X0{3})-
X0{4})); 
   
 ENDFOR  
  
ENDPROC 
 
 
! Gauss Newton 
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PROC Gauss_Newton(VAR robtarget xPointsXYZ{*}, VAR num xLLS_x{*}, num 
iterations, num xMeas) 
 
  
  VAR num X_old{4}; 
  VAR num X_new{4}; 
   
  ! Declare Ro startvalue 
  !R0:=sqrt((pow(xLLS_x{1},2)+pow(xLLS_x{2},2)+pow(xLLS_x{3},2)-
xLLS_x{4})); 
  !TPWrite "R0:  " \Num:=R0; 
  R0:=25; 
   
  ! Declare start values 
  X_new{1}:=xLLS_x{1}; 
  TPWrite "Start value X:  " \Num:=X_new{1};  
  X_new{2}:=xLLS_x{2}; 
  TPWrite "Start value Y:  " \Num:=X_new{2};  
  X_new{3}:=xLLS_x{3}; 
  TPWrite "Start value Z:  " \Num:=X_new{3};   
 
 X_new{4}:=Distance(xPointsXYZ{1}.trans,[xLLS_x{1},xLLS_x{2},xLLS_x{3}]); 
  TPWrite "Start value R:  " 
\Num:=Distance(xPointsXYZ{1}.trans,[xLLS_x{1},xLLS_x{2},xLLS_x{3}]);  
  
 
  FOR index FROM 1 TO iterations DO  
     
   ! Create Jacobian matrices J, Di 
   Build_J_Di xPointsXYZ, X_new, xMeas; 
    
   ! Conduct linear least square 
   LLS_QR J_matrix, Di_vector, xMeas, 4; 
   ! Update with new value guess 
    
   X_old{1}:=X_new{1}; 
   X_old{2}:=X_new{2}; 
   X_old{3}:=X_new{3}; 
   X_old{4}:=X_new{4}; 
       
   X_new{1}:=X_new{1}+LLS_X{1}; 
   X_new{2}:=X_new{2}+LLS_X{2}; 
   X_new{3}:=X_new{3}+LLS_X{3}; 
   X_new{4}:=X_new{4}+LLS_X{4}; 
    
   !TPWrite "Grad X = " \Num:=LLS_X{1}; 
   !TPWrite "Grad Y = " \Num:=LLS_X{2}; 
   !TPWrite "Grad Z = " \Num:=LLS_X{3}; 
   !TPWrite "Grad rad = " \Num:=LLS_X{4}; 
   !Stop; 
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   !TPWrite "ABS(X_new{1})-ABS(X_old{1}) = " 
\Num:=(ABS(X_new{1})-ABS(X_old{1})); 
   !TPWrite "ABS(X_new{2})-ABS(X_old{2}) = " 
\Num:=(ABS(X_new{2})-ABS(X_old{2})); 
   !TPWrite "ABS(X_new{3})-ABS(X_old{3}) = " 
\Num:=(ABS(X_new{3})-ABS(X_old{3})); 
   !TPWrite "ABS(X_new{4})-ABS(X_old{4}) = " 
\Num:=(ABS(X_new{4})-ABS(X_old{4})); 
    
  ENDFOR 
   
  TPWrite "Convergence X = " \Num:=LLS_X{1}; 
  IF ABS(LLS_X{1}) < 0.001 
   THEN 
    TPWrite "Covergence X OK"; 
   ELSE 
    TPWrite "Covergence error X"; 
    Stop; 
  ENDIF 
   
  TPWrite " Convergence Y = " \Num:=LLS_X{2}; 
  IF ABS(LLS_X{2}) < 0.001 
   THEN 
    TPWrite "Covergence Y OK"; 
   ELSE 
    TPWrite "Covergence error Y"; 
    Stop; 
  ENDIF 
   
  TPWrite " Convergence Z = " \Num:=LLS_X{3}; 
  IF ABS(LLS_X{3}) < 0.001 
   THEN 
    TPWrite "Covergence Z OK"; 
   ELSE 
    TPWrite "Covergence error Z"; 
    Stop; 
  ENDIF 
   
  TPWrite " Convergence Radius = " \Num:=LLS_X{4}; 
  IF ABS(LLS_X{4}) < 0.001 
   THEN 
    TPWrite "Covergence Radius OK"; 
   ELSE 
    TPWrite "Covergence error radius"; 
    Stop; 
  ENDIF 
   
  ECP_QR_pos.x:=X_new{1}; 
  ECP_QR_pos.y:=X_new{2}; 
  ECP_QR_pos.z:=X_new{3}; 
   
  ECP_QR_RobT.trans.x:=ECP_QR_pos.x; 
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  ECP_QR_RobT.trans.y:=ECP_QR_pos.y; 
  ECP_QR_RobT.trans.z:=ECP_QR_pos.z; 
   
  TPWrite "Final X = " \Num:=X_new{1}; 
  TPWrite "Final Y = " \Num:=X_new{2}; 
  TPWrite "Final Z = " \Num:=X_new{3}; 
  TPWrite "Final radius = " \Num:=X_new{4}; 
   
  Radius:=X_new{4}; 
  converg{1}:=LLS_X{1}; 
  converg{1}:=LLS_X{1}; 
  converg{1}:=LLS_X{1}; 
  converg{1}:=LLS_X{1}; 
   
ENDPROC 
 
!--------------- End of procedures ----------------- 
ENDMODULE 

 


