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Image Reconstruction in Microwave Tomography
Using a Dielectric Debye Model

Andreas Fhager, Member, IEEE, Mats Gustafsson, Member, IEEE, and Sven Nordebo,Senior Member, IEEE,

Abstract—In this paper quantitative dielectric image recon-
struction based on broadband microwave measurements is in-
vestigated. A time domain based algorithm is derived where
Debye model parameters are reconstructed in order to take into
account the strong dispersive behavior found in biological tissue.
The algorithm is tested with experimental and numerical data in
order to verify the algorithm and to investigate improvements in
the reconstructed image resulting from the improved description
of the dielectric properties of the tissue when using broadband
data. The comparison is made in relation to the more commonly
used conductivity model. For the evaluation two examples were
considered, the first was a lossy saline solution and the second
was less lossy tap water. Both liquids are strongly dispersive and
used as background medium in the imaging examples. The results
show that the Debye model algorithm is of most importance in the
tap water for a bandwidth of more than 1.5 GHz. Also the saline
solution exhibits a dispersive behavior but since the losses restrict
the useful bandwidth the Debye model is o�ess significance even
if somewhat larger and stronger artifacts can be seen in the
conductivity model reconstructions.

Index Terms —Finite-di�erence time-domain (FDTD) methods,
Debye model, dispersion, microwave imaging, microwave mea-
surements.

I. I NTRODUCTION

M ICROWAVE imaging has the potential of solving some
of the outstanding problems in today’s health care. A

large part of the global research e�ort in this area is focused
on breast cancer detection which has reached a state where
early clinical studies are being made and has been reported
in the literature, [1]–[4]. Other biomedical areas, such as
diagnostics of stroke and functional imaging of extremity soft
tissue are also investigated. Furthermore microwave applica-
tions are researched for various applications such as ground
surface mapping of the earth, detection of underground objects,
nondestructive testing of materials, detection of defects and
cracks in construction materials, etc.

A variety of di�erent approaches to microwave imaging are
under investigation and they can be divided into sub-classes in
many di�erent ways. For example single-frequency methods
can be distinguished from multi-frequency and ultra-wideband
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approaches. A di�erent way to classify the methods is to
separate microwave tomographic imaging from radar-based
imaging. In microwave tomography the goal is to quantita-
tively reconstruct the dielectric parameters in the region under
test whereas in a radar-based approach the goal is instead
to generate an image of the relative scattering strength. Both
these approaches are currently represented in clinical studies
and examples from the literature are found in [1], [2] for
the tomographic approach and in [3], [4] for the radar based
approach. In light of this discussion, this paper is an example
of a quantitative microwave tomography approach utilizing
ultra-wideband data.

When turning from the single frequency approach to multi-
frequency or ultra-wideband techniques, dispersive e�ects are
material properties o�ncreasing importance for the mod-
eling of electromagnetic wave propagation with increasing
bandwidth. In principle all biological tissue types exhibit a
dispersive pattern to some extent. It could for example be
noticed in the microwave region already in some of the
early dielectric measurements on healthy and malignant breast
tissue, [5], [6]. It can also be clearly seen in the systematic
characterization of human tissue published by Gabriel et al.
in [7], [8]. In a more recent study on samples obtained
from breast reduction and cancer surgery, primarily aiming
at determining the contrast between malignant and di�erent
types of healthy tissues, the dispersive behavior is also evident,
[9], [10]. It is clear that the widely used conductivity model,
where the electromagnetic properties are described in terms
of permittivity and conductivity, cannot be fitted to the data
over any larger bandwidth. Instead di�erent Cole-Cole and
Debye models have been proposed for healthy and malignant
breast tissues, [11]. Due to its computational efficiency the
Debye model is particularly well suited for use in the FDTD
computational scheme, [12].

The image reconstruction problem in microwave tomogra-
phy is a specific example of an inverse scattering problem
which is highly ill-posed and non-linear. To remedy the ill-
posedness some kind of regularization scheme is usually used,
such as the Tikhonov method. The regularization aims at
enforcing bounds or constraints on the reconstructed solution
and thus to reduce the number of degrees o�reedom in the
solution. It has been shown that the ill-posedness varies with
factors such as the number and location of observations, the
number o�requencies used, and the wavelength, [13]. In
electrical impedance tomography (EIT) it has been concluded
that the use of a dispersion model approach reduces the ill-
posedness when multi-frequency data is available, [14], and it
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can be anticipated that this will be the case also in microwave
tomography. Multi-frequency measurements with EIT has also
been used to estimate dispersive Cole parameter data for lung
edema detection, [15]. The dispersive tumor response was first
considered in [16] for a pulsed microwave confocal system for
breast cancer detection. In [17] the dispersive description of
the breast tissue has been studied and the effects on the electro-
magnetic pulse propagation have been quantified. The results
from this study on broad band applications indicated a need
to model the dispersive properties in the image reconstruction
procedure. This has also been made in some recently published
works, [18], [19]. In both these publications a dispersion model
has been adopted where the modeling parameters are estimated
based on multi-frequency data and the algorithms are such that
all frequencies are used simultaneously to form one image. In
[18] a Gauss-Newton type of algorithm has been used for the
optimization together with linear and logarithmic dispersion
model and the algorithm in [19] is based on the distorted Born
iterative method, [20] and a single pole Debye model. It is
however well established that the two optimization methods
are equivalent, [21], and the main difference between the two
methods is thus the use of different dispersion models.

The non-linear property of the reconstruction problem also
has to be considered in order to succeed with the reconstruc-
tion process without getting trapped in any local minimum and
ending up with a sub-optimal or even incorrect reconstruction.
One possibility to remedy the non-linearity, which is particu-
larly useful when the reconstruction domain contains several
objects with different sizes, is to utilize wideband spectral data.
In general, the non-linearity of the inverse scattering problem
is more significant with larger contrast, larger object size and
higher frequency, [22]. On the other hand, it is desirable to
use as high frequency content as possible to obtain a high
resolution in the final image. To overcome the non-linearity
while still benefiting from the improved resolution at higher
frequencies a frequency-hopping approach has been suggested,
[23]. It means that the image is first reconstructed with a
low spectral content and once converged this image is taken
as an initial guess to continued reconstruction at a higher
frequency. This procedure can be repeated a number of times
until the desired result have been achieved. Originally, this
was proposed for use with a few single frequencies but we
have implemented a time-domain version of this approach
where pulses with increasing spectral content are used, [24].
A similar improvement as for the frequency-hopping approach
can also be seen in the algorithms where several frequencies
are used simultaneously, for example in [18]. We are how-
ever unaware of any comparative studies between the two
approaches.

In conclusion, we see a number of potential benefits with a
dispersive material model when utilizing wideband data for the
imaging. In contrast to the previously published reconstruction
algorithms where frequency domain formulations were used
the purpose of this paper is to describe a reconstruction
algorithm based on a time domain formulation and the Debye
model. The performance of this algorithm is demonstrated with
numerical and experimental data. Using the same algorithm
we also investigate when a Debye model based algorithm can

be used to improve the accuracy in the reconstructed image.
The rest of the paper is organized as follows: In Section II
the gradients are derived and a general description of the
image reconstruction algorithm is given. Further in Section
III the experimental imaging prototype is described together
with the calibration procedure and algorithmic considerations
specific to the imaging situation. In Section IV numerical
and experimental data are used for imaging of an example
in a lossy saline solution and an example in ordinary tap
water, which in comparison to the saline solution is much
less lossy. The results are compared with a conductivity
model algorithm and related to the dispersive behavior of the
dielectric properties. Finally in Section V the conclusions are
presented.

II. DEBYE PARAMETER RECONSTRUCTION ALGORITHM

A. Derivation of Gradients

The underlying idea for image reconstruction is to compare
measured transient scattering data with a simulated counterpart
and to update the object in the simulation such that the
computed data converges to the measured. This algorithm
combines the FDTD solver for numerically modeling of the
antenna system and for simulating the wave propagation
between the antennas with an iterative conjugate gradient opti-
mization method to solve the image reconstruction problem. A
2D version of this algorithm utilizing a conductivity model has
been described in detail in the papers, [24], [25], and also a 3D
version has been presented in [26]. In the conductivity model
the dielectric properties are described by the permittivity, ε,
and the conductivity, σ. A slightly different version of the
same algorithm has also been described in [27], and in [28]–
[30] where reconstruction of the magnetic permeability also
has been considered. The derivation of the gradients used
for the Debye model parameter reconstruction is analogous
to the derivation of the gradients used for recovering the
conductivity model parameters. The derivation presented here
closely follows the one given in [31] but differs in the way
the electromagnetic sources are treated.

In the Debye model, the complex permittivity of the media
is described as

ε(x, ω) = ε∞(x) +
α(x)

1 + jωτ
+

σ(x)
jω

. (1)

Considering real breast tissue there is a variation in the
time constant τ for different tissue types, [11]. However the
variation is such that the corresponding change in the complex
permittivity is relatively small and probably of less importance
in a real imaging situation. To first order approximation τ can
most likely be assumed constant and it is therefore reasonable
to assume that τ is a priori known and that the parameters
to be reconstructed in the optimization process are ε∞(x),
α(x) and σ(x). The parameter α(x) can also be expressed
in terms of the permittivity at the static, εstatic(x), and at
the high frequency end, ε∞(x), of the frequency spectrum
as α(x) = εstatic(x) − ε∞(x). In this paper we also discuss
the conductivity model which could be obtained by setting
α = 0 in (1) and thus the material is only described with
the parameters ε∞(x) and σ(x). However to avoid confusion
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with the notation we denote the conductivity model separately
throughout the paper as

ε(x, ω) = εc(x) +
σc(x)

jω
. (2)

The time domain version of Maxwell’s equations where the
Debye model has been incorporated can now be expressed as

∇×H = ε∞∂tE + ∂tP + σE + J, (3)
∇×E = −µ0∂tH, (4)

αE = τ∂tP + P. (5)

Moreover we assume non-magnetic media such that B = µ0H
and that the initial conditions of the fields are H(t = 0) =
E(t = 0) = P(t = 0) = 0. The current J is used as the
source in modeling the feeding of the antennas. This is also
the complete set of equations to discretize and solve with the
FDTD method.

The starting point for the optimization algorithm is the
objective functional

F (α, ε∞, σ) =
∫ T

0

M∑
m=1

N∑
n=1

|Emn(α, ε∞, σ, t)−Em
mn(t)|2 dt.

(6)
In this equation the parameters α, ε∞ and σ are spatial dis-
tributions α(x), ε∞(x) and σ(x) but for improved readability
the spatial coordinates are suppressed. In the imaging process
the spatial distribution of these parameters are also subject
to optimization over the reconstruction domain in order to
minimize the functional, (6). Furthermore Emn(α, ε∞, σ, t) is
the simulated field and Em

mn(t) is the corresponding measured
data with antenna number m used as transmitter and antenna
n as receiver. M is the number of transmitters, N is the
number of receivers and T is the duration of the pulse. For
minimizing this objective functional we need gradients of
type ∂F/∂α, ∂F/∂ε∞ and ∂F/∂σ with respect to the Debye
model parameters in each grid point of interest. To obtain
these gradients a first order perturbation analysis is performed
where the parameters α, ε∞ and σ are perturbed an amount
δ in the directions α′, ε′∞ and σ′ respectively: α → α + δα′,
ε∞ → ε∞ + δε′∞ and σ → σ + δσ′. To first order the fields
are correspondingly perturbed δH′, δE′ and δP′ where the
perturbation satisfies the set of equations derived from the
original Maxwell’s equations in (3)–(5),

∇×H′ = −ε∞∂tE′ − ε′∞∂tE− σE′ − σ′E− ∂tP′,(7)
∇×E′ = −µ0∂tH′, (8)

α′E = τ∂tP′ + P′ − αE′. (9)

The initial conditions of the perturbed fields must also satisfy
H′(t = 0) = E′(t = 0) = P′(t = 0) = 0. The corresponding
expression of the perturbed objective functional in equation
(6) with respect to the perturbations δα′, δε′∞ and δσ′ is to
first order expressed as F → F +δF ′ and it is straight forward
to show

F ′(α, ε∞, σ) =

2
∫ T

0

M∑
m=1

N∑
n=1

[Emn(α, ε∞, σ, t)−Em
mn(t)] ·E′

mn dt. (10)

To obtain the gradients of the objective functional the adjoint
fields Ẽ, H̃, P̃ and J̃ are introduced, which satisfy the adjoint
Maxwell’s equations

∇× H̃ = ε∞∂tẼ + α∂tP̃− σẼ− J̃, (11)
∇× Ẽ = −µ0∂tH̃, (12)

Ẽ = −τ∂tP̃ + P̃. (13)

The idea to solve the inverse problem in the time-domain with
the help of adjoint fields was first introduced for a seismic
problem, [32]. The adjoint problem has to be solved backwards
in time from t = T to t = 0 with the initial conditions
H̃(t = T ) = Ẽ(t = T ) = P̃(t = T ) = J̃(t = T ) = 0. The ad-
joint problem is also associated with a forward problem where
antenna m was used as transmitter. In the adjoint problem the
corresponding receivers, n, instead become the transmitting
sources with the source term J̃ set to the difference between
the measured and the simulated fields as

J̃mn = σeqiv [Emn(α, ε∞, σ, t)−Em
mn(t)] . (14)

The constant σeqiv is an arbitrary parameter and used to make
the units equal. It is chosen to be σeqiv = 1 S/m. The adjoint
fields in equations (11)–(13) are then cross multiplied with the
perturbed equations (7)–(9) and integrated over time [0, T ] and
the volume of interest for the reconstruction, V . At last the
result is summed over all transmitters. For the source terms the
integration over space is equivalent to a sum over all receivers
and gives

F ′(α, ε∞, σ)

= 2
∫ T

0

M∑
m=1

N∑
n=1

[Emn(α, ε∞, σ, t)−Em
mn(t)] ·E′

mn dt

= 2
∫

V

ε′∞

M∑
m=1

∫ T

0

∂tE · Ẽdt dV

− 2
∫

V

α′
M∑

m=1

∫ T

0

E · ∂tP̃dt dV

+ 2
∫

V

σ′
M∑

m=1

∫ T

0

E · Ẽdt dV. (15)

With the inner product defined as 〈x, y〉 =
∫

V
x ·y dV and by

writing the right hand side of (15) as 〈Gε∞/〈ε∞〉, ε
′
∞/ 〈ε∞〉〉+

〈Gα/〈α〉, α
′/ 〈α〉〉 + 〈Gσ/〈σ〉, σ

′/ 〈σ〉〉 the gradients can be
identified as

Gε∞/〈ε∞〉 = 2 〈ε∞〉
M∑

m=1

∫ T

0

∂tE(x, t, m) · Ẽ(x, t,m) dt,

(16)

Gα/〈α〉 = −2 〈α〉
M∑

m=1

∫ T

0

E(x, t,m) · ∂tP̃(x, t,m) dt,

(17)

Gσ/〈σ〉 = 2 〈σ〉
M∑

m=1

∫ T

0

E(x, t, m) · Ẽ(x, t,m) dt. (18)
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Here we also introduce a gradient scaling in form of the
parameters 〈ε∞〉, 〈σ〉, and 〈α〉 to compensate for the imbal-
ance between the sensitivity of the parameters. Finally the
gradients in (16)–(18) are used with the conjugate-gradient
method together with a successive parabolic interpolation line
search to find the optimal step length, λi for each iteration i
and the Debye model parameters are updated according to

εi+1
∞ (x) = εi

∞(x)− λiGi
ε∞/〈ε∞〉(x), (19)

αi+1(x) = αi(x)− λiGi
α/〈α〉(x), (20)

σi+1(x) = σi(x)− λiGi
σ/〈σ〉(x). (21)

The reconstruction procedure is then iterated with the objective
functional as a measure to monitor the convergence and to
determine when the reconstruction is completed.

B. Parameter Scaling

A Fisher information based parameter scaling for mi-
crowave tomography is analyzed in [33], [34]. This generalizes
the parameter scaling in [28] to include a radial scaling that
improves the convergence in lossy media. In [33], [34], the
Fisher information matrix with respect to the background
medium was estimated using a two-dimensional analytical
model of the antenna system. The results show that the
sensitivity in the objective functional to a parameter update
gradually decreases closer to the center of the imaging domain.
As a consequence, the inversion is less sensitive to objects
closer to the center. This effect is particularly pronounced in
lossy media and needs to be compensated for to ensure optimal
reconstruction of the targets. Based on the diagonal terms of
the Fisher information matrix, a radial scaling of the gradients
is deduced in which the parameter sensitivity is equalized in
the entire imaging domain. The diagonal Fisher information
elements are calculated as,

Iθ(ρ) = C

∫
k4|Pθ(kc0)|2

∞∑
m=−∞

∞∑
n=−∞

|Jm(
√

εkρ)|2|Jn(
√

εkρ)|2

|H(2)
m (

√
εkb)|2|H(2)

n (
√

εkb)|2 dk, (22)

where C is a constant, ρ the radial coordinate, k = ω/c0

the wavenumber, kc the center wavenumber, Jm and H
(2)
m

are the Bessel function and the Hankel function of the sec-
ond kind, respectively, both of order m. Further ε is the
complex permittivity of the background from (1) and b is
the radius of the antenna array, θ represents the different
parameters subject to estimation and Pθ(ν) is defined as
Pε∞(ω) = 1, Pα(ω) = 1/(1+jωτ) and Pσ = 1/jω. According
to the Fisher information theory [33], [34], the integration
should also be weighted with the spectral density of the
electromagnetic pulse. In this paper, we approximate this with
integration over the FWHM bandwidth assuming a uniform
spectral density. It can be shown [33], [34] that to equalize
the parameter sensitivity, the gradients in (16)–(18) should be
scaled according to

〈θ〉 =
√

Iθ(ρ) for θ = {ε∞, α, σ}. (23)

C. FDTD Modeling

The numerical solution of Maxwell’s equations, (3)–(5) and
the adjoint problem in (11)–(13) is made with the FDTD
algorithm, [12]. Our experimental antenna system consists of
monopole antennas mounted above a ground plane. We use
a 3D FDTD model of the antenna system with the thin-
wire approximation to model the monopoles, [35], and the
resistive voltage source (RVS) with 50 Ω impedance to model
the feed at the transmitting, receiving and inactive antennas,
[36], [37]. The ground plane is modeled as a perfect electric
conductor, i.e. the corresponding tangential field components
in the FDTD grid are set to zero. In a 2D version of the
algorithm it is not possible to create a realistic antenna model
but the transmitter is modeled with a hard point source, in
which the field strength is prescribed at the source position.
At the receiver locations the field values are sampled directly
from the corresponding E-field component in the grid. The
FDTD grid is terminated with the CPML absorbing boundary
condition. This 2D configuration has also been used in this
paper for generating synthetic scattering data for the image
reconstruction examples.

III. EXPERIMENTAL SYSTEM

In the experimental prototype the measurement strategy
is to measure the multistatic scattering matrix at a large
number of frequencies and to use that data to generate a time-
domain pulse via an inverse Fourier transformation. In the
experimental system 20 monopole antennas, each of length
19.5 mm and diameter 0.8 mm, are arranged evenly distributed
on a circle with radius 100 mm. The circle of antennas is
centered on a square ground plane with side length 250 mm
mounted at the bottom of a tank, made of 1 cm thick perspex
sheets with inner measures 350 × 350 mm2. To measure the
multistatic matrix each antenna is operated as a transmitter as
well as a receiver. The microwave measurements are conducted
with network analyzer Agilent E8362 B PNA which is a
two port network analyzer. To fully control the experiment
a 2:32 switch multiplexer module, Cytec CXM/128-S-W, is
used to automatically connect and disconnect the different
combinations of antenna pairs to the network analyzer. Fig.
1 shows a photograph of the antenna array.

A. Calibration of Measured Data

As already mentioned the solution of the inverse problem
heavily relies on the comparison between the measured and
the simulated scattering data. In practice it is impossible to
create an antenna model without modeling errors resulting in
discrepancies between the measurements and the simulations
of the system. To account for this a calibration procedure of
the measured data is adopted such that

Emeasured
calibrated(ω) =

Smeasured
object (ω)

Smeasured
reference (ω)

Esimulated
reference (ω), (24)

where Smeasured
object is the measured reflection and transmission

coefficients of the test object, Smeasured
reference (ω) is a reference

measurement of an empty system, and Esimulated
reference (ω) is a cor-

responding reference simulation. Finally Emeasured
calibrated(ω) is the
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(a) The measurement system

(b) The antenna array

Fig. 1. (a) Photograph of the measurement system. (b) Closeup of the antenna
array placed inside a tank. The monopoles are seen mounted in a circle over
the ground plane. The entire antenna system is mounted inside a tank made
of perspex sheets.

calibrated data used for comparing with the FDTD simulations
in the reconstruction process. The calibration is made here
represented in frequency domain, for the simple reason that
the measurements are made in network analyzer. This also
means that Emeasured

calibrated(ω) is the Fourier transformation of the
simulated reference signal and an inverse transformation of the
result is needed before it is used for comparison in the time-
domain reconstruction algorithm. A more detailed description
of the calibration procedure can be found in [25].

B. Pseudo-3D Reconstruction

In our experimental prototype the antennas are positioned in
circular array on a plane as seen in Fig 1 (b). The possibility
to accurately reconstruct out of plane objects is thus very
limited: to do so it would be necessary also to make additional
measurements outside the antenna plane. To allow imaging
with the 3D algorithm of a test object with finite height we
implemented a heuristic pseudo-3D technique that assumed
constant properties of the test object as a function of height,
z, above the ground plane. This results in an algorithm similar
to [38] where the electromagnetic modeling is made in 3D
and the dielectric parameter are recovered on a 2D grid.
Considering imaging of a cylindrical target of finite height
placed on the ground plane of the prototype one realizes that
a 2D approximation of the cylinder is most accurate closest
to the ground plane. In our work we therefore computed the
gradient in the grid cell plane immediately above the ground

plane and copied it upwards to the height of the test object.
Consequently this method needs a priori information about the
height of the reconstructed target.

Since the reconstruction problem is both non-linear and ill-
posed the resulting image strongly depends on the adopted
regularization technique, the initialization of the reconstruc-
tion and also the spectral content of the pulse, [24]. In the
following examples we started the reconstruction procedure
from the background dielectric values inside the antenna array.
We also present reconstruction results using electromagnetic
pulses with a spectral content that produced the most accurate
reconstructed image.

IV. RESULTS

In this section we discuss the differences in the electro-
magnetic modeling for the Debye model and the conductivity
model. We also show reconstructed results originating from
experimental and numerical data in order to test the algorithm
and to investigate how the Debye model can improve the result
over the conductivity model. Two examples were examined in
this study, a lossy saline solution and less lossy ordinary tap
water. To simplify the notation in the rest of the paper relative
units will be used for ε∞, εstatic and εc while SI units will be
retained for σ.

A. Modeling and reconstructions in a saline solution from
experimental data

In this section we use experimental measured data to verify
and investigate the Debye model reconstruction algorithm.
For the simulation of the experimental antenna array in the
reconstruction algorithm we used a 3D FDTD model according
to section II-C and the reconstruction problem was solved
with the pseudo-3D version of the algorithm, section III-B.
A mixture of water and 0.39% salt was used to create both
a highly dispersive and a lossy background medium which
was filled in the measurement tank up to a level of 60 mm
above the ground plane. In Fig. 2 the real and the imaginary
parts of the measured dielectric properties have been plotted
together with fitted Debye and conductivity model data. The
least-squares fitted Debye model is described according to (1)
with parameters ε∞ = 38.1, εstatic = 78.0 (or α = 39.9),
τ = 16.7 ps, and σ = 0.76 S/m. The corresponding best
fit for the conductivity model was found to be εc = 77.6
and σc = 0.93 S/m. It can be seen that the Debye model
describes the measured data very accurately. Comparing with
the conductivity model the real part is also well described
but there is a clear deviation in the imaginary part. When
using the two different models in forward FDTD simulations
the difference in the dielectric models will give rise to a
corresponding difference in the computed scattering data. In
order to illustrate the corresponding electromagnetic propaga-
tion scattering parameters were computed for the two models
with the FDTD algorithm with grid size 1 mm.

In Fig. 3 the magnitude and phase of the transmission
coefficients, S21 and S91, have been plotted. Corresponding
measured data for the saline solution is also shown. With
the antennas numbered in consecutive order around the circle
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Fig. 2. This plot shows measured values of the dielectric properties for the
saline solution used an background medium. Together with this are also the
least-squares fitted Debye and conductivity models plotted.

S21 represents the transmission between two adjacent antennas
and S91 two opposing antennas. It can be seen that the
agreement between the measured data and the simulated data
is not perfect and also it varies between the two cases and
with frequency. The use of a calibration procedure is an
attempt to compensate for this discrepancy which is caused by
imperfections in the numerical modeling in comparison to the
actual prototype. We also note that for frequencies higher than
about 1.2 GHz the magnitude of the transmitted S91 signal
in the Debye model data goes down below -80 dB, a point
where it in practice becomes very challenging to measure
as the signals go below the noise floor of the measurement
system. This is also seen in the measured data. This also means
that only frequencies up to about 1.2 GHz could be used for
imaging.

In order to verify that the Debye parameter reconstruction
algorithm works as expected we immersed two plastic rods
with diameter 15 mm as targets in the lossy liquid, made the
scattering measurements and reconstructed the corresponding
images. One rod was placed in the center of the circular
antenna array and one in a position halfway between the
antennas and the center. Plastic is non-lossy with a relative
permittivity εc ≈ 2−3, expressed in terms of the conductivity
model, and consequently served as a high contrast target to
the background. For the reconstruction we used the pseudo-
3D formulation of the algorithm. To speed up the conver-
gence we performed five iterations on a coarse grid of size
(4 × 4 × 4) mm3. With the result from the coarse grid as
a starting point on a (2 × 2 × 2) mm3 grid 20 additional
iterations were performed. The center frequency was fc = 1.0
GHz and FWHM bandwidth 0.5 GHz. The reconstruction was
started from a homogeneous background medium and no
other regularization was used except that it is required that
all reconstructed parameters should have a lower dielectric
value than the background. In Fig. 4 the reconstructed results
are shown both for the Debye model algorithm as well as
for a reconstruction based on the conductivity model. In this
figure the color scales have been varied such that the correct
background values appear white. The dielectric background
parameters have been taken from the data in Fig. 2. Further,

(a) Magnitude of S21 and S91

(b) Phase of S21

(c) Phase of S91

Fig. 3. Magnitude and phase of the computed scattering data. (a) The
magnitude of transmission coefficients, S21 and S91, have been plotted. The
solid lines represent the result from the Debye model and the dotted lines the
conductivity model. (b) and (c) The phase of the transmission coefficients.

the reconstruction domain has been marked with the large
dashed circle and the original size and location of the targets
have been marked with circles in the images. In general the
targets have been reconstructed in the correct positions and
with appropriate sizes, however with dielectric properties that
are not quite reaching the expected values. Given the small
difference between the two background models within the
signal bandwidth it is also quite natural that the corresponding
reconstructions are very similar. However there is a slight ten-
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(a) Debye model, εstatic (b) Conductivity model, εc

(c) Debye model, σ in S/m (d) Conductivity model, σc in S/m

(e) Debye model, ε∞

Fig. 4. Reconstructions of the two plastic targets immersed in a lossy
liquid. The correct size and position of the targets are shown with the circles.
Reconstructions with both the Debye model and the conductivity models are
shown.

dency to more and larger artifacts in the reconstructions made
with the conductivity model algorithm which could possibly be
related to the larger errors caused by the conductivity model.

B. Reconstruction of targets in pure water

In the previous example the reconstruction was made over
only 500 MHz bandwidth since the losses of the saline
solution prevents the use of higher frequency components
than about 1.2GHz. In this section we present a 2D imaging
example based on numerically simulated data to investigate
how the dielectric modeling and the bandwidth affects the
reconstruction of targets immersed in ordinary tap water.
The comparison is made such that forward scattering data
is generated with the Debye model in order to simulate
measurements. Later the reconstruction is made using both the
Debye model algorithm and the conductivity model algorithm.
The properties of the targets were close to what was found
in [9] for healthy breast tissue rich in fibroconnective and/or
glandular tissue, εstatic = 39.8, ε∞ = 7.82, τ = 10.24 ps
and σ = 0.71 S/m. The parameters of water was determined
by fitting a Debye model to measured dielectric values and
found to be εstatic = 77.5, ε∞ = 4.55, σ = 0.0 S/m and
τ = 8.1 ps. For the targets the values were modified slightly
to εstatic = 40.0, ε∞ = 4.55 and τ = 8.1 ps, thus the values
of ε∞ and τ are equal to those of water and σ equal to
zero. This was made in order to reduce the complexity of

the reconstruction scenario. A plot of measured dielectric data
for water and the corresponding fitted Debye model is shown
in Fig. 5. In the same figure is plotted a conductivity model
which was determined from the real and imaginary parts of
the Debye model at 0.5 GHz. It was found to be εc = 77.5
and σc = 0.05 S/m.

Fig. 5. In this figure the dielectric properties of pure water has been
measured. The real and imaginary parts of a fitted Debye model have been
plotted together with the corresponding conductivity model corresponding to
the Debye model at 0.5 GHz.

A numerical 2D FDTD antenna model with 20 antennas
placed in a circle with radius 0.1 m was used. All antennas
were used consecutively as transmitters while the remaining
19 antennas acted as receivers. The transmitting antenna was
modeled as a hard source whereas the fields were directly
sampled at the receiving locations. The forward simulations, to
generate synthetic measurement data, were made on a FDTD
grid with grid size 1 mm and terminated with 7 layers of
CPML. In Fig. 6 the magnitude of the transmission coefficients
S21, S51 and S91 have been plotted. Furthermore the phase of
S21 has been plotted. Data was generated using a sinusoidal
signal with frequency fc = 3.0 GHz having a Gaussian
amplitude modulation with full width half maximum (FWHM)
bandwidth fbw = 3.0 GHz. For comparison scattering data
generated with a conductivity model was also plotted. In line
with what can be expected the results show good agreement
between the two cases around 0.5 GHz but the further away
from this frequency the more the results deviate from each
other. The effect is relatively more pronounced for the am-
plitude data than for the phase data, which can be expected
since the largest deviation in the conductivity model is seen
in the imaginary part. And furthermore the differences in the
scattering data between the two models are more significant
than the previous case in Fig. 3.

Using synthetic data from the Debye model simulation of
the empty system and a corresponding simulation with the
test object immersed in the background the image was recon-
structed using both the Debye and the conductivity model.
A circular area with radius Rrd = 90 mm centered in the
antenna array was reconstructed. The original target object
used in this example consisted of several circular objects, each
with different radius. For the Debye model the εstatic of the
original target has been plotted in Fig. 7 (a). Fig. 7(b) shows
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(a) Magnitude

(b) Phase

Fig. 6. Using both Debye model dielectric data and conductivity model data
corresponding to the frequency 0.5 GHz scattering data for the background
was computed. (a) The magnitude of a few selected transmission coefficients.
The solid lines represent the result from the Debye model and the dotted lines
the conductivity model. (b) The phase of the transmission coefficient S21.

the distribution of εc of the conductivity model deduced by
evaluating the real part of the Debye model at 0.5 GHz. Since
the sizes of the targets varied to such a large extent it was
necessary to use wideband data to resolve the small objects and
to beat the non-linearity of the reconstruction problem. There-
fore the time domain correspondence of frequency-hopping,
[24], has been utilized and the image has been reconstructed
in steps using electromagnetic pulses with increasing spectral
content. Five iterations were made with each of the center
frequencies fc = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 GHz and
FWHM bandwidths 0.5 GHz for fc = 0.5 GHz and 1.0
GHz for the other center frequencies. In the first iteration
at frequency fc = 0.5 GHz the reconstruction was started
from an empty background and when moving to a higher
frequency the result from the previous pulse was used as a
starting point for the forthcoming iterations. This also means
that the entire frequency span have contributed to the final
images which can be seen in Fig. 7 (k) and (l). Furthermore a
number of intermediate reconstructed images in the frequency
hopping process have been shown. Here it can be seen how
the fine details are refined when more frequency content
are added. But also it can be seen how artifacts appear

in the reconstructions with the conductivity model.To avoid
committing the inverse crime the image was reconstructed on
a 2 mm grid and Gaussian white noise was added resulting in a
signal to noise ratio of 40 dB. For the Debye model both εstatic
and ε∞ were reconstructed and for the conductivity model
both εc and σc were reconstructed. Reconstructed images of
εstatic and εc have been plotted in the left and right column
respectively. With this choice of complex dielectric parameters
the sensitivity in the objective functional with respect to the
imaginary part is much smaller than to the real part. The
reconstruction error is therefore larger for the parameters ε∞
and σc. This adds large additional errors in the reconstruction
that are not due to the dispersion modeling and therefore we
do not show these images here.

As a measure of the accuracy the relative squared errors in
each iteration of the reconstruction process have been plotted
in Fig. 8. The error was defined according to equation (25)
with the integration made over the reconstruction domain S
where r < Rrd.

δ =

∫
S
|εoriginal − εreconstructed|2 dS∫

S
|εoriginal − εbackground|2 dS

(25)

In this plot it can clearly be seen that the relative error resulting
from the conductivity model is always larger than for the
Debye model. However the difference is very small in the
first 20 iterations. In the following iterations, corresponding
to fc = 2.5 GHz and above, the error for the conductivity
model starts to increase over the Debye model error. This is
also evident in the reconstructed images in Fig. 7 where the
appearance of artifacts can be seen in the reconstruction with
the conductivity model. These growing artifacts with larger
frequency content can also be understood and related to data
in Fig. 5 where primarily the deviation between the imaginary
parts of the conductivity model and the Debye model intro-
duces an increasing error in the modeling of the background
medium. Another property of the frequency-hopping approach
can also be seen in the small objects which are not resolved
in the beginning of the reconstruction procedure with the low
spectral content. Even if it is difficult to see visually in the
reconstructed images at central frequencies larger than 2.5
GHz the relative error in the Debye model reconstruction
continues to decrease all the way up to the final iteration.
This is clearly not the case for the conductivity model where
the relative squared error instead increases after about 20
iterations, see Fig. 8.

V. CONCLUSION

In this paper we have described an algorithm for recon-
struction of dielectric Debye model parameters in microwave
tomography. This algorithm has many similarities with the
conductivity model algorithm that we have used previously,
but differs in the way the Debye model gradients and the
parameter scaling are computed. We have investigated imaging
of targets immersed in a lossy saline solution and ordinary
tap water. Both these liquids show strong dispersive behav-
iors and their dielectric properties are well described by a
Debye model. In the saline solution the losses restrict the



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 9

(a) Original εstatic(x, ω) (b) Original εc(x, ω)

(c) εstatic, fc = 0.5 GHz (d) εc, fc = 0.5 GHz

(e) εstatic, fc = 1.0 GHz (f) εc, fc = 1.0 GHz

(g) εstatic, fc = 2.0 GHz (h) εc, fc = 2.0 GHz

(i) εstatic, fc = 3.0 GHz (j) εc, fc = 3.0 GHz

(k) εstatic, fc = 4.0 GHz (l) εc, fc = 4.0 GHz

Fig. 7. Reconstructions of the numerical test object. In (a) and (b) the original
images have been depicted. In (k) and (l) the final reconstructions using the
time domain frequency-hopping approach for the Debye and conductivity
models respectively. Also shown are some intermediate steps during the
frequency-hopping to the final reconstructions. The center frequency used for
the different iterations are given below the image with the FWHM bandwidths
for fc = 0.5 GHz set to 0.5 GHz and 1.0 GHz for the other cases. The scale
is given in relative permittivity.

Fig. 8. The relative errors for the Debye model εstatic (solid line) and the
conductivity model ε∞ (dotted line) as a function of iteration number.

useful bandwidth for imaging purposes. The deviation from
a conductivity model is fairly small but still there is a slight
tendency to larger and more artifacts in the reconstructions
with the conductivity model. Using the less lossy tap water,
which is still strongly dispersive and best described by a Debye
model, the useful bandwidth that can be used for imaging is
significantly increased. In this case, we can also see a clear
advantage in using a reconstruction algorithm based on the
Debye model when using wide band data for the imaging.
Our results indicate that for a bandwidth of more than about
1.5−2.0 GHz the Debye model starts to give a real and notable
improvement in the results.
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