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METHODOLOGY ARTICLE Open Access

Zooming of states and parameters using a
lumping approach including back-translation
Mikael Sunnåker1, Henning Schmidt1, Mats Jirstrand1*, Gunnar Cedersund2,1,3,4*

Abstract

Background: Systems biology models tend to become large since biological systems often consist of complex
networks of interacting components, and since the models usually are developed to reflect various mechanistic
assumptions of those networks. Nevertheless, not all aspects of the model are equally interesting in a given setting,
and normally there are parts that can be reduced without affecting the relevant model performance. There are
many methods for model reduction, but few or none of them allow for a restoration of the details of the original
model after the simplified model has been simulated.

Results: We present a reduction method that allows for such a back-translation from the reduced to the original
model. The method is based on lumping of states, and includes a general and formal algorithm for both
determining appropriate lumps, and for calculating the analytical back-translation formulas. The lumping makes use
of efficient methods from graph-theory and �-decomposition and is derived and exemplified on two published
models for fluorescence emission in photosynthesis. The bigger of these models is reduced from 26 to 6 states,
with a negligible deviation from the reduced model simulations, both when comparing simulations in the states of
the reduced model and when comparing back-translated simulations in the states of the original model. The
method is developed in a linear setting, but we exemplify how the same concepts and approaches can be applied
to non-linear problems. Importantly, the method automatically provides a reduced model with back-translations.
Also, the method is implemented as a part of the systems biology toolbox for matlab, and the matlab scripts for
the examples in this paper are available in the supplementary material.

Conclusions: Our novel lumping methodology allows for both automatic reduction of states using lumping, and
for analytical retrieval of the original states and parameters without performing a new simulation. The two models
can thus be considered as two degrees of zooming of the same model. This is a conceptually new development
of model reduction approaches, which we think will stimulate much further research and will prove to be very
useful in future modelling projects.

Background
Model Reduction in Systems Biology
Systems biology is a rapidly growing discipline, which
often is predicted to end up transforming biology into a
field similar to physics and engineering - which inte-
grates mathematical modelling in almost all their stu-
dies. Systems biology models are typically based on the
mechanistic understanding of the systems. In other
words, the model formalises a mechanistic hypothesis,

which then is evaluated with respect to the available
data. The potential of using a model for such an evalua-
tion is that the evaluation can be made in a much more
systematic and objective fashion, since complex interac-
tion networks quickly become too complex to grasp
using classical biochemical reasoning.
However, many relevant hypotheses are too complex

to be analysed in a satisfactory manner, even when
using modelling. Even with the power of super-compu-
ters, parameter and state spaces quickly become too
large to be searched convincingly. Further, even though
experimental data are being produced in ever larger
amounts, most models are still highly over-parametrised
with respect to the available data. This means that many
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or all conclusions regarding a model will often be highly
uncertain, sometimes even arbitrarily uncertain[1].
Finally, even if a complex model could be validated
from a computational point-of-view, an intuitive under-
standing of what actually goes on in the model is often
easiest obtained from a simplified version of the model.
All of these are reasons why model reduction is a cen-
tral ingredient of systems biology modelling.
There are a number of existing approaches to model

reduction. One important approach seeks to reduce the
model as much as possible while preserving the input-
output relations. An important example of this approach
is balanced truncation, in which one derives transformed
ordered states: the first transformed state is both the
one affected the most by the inputs, and the state that
affects the outputs the most. Therefore the states can be
eliminated from the end with a minimal effect on the
input-output relationship. This method is straightfor-
ward for linear systems [2], and different nonlinear
extensions are available [3]. The main advantage of tak-
ing an input-output approach is that one optimally elim-
inates the unidentifiable and unobservable parts of the
model. This means that much of the ambiguity regard-
ing model predictions mentioned above is eliminated.
However, the drawback is that the interpretation of the
remaining states, i.e., those not considered as outputs,
usually is lost. Since systems biology primarily uses
modelling to evaluate mechanistic assumptions regard-
ing the internal wiring of a system (unlike in many tech-
nical applications which primarily uses modelling to
achieve a predictor) this is a major drawback. One way
to partly circumvent this problem is to start by sub-
dividing the model into modules, where only those
modules are reduced whose interior details are not of
interest to the particular situation [4,5].
Another approach focuses on the internal dynamics

irrespectively of the input-outputs, and such methods
are commonly applied to biochemical models. An
important sub-class is based on time-scale separation.
If the time-scales in a model are widely different, the
model can usually be simplified so that all aspects that
are not on the time-scale of interest are eliminated:
slow processes are replaced by constants, and fast pro-
cesses are assumed to be infinitely fast. The latter
means that the fast processes are projected down to
their corresponding steady-state behaviours, which can
be expressed as analytical (or numerical) relations
involving the other states. This is the basic principle
behind computational singular perturbation and mani-
fold reduction [6-9]. A problem is that the resulting
model is usually not very much less complex in most
aspects, since the fast variables still have to be calcu-
lated, and usually through complex (but algebraic)
expressions.

Yet another approach based on time-scale separation,
but which usually completely eliminates the non-dynamic
states, is known as lumping [8,10]. Lumping is a widely
adopted approach, since it can be done empirically [11],
and it is also the central approach in this paper. Shortly,
lumping is centred around the identification of pools of
variables that can be approximated by a single lumped
variable, where the internal distributions among the dif-
ferent sub-states are either irrelevant or assumed to
occur momentaneously. Lumping may be either proper
or improper [8]. Proper lumping refers to the case when
the pools are non-overlapping. Here it is important to
note that although most systems biology methods are
proper, since improper lumps are rarely biochemically
interpretable, there are important exceptions.
For instance, biochemically interpretable improper

lumps appear in some reductions works dealing with
the important problem of combinatorial complexity. In
these works the lumps are not fully specified signalling
intermediates, referred to as mesoscopic states [12-15].
In [15] these reductions were shown to be exact, i.e.,
they do not involve any approximations, and only make
use of structural properties of the model [8]. In this
paper we will deal with proper, in-exact lumping, which
primarily is developed for linear (e.g., mono-molecular)
systems. There are a number of related studies devoted
to such lumping, e.g. [16-19]. However, other basic
assumptions, or the basic algorithmic approach, are dif-
ferent compared to our setting, as e.g. [17], where a
total separation of time-scales is assumed. Some more
details regarding similarities and differences are pointed
out as we derive our results below.
Another important sub-class of methods based on the

dynamics are centred around a sensitivity analysis. Here
the model components that affect the dynamics the least
are eliminated. A model component could for instance
consist of a state variable [20], an interaction [21], or a
term in an expression [22,23]. Likewise, the considered
dynamics can range from some overall qualitative prop-
erty (like oscillations) [20], to the quantification of some
specific outputs [8] (this latter option thus borders to the
input-output approaches mentioned above). Sensitivity-
based reductions are intuitive and easy to understand
and implement, but they may have the problem of gener-
ating a model structure that cannot be interpreted bio-
chemically [20]. Also, like most methods it does not find
all kinds of reduction possibilities - for instance when
two terms could be merged into one - and should there-
fore be combined with other approaches.
However, independently of which reduction approach

one follows, there is one thing that would be very valu-
able, and which is rarely known in current versions of
the methods: back-translation. Back-translation is a con-
cept introduced in relation to core-box modelling
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[1,24,25], which is an approach that tries to combine the
strengths of input-output approaches (reduced uniden-
tifiability) with the strengths of dynamical reduction
methods (preserved interpretability). A core-box model
is the combination of a reduced core model, with
known identifiable properties, and a mechanistically
detailed model. The two models both describe the same
system and experimental data. The combination of the
models occurs through the back-translation, which is a
mapping of the states and parameters in one of the
models to the corresponding states and parameters in
the other model. This mapping allows the two models
to be considered as two versions of the same model, as
two degrees of zooming. This property is of course
extremely useful, since it allows the user to work with
(e.g. simulate) the degree of zooming that is most
appropriate for the current question, and then easily
and quickly convert that model, or a part of the model,
to another degree of zooming, if the question should
change (for instance if one would suddenly be interested
in the details of a specific sub-process). Nevertheless,
there are very few available methods that derive such
back-translation relations along with the reduction.
In this article we present a novel method for reduc-

tion that does provide such a back-translation. The
method is based on lumping, and we present both the
lumping step and the back-translation calculations. The
method is derived in a linear setting, and is applied to
two examples of previously published linear models for
processes involved in photosynthesis. We also illustrate
how the same concepts can be extended to a non-linear
setting through the reduction of a system of differential
equations for glucose transport. Finally, we discuss the
strengths and short-comings of both the linear and the
non-linear versions of our proposed methodology.

Ordinary differential equations
We will study models described by ordinary differential
equations (ODEs). Let the dynamic states be denoted x,
the parameters p, the inputs u, and the outputs y, where
x Î Rn and y Î Rl. Finally, let the the functional rela-
tions for the dynamics and the outputs be denoted f
and g, respectively. Then, the set of ODEs is given by

x f x p u ( , , ) (1a)

y g x p u ( , , ) (1b)

x x p(0)= 0( ) (1c)

Note that all these symbols are vectors, which is indi-
cated by the symbols being bold. Note also that x, u,
and y depend on the time, denoted by t, but that the

explicit time-dependence is dropped from the notation
except for in equation (1c). Note also that x0 may be
parametrised and hence is a function of p. Equation (1)
is referred to as a model structure, which is denoted ℳ.
For the theoretical developments, we will in this paper

primarily focus on the special case of linear ODEs. Then
the general nonlinear functional relationships f and g
can be replaced by matrices A, B, C, D of appropriate
dimensions as follows

x Ax Bu  (2a)

y Cx Du  (2b)

x x p( ) ( )0 0 (2c)

The usage of linear models in systems biology
The use of linear dynamic models in systems biology
may at first sight look as an overly simplified approach.
However, many biological and biochemical systems
operate close to a steady-state where a linearised version
of a detailed non-linear model well describes the
dynamics of the deviations of the model variables
around such a steady-state. How to linearise a nonlinear
model around a steady-state (or trajectory) is described
in many textbooks on basic systems theory, see for
example [26-28]. The use of linearisation of nonlinear
dynamic systems to obtain a linear model, with a limited
range of validity, which facilitates theoretical analysis is
a very common approach in engineering fields such as
systems and control theory, electrical circuit theory
(small signal analysis), rotating machinery and vibra-
tional analysis. It should also be noted that the field of
metabolic control analysis [29] is developed under the
assumption that the underlying pathway or network is
operating at steady-state.
The steady-state assumption is fulfilled in many meta-

bolic pathways or networks at normal operation. This is
because the fluxes through the network are often fairly
constant, since several control mechanisms provide
means to maintain a steady-state or homeostasis [29,30].
For oscillating systems it might also be possible to line-
arise submodels of the non-linear models [17]. Another
important situation where linearity is an appropriate
assumption is the case of probabilistic networks, where
a state corresponds to the probability of a specific mole-
cular conformation and a transition between states cor-
responds to a flux of probability [31]. This latter
situation is the case in the prototype examples studied
in this paper, where models for fluorescence emission in
photosynthesis have been used.
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There is also a relevant recent method for model
reduction described in [32], which converts a non-linear
system into an ensemble of (delayed) piecewise affine
systems. Here the steady-state assumption is no longer
critical, but the different (delayed) piecewise systems are
valid during different time intervals. That model reduc-
tion process could in some cases be taken one step
further by applying the lumping techniques described in
this paper to each (delayed) piecewise affine system in
the ensemble.
Finally, it should also be mentioned that there are sev-

eral recently published papers on yeast osmo-regulation,
where linear models and techniques have successfully
been applied to the study of mechanistic details, even
though the underlying system is operating far from
equilibrium [33,34]. Note also the discussion in [17],
concerning the possibility of applying the algorithms for
linear (mono-molecular) models to pseudo-linear
(pseudo-monomolecular) sub-models of nonlinear mod-
els, for which the internal reactions are functions of the
external variables.

Graph theory
The method developed below will make frequent use
of concepts and results from graph theory. Since these
might not be common knowledge for the average sys-
tems biology reader, we here give a short introduction.
A graph consists of nodes, which usually are repre-
sented as dots, and edges, which connect some of the
nodes. If the edges have a direction, we speak of a
directed graph, or a digraph. The indegree and outde-
gree of a node in a digraph is the number of edges
leading to and from the node, respectively. A directed
graph is strongly connected if there is a path of edges
leading from each node to each other node. A sub-
graph is a sub-set of nodes and edges to the original
graph, where only edges between nodes appearing in
the original graph may appear in the sub-graph. If a
directed graph is not strongly connected, there is
always at least one sub-graph that is strongly con-
nected (possibly consisting of a single node). Such a
sub-graph that is as large as possible, a maximal
strongly connected subdigraph, is referred to as a
strong component (SC). Identification of SCs is a part
of the method developed below. There are general and
automatic methods for identification of SCs [35], but
for the cases in this paper the SCs can be found by
mere inspection of the graph. A node with a nonzero
indegree, but a zero outdegree, is referred to as a sink
(or target). A strong component from which there are
no edges leading to nodes outside those of the strong
component, but edges leading to the strong compo-
nent, will here be referred to as a sink cluster. We will
refer to a SC that is not a sink cluster as non-sink SC.

Formally a graph G = (N, E) is a mathematical struc-
ture that consists of two sets N and E, where the ele-
ments of N and E are the nodes and edges of the
graph, respectively, and E consists of 2-element subsets
of N.
Let us now illustrate the graph-theoretical concepts

above. In the directed graph G1 = (N1, E1),

there are five nodes and five edges, so that N1 = {S1, S2,
S3, S4, S5} and E1 = {a, b, c, d, e}. The sub-graph
G N Es s s

1 1 1 ( , ) ,

where N s
1 = {S2, S3, S5} and E s

1 = {b, d, e}, is strongly
connected, since there is a path from each node to each
other node. This graph is also a maximal strongly con-
nected sub-graph, or a strong component, since any lar-
ger sub-graph would not be strongly connected. Node
S4 has a zero outdegree and non-zero indegree, which
makes it a sink. Now consider graph G2 = (N2, E2),

which has the same structure as graph G1 apart from
the addition of an edge f, which leads from node S4 to
node S3. The sub-graph G N Es s s

2 2 2
1 1 1 ( , ) ,

where N s
2

1 = {S2, S3, S5} and E s
2

1 = {b, d, e}, is strongly
connected but not a strong component. This is because
a larger sub-graph in which node S4 and edges c and f
are included is also strongly connected. Note that node
S4 in G2 has a non-zero outdegree and is for this reason
not a sink. The sub-graph G N Es s s

2 2 2
2 2 2 ( , ) ,
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where N s
2

2 = {S2, S3, S4, S5} and E s
2

2 = {b, c, d, e, f}, is
a strong component. Since there are no edges leading
from the strong component to other nodes (S1), but
only in the opposite direction, G s

2
2 also constitutes a

sink cluster as defined above.
In this paper, graphs are used for illustration of bio-

chemical systems, where the nodes represent the
involved biochemical entities and the edges represent
transformations between these entities such as reactions,
translocations, or conformational changes.

Methods
Initial Observations
We will in this section make some initial observations,
which form the conceptual basis for the model reduc-
tion approach presented in this paper.
Consider two linear model structures ℳg and ℳc

where one of the states in ℳc corresponds to a group
of states in ℳg. We can think ofℳc as a reduction of
ℳg in which the states of the pool have been lumped.
For example let the graph G1 above represent a model

structure g
G1 . If the states corresponding to S2, S3

and S5 are lumped we get the reduced model structure
c

G1 , which can be represented by

      S S Sa
L

c
1 4

where S1 and S4 have the same interpretation as S1
and S4 in G1, respectively, and where SL corresponds to
the lumped state.
In general, let the states in the pool in ℳg be denoted

x1 to xn and let the corresponding lumped state in ℳc

be denoted xL . Let the reaction rate from a state xq to
a state xp be denoted vpq so that

v k x p n q npq pq q  , , , , ,1 1  and (3)

where kpq is a kinetic parameter. In ℳc the reaction rate
from xL to a state external to the pool xj is denoted
v jL and is given by

   v k xjL jL L (4)

Reaction rate v jL corresponds to the sum of all reac-
tion rates in ℳg from any of the pooled states to state
xj, which is denoted vj, and is given by

v k xj ji i

i

n





1

(5)

Note that if there is no reaction between some state xi
in the pool and the state xj, kji is equal to zero. Since vj
and v jL have the same interpretation in the two model
structures, we can set them equal and solve for one of
the parameters, e.g., k jL

        


 
 v v k x k x k k

xi
xL

jL j jL L ji i

i

n

jL ji

i

n

1 1

(6)

Now, note that Eq. (6) gives a translation between
parameters of the original and the reduced model struc-
ture. The translation requires the fraction of each state
variable of the pool, xi, to the lumped state variable, xL ,
to be known. Such fractions are therefore useful auxili-
aries to derive for reduction of models by lumping.
Define the fraction parameters hi as

 i
xi
xL




(7)

so that Eq. (6) takes the form

 

k kjL ji i

i

n


1

(8)

Note that in general the fraction parameters are time-
varying. However, internal equilibrium can be assumed for
a sub-system of states with fast reactions. This is justified
by terms on the right hand side of Eq. (2a) that are large
enough to neglect the derivative term on the left hand
side. The sub-system is then said to be in quasi-steady-
state (QSS). Variables in such a sub-system will show a
high correlation in QSS, leading to approximately time-
invariant fraction parameters. By definition from Eq. (7)
the states in ℳg that are lumped have a clear interpreta-
tion in the reduced model structure, ℳc, given by

x xi i L  (9)

i.e., each of the lumped variables corresponds to a given
fraction of the lump xL .
In summary, the basic observation is that the relation

between the states in the original and the reduced
model is constant over time, and is given analytically by
Eq. (9). This is possible because of the basic assumption
behind lumping: that the states within the lump reaches
internal equilibrium momentaneously.
Example 1. To illustrate the ideas above, let us con-

sider the six-states model depicted below.
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This model is used to predict the observed behaviour of
fluorescence emission in photosynthesis [31], which is
characterised by a flux of probability between the states.
To translate the figure above to a model structure in the
form of (2), all rates are assumed to be given by expres-
sions proportional to the probabilities of the states they
emanate from, which would correspond to mass action
kinetics for a regular biochemical reaction network. This
makes the resulting model structure linear. Let the
model structure be denoted g

* , with states x1to x6,
where the initial condition for state x2is set to 1 and for
the other states to 0. The values of the kinetic para-
meters in [31]are k12 = 6.72, k13 = 6.72, k32 = 1920, k23
= 2500, k43 = 50000, k34 = 50000, k54 = 25000, k45 =
6700, k65 = 480 and k56 = 240. Since the order of magni-
tude of the kinetic parameters are k32, k23, k43, k34, k54,
k45, k65, k32 >> 1 s-1 and k12, k13 ≈ 1 s-1, the reactions
between states x2 to x6 are all reversible and fast com-
pared to a time-scale of seconds, whereas the reactions
to state x1 operate on this time scale. The equation for
the output, y, is

y k x k x 12 2 13 3 (10)

By lumping states x2 to x6 in g
* into one state xL

     x x x x x xL 2 3 4 5 6 (11)

we obtain the reduced model structure c
* as shown

below.

   x xL
k L1

1

Note that x x1 1  and that xL corresponds to the sum
of states x2 to x6. All probability is initially assigned to
state x2, which gives the following equations for the
reduced model.





 











 

 
  









x

x

x

k x

k xL

L L

L L

1 1

1
(12)

   y k xL L1 (13)

 








x ( )0

0

1
(14)

The translation between the reduced and original
parameters are given by Eq. (8)

       k x k x k x k k kL L L1 12 2 13 3 1 12 2 13 3  (15)

where 2
2 

x
xL

and 3
3 

x
xL

so that x xL2 2  and

x xL3 3  . However, we still lack analytical formulas

for the fraction parameters h (which can be expressed as
a function of the parameters alone). We also lack an
automatic method for conducting the model reduction.
These two things will be derived in the following sections.

Lumping of States
We will now generalise the above observations to a con-
crete methodology, with the goal that it should be useful
in practice. In particular, the method should
A Automatically identify lumps in a model
B Deliver analytical formulas for back-translation
In this section we focus on step A, which we will sub-

divide in several sub-steps, and in the next section we
turn to the calculation of back-translation formulas.
A basic criteria for lumping a group of states is that

the reactions between states in the group occur on a
much faster time-scale than that of interest to the mod-
eller. A group of states that are (weakly) connected by
such fast reactions will here be referred to as a directed
graph of fast reactions (DGFR). To identify the non-con-
nected DGFRs of a linear model structure, ℳg, we first
rewrite Eq. (2a) on the form

x A p A p x Bu  ( ( ) ( ))f f s s (16)

where the kinetic parameters of pf are those of p that
are much larger than the inverse of the time-scale of
interest, and dim(pf) + dim(ps) = dim(p), where dim(z)
gives the dimension of a vector z. The method of
�-decomposition [36] can then be applied by permuting
Af into block diagonal form. The blocks of non-zero ele-
ments can be interpreted as corresponding to the var-
ious non-connected DGFRs of the model. For example,
if the reactions corresponding to edges b, d, and e in
graph G1 above are large and the other reactions slow,
the matrix Af for the corresponding model structure can
be permuted into the block diagonal form. This is done
by exchanging the rows and columns for the states cor-
responding to S4 and S5, so that the permuted matrix
A f takes the form
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A f

a

a a a

a a a

a a a

a













11

22 23 24

32 33 34

42 43 44

55

0 0 0 0

0 0

0 0

0 0

0 0 0 0












(17)

so we have identified one DGFR consisting of three
states and two states (corresponding to S1 and S4) that
are not connected to other states by fast reactions. Note
that some of the block elements in Eq. (17) are equal to
zero if the reactions between the corresponding states
are missing, and that Eq. (17) is only used to illustrate
the matrix form in principle.
To find a permutation for the purpose of identifying

DGFRs we can construct a matrix M in which each ele-
ment, Mij, is assigned a value 1 if Afij or Afji are non-
zero and 0 otherwise. The total connectivity matrix Mc

M Mc
i

i

n





1

(18)

then reveals if there is a path between each two states.
Note that equation (18) contains both multiplications of
the matrix M with itself, and summations of such pro-
ducts. The states xi and xj are connected if and only if
Mcij ≠ 0. Using the connectivity matrix it is thus
straightforward to determine the permutation and the
independent blocks of A f .
These independent blocks, or DGFRs, determined by

the �-decomposition must be analysed further, before
useful lumps can be identified. The reason for this is
illustrated by the following digraph

where ks ≈ 1s-1 and kf ≫ 1s-1. This digraph could have
been generated as a DGFR from an is �-decomposition,
even though ks is slow. The reason for this is that there
is a fast reaction from state x2 to x1. The consequence
of this slow reaction in the DGFR is that we cannot
assume QSS for this DGFR directly, since this would
imply that inputs to states x1 and x2 would instantly end
up in x3 (since x3 is a sink).
This further analysis of the DGFRs starts with the

characterisation of strong components (SCs) in each
DGFR. Recall that an SC is a maximal strongly con-
nected sub-digraph in which each node can be reached
from each other node. Note that there is at least one SC
(possibly including only one or all states) that acts as a
sink cluster, meaning that the corresponding states will

be assigned a non-zero value in QSS. Note that if there
is a path of fast reactions from a non-sink SC to a sink
cluster, but no path in the opposite direction, the states
of the non-sink SC will have little effect on the overall
model dynamics. Unless the modeller has a particular
interest in these non-sink SC states, e.g., if they are
important for the observation function, the non-sink SC
and the sink cluster can be lumped. The states of the
non-sink SC will then be assigned a zero value at all
times in the back-translation.
It is important that there is only one sink cluster

within each pool of states that are lumped, since the
dynamics on the time-scale of interest might otherwise
affect the fraction parameters. If there is a path of fast
reactions from a non-sink SC to more than one sink
cluster, the rule of thumb is to avoid lumping the non-
sink SC to any of the sink clusters. However, if there is
a path of slow reactions from only one of the sink clus-
ters to the non-sink SC, the corresponding states can be
lumped. Finally, we also identify which states are slow, i.
e., can be treated as constant at the time scale of inter-
est. A simple criterion for identification of such states in
linear models is that a state xi is slow if max(kji) << � ∀
j and max(kji) << � ∀ j. This statement can formally be
connected to the eigenvalues of the system matrix
through the Gershgorin circle theorem, see for example
[37]. If there is a union of k Gershgorin discs corre-
sponding to “small” diagonal elements with “small” row
and column elements and this union is disjoint from the
other Gershgorin discs, the corresponding states are
slow. Alternatively, we could also check if the state
remains approximately constant at a given time scale, in
a simulation of the original model. Note that in the case
of oscillating systems, a more suitable method is the
method of averaging [17]. Below we summarise the
most important steps in the identification of a states
lumping scheme.
A1 Use �-decomposition to identify non-connected

digraphs of fast reactions (DGFRs).
A2 Identify the strong components (SCs) in each of

the DGFRs.
A3 Classify the SCs as sink clusters or non-sink SCs.
A4 Check if the non-sink SCs can be lumped with any

of the sink clusters.
A5 Identify slow states in the reduced model.
These steps make up a lumping scheme for the state

variables.
Example 2. For the six-states photosynthesis model,

�-decomposition gives one DGFR consisting of states x2 to
x6(step A1). These states are all interconnected with fast
reactions, and thus constitute a SC (step A2). Since there
are no fast reactions to states outside the SC, it is classi-
fied as a sink cluster (step A3). There are no non-sink
SCs in the DGFR and we do not need to consider the
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additional lumping of non-sink SCs (step A4), and there
are no slow states in the reduced model (step A5). Hav-
ing followed the steps 1-4 above, we have thus identified
a suitable lump consisting of states x2to x6, which in the
lumped model will correspond to the state xL .

Fraction Parameters
We now turn to the problem B above: deriving back-
translation formulas. This means that we are seeking
analytical expressions for the fraction parameters h in
Eqs. (8) and (9). The derivation presented here relies on
that QSS can be assumed for each group of lumped
states, which is ensured by the work flow in the pre-
vious section.
Consider a sub-model of states to be lumped, with the

corresponding system of differential equations

x A x B ul l l l l  (19)

x xl l( )0 0 (20)

where dim(xl) = m > 1 and ul are the inputs to the
lumped states. Recall that ul are slow compared to the
dynamics within the lump, since we assume QSS. Using
the notation qss for quasi-steady-state, this assumption
gives

A x B u x A B ul l
qss

l l l
qss

l l l     0 1 (21)

so that

 li
xli
xlL

xli
qss

xli
qss

i
m






 1

(22)

where hli is the fraction parameter for the i:th lumped
state variable.
Eq. (21) requires Al to be invertible, which is not always

the case. Al is not invertible in the absence of output
reactions, i.e., with no reactions vij, where xj is in the
lump but xi is not. The reason for this is that the
dynamics given by Al then introduces an apparent con-
served moiety: that all the states in the lump sum up to
xL . This is a true conserved moiety if there are also no

inputs, since then xL is constant over time, and the only
thing that can happen within the lump is re-distribution.
With such a conserved moiety one of the rows of A can
be expressed as a linear combination of the others, i.e., Al

is not invertible. It should be noted that also in the situa-
tion of zero inputs u but with outputs, the matrix Al will
have the same problem (since the inputs are filtered
through the matrix B), and thus non-invertible.

Fortunately, also in the situation of non-invertible A,
our method can be applied. Since the non-invertibility is
due to the presence of a conserved moiety, there is an
additional relation that can be used: the one describing
the moiety.

 

x xlL li

qss

i

m

1

(23)

Note that there can only be one conserved moiety in a
given connected linear system. Equation (23) can be
used to replace one of the rows in the matrix equation
(21). Replacing the last row in Eq. (21) with Eq. (23)
gives

x A B ul
qss

l l l    1 (24)

Where




 




A l

l l m

l m l m m

A A

A A


















 

, , , ,

, , , ,

1 1 1

1 1 1

1 1

(25)




 




B l

l l m

l m l m m

B B

B B























  

, , , ,

, , , ,

1 1 1 1

1 1 1 1

0

0

0 0 1


(26)

 u l l l m lL
Tu u x [ ], ,1 1 (27)

The fraction parameters can in this case be obtained
by substitution of x l

qss from Eq. (24) into Eq. (22).
Note that if Eqs. (24)-(27) are used, x l

qss is a function
of the lumped state variable xlL . However, xlL appears
linearly in each entry of x l

qss and therefore disappears
in the division in Eq. (22). So the fraction parameters
are independent of xlL , which is typically varying over
time. Hence the fraction parameters are time-invariant,
just as we want. This should be compared with Eq. 22
och Eq. 23 in [17] and the recipe proposed by Clarke
[38].
The quasi-steady-state equation, Eq. (24), can be

solved explicitly since the solution only requires the
inverse of the non-singular matrix A l and the multipli-
cation with the matrix Bl and a vector ul . Note that
these matrices and vectors are functions independent of
the model states. The use of symbolic tools are advanta-
geous, since analytical formulas of the fraction para-
meters can be obtained. The inverse of a matrix can be
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computed with a number of symbolic software packages,
such as Maple (also used by the Symbolic Math Toolbox
for Matlab until version 2009a) or Mathematica. We
have used the symbolic toolbox for Matlab in our exam-
ples with a good result for all matrices tested. However,
since fraction parameters are time invariant for linear
models, if we are only interested in the numerical
values, we can also substitute the values of the para-
meters in the matrix A . Matlab provides very efficient
algorithms for matrix inversion of numerical matrices,
based on the Fortran package LAPACK. This makes the
algorithm much faster than for symbolical solution of
the QSS equations.
The complexity of solving the QSS equations boils

down to the problem of symbolical inversion of a
matrix. For all our test cases the time for symbolical
matrix inversion was rather short (the total model
reduction program time was less than 45 s on a 2.19
GHz PC). In [17] the assumption of a multi-scale nature
of the model was exploited to reduce the number of
parameters. A similar approach may be used for some
of the parameters also without the strong assumption
that all parameter values are clearly separated. Also, in
[17] it was suggested to choose the dominant terms in
the solutions as functions (monomials) of the para-
meters, which again relies on separated time scales in
the model.
Example 3. To illustrate the ideas of this section we

again consider the six states model for fluorescence emis-
sion inphotosynthesis. We have already identified states
x2-x6as a suitable states to be lumped. Since there are
no inputs to states x2 to x6, Eqs. (24)-(27)are used to
compute the fraction parameters. The matrix A l takes
the form

A l

k k

k k k k

k k k k

k k




 

 


32 23

32 23 43 34

43 34 54 45

54

0 0 0

0 0

0 0

0 0

( )

( )

( 445 65 56

1 1 1 1 1

























k k)
(28)

Note that we have approximated

k and k12 130 0  . (29)

This is justified since these two parameters are much
smaller than the others, and is done because it gives
much simpler expressions for the fraction parameters
derived below. The assumption (29) is however not neces-
sary, and is not a part of the method per se, and it could
be omitted with the only change that the approximation
would be a little better, and that the expressions would
be more complicated. B l and u l are given by Eqs. (26)
and (27) as

B l
T [ ]0 0 0 0 1 (30)

u l lLx  (31)

The vector x l
qss is obtained from Eq. (24) and the frac-

tion parameters from Eq. 22, so that

x A B ul
qss

l l l

l

l

l

l

l

lLx  























  1

2

3

4

5

6







(32)

The analytical expressions for the fraction parameters
are determined by analytical inversion of A, which gives









l

l

l

l

l

k k k k

k k k k
2

3

4

5

6

23 56 45 34

32 56 45 34






















kk k k k

k k k k

k k k k

43 32 56 45

32 54 43 56

32 54 65 43











































(33)

where

    
 
k k k k k k k k k k k k

k k k k k
56 45 34 23 56 45 34 32 56 45 43 32

32 56 54 43 3



22 54 65 43k k k
(34)

Note that approximate trajectories for the states of
g

* can be obtained from Eqs. (9), (23) and (33), if the
solution to the model equations of c

* is available. The
state trajectories resulting from back-translation and the
output function are compared to those obtained by simu-
lation of g

* in Figure 1(a)and 1(b), respectively. As can
be seen the disagreement is negligible at the time-scale of
interest. This high agreement validates the assumption
(29), but, above all, it validates our reduction method.

Implementation
The method has been implemented in matlab and is
based on the systems biology toolbox, which is a freely
available and widely used matlab toolbox (http://sbtool-
box.org, [39]). The Additional files 1, 2, 3 and 4 contain
scripts for all the examples in this paper. The provided
implementation is script-based, user-friendly and easily
modified, and provides automatically reduced models
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Figure 1 Comparison of back-translated state trajectories from the reduced model and the corresponding output function to those of
the original model.
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from any correctly entered model to which the theory
applies. The functionality will be included in the toolbox
once the paper has been published.

Results
The Model
We will now demonstrate the performance of the
method based on lumping on a larger model for fluores-
cence emission in photosynthesis. This will also exem-
plify the shortcomings of a purely input-output based
reduction method like balanced truncation in a systems
biology context. The chosen model was originally pub-
lished in [31,40], and it is based on mechanistic under-
standing of the corresponding biochemical system. The
original model consists of the 52 states, but they are
divided in two identical disjoint groups, and hence only
one of these groups needs to be considered. The studied
system therefore consists of 26 state variables, corre-
sponding to 26 different configuration states of a protein
specific complex. The state variable xi represents the
probability that the protein complex is in the i:th config-
uration state (see Figure 2). At time zero all the

probability is assigned to state x1, corresponding to the
state of the molecule right after the excitement with a
laser flash. Further, the input only enters in one of the
state equations, only a single linear combination of the
states may be measured, and the measurements are not
directly affected by the input. More specifically Eqs.
(2a)-(2c) take the form

x Ax (35a)

y x x x x x

x x x x

x

     
   

0 05 0 2 0 5 0 5

0 5 0 5 0 5
2 3 4 5 10

11 12 18 19

2

. . . .

. . .

00 21 22 240 5 0 5 0 5  . . .x x x

(35b)

x( ) [ ] .0 1 0 0  T (35c)

Here A is a 26-by-26 dimensional matrix, and the Ai, j

element is given in Figure 2. This means that for instance
the A3,21 element is given by kmin1, that the A4,21 element
is given by ky2, and that the A3,4 element is zero.

Figure 2 The original 26-state model for photosynthesis used in the example. The colouring corresponds to the lumps, such that lumps L1,
to L6, corresponds to states coloured green, orange, blue, purple, red, and yellow, respectively. The four states without circles are not part of any
lumps, but are eliminated from the reduced model.
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Results with Balanced Truncation
Balancing of (35) using the function hsvd in MATLAB
gives the Hankel singular values depicted in Figure 3.
The initial condition for state x1 was replaced by a
Dirac delta function, as an input on the right hand
side of the differential equation for this state. This
was done to justify the input-output perspective of
the method since there are no inputs to the system.
As can be seen there is a jump after the first two
states, another jump after 6 states, and after 10 states
the singular values are below computer precision.
That indicates that a 2-state model works reasonably
well, that a 6-state model works good, and that there
is no point in adding more states after the 10:th state
has been added. This prediction is verified by the
corresponding truncations, and by simulations com-
paring the original and the reduced model output
(see Figure 4).

Results with Lumping
Now our novel lumping approach is applied to the same
model. The first step (step A1) is to identify the DGFRs
of the model using 3-decomposition. Rate parameters
much larger than 1000 s-1 are considered to be fast,
which is reasonable if we are interested in a time-scale
of seconds. This gives five disjoint groups of states

L x x x x x x x

L x x

L x x x x x x

1 1 2 3 19 20 21 24

2 4 5

3 6 7 8 9 10







      

 

      222 25

4 11 12

5 13 14 15 16 17 18 23 26



 

       

x

L x x

L x x x x x x x x



 .

However, the only external reactions to the states in
L2
 and L4

 are from states x21 and x22, respectively.
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Figure 3 Hankel singular values for the 26-states photosynthesis model. Note that the first value is unstable.
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These state variables x21 and x22 have low values (smal-
ler than 5 × 10-6, to be compared with the largest states
with values that are close to 1) at all times, so the states
in L2

 and L4
 are even smaller and can be removed

from the model without affecting the overall model
dynamics much.
The second step (step A2) is to identify the SCs in the

DGFRs and in the third step (step A3) we check which
of them are sink clusters. It turns out that there are no
SCs in the model consisting of more than one state, but
several sinks. The single state sinks in the three disjoint
groups are states x1 and x3 in L1

 , states x8, and x10 in
L3
 , and states x16 and x18 in L5

 . To conclude the
lumping, the fourth step (step A4) checks which non-
sink states that can be lumped with the sinks in their
DGFR. We are not particularly interested in any of the
states for which there is a path of fast reactions to a
sink, but no path of slow reactions in the opposite
direction. These states are therefore lumped with the
corresponding sink state, as described in the guidelines
for this step. There is an ambiguity for state x24, since
there is a path of fast reactions from this state to two
separate sinks, x1 and x3. However, there is a path of
slow reactions from x1 to x24, but no path from x3 to
x24, so x24 is lumped with x1. There are also paths of
fast reactions from state x25 to the two states x8 and x10.
With the same reasoning as for x24 above, we decide to
let x25 be lumped with x8.
The procedure above gives rise to the following six

groups of state variables

L x x x1 2 3 21   (36)

L x x x2 6 8 25   (37)

L x x x x3 7 9 10 22    (38)

L x x x x4 13 14 16 26    (39)

L x x x x5 15 17 18 23    (40)

L x x x x6 1 19 20 24    . (41)

and lumping the states of each group then results in a
reduced model structure represented by the following
digraph.

(42)

Note that there are no slow states in the reduced
model (step A5). We then calculate the back-translation
formulas (Step B) using Eqs. (24)-(27).
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Figure 4 Output from the original model and the two reduced models of 6:th order, obtained by the two reduction techniques.
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In Figure 4 the outputs from the original model and
the reduced model are compared, and as can be seen
the agreement is very good. Finally, Eqs. (9), (21), (22),
and (36)-(41) can be used to compare the original states
obtained with back-translation using fraction parameters
from the reduced model with those of the original
model. The results for the six states that are sinks, as
well as the six states that are connected to them via
reversible reactions, are shown in Figure 5(a) and 5(b),
respectively. As can be seen the agreement is
convincing.

Nonlinear Model Reduction with Lumping
The aim of this section is to give some insights about
the applicability of our method to nonlinear models.

Reduction of a Model for Glucose Transport in Yeast
A model for glucose transport in the yeast Saccharo-
myces cerevisiae was presented in [41] and is depicted in
Figure 6. The paper [41] presents this detailed state-
space model with a number of assumptions, and reduces
the complete system into a single rate-expression. We
will now illustrate how one can use nonlinear analogues
to the methodological steps introduced in this paper to
derive fraction parameters, h, which again gives back-
translation formulas; interestingly, the fraction para-
meters may also be used to easily calculate the in [41]
obtained rate expression. The differential equations for
the original model are given by

dxGlc
e

dt
k x x k xE

e
Glc
e

E Glc
e    1 1

(42a)

dxGlc
i

dt
k x x k xE

i
Glc
i

E Glc
i    2 2

(42b)

dxE G P
i

dt
k xE

i xG P
i k xE G P

i    
6

4 6 4 6
(42c)

dxE Glc G P
i

dt
k x x k xE Glc

i
G P
i

E Glc G P
i      

6
3 6 3 6

(42d)

dxG P
i

dt
k x x k x

k x x k x

E Glc
i

G P
i

E Glc G P
i

E
i

G P
i

E G

6
3 6 3 6

4 6 4

  



   

 



66P
i

(42e)

dxE Glc
e

dt
x x k x x k xE Glc

i
E Glc
e

E
e

Glc
e

E Glc
e       ( ) 1 1

(42f)

dxE Glc
i

dt
x x k x x

k x

E Glc
e

E Glc
i

E Glc
i

G P
i

E Glc G P

      

  

( ) 3 6

3 6
ii

E
i

Glc
i

E Glc
ik x x k x   2 2

(42g)

dxE
e

dt
x x k x x k xE

i
E
e

E
e

Glc
e

E Glc
e     ( ) 1 1

(42h)

dxE
i

dt
x x k x x k x

k x x k x

E
e

E
i

E
i

G P
i

E G P
i

E
i

Glc
i

E G

   



 

 

( ) 4 6 4 6

2 2 llc
i

(42i)

where it should be noted that the right hand side of the
ODEs are nonlinear functions of the states. Recall that
step A in our method is to identify a suitable lump. For
this example, the reduction problem is stated such that
the resulting reduced model should go from extracellu-
lar glucose to intracellular glucose. This means that all
states in between should be lumped; this gives

          x x x x x x xL E
e

E Glc
e

E
i

E Glc
i

E G P
i

E Glc G P
i

6 6 (43)

Note that this implies that the lump is given by all
states including the carrier protein, and thus a con-
served moiety.
Recall that step B in our method is to identify the

fraction parameters for this lump. Also recall that this is
done by identifying a linear matrix equation for the
states in the lump, which can be inverted and used to
calculate the steady-state values of the lumped states,
which in turn gives the fraction parameters h. Finally,
recall that this invertible matrix in the most general
form is given by a combination of steady-state assump-
tions and the sum containing the conserved moiety.
In this nonlinear example, there are four reversible

reactions in the model for the transport processes
through the inner and outer parts of the cell membrane
(Eqs. (42a)-(42d)). These were identified as fast in [41],
i.e., the corresponding states are in quasi steady-state. A
method for automatic detection of fast states, for which
the quasi-steady-state assumption is fulfilled, was pro-
posed in [17]. This means that the right hand side of
the equations can be set equal to zero (QSS). We also
assume that the total flux of the carrier molecules
between the inner and outer walls of the cellular mem-
brane is zero

 ( ) ( )x x x xE Glc
e

E Glc
i

E
e

E
i

     0 (44)

These assumptions put together gives us a nonlinear
version of the matrix equation. More explicitly, the
equations stating the QSS assumptions corresponding to
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Figure 5 Comparison with back-translated state trajectories from the lumped model with those of the original model.
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Figure 6 Model for glucose transport in the yeast Saccharomyces cerevisiae.
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Eqs. (42a)-(42d) followed by Eqs. (44) and (43) collected
in a matrix gives
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. Note that Eq. (45) has the same

form as Eq. (24), but with variables as matrix elements.
However, the variables in the matrix are all external to
the lump, which means that these variables can be trea-
ted as parameters in the derivation of the fraction para-
meters and that Eq. (45) can be solved explicitly. This is
a typical situation for nonlinear models based on mass-
action kinetics, since the conserved moiety is usually
only represented by one of the variables within each
term of the polynomials. Symbolically inverting the
matrix in Eq. (45) gives
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Note again that this results in a relation between the
individual states of the lump (those with the carrier E)
and the total lump through fraction parameters, h.
Interestingly, these fraction parameters can be used to

derive the in [41] obtained rate expression for the glu-
cose flux into, and out of, the cell. Note that the only
path for glucose to be transported between the outer
and inner parts of the cell membrane is the rate-limiting
reversible reaction between states xE Glc

e
 and xE Glc

i
 .

Note also that the rate of the reaction in either direction
is proportional to the magnitude of the substrate state.
Now consider the reaction from xE Glc

e
 to xE Glc

i
 .

Since the carrier within the cell membrane is conserved
at all times, the potential largest possible reaction rate,
denoted rmax, is obtained if all carrier molecules is in
the state from which the reaction leads. However, typi-
cally only a fraction, E Glc

e
 , of the carrier molecules is

in state xE Glc
e
 at a given time. Hence the rate of the

reaction into the cell is r rin max E Glc
e  . Similarly, we

have for the flux out of the cell (efflux):
r reff max E Glc

i  . From Eqs. (46) and (47) we can thus
derive the influx, rin, as
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and the efflux, reff, as
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This flux rate expressions are the same as presented in
[41]. This thus demonstrates how the same concepts we
have derived for the linear case, can be applied also to
calculations of fraction parameters for nonlinear sys-
tems, and how these fraction parameters can be used to
solve other nonlinear problems.

Discussion
In this paper we have presented a novel lumping
approach. Apart from identifying suitable lumps in a
novel and automatic way, the method also finds
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analytical expressions for the back-translation relations
regarding both states and parameters between the origi-
nal and the reduced models, resulting in the derivation
of a zoomable model. The method has been applied to
two models for fluorescence emission in photosynthesis,
and we have demonstrated how the concepts supporting
the method may be used also to nonlinear problems.
In the larger photosynthesis related model, a reduction

was also performed using balanced truncation; let us
now compare the performance of these two methods. A
first observation is that the methods perform compar-
ably when it comes to preservation of the input-output
relations of the model. Both methods predict and supply
good agreement between a reduced 6-state model and
the original model of 26 states. Balanced truncation do
provide reasonable model agreements also for lower
order models, but it is not until 6 states are added that
the agreement is equally good to the lumped 6-state
model. However, even though the two methods yield
comparable results from an input-output perspective,
the lumping method has at least two important advan-
tages when it comes to other properties of importance
in a systems biology analysis.
First, the reduced model structure may be interpreted

biochemically. As can be seen in Figure 2, the lumped
variables correspond to combinations of neighbouring
states. The analysis thus means that these neighbouring
states may be treated as a single variable. Similarly, the
reduced model structure above reveals that the actual
dynamics of the original model can be predicted by a
simple cyclic structure of six states. Finally, this also
means that all future results and analyses that will be
produced for the reduced model will have a more direct
and clear interpretation.
The second reason why the proposed lumping

approach is advantageous is that it provides an analytical
back-translation formula for the mapping of the states
and parameters in the reduced model to those of the
original model. That means that one may not only inter-
pret the results for the reduced model, but actually see
what they mean for individual time-series and para-
meters in the original model. Such a back-translation
may actually be said to result in a ‘zoomable’ model,
which could for instance be used as a module in a larger
object oriented model [42,43]. A zoomable model could
for example be used in a larger model of the plant
where photosynthesis is a sub-system. Such a larger
object oriented model would probably be easiest to con-
struct by combining reduced (‘zoomed-out’) versions of
the models for the different sub-modules. If then a later
analysis would require more details regarding the photo-
synthesis, one could simply switch to the ‘zoomed-in’
version of some part of the model, and examine the
corresponding results - without performing a new

simulation. This is an important advantage compared to
conventional constructions of model libraries, typically
used in object-oriented modelling [42]. To sum up the
comparison between our new lumping approach and
balanced truncation: the two methods perform similarly
from an input-output perspective, but our novel method
is much more useful in a systems biology context, since
then an increased interpretability, through the lumping
and the back-translation formulas, is highly
advantageous.
A final note on the back-translation. The calculations

for back-translation are relatively straight-forward, given
a reduced model, and have been touched upon elsewhere
[17]. However, the main point we want to make concern-
ing the back-translation is a conceptual one; information
about the original system can be retained from the
reduced one without doing any new simulations. Also,
the state-space trajectories from simulations between the
original and back-translated states are compared. We are
not aware of any similar previous comparisons for lump-
ing-based methods in systems biology. However, back-
translation-like formulas are at the heart of various time-
scale based methods (apart from lumping), where the
eliminated states are simply replaced by algebraic expres-
sions. We also want to emphasize that both the reduction
and the back-translation increases the interpretability and
biochemical understanding of the model. Consider for
instance our 26-state example, which has been reduced
to a 6 dimensional model. These 6 states corresponds to
disjoint groups of states in the original model, since our
lumping is proper. Also, the relation between these
groups is much more straightforward (a circular struc-
ture), compared to the original model, and time-traces
for the original model can be retained without doing a
new simulation. Nevertheless, some of the expressions
might become complex and are not always themselves
straightforward to interpret.
Our method can also produce multi-scale approxima-

tions of a linear model; just redo the model reduction
for each specific value of 3 (in the 3-decomposition)
corresponding to the time scales under study. This will
generate a set of reduced models, which are valid at dif-
ferent time scales, and altogether form a multi-scale
approximation of the original model. For previous work
on multi-scale approximation of linear models, see [17].
However, for each time scale our method is guaranteed
to produce a biologically interpretable model, without
the strong assumption of clearly separable time scales
for all parameters.
One shortcoming of the current version of the method

is that states that are not part of a sink, and to which
there is no path from a sink, do not have a proper back-
translation. The reason for this is that these states give an
insignificantly small impact on the model dynamics; their
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main purpose in the model are to serve as a short-lived
intermediates. In other words, the QSS values, upon
which the back-translation formulas are based, is zero.
Nevertheless, if for some reason we are particularly inter-
ested in any such state, the state can be kept in the
model simply by not lumping it with any of the other
states; the price is one additional states in the reduced
model. It should also be noted that our method deals
with the inversion of a matrix, which might be a difficult
task if the number of states is large. For larger models
one might consider methods based on methods that only
makes use of the order of magnitude of the parameters,
such as that in [17]. Another shortcoming is that the
back-translations do not yet allow for back-translation of
uncertainties, e.g., obtained from parameter estimation
given experimental data. This will have to be improved
before the method can be fully useful in a core-box mod-
elling situation [1]. Model reduction methods based on
solving the quasi-steady-state equations usually generate
models that are less stiff. However, the reduction in
simulation time, for the reduced in comparison to the
original model, was not large (< 5% for the models
tested). One reason for this is the availability of good stiff
ODE solvers, e.g., the Matlab solver ODE15s which was
used in this paper. The main advantage of our method is
instead that biologically interpretable reduced models,
based on proper lumping, are guaranteed. Note that this
is done without any strong assumption about the kinetic
constants, which may be compared to the approach in
[17]. The reduced model can always be represented gra-
phically as a network of states, and lumped variables,
where each state of the original model has a clear inter-
pretation as a fraction of one lumped state (or possibly
left unchanged). This makes it easy to discuss the
reduced models with scientists who lack a strong mathe-
matical background, which is very important for the suc-
cess of large interdisciplinary projects that are typical in
systems biology. It also gives the researcher a great over-
view of the individual parts and of the important interac-
tions in the reduced model, which are responsible for the
observed dynamics.
The method is developed in a linear setting, even

though we have demonstrated how the main concepts
and ideas may be extended to a non-linear setting. In
the chosen nonlinear example, the lump was identified
by the problem, and consisted of a conserved moiety.
The moiety relation together with the usual assumptions
of QSS within the lump allowed us to construct a
matrix equation (45), which is analogous to the linear
formula (24). Further, just as for the linear case, the
matrix equation could be solved analytically using con-
ventional computer algebra software, and with the
resulting steady-state values identified, the fraction para-
meters can be calculated using the linear formula. All

these central steps are thus more or less directly trans-
ferable between the linear and nonlinear situations.
Interestingly, we also showed how these fraction para-
meters could be used to easily derive a complex Michae-
lis-Menten expression for the given system.
However, it should be noted that the extension to the

nonlinear situation is not done without the introduction
of new problems. Note for instance that the fraction
parameters in this nonlinear model are functions of states
variables and may therefore vary over time. Further, the
states outside the lump in the reduced model can not be
simulated after substitution of the fraction parameters
into the model ODEs. The reason is that the right hand
side of the ODEs is algebraically equal to zero, which
gives the false impression that the outside system is
always in steady-state. We are currently working on
methods to resolve this, seemingly general problem in
the reduction of nonlinear models, with promising
results. All in all, we believe that the main contribution
of this paper is the introduction of the concept of back-
translation, and the demonstration that it is possible to
derive back-translation formulas in an automatic manner.
Since this is a fundamentally and conceptually novel
improvement of lumping and model reduction, which is
very useful in a systems biology context, we think that
our contribution could stimulate much future research to
improve our present contributions further.

Conclusions
We have in this paper introduced a novel reduction
method, which is centred around two main steps. The
first step is an automatic identification of states that are
suitable for lumping. These states are identified in four
sub-steps, which makes use of existing and powerful
concepts from graph-theory and �-decomposition. The
identified lumpable states are considered as a single
state in the reduced model, and are chosen such that we
may assume that they reach QSS quickly compared to
the surrounding dynamics. This QSS property is the
basis for the second step: to identify analytical back-
translation expressions, describing the relations between
the states and parameters in the reduced and the origi-
nal model. These back-translation expressions are
centred around the fraction parameters h, which repre-
sent the fraction of a lumped state to the total lump.
The fraction parameters are calculated through calcula-
tions of the QSS steady-state concentrations of the
lumped parameters, which are calculated analytically
through the analytical inversion of the matrix A l .
We have developed and tested the method using two

previously published models for photosynthesis. Notably,
the larger of these two models was reduced from 26 to 6
states, where there is no visible difference when compar-
ing simulations from the two models. Here it should be
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noted that this comparison can be done either in the
space of the reduced model, or in the original state
space, and that the reduced model does not have to be
simulated again to obtain time-series for those detailed
states that are of interest. It is because of this property
that the resulting models may be viewed as two degrees
of zooming of the same model; this is a conceptually
important step forward in terms of model reduction,
and we believe that it will prove to be very useful in
modelling situations, and that it will stimulate much
future research. In line with this, it should finally be
said that even though most of the results and deriva-
tions in this paper are for linear models, we have shown
that the same concepts and methods are applicable to
nonlinear models as well, and that we are currently
working on a similarly general theory for a commonly
occurring class of nonlinear models.

Additional file 1: Model reduction algorithm. A Matlab function that
constitutes our implementation of the model reduction algorithm (for
linear models) presented in this paper. The function requires the systems
biology toolbox and the symbolic math toolbox for Matlab to be
installed.

Additional file 2: Model reduction scripts. Matlab script that can be
used to easily test the model reduction algorithm on the 6-states and
26-states models for photosynthesis that are employed in this paper.

Additional file 3: The 6-states model. This is the six-states model for
photosynthesis that is used in the paper. This model can be imported to
Matlab in the form of an SBmodel object (requires the SBtoolbox).

Additional file 4: The 26-states model. This is the 26-states model for
photosynthesis that is used in the paper. The model can be imported to
Matlab in the form of an SBmodel object (requires the SBtoolbox).
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