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Abstract. We present a novel analysis for sorted logic, which deter-
mines if a given sort is monotone. The domain of a monotone sort
can always be extended with an extra element. We use this analysis
to significantly improve well-known translations between unsorted and
many-sorted logic, making use of the fact that it is cheaper to trans-
late monotone sorts than non-monotone sorts. Many interesting prob-
lems are more naturally expressed in many-sorted first-order logic than
in unsorted logic, but most existing highly-efficient automated theorem
provers solve problems only in unsorted logic. Conversely, some reasoning
tools, for example model finders, can make good use of sort-information
in a problem, but most problems today are formulated in unsorted logic.
This situation motivates translations in both ways between many-sorted
and unsorted problems. We present the monotonicity analysis and its im-
plementation in our tool Monotonox, and also show experimental results
on the TPTP benchmark library.

1 Introduction

Many problems are more naturally expressed in many-sorted first-order logic
than in unsorted logic, even though their expressive power is equivalent. How-
ever, none of the major automated theorem provers for first-order logic can deal
with sorts. Most problems in first-order logic are therefore expressed in unsorted
logic.1 However, some automated reasoning tools (such as model finders) could
greatly benefit from sort information in problems.

This situation motivates the need for translations between sorted and un-
sorted first-order logic: (1) users want to express their problems in sorted logic,
whereas many tools only accept unsorted logic; (2) some tool developers want
to work with sorted logic, whereas the input problems are mostly expressed in
unsorted logic. For example, a model finder for a sorted logic has more freedom
than for an unsorted logic: it can find domains of different sizes for different
sorts, and apply symmetry reduction for each sort separately.

1 Indeed, only recently was a collection of many-sorted first-order problems added to
the TPTP [11].



In this paper, we describe automated ways of translating back and forth be-
tween many-sorted and unsorted first-order logic. We use a novel monotonicity
analysis to improve on well-known existing translations. In short, a sort is mono-
tone in a problem if, for any model, the domain of that sort can be made larger
without affecting satisfiability. The result of the translation for monotone sorts
turns out to be much simpler than for non-monotone sorts. The monotonicity
analysis and the translations are implemented in a tool called Monotonox.

To explain the problem we solve, and how monotonicity helps us, we will use
the following running example.

Example 1 (monkey village). There exists a village of monkeys, with a supply
of bananas. Every monkey must have at least two bananas to eat. A banana
can not be shared among two monkeys. To model this situation we introduce
two sorts, one of monkeys and one of bananas. We need a predicate owns ∈
monkey × banana→ o that says which monkey owns each banana, and Skolem
functions banana1 and banana2 ∈ monkey → banana to witness the fact that
each monkey has two bananas. We use the following four axioms:

∀M ∈ monkey. owns(M, banana1(M)) (1)

∀M ∈ monkey. owns(M, banana2(M)) (2)

∀M ∈ monkey. banana1(M) 6= banana2(M) (3)

∀M1,M2 ∈ monkey,B ∈ banana. (owns(M1, B) ∧ owns(M2, B)

=⇒M1 = M2)
(4)

We use a simple but standard many-sorted first-order logic, in which sorts α
have a non-empty domain D(α), all symbols have exactly one sort, there are no
subsorts, and equality is only allowed between terms of the same sort.

If we want to use a standard reasoning tool for unsorted logic (for example
a model finder) to reason about the monkey village, we need to translate the
problem into unsorted logic. Automated reasoning folklore [12] suggests three
alternatives:

Sort predicates The most commonly used method is to introduce a new unary
predicate Pα for every sort α that is used in the sorted formula [5]. All quantifi-
cation over a sort α is translated into unsorted quantification bounded by the
predicate Pα. Furthermore, for each function or constant symbol in the problem,
we have to introduce an extra axiom stating the result sort of that symbol. For
example, the first axiom of example 1 translates to

∀M. (Pmonkey(M)→ owns(M, banana1(M))

and we have to add axioms like ∀M.Pbanana(banana1(M)) for each function
symbol. Moreover, to rule out the possibility of empty sorts, we sometimes need
to introduce axioms of the form ∃X.Pα(X).

Although conceptually simple, this translation introduces a lot of clutter
which affects most theorem provers negatively: one extra predicate symbol for
each sort, one axiom for each function symbol, and one extra literal for each
variable in each clause.



Sort functions An alternative translation introduces a new function symbol fα
for each sort α. The translation applies fα to any subterm of sort α in the sorted
problem. The aim is to have the image of fα in the unsorted problem be the
domain of α in the sorted problem; fα thus maps any arbitrary domain element
into a member of the sort α. For example, using sort functions, the first axiom
of example 1 translates to

∀M. owns(fmonkey(M), fbanana(banana1(fmonkey(M))))

No additional axioms are needed. Thus, this translation introduces a lot less
clutter than the previous translation. Still, the performance of theorem provers is
affected negatively, and it depends on the theorem prover as well as the problem
which translation works best in practice.

Sort erasure The translation which introduces least clutter of all simply erases
all sort information from a sorted problem, resulting in an unsorted problem.
However, while the two earlier mentioned translations preserve satisfiability of
the problems, sort erasure does not, and is in fact unsound. Let us see what
happens to the monkey village example. Erasing all the sorts, we get

∀M. owns(M, banana1(M))

∀M. owns(M, banana2(M))

∀M. banana1(M) 6= banana2(M)

∀M1,M2, B. (owns(M1, B) ∧ owns(M2, B)→M1 = M2)

This new problem has no finite model, even though the sorted problem does! The
reason is that, if the domain we choose has finite size k, we are forced to have
k monkeys and k bananas. But a village of k monkeys must have 2k bananas,
so this is impossible unless the domain is infinite (or empty, which we disallow).
So, sort erasure does not preserve finite satisfiability, as shown by the example.
In fact, it does not even preserve satisfiability.

Related work The choice seems to be between translations that are sound, but
introduce clutter, and a translation that introduces no clutter but is unsound.
Automated theorem provers for unsorted first-order logic have been used to rea-
son about formulae in Isabelle [8, 9]. The tools apply sort erasure, and investigate
the proof to see if it made use of unsound reasoning. If that happens they can
use a sound but inefficient translation as a fall-back. A similar project using
AgdaLight [1] uses sort erasure but, following [12], proposes that the theorem
prover be restricted to not use certain rules (i.e. paramodulation on variables),
leading to a sound (but possibly incomplete) proof procedure.

Monotonicity has been studied for higher-order logic [2] to help with pruning
the search space when model finding. While the intention there is the same as
ours and there are similarities between the approaches, the difference in log-
ics changes the problem dramatically. For example, we infer that any formula
without = is monotone, which is not true in higher-order logic. Monotonicity is
also related to the ideas of stable infiniteness and smoothness [10] in combining
theories in SMT; it would be interesting to investigate this link further.



This paper We give an alternative to choosing between clutter and unsoundness.
We propose an analysis that indicates which sorts are safe to erase, leaving ideally
only a few sorts left that need to be translated using one of the first two methods.

The problem with sort erasure is that it forces all sorts to use the same
domain. If the domains all had the same size to start with, there is no problem.
But if the sorted formula only has models where some domains have different
sizes than others, the sort erasure makes the formula unsatisfiable. We formulate
this observation in the following lemma:

Lemma 1. The following statements about a many-sorted first-order formula ϕ
are equivalent:

1. There is an unsorted model with domain D for the sort-erased version of ϕ.
2. There is a model of ϕ where the size of each domain is |D|.

Proof. (sketch) The interesting case relies on the observation that, if there is a
sorted model in which all domains have the same size, then there also is a model
in which all the domains are identical, from which it is trivial to construct an
unsorted model. ut

Our main contribution is a monotonicity inference calculus that identifies
the so-called monotone sorts in a problem. If all sorts in a satisfiable sorted
problem are monotone, then it is guaranteed that there will always be models
for which all domains have the same size, in which case sort erasure is sound.
The sorts that cannot be shown monotone will have to be made monotone first
by introducing sort predicates or functions, but for these sorts only.

2 Monotonicity Calculus for First-Order Logic

Monotonox exploits monotonicity in the formula we are translating to produce
a more efficient translation than the naive one. The purpose of this section is to
explain what monotonicity is and how to infer it in a formula; section 3 explains
how we use this information in Monotonox.

Before tackling monotonicity in a sorted setting, we first describe it in an
unsorted one. We do this just because the notation gets in the way of the ideas
when we have sorts.

2.1 Monotonicity in an Unsorted Setting

We start straight away with the definition of monotonicity. Monotonicity is a
semantic property rather than a syntactic property of the formula.

Definition 1 (monotonicity, unsorted). An unsorted formula ϕ is monotone
if, for all n ∈ N, whenever ϕ is satisfiable over domains of size n, it is also
satisfiable over domains of size n+ 1.

An immediate consequence is that if a monotone formula is satisfiable over a
finite domain, it is also satisfiable over all bigger finite domains.



Remark 1. Several common classes of formulae are monotone:

– Any unsatisfiable formula is monotone because it trivially satisfies our defi-
nition. The same goes for any formula that has no finite models.

– Any valid formula is monotone because it has a model no matter what the
domain is.

– A formula that does not use = is monotone, as we will see later.

What about a non-monotone formula? The simplest example is ∀X,Y.X =
Y , which is satisfied if the domain contains a single element but not if it contains
two. We will see later that equality is the single source of nonmonotonicity in
formulae.

Monotonicity allows us to take a model of a formula and get from it a model
over a bigger domain. Although it is not obvious from our definition, this is even
the case if we want to get an infinite model.

Lemma 2 (monotonicity extends to infinite domains). ϕ is monotone iff,
for every pair of domains D and D′ such that |D| ≤ |D′|, if ϕ is satisfiable over
D then ϕ is satisfiable over D′.

Proof. (sketch) If ϕ is monotone and has a finite model then it has models of
unbounded size; by compactness it has an infinite model. The lemma follows
from this property and Löwenheim-Skolem.

ut

Monotonicity is not decidable We can see from remark 1 that monotonicity is
related to satisfiability, so we should not expect it to be decidable. Indeed it is
not.2 This does not mean we should give up on inferring monotonicity, just that
we cannot always infer that a formula is monotone. The calculi we present later
only answer “yes” if a formula is monotone but may answer “no” for a monotone
formula too.

2.2 Monotonicity in a Many-Sorted Setting

Everything above generalises to sorted formulae, with the complication that we
now have to talk about a formula being monotone in a particular sort. Informally,
ϕ is monotone in the sort α if, given a model of ϕ, we can add elements to the
domain of α while preserving satisfiability.

We use the notation D(α) for the domain of sort α. The formal definition
mimics the one from the last section:

Definition 2 (monotonicity, sorted). A sorted formula ϕ is monotone in the
sort α if, whenever ϕ is satisfiable over D, and we are given D′ such that

2 The proof works by encoding a given Turing machine by a formula that has a finite
model of size k iff the Turing machine halts in exactly k steps. Thus if the Turing
machine halts then the formula has a finite model at exactly one domain size and
is therefore not monotone; if the Turing machine does not halt then the formula is
finitely unsatisfiable and therefore monotone.



– |D(α)| is finite, and |D(α)|+ 1 = |D′(α)|, and
– D′(β) = D(β) for all β 6= α,

then ϕ is satisfiable over D′.

Once again, we only consider taking a finite domain and adding a single element
to it. The lemma from the last section still holds:

Lemma 3 (monotonicity extends to infinite domains (sorted)). ϕ is
monotone in α iff, whenever ϕ is satisfiable over D, and we are given D′ such
that

– |D′(α)| ≥ |D(α)|, and
– D′(β) = D(β) for all β 6= α,

then ϕ is satisfiable over D′.

The key insight of Monotonox is that sort erasure is safe if the formula is
monotone in all sorts:

Theorem 1 (monotone formulae preserve satisfiability under erasure).
If ϕ is a many-sorted monotone formula, then ϕ and its sort-erasure are equi-
satisfiable.

Proof. By lemma 1, it is enough to show that from a model of ϕ we can construct
a model where all domains are the same size. By lemma 3 we can do this by
extending all the domains to match the size of the biggest domain. ut

Remark 2. Notice that this construction preserves finite satisfiability, which is
important when we are going to use a finite model finder on the problem.

Going back to our monkeys example, the formula is monotone in the sort
banana (you can always add a banana to the model) but not in the sort monkey
(if we have k monkeys and 2k bananas, we may not add another monkey without
first adding two bananas). In section 3.2 we will see that this means we only need
to introduce a sort predicate for the sort monkey.

2.3 A Simple Calculus for Monotonicity Inference

We now present two calculi for inferring monotonicity of a formula. In both
calculi we assume that the formula is in CNF.

Our first calculus is based on the key observation that any formula that does
not use equality is monotone. To see why, suppose we have a model over domain
D of a formula ϕ, and we want to add a new element to D while preserving
satisfiability. We can do this by taking an existing domain element e ∈ D and
making the new element e′ behave identically to e, so that for all unary predicates
P , P (e) is true iff P (e′) is true, and for all unary functions f , f(e) = f(e′), and
similarly for predicates and functions of higher arities. If the formula does not use
equality, e and e′ cannot be distinguished. Thus, the addition of a new domain
element preserves satisfiability of the formula.



On the other hand, with equality present, the addition of a new element to
the domain may make a previously satisfiable formula unsatisfiable. For example,
∀X,Y.X = Y has a model with domain size 1, but it is not satisfiable for any
larger domain size. We cannot make the new domain element behave the same
as the old domain element because equality can distinguish them.

However, not all occurrences of equality have this problem. The following
examples of equality literals are all monotone:

1. Negative equality (by increasing the size of the domain, more terms may
become unequal but previously unequal terms will not become equal).

2. Equality where neither side is a variable (i.e. both sides are functions or
constants, possibly with variable arguments). This is because, by using the
strategy above for extending the domain with a new element, no function
ever returns the new element, so the new element is never tested for equality.

3. Equality over a sort α is monotone in any sort β different to α. (The satisfi-
ability of t1 = t2, where t1 and t2 have sort α is unaffected by the addition
of new elements to the domain of β).

Thus, the only problematic literal for monotonicity in the sort α is positive
equality over α where either side of the equality is a variable.

Safe terms We call a term safe in a sort α if, whenever we add a new element to
the domain of α, the term never evaluates to this element. If the terms occurring
on each side of an equality literal are both safe, the satisfiability of the literal is
unaffected by the addition of new domain elements. Since positive equality liter-
als are the only possible sources of nonmonotonicity, we can infer monotonicity
of a formula by showing that all arguments of positive equality literals are safe.
By the examples above, a term is safe in the sort α if it is not a variable, or it has
a sort different to α. The simple calculus exploits these facts with the following
rules:

1. ϕ1 ∨ ϕ2 is monotone in α iff ϕ1 and ϕ2 are monotone in α.
2. ϕ1 ∧ ϕ2 is monotone in α iff ϕ1 and ϕ2 are monotone in α.
3. Any non-equality literal is monotone in any sort α.
4. t1 6= t2 is monotone in any sort α.
5. t1 = t2 is monotone in α if t1 and t2 are safe in α, i.e., are not variables or

are not of sort α.

Let us try out the simple calculus on the hungry monkeys in Example 1. The
formula is monotone in monkey iff all of its clauses are monotone in monkey, and
similarly for banana. Clauses (1) and (2) are monotone in both sorts, because
the clauses do not contain equality. (3) is monotone in both sorts, because the
clause does not contain positive equality. (4) is monotone in banana, because
there is no equality between banana elements. The calculus does not let us infer
monotonicity of monkey in this clause, because of the occurrence of an equality
literal with two variables of sort monkey. Thus, the formula is monotone in
banana, but not in monkey. This is consistent with our previous observation
that we can add more banana elements without affecting satisfiability, but this
is not the case for monkey elements.



2.4 Improved Calculus

There are many cases when our first calculus is not able to prove monotonicity.
For example, suppose we change the problem so that some monkeys are not
hungry and do not need bananas:

Example 2.

∀M ∈ monkey. (hungry(M) =⇒ owns(M, banana1(M))) (5)

∀M ∈ monkey. (hungry(M) =⇒ owns(M, banana2(M))) (6)

∀M ∈ monkey. (hungry(M) =⇒ banana1(M) 6= banana2(M)) (7)

∀M1,M2 ∈ monkey,B ∈ banana.
((hungry(M1) ∧ hungry(M2) ∧ owns(M1, B) ∧ owns(M2, B)

=⇒M1 = M2)

(8)

It is not hard to see that, given a model of the axioms, we can always add an
extra monkey, by making that monkey not be hungry. Thus, the above formula
is monotone in monkey. However, our simple calculus can not infer this, because
of the use of positive equality between two variables of sort monkey in (8). In
this section we remedy the problem by extending the calculus.

In the simple calculus, the strategy for extending a model while preserving
finite satisfiability was to pick an existing element e in the domain, and let
any new domain element “mimic” e. This strategy does not work for clause (8)
in Example 2: if we happen to pick an e such that hungry(e) is true, then this
strategy will add an extra hungry monkey to the domain, which does not preserve
finite satisfiability. In our improved calculus we can make use of alternative
strategies for extending the model, which allows us to infer monotonicity in
cases such as this.

Extension rules In the improved calculus, we nominate some predicates to be
“true-extended” and some to be “false-extended” in each sort α. If a predicate
is neither true-extended nor false-extended, we say that it is “copy-extended”.
When extending the model with a new domain element e′, if a predicate P
is true-extended, we make P return true whenever any of its arguments is e′;
likewise if it is false-extended we make it return false if any of its arguments is
e′. Copy-extended predicates behave as in the simple calculus.

Guard literals We say that a literal P (. . .) in a clause C guards an occurrence
of a variable X ∈ α in C if X is one of the arguments of that literal and
P is true-extended in α. Similarly, a literal ¬P (. . .) in C with X among its
arguments guards occurrences of X in C if P is false-extended in α. We call
the literal P (. . .) or ¬P (. . .) in this case a guard literal. The idea is that when
X is instantiated with the new domain element, the guard literal is true, hence
satisfiability of the clause is preserved. This allows us to infer that a clause
involving positive equality between variables is monotone, if those variables are
guarded. For example, in the clause (8) in Example 2, the two variables M1 and



M2 occurring in the equality literal are guarded by the predicate hungry, which
we can make false for any new elements of sort monkey that we add.

Furthermore, X 6= t guards X if t is not a variable: the clause X 6= t ∨ ϕ[X]
is equivalent to X 6= t ∨ ϕ[t], in which X does not appear unsafely.3

Contradictory extensions When considering formulae, things get more problem-
atic: if we add an axiom

∀M ∈ monkey. hungry(M) (9)

to the formula in Example 2, we cannot add non-hungry monkeys to the domain,
so the problem is no longer monotone in the sort monkey. For the clause (8)
to be monotone, M1 and M2 must be guarded, which means that the predicate
hungry must be false-extended. But extending hungry with false will not preserve
satisfiability of the clause (9).

The new extension rules thus require some caution. If a predicate P is false-
extended, then any occurrence of a variableX in the literal P (. . .) needs guarding
just like it does in an equality literal X = t. Likewise, if P is true-extended,
any occurrence of a variable X in the literal ¬P (. . .) needs guarding. This is
illustrated in Example 3:

Example 3.

∀X. (P (X) =⇒ X = t) (10)

∀X. (Q(X) =⇒ P (X)) (11)

(10) requires P to be false-extended, because the occurrence of X in the
positive equality literal needs guarding. But if P (X) is false whenever X is
instantiated with a new domain element, then Q must be false-extended in order
to satisfy (11).

An occurrence of a variable X is problematic if it occurs in a literal of one
of the following forms:

– X = t or t = X
– P (. . . , X, . . .) where P is false-extended
– ¬P (. . . , X, . . .) where P is true-extended

In that case, we need to guard X for the formula to be monotone in X’s sort.
The improved calculus infers monotonicity of a formula in α iff there is a

consistent extension of predicates that guards all such variable occurrences.

2.5 Monotonicity Inference Rules of the Improved Calculus

Notation In the following, we shall use the abbreviation K to denote a function
from predicates to the extension methods {true, false, copy}. We call such a K a
context. Furthermore, we use the notation K .α ϕ to mean that ϕ is monotone
in the sort α, given the context K.

3 This even holds if X is a subterm of t.



Formulae A formula ϕ is monotone with context K in the sort α iff all of its
clauses are monotone with K in α:

K .α C1 · · · K .α Cn
K .α C1 ∧ . . . ∧ Cn

Clauses In the rule for clauses, we must also consider the set Γ of variables that
are guarded in the clause. We write Γ,K .α l if l is monotone with K in α, given
that the variables in Γ are guarded. A clause is monotone with context K in the
sort α if all of its literals are monotone with K in α, given Γ :

Γ =
⋃n
i=1 guarded(K, li) Γ,K .α l1 · · · Γ,K .α ln

K .α l1 ∨ . . . ∨ ln

where guarded(K, l) is defined as

guarded(K,P (t1 . . . tn)) = {X‖X∈{t1 . . . tn}, X is a variable} if K(P ) = true,

guarded(K,¬P (t1 . . . tn)) = {X‖X∈{t1 . . . tn}, X is a variable} if K(P ) = false,

guarded(K,X 6= t) = {X} if X is a variable and t is not,

guarded(K, l) = ∅ otherwise.

Literals We have the following rules for monotonicity inference of literals:

(1)
Γ,K .α t 6=β u

β 6= α
(2)

Γ,K .α t =β u

safe(Γ, t, α) safe(Γ, u, α)
(3)

Γ,K .α t =α u

safe(Γ, t, α) =

{
t ∈ Γ if t is a variable of sort α,

true otherwise.

(1) Negative equality is always monotone. (2) Equality in a sort β is mono-
tone in any sort α that is different to β. (3) Equality between two terms is
monotone if the terms are non-variables, or are guarded in the clause.

safe(Γ, t1, α) · · · safe(Γ, tn, α)
(4)

Γ,K .α P (t1, . . . , tn)

safe(Γ, t1, α) · · · safe(Γ, tn, α)
(5)

Γ,K .α ¬P (t1, . . . , tn)

(4,5) A predicate literal is monotone in α if all of its variable arguments of
sort α are guarded in the clause in which the literal occurs.

K(P ) ∈ {true, copy}
(6)

Γ,K .α P (t1, . . . , tn)

K(P ) ∈ {false, copy}
(7)

Γ,K .α ¬P (t1, . . . , tn)

(6) A positive occurrence of a predicate is monotone if the predicate is true-
extended or copy-extended. (7) A negative occurrence of a predicate is monotone
if the predicate is false-extended or copy-extended.



It is not immediately clear how to implement the above rules, since there is
no obvious way to infer the context K. We see in section 3.1 that we can do this
using a SAT-solver.

2.6 NP-completeness of the Improved Calculus

The improved calculus allows us to infer monotonicity in more cases. However,
inferring monotonicity with it is NP-complete. We show NP-hardness by reduc-
ing CNF-SAT to a problem of inferring monotonicity in the calculus.

Given any propositional formula ϕSAT in CNF, we construct a formula ϕMON

such that ϕSAT is satisfiable iff ϕMON is monotone. The idea is that a context
that makes ϕSAT monotone corresponds to a satisfying assignment for ϕSAT .

For each positive literal l in ϕSAT , we introduce a unary predicate Pl in
ϕMON . For negative literals ¬l, we define P¬l(X) as ¬Pl(X). We equip ϕMON

with a single constant c. We translate each clause (l1 ∨ ...∨ ln) of ϕSAT into the
following clause in ϕMON :

∀X.Pl1(X) ∨ ... ∨ Pln(X) ∨X = c

Our calculus proves this clause monotone exactly when our context extends at
least one of Pl1 , .., Pln by true. Thus if we find a context that makes ϕMON mono-
tone we may extract a satisfying assignment for ϕSAT by doing the following for
each positive literal l of ϕSAT :

– If Pl is extended by true then let l be true.
– If Pl is extended by false then let l be false.
– If Pl is extended by copy then choose an arbitrary value for l.

The same method takes us from a satisfying assignment of ϕSAT to a context
that makes ϕMON monotone.

3 Monotonox: Sorted to Unsorted Logic and Back Again

We have implemented the monotonicity calculus as part of our tool Monotonox.
This section first shows how the calculus is implemented and then how mono-
tonicity is exploited in translating between sorted and unsorted first-order logic.

3.1 Monotonicity Inference with Monotonox

We show in this section how to use a SAT-solver to implement the monotonic-
ity calculus. The use of a SAT-solver is a reasonable choice, as we have seen
previously that monotonicity inference in our calculus is NP-hard.

We encode the problem of inferring monotonicity of a formula ϕ as a SAT-
problem, where a satisfying assignment corresponds to a context in our calculus.

We construct for each predicate P in ϕ two literals, pT and pF . The idea is
that if pT is assigned true, then P should be true-extended. If pF is assigned true,
then P should be false-extended. If both pT and pF are assigned false, then P
should be copy-extended. Our task is to construct a propositional formula with
these literals, that is satisfiable iff ϕ is monotone according to our calculus.



Formulae The SAT-encoding of a formula ϕ is the conjunction of SAT-encodings
of the clauses of ϕ and the constraint that each predicate may not be extended
by both true and false:

monotone((C1 ∧ .. ∧ Cn), α) =

n∧
i=1

monotone(Ci, α) ∧
∧
Pi∈ϕ

¬piF ∨ ¬piT

Clauses The SAT-encoding of a clause C is the conjunction of SAT-encodings
of the literals of C.

monotone((l1 ∨ .. ∨ ln), α) =

n∧
i=1

monotone((l1 ∨ .. ∨ ln), li, α)

Literals The SAT-encoding of a literal may depend on the clause in which it
occurs. In a positive equality literal, both of the terms must be safe. A negative
equality literal is trivially monotone. An occurrence of a predicate is monotone
if the predicate is extended in an appropriate way or its arguments are safe.

monotone(C, l, α) =


safe(C, t1, α) ∧ safe(C, t2, α) if l is t1 = t2,

true if l is t1 6= t2,

¬pF ∨
∧n
i=1 safe(C, ti, α) if l is P (t1, . . . , tn),

¬pT ∨
∧n
i=1 safe(C, ti, α) if l is ¬P (t1, . . . , tn),

A term t is safe in a clause if it is not a variable of the sort considered for
monotonicity, or it is guarded by any of the literals in the clause.

safe((l1 ∨ .. ∨ ln), t, α) =

{∨n
i=1 guards(li, t) if t is a variable of sort α

true otherwise

A literal l guards a variable X according to the rules that we discussed in section
2.4.

guards(l,X) =


pT if l is of the form P (. . . , X, . . .),

pF if l is of the form ¬P (. . . , X, . . .),

true if l is of the form X 6= f(. . .) or f(. . .) 6= X,

false otherwise.

If there is a satisfying assignment of the SAT-formula monotone(ϕ, α), then
there is a consistent extension of the predicates of ϕ (a context) that makes ϕ
monotone in α, and vice versa. Monotonox uses MiniSat [6] to find out whether
a satisfying assignment exists for each sort.

3.2 Translating Sorted to Unsorted Logic

To translate from a sorted problem to an unsorted problem, we use the principle
that monotone sorts can simply be erased, but non-monotone sorts need to be
encoded using, for example, a sort predicate. Thus our algorithm is as follows:



1. Analyse the formula to discover which sorts are monotone.
2. For each non-monotone sort, transform the formula by introducing a sort

predicate or a sort function (according to the user’s choice)—but do not
erase the sort yet.

3. Erase all the sorts at once.

It makes no difference which method we use to encode the non-monotone sorts—
predicates, functions or something else. We can in principle use sort predicates
for some sorts and sort functions for others.

We justify the algorithm as follows: by adding sort predicates or functions
for all the non-monotone sorts, we have transformed the input formula into an
equisatisfiable formula which is also monotone.4 Once we have this monotone
formula then erasing all the sorts preserves satisfiability (theorem 1).

An example Suppose we take the first axiom of our running example, ∀M ∈
monkey. owns(M, banana1(M)). As discussed, we know that the sort banana
is monotone but the sort monkey is not. Thus we need to introduce a sort
predicate or function for only the sort monkey. If we introduce a sort function—
while still keeping the formula sorted—the new formula we obtain is ∀M ∈
monkey. owns(fmonkey(M), banana1(fmonkey(M)).

Having done this, it is enough to erase the sorts from the formula (step 3 of
the algorithm) and we obtain an unsorted formula which is equisatisfiable over
each domain size to the original sorted formula, namely:

∀M. owns(fmonkey(M), banana1(fmonkey(M))

3.3 Translating Unsorted to Sorted Logic

The translation from unsorted to sorted formulae makes use of the same ma-
chinery, only in the reverse direction: given an unsorted problem φ, if we find a
well-sorted problem ψ such that (1) erasing the sorts in ψ gives us back φ, and
(2) all sorts in ψ are monotone, then (theorem 1) φ and ψ are equisatisfiable.

The problem is finding the sorted problem ψ. We can use an existing algo-
rithm [4], that we call sort unerasure here, for this. Sort unerasure computes
the maximal typing of an unsorted problem. It starts by creating unique sorts
for all variable occurrences in the problem, and for all argument positions of
predicate and function symbols, and for all results of function symbols. Then,
it computes equivalence classes of sorts that should be equal to each other in
order for the problem to be well-sorted, in the following way. Everywhere in the
problem, whenever we apply a function symbol or predicate symbol P to a term
t, we force the sort of the corresponding argument position of P to be in the
same equivalence class as the result sort of t. Using a union/find algorithm, we
get an algorithm that is close to linear time in complexity.

To sum up, the translation goes in three steps:

4 In the case of sort predicates, our second calculus can infer monotonicity by false-
extending the sort predicate; in the case of sort functions, our first calculus also can
because no variable appears directly as the argument of an equality literal.



1. Compute candidate sorts for all symbols occurring in the problem (using
sort unerasure), and create the corresponding sorted problem.

2. Use Monotonox to find out if all sorts in the resulting problem are monotone.
If they are, we are done.

3. If there exists any sort that cannot be shown monotone, then give up. We
simply return the unsorted problem as a sorted problem with one sort.

In practice, there is more we can do in step 3 than giving up. One has to constrain
the sorted formula so that (1) the domains of all non-monotone sorts have the
same size, and (2) no monotone sort’s domain can be bigger than a non-monotone
sort’s domain. A finite model finder can easily implement these constraints; when
theorem-proving, one can enforce size constraints between sorts by adding to the
problem an injective function from the smaller sort to the bigger sort.

4 Results

The TPTP library [11] has recently been extended with many-sorted (so-called
TFF) problems. Unfortunately, only 26 of these problems have more than one
sort.5 They break down as follows: 11 have no non-ground positive equality,
which means that they are trivially monotone. Monotonox proves a further 5
monotone. 4 are monotone only because they have no finite models, a situation
which we cannot detect but plan to in the future. 6 are truly not monotone.

Translating from unsorted to many-sorted logic, we applied sort unerasure to
all 13610 unsorted TPTP problems,6 finding 6380 problems with more than one
sort, to which we applied our monotonicity inference. The results are as follows.

Total Total Monotone Other Affected Monotone
problems sorts sorts sorts7 problems8 problems9

CNF problems
Simple calculus

2598 19908
12317 7591 2446 592

Improved calculus 12545 7363 2521 726
Full first-order problems
Simple calculus

3782 91843
85025 6818 3154 1034

Improved calculus 88645 3198 3715 1532

Running times None of the tests above took more than a few seconds. Mono-
tonicity inference was not more expensive than the sort unerasure algorithm.

5 TFF adds both sorts and arithmetic to TPTP; the vast majority of the problems so
far only test arithmetic, so only have one sort.

6 Excluding the so-called SYN problems that just test syntax.
7 Sorts that we couldn’t infer monotone (including sorts that are truly not monotone).
8 Problems where at least one sort was inferred monotone.
9 Problems where all sorts were inferred monotone.



5 Conclusions and Future Work

We have introduced the concept of monotonicity, and applied it to the problem of
translating between many-sorted and unsorted first-order logic. Detecting mono-
tonicity of a sort is not decidable, but we have introduced two algorithms ap-
proximating the answer, one linear in the size of the problem, and one improved
algorithm solving an NP-complete problem using a SAT-solver. Our results show
that the improved algorithm detects many cases of monotonicity, and that the
NP-completeness is not a problem in practice.

For future work, we plan to integrate our previous work on finite unsatisfi-
ability detection [3] with monotonicity detection—any sort which must have an
infinite domain is monotone. We expect this method to improve monotonicity
detection for typical problems that have been translated from higher-order logics
with recursive datatypes, such as lists. Moreover, we are working on generalising
guards to arbitrary literals.

Finally, we plan to use the translation from unsorted to many-sorted logic to
populate the typed section of the TPTP benchmark library.
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