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ABSTRACT. A 2D model of the eddy current interaction problem that consists of an inhomo-
geneity in a conductive half space is presented. The applied analytical method of solution is the
transition (T) matrix method. This involves use of the free space Green’s function to generate a
system of boundary integral relations. In this way, it is easy to identify the contributions to the
total solution from each different scattering surface. The different parts are separated also in
the computation of the impedance. This leads to low cost simulations in terms of computation
time and qualify the method to be used to obtain probability of detection (POD) curves. The
T matrix method is a building block method and the possibility to extend the geometry with
several inhomogeneities and extra layers will be discussed. The model is compared with a Finite
Element (FE) model and numerical examples for the case with a cylindrical inhomogeneity are
given.
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INTRODUCTION

To obtain probability of detection (POD) curves by low cost simulations is very
desirable. Today there are many fast computation methods that can be used to achieve
that. The aim of this paper is to apply the transition (T) matrix method to a two
dimensional eddy current interaction model. This method have successfully been used
on a variety of scattering problems (see for example refs. [1], [2], [3]).

The model in the present paper consists of a finite scatterer, the defect on one
side of an infinite surface and a source on the other side (see Fig. 1). The system
consumes energy (the medium where the defect is located is lossy). The amount of
energy it consumes is dependent of the input current in the coil and the impedance of
the system. The position, size and shape of the defect affect this impedance. Therefore
is it possible to detect and size the defect by measuring the impedance with the eddy
current equipment. When the probe scans the surface and it approaches the position
above the defect there is a change in measured impedance. In a simulation of the surface
scan this difference in impedance needs to be calculated for several different positions
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FIGURE 1. Geometry and notations.

of the probe. With the T matrix method a major part of the calculations does not have
to be repeated when changing the position of the probe.

The analysis is based on use of the free space Green’s function. Integration
over the different homogeneous regions with standard Green’s function technique gives
a system of equations. To solve this system of equations, suitable expansions of the
surface fields and the Green’s function are needed. Plane wave basis functions and
cylindrical wave basis functions is used for these expansions. The integrals over the
defect will then give the T matrix that transforms the incoming field towards the defect
to the outgoing field from the defect. The defect which represent a finite scatterer is
completely characterized by its T matrix. The infinite scattering surface, on the other
hand, will not be characterized by its T matrix but by its reflection and transmission
coefficients.

There exist some references of 2D eddy current interaction models with a sub-
surface defect who use an analytical method of solution. The model of Hartfield and
Bowler [4] of a deep subsurface crack and the model of Riaziat and Auld [5] of subsurface
cracks in a layered medium are two examples, both using the Wiener-Hopf method of
solution.

INTEGRAL FORMULATION AND EXPANSIONS

The scattering geometry is given in Fig. 1. All subregions Si, i = 0, 1, 2, are
assumed to be homogeneous, isotropic and linear. To simplify the calculations the
surface L0 is assumed to be a plane. The defect is assumed to be of cylindrical shape
like a side drilled hole, which generates a diagonal T matrix. Other possible shapes
are for example an elliptical cylinder or a strip (see [1]). The incoming field generated
by the probe is assumed to be known. The 2D probe is an infinite conductor with
current in the z-direction. This leads to two separate two dimensional problems for
the field strength ψ. The first is 2D problem for the electric field strength ψ = Ez or
the magnetic vector potential ψ = Az, and in the other a 2D problem for the magnetic
field strength ψ = Hz. These problems are solved in the frequency domain with the
time dependence e−iωt. In this domain the field strengths satisfies the scalar Helmholtz
equation

∆ψ(r) + k2ψ(r) = f, (1)

where k2 = iµωσ + ω2µε and f is the known source term. Here µ is the magnetic
permeability, ε the electric permittivity and σ the conductivity. Throughout this paper
the same notations as in Karlsson [1] are mostly used.
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Now the free space Green’s function G(r, r ′, k) which satisfies

∆G(r, r ′, k) + k2G(r, r ′, k) = −δ(|r − r
′|) (2)

is introduced. Then integration over the regions S0 and S1 and Green’s theorem yields

−
∫

L0

(

G(r, r ′, k0)
∂ψ+

0 (r)

∂n0
− ψ+

0 (r)
∂G(r, r ′, k0)

∂n0

)

dL0 + ψinc(r ′)

=

{

ψ0(r
′), if r ′ ∈ S0,

0, if r ′ 6∈ S0,

(3)

where ψinc(r′) =
∫

S0
G(r, r ′, k0)f dS0 is the incoming field and

∫

L0

(

G(r, r ′, k1)
∂ψ−

1 (r)

∂n0
− ψ−

1 (r)
∂G(r, r ′, k1)

∂n0

)

dL0

−
∫

L1

(

G(r, r ′, k1)
∂ψ+

1 (r)

∂n1
− ψ+

1 (r)
∂G(r, r ′, k1)

∂n1

)

dL1 =

{

ψ1(r
′), if r ′ ∈ S1,

0, if r ′ 6∈ S1.

(4)

Here ψ± is the surface field on the positive (+) or negative (−) side of the boundary with
respect to its normal vector n̂. As mentioned above this system of equations is solved
by expanding the Green’s function and the surface fields in suitable basis functions.
The plane wave basis functions are defined as

ϕ(k, r) =
1√
8π
eik·r, (5)

where the vector k is defined as k = (q, h) = k(cos(α), sin(α)) and r = r(cos(φ), sin(φ)).
Here the symbols (q, h) for the vector components are introduced to further reduce the
length of the expressions. The definition of the cylindrical wave basis functions are

Reχn(r, k) =

√
εm
2

Jm(kr)

{

cos(mφ), if ς = e,

sin(mφ), if ς = o,
(6)

χn(r, k) =

√
εm
2

H(1)
m (kr)

{

cos(mφ), if ς = e,

sin(mφ), if ς = o,
(7)

where εn = 2 − δn,0, Jm is a Bessel function and H
(1)
m is a Hankel function of the first

kind. Here the multi-index n = mς where m ∈ N, ς = o denotes odd and ς = e denotes
even has been introduced.

The surface field on L0 is convenient to expand in plane waves

ψ+
0 (r) =

∫

C+

β(α)ϕ(k0, r) dα, (8)

∂ψ+
0 (r)

∂n
=

∫

C+

γ(α)
∂ϕ(k0, r)

∂n
dα, (9)

where β and γ are the unknown expansion coefficients. The complex integration
contours are chosen such that the set of plane waves ϕ(k, r) forms a complete set
of basis functions. C+ is a contour from α = π/4 + i∞ to 3π/4 − i∞ subject to
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tan(<(α)) = coth(=(α)). The C− contour which also will be used is defined as
α + π ∈ C− if α ∈ C+. On C+ q ∈ R and Im (h) ≥ 0 and on C− q ∈ R and
Im (h) ≤ 0. Thus q is a Fourier transform variable in the x direction. Note that since
Im (h) ≥ 0 on C+ and Im (h) ≤ 0 on C− ei h y will be bounded if y ≥ 0 or if y ≤ 0. The
surface field on L1 is convenient to expand in cylindrical waves

ψ−
2 =

∑

n

ζnReχn(r, k2), (10)

∂ψ−
2

∂n
=

∑

n

ζn
∂Reχn(r, k2)

∂n
, (11)

where ζn are unknown expansion coefficients. Note that the derivative of the surface
field on L1 is equal to the derivative of the expansion, but that is not the case on L0.
The reason is that the expansion on L1 is valid everywhere in S2 while the expansion
on L0 exists only on L0 [3].

Expansions of the Green’s function are given in [6], where necessary transforma-
tions between different basis functions also can be found. The plane wave expansion
is

G(r, r ′, k) = 2i

∫

C±

ϕ(k, r′)ϕ(−k, r ) dα, (12)

with integration over the C+ contour if y′ > y and over C− if y′ < y (i.e. waves traveling
in the direction from y towards y′). The expansion of G(r, r ′, k) in cylindrical waves is

G(r, r ′, k) = i
∑

n

Reχn( r< , k)χn( r> , k), (13)

where r< is the smaller and r> the greater of r′ and r.

The next step is to introduce the boundary conditions ψ+
i = ψ−

j and
∂ψ+

i

∂n
= bij

∂ψ−

j

∂n

where bij = µi
µj

if ψ = Ez or ψ = Az and bij = εi
εj

if ψ = Hz. Then it is possible to

express equation (3) and (4) in terms of the given expansions. To solve the system
of equations it is also needed to make transformations between the cylindrical wave
functions and the plane wave functions

ϕ(k, r) =
∑

n

D†
n(α)Reχn(r, k), (14)

χn(r, k) = 2

∫

C±

Dn(α)ϕ(k, r) dα, (15)

where the integration is over C+ if y > 0 and over C− if y < 0 (i.e. upwards traveling
plane waves above the origin of the cylindrical wave and downwards traveling plane
waves below the origin of the cylindrical wave). Here the transformation coefficients
Dn(α) are defined as

Dn(α) = i−m
(εm
2π

) 1

2

{

cos(mα), if ς = e,

sin(mα), if ς = o,
(16)

and D†
n in the same way except for a change of sign in the exponential (im).
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THE T MATRIX SOLUTION

In this section the expansions above is used to solve the integral formulation
of Helmholtz equation ((3) and (4)) for our geometry. Begin with equation (3) with
r
′ /∈ S0 and the Green’s function expanded in plane waves (eq. (12)). Then using the

expansions (8) and (9), and changing the order of integration, yields the incoming field
as an expansion in downwards traveling plane waves

ψinc(r
′) =

∫

C−

ainc(α)ϕ(k0, r
′) dα, (17)

where

ainc(α) =

∫

C+

−β(α′)2iQ(−k0,k
′

0
) dα′ +

∫

C+

γ(α′)2iQ(k′

0
,−k0) dα

′, α ∈ C−.

(18)

Here

Q(ki,kj) =

∫

L0

∂ϕ(ki, r)

∂n
ϕ(kj , r) dL0. (19)

In our coordinates the integration over L0 is an integration over x and the n-derivative
is the y-derivative. Then use of the identity 2πδ(ξ) =

∫∞

−∞
e−iξxdx yields Q(ki,kj) =

i hi ϕ(hi, y0)ϕ(hj, y0)
√

π/2 δ(qi + qj). Now the integration over the C+ contour in
equation (18) becomes very simple.

Now turn to equation (4). When r
′ ∈ S0, the Green’s function expansion (eq.

(12)) with integration over the C+ contour can be used. This gives an integrand con-
taining plane waves when integration is over the circular boundary L1 of the cylindrical
defect. To avoid that, these plane waves are transformed to cylindrical waves using
transformation (14) which results in

∫

C+

(
β(α′)Q(−k1,k

′

0
)− γ(α′)b10Q(k

′

0
,−k1)

)
dα′

=
∑

n′m

D†
n′(α+ π)ReQn′mζm, α ∈ C+,

(20)

where

ReQn′m =

∫

L1

(
∂Reχn′(r, k1)

∂n
Reχm(r, k2)− Reχn′(r, k1)b12

∂Reχm(r, k2)

∂n

)

dL1.

(21)

The integration over L1 is in polar coordinates and results in a diagonal matrix. If the
same equation (4) is used, but with r

′ ∈ S2 then the Green’s function can be expanded
in cylindrical waves according to (13). To avoid cylindrical waves when integrating over
L0 transformation (15) is used to transform them into plane waves and get

∑

m

Qnmζm = 2

∫

C+

Dn(α)

∫

C+

(
β(α′)Q(k1,k

′

0
)− γ(α′)b10Q(k

′

0
,k1)

)
dα′ dα, ∀n,

(22)

where

Qnm =

∫

L1

(
∂χn(r, k1)

∂n
Reχm(r, k2)− χn(r, k1)b12

∂Reχm(r, k2)

∂n

)

dL1. (23)
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Now the equations ((18), (20) and (22)) form a system of equations with three unknown
expansion coefficients, β(α), γ (α) and ζm. The solution to these equations combined
with the equations (3), (4) and (10), yields the field in any of the regions S0, S1 and
S2. It should be noted that equation (22) contains a double integration over the C+

contour. One of these integrations has to be computed numerically. After elimination
of β(α) and γ (α) the system is reduced to

dm =
∑

n

Amncn + 2cm, (24)

where

Amn =
∑

n′

Tn′n

∫

C+

4R10Dm(π − α)D†
n′(α + π)e2i

√
k2
1
−q2

1
y0dα, (25)

and

dm =

∫

C+

Dm(π − α)(1− R10) ainc

(

2π − arccos

(
q1
k0

))

e
i
(√

k2
1
−q2

1
−
√
k2
0
−q2

1

)

y0dα. (26)

Here the T matrix has been introduced as

Tn′n =
∑

m

ReQn′mQ
−1
nm, (27)

and Rij the reflection coefficient as

Rij =

√

k2i − q2i − bij

√

k2j − q2i
√

k2i − q2i + bij

√

k2j − q2i

, (28)

where the square root is defined such that Im
√

(∗) ≥ 0. The new unknown cn in
equation (24) is defined as cn =

∑

m iQnmζm. Then equation (24) is solved numerically
to get the fields and calculate the impedance. Conditions for a solution to exist is
given in [3] and further references given there. It should be noted that the matrix A is
independent of the incoming field.

NUMERICAL CALCULATIONS

In this section the analytical solution of the field is used to calculate the change
of impedance due to a defect. This difference in impedance ∆Z = Zb − Za can be
calculated by integration over a surface enclosing the defect (see Auld and Moulder
[7]). With the index b denoting the case in presence of a defect and a the case in
absence of a defect ∆Z can be calculated as

∆Z =
1

I2

∫

Ldefect

(Ea ×Hb −Eb ×Ha) dL. (29)

On this surface the surface field expansion (10) can be used, thus this expression is
convenient to use. By introducing the magnetic vector potential A, such that B = ∇×A
expression (29) can be written as

∆Z =
iω

µI2

∫

L1

(

ψa
∂ψb
∂n

− ψb
∂ψa
∂n

)

dL, (30)
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FIGURE 2. ∆Z as a function of distance from the defect.
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FIGURE 3. ∆Z as a function of frequency.

where ψ = Az. Then the surface field expansion (10) is used to get

∆Z = − iω

µI2

∑

mn

ζanζbmReQnm. (31)

Before using expression (31) the expansion coefficients of the incoming field has to be
derived. With the input current I, the source term is f = µ0 J , where J is the input
current density J = I/conductor area. Then using the plane wave expansion of the
Green’s function and integration over the source yields the expansion coefficients of the
incoming field

ψinc(r′) =

∫

S

G(r, r ′, k0)f dS =

∫

C−

∫

S

ϕ(−k0, r )µ0 J dS

︸ ︷︷ ︸

ainc(α)

ϕ(k0, r
′) dα, (32)

where S is the cross section of the conductor.
Now expression (31) is used to calculate ∆Z and compare the results with a finite

element solution of the same problem. Both methods are implemented in MatLab.
Figure 2 shows ∆Z as a function of probe position and Fig. 3 shows ∆Z as a function
of frequency. These numerical examples are just intended to serve as a comparison
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with the finite element method for realistic parameters. In both numerical examples
the lift-off is 0.1mm and the conductivity is σ = 0.58MS/m which corresponds to the
conductivity of titanium. The defect is positioned 0.1mm below the surface and has a
diameter of 1mm. The rectangular conductor is 1mm high and 0.25mm wide. In the
surface scan simulation (Fig. 2) the input frequency is 1MHz. Then the probe position
is chosen close to the maximum amplitude (x − xd = 0.6mm) and the skin depth is
varied by changing the frequency (Fig. 3). Both examples shows very good agreement
of the solutions from the two methods.

CONCLUDING REMARKS

The T matrix method can be used to solve the eddy current interaction problem.
The advantage compared to the finite element method is shorter computation times.
The presented examples is solved 10 to 50 times faster with the T matrix method,
depending on how many points that is used for the position of the probe. The difference
in computation time increase with the increased amount of points. This comparisons
are made on the same standard PC.

In the present paper the 2D problem with a cylindrical defect is treated, but it
can also be extended to the 3D case. The 3D defect can be ”sphere like” or an ellipsoid.
An elliptical cylinder defect where one of the radii tends to zero can be used to model
a strip-like crack. In similar manner it is possible to model disk-shaped defects from
an ellipsoid. The subsurface defect can be positioned very near the surface, resulting
in an imitation of an almost surface-breaking crack.
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