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Simulation of Wave Induced Forces on Semi Submerged Horizontal Cylinders 
Using OpenFOAM® 

Master of Science Thesis in the Master Degree Programme Naval Architecture 
JONAS ANDERSSON 
Department of Shipping and Marine Technology 
Division of Sustainable Ship Propulsion 
Chalmers University of Technology 

 

ABSTRACT 
The work presented in this thesis documents the simulation of wave induced forces on 
semi submerged horizontal cylinders in OpenFOAM, utilizing the blending method 
for generation and damping of waves. The blending method is not included with 
OpenFOAM and thus required development before it could be employed. Both a 
linear Airy wave model and a fifth order stokes wave model are implemented. The 
blending method is implemented as an extension of the laminar multiphase solver 
interFoam, utilizing the volume of fluid method for capturing the interface and the 
finite volume method for spatial discretization. 

A validation study is carried out aiming to confirm that the simulated waves 
accurately represent reality. Simulation results are compared with experimental data, 
in this study the property compared are wave induced forces on a partially submerged 
cylinder. Time force histories for three different cylinder axis submergences and wave 
amplitudes are presented. The agreement between experimental forces and simulation 
forces is good. 

A verification study is attempted. This study shows significant deformation of the 
surface profile, most notably a raising of the trough and a lowering of the crest. The 
cause of the deformation is still unknown. 

 
Key words: OpenFOAM, Multiphase flow, Wave generation and damping, Wave 
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1 Introduction 
Within ship hydrodynamics a number of coefficients are required in order to predict 
how ships behave. For instance a sea keeping study might require the roll damping 
coefficient, while a load analysis using the Morison equation would require two 
coefficients, inertia and drag. These coefficients are usually determined using small 
scale model experiments in wave tanks. 

Physical experiments involve a number of disadvantages compared to numerical 
simulations. Manufacturing of the model is time consuming, potentially causing 
costly delays when several iterations of the design are required. The model size is 
limited by the size of the wave tank, which generally is several orders of magnitude 
smaller than a full size ship. This causes a problem because scaling of the results from 
model scale to full scale inevitably involves a loss of accuracy. This all adds up and 
makes wave tank experiments a costly venture. 

Computational Fluid Dynamics (CFD) can be used to create a numerical wave tank, 
consequently providing an alternative method for determining the sought coefficients 
without the previously mentioned disadvantages. However, CFD is not yet capable of 
replacing physical experiments. A CFD solution can never be more accurate than the 
underlying physical models. Currently CFD should be considered a complement to 
real experiments. 

Single Buoy Moorings, from now on referred to as SBM, designs Floating Production, 
Storage and Offloading (FPSO) platforms, mooring terminals and other offshore 
equipment. A firm understanding of how their equipment behaves in waves is thus of 
central importance for SBM. 
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1.1 Aims and Objectives 
The purpose of this project is to investigate the usage of the open source CFD toolbox 
OpenFOAM1, for creation of a numerical wave tank, and its possible usefulness 
within SBMs industrial projects. 

The direction of the study is aimed towards a numerical wave tank for determination 
of ship hydrodynamic coefficients. With an understanding that this is a very ambitious 
objective, considering the time and resources dedicated to the project, the objective is 
rather to investigate the required building blocks and to provide SBMs personnel with 
a better understanding of the subject. 

A rough outline of the building blocks required for a numerical wave tank for the 
determination of ship hydrodynamic coefficients would include: a CFD solver for 
multiphase flows, an interface tracking method, a technique for generating and 
absorbing waves, wave models, couplings between wave induced forces and body 
motions and capabilities to handle moving objects. 

1.2 Delimitations 
A prerequisite for this study is that OpenFOAM must be used. There are many 
alternatives available, however most of them come with license constraints, limiting 
the possibilities to modify and extend the code, see Section 4.1. SBM specifically 
wish to investigate the current usefulness of OpenFOAM for wave generation 
purposes. Since some development had previously been performed using OpenFOAM 
1.5dev [1], this version shall be used also for further development. 

The technique used for wave generation and absorption is the relaxation- or blending 
method. This is a method not initially included in the OpenFOAM toolbox, thus 
requiring implementation. 

                                                 
1This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM 
software and owner of the OPENFOAM® and OpenCFD® trade marks. 
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2 Wave Theory 
There are several approaches to generating waves in a numerical wave tank. The same 
approach as in an experimental wave tank could be used, i.e. a moving paddle. This 
method would however require knowledge of which paddle motion corresponding to 
the desired wave shape, as well as a method for moving the paddle, introducing an 
unwanted complication. Another approach, used in this project, is generating an 
analytical wave model. 

No single wave theory describes all types of waves. Currents, water depth and wave 
steepness all significantly affect the wave shape. Thus knowledge about these 
parameters are required in order to choose a suitable wave model. An improper choice 
of wave model will result in a wave unable to retain the generated shape. 

The depth of the numerical wave tank in this project is always chosen to be deep, 
meaning the water depth is always larger than half the wavelength, ℎ > 1

2𝜆. No current 
is applied and the steepness is varied. The two wave models implemented in this 
project are the linear Airy wave and Fentons nonlinear fifth order Stokes wave [2]. 
The difference between the two wave models surface profiles can be seen in Figure 1. 
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2.1 Airy Wave 
The so called Airy wave theory is a linear, or first order, wave model. The surface 
profile is symmetric about the mean water level so that peaks have the same shape as 
troughs, see Figure 1. It is only valid for small amplitude waves, meaning that the 
wave amplitude has to be much smaller than the wave length. It is based on potential 
flow and thus does not account for viscosity or vorticity. Since it is linear it is possible 
to superpose solutions for different wave frequencies and propagation directions and 
thus achieve an irregular sea state [3].  

  

Figure 1 Comparison of surface profiles for Airy and Fenton Stokes 5th order wave models. 
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The Airy wave model can be computed according to equations (2.1)-(2.7): 

 𝜔 = 2𝜋𝑓 (2.1) 

 𝑘 =
𝜔2

𝑔
 (2.2) 

 𝜆 =
2𝜋
𝑘

 (2.3) 

 𝜂 = a ∙ cos(𝑘𝑥 − 𝜔𝑡 ) (2.4) 

 𝑢 =
𝑎𝜔 cosh�𝑘(ℎ + 𝑧)� cos(𝑘𝑥 − 𝜔𝑡)

sinh(𝑘ℎ)  (2.5) 

 𝑤 =
𝑎𝜔 sinh�𝑘(ℎ + 𝑧)� sin(𝑘𝑥 − 𝜔𝑡)

sinh(𝑘ℎ)  (2.6) 

 𝑝 = 𝜌𝑔𝜂
cosh�𝑘(ℎ + 𝑧)�

cosh(𝑘ℎ)  (2.7) 

Where 𝜔 is the angular frequency, 𝑓 the frequency, 𝑘 the angular wave number, 𝑔 
gravity, 𝜆 the wavelength, 𝜂 the surface elevation, 𝑎 wave amplitude, 𝑢 the horizontal 
particle velocity, 𝑤 the vertical particle velocity, ℎ the still water depth and 𝑝 the 
pressure. 

2.2 Fifth Order Stokes Wave 
Fentons fifth order stokes wave [2, 4] is uniquely defined by three physical 
dimensions, the mean water depth 𝑑, the wave height 𝐻, and the wavelength 𝜆. 
Several other wave theories employ the wave period instead of wavelength. However 
in most real applications there exists a current, and the apparent wave period is 
actually Doppler-shifted. When using a Doppler-shifted wave period without 
knowledge about the current, the problem is under specified and thus does not 
uniquely define the wave. No current velocity is applied in this study, however 
possible future applications for this code likely do. 

As seen in equation (2.8), the free surface profile 𝜂 is much more complex for a fifth 
order wave in comparison to the Airy wave, see Figure 1. The higher order wave has 
higher and narrower crests and flatter shallower troughs compared to the Airy wave. 

 𝑘𝜂(𝑥) = 𝑘𝑑 + 𝜖 cos(𝑘𝑥) + 𝜖2𝐵22 cos(2𝑘𝑥)
+ 𝜖3𝐵31(cos(𝑘𝑥) − cos(3𝑘𝑥))
+ 𝜖4(𝐵42 cos(2𝑘𝑥) + 𝐵44 cos(4𝑘𝑥))
+ 𝜖5�−(𝐵53 + 𝐵55)� cos(𝑘𝑥)
+ 𝐵53 cos(3𝑘𝑥) + 𝐵55 cos(5𝑘𝑥) 

(2.8) 
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In equation (2.8) 𝜖 = 𝑘𝐻/2 is the dimensionless wave height and 𝐵𝑖𝑗 are 
dimensionless coefficients. Fentons fifth order Stokes model includes 25 of these 
coefficients, each described by an intricate formula. These formulas can be found in 
[2] and [4]. Fenton lists the following equation [4] for determining the highest stable 
wave height as a function of wavelength and depth, equation (2.9):  

 𝐻𝑚
ℎ

=
0.141063𝜆ℎ + 0.0095721�𝜆ℎ�

2
+ 0.0077829�𝜆ℎ�

3
 

1 + 0.0788340𝜆ℎ + 0.0317567�𝜆ℎ�
2

+ 0.0093407�𝜆ℎ�
3 (2.9) 

Where 𝐻𝑚 is the maximum wave height, ℎ the depth and 𝜆 the wavelength. 
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3 Computational Fluid Dynamics 
In this project Computational Fluid Dynamics is used to solve the flow in a numerical 
wave tank. CFD is a branch of fluid mechanics utilizing numerical methods to solve 
fluid flows. This chapter introduces the governing equations behind the CFD software 
used in this project, OpenFOAM. The solver used is interFoam, a solver for two 
incompressible, isothermal immiscible fluids using the volume of fluid (VOF) method 
for capturing the interface. 

3.1 Governing Equations 
Navier-Stokes equations are nonlinear partial differential equations believed to 
exactly describe all fluid flows. The governing equations for a time-dependent three-
dimensional fluid flow and heat transfer of a compressible Newtonian fluid can be 
written as equation (3.1) [5]. 

 𝜕(𝜌𝜙)
𝜕𝑡

+ div(𝜌𝒖𝜙) = div(Γ grad𝜙) + 𝑆𝜙 (3.1) 

Where 𝜙 is a general variable representing e.g. velocity. The first term represents the 
time rate of change of 𝜙 within a control volume and the second term represents 
convection. On the right hand side the first term represents diffusion, where Γ is a 
diffusion coefficient, and 𝑆𝜙 is the source term. 

Few exact solutions exist and thus the partial differential equations need to be solved 
numerically for most engineering problems. Navier-Stokes equations can be solved 
directly, however it is too computationally prohibitive for most engineering problems. 
Thus simplifying assumptions and models are required in order to make it 
economically viable. An assumption made in this project is that the fluid is inviscid, 
resulting in the so called Euler equations. 

3.2 Finite Volume Method 
OpenFOAM uses the finite volume method for spatial discretization of the partial 
differential equations. The domain is divided into control volumes, referred to as cells. 
The differential form of the partial differential equations are integrated over each cell. 
Because the flux into a cell is always equal to the flux out of a cell, the finite volume 
method is inherently conservative. Quantities of interest, e.g. pressure or velocity, are 
stored at the cells centroid. Values in between the cell centroids are interpolated. 

3.3 Volume of Fluid Surface Capturing 
The interFoam solver employs the VOF method for capturing the interface. The 
VOF method utilizes a property called phase fraction to capture the interface. In 
OpenFOAM 1.5dev the phase fraction is denoted 𝛾 while newer versions denote 𝛼. 
The phase fraction is convectively transported by the velocity field, see the phase 
fraction transport equation (3.2). 

 𝜕𝛾
𝜕𝑡

+ 𝒗 ∙ grad 𝛾 = 0 (3.2) 
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The phase fraction has a value of zero in cells filled with air and a value of one in 
cells filled with water. Cells at the free surface contain both air and water and thus 
have a value between zero and one. 

The VOF formulation in interFoam tends to artificially diffuse the interface 
between air and water. One method for keeping the surface interface sharp is artificial 
compression where a pressure is applied normal to the surface. In OpenFOAM the 
magnitude of the artificial volume force is controlled via the cGamma setting. 

3.4 Implicit and Explicit Numerical Schemes 
Since the choice of numerical schemes turned out to have a large influence on 
problems experienced during the project, such as surface diffusion and unrealistic air 
velocities, a brief description of the differences between implicit and explicit schemes 
are given in this section. A more thorough description can be found in Versteeg [5]. 
For details regarding the problems experienced, see Section 5.2. 

With an explicit numerical scheme the solution for the current timestep is computed 
only from known previous solutions and thus can be solved directly, see equation 
(3.3). 

 𝑌(𝑡) = 𝑓�𝑌(𝑡 − ∆𝑡)� (3.3) 

𝑌(𝑡) is the solution at the current timestep 𝑡, ∆𝑡 is a time increment and thus 
𝑌(𝑡 − ∆𝑡) is the solution at the previous timestep. 

In an implicit numerical scheme on the other hand, the solution is evaluated also from 
the unknown current timestep. Since the current solution is present on both sides of 
the equation it cannot be solved directly, see equation (3.4). 

 𝑌(𝑡) = 𝑓�𝑌(𝑡 − ∆𝑡),𝑌(𝑡)� (3.4) 

Implicit schemes are much more stable than explicit schemes. Explicit schemes needs 
to fulfill the Courant-Friedrich-Levy (CFL) condition in order to guarantee stability, 
see equation (3.5). 

 𝑈 ∙ ∆𝑡
∆𝑥

= 𝐶𝐹𝐿 (3.5) 

𝑈 is the velocity, ∆𝑡 is the timestep length and ∆𝑥 is the cell length. For this condition 
to be fulfilled the distance travelled during one timestep is required to be less than one 
cell length. Hence high velocities and small cell sizes requires very small timesteps. 

Time marching is different for implicit and explicit schemes. With implicit time 
marching it is possible to maintain stability while advancing larger temporal distances 
than dictated by the CFL condition. This is an attractive behavior for steady state 
simulations. The converged solution is correct, however the iteration steps between 
initialization and converged solution is not time accurate when using implicit time 
marching. 
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4 Software 
This chapter contains brief introductions to the software used in this project. All work 
is performed under Linux, which with its powerful scripting capabilities lends itself 
well for this particular type of workflow. Several alternatives to the specified 
softwares were tried and considered. However, due to the repetitive tasks this type of 
simulation work often involve, software alternatives which provide good scripting and 
automation capabilities ended up being the preferred choice. 

4.1 OpenFOAM 
OpenFOAM, short for Open Field Operation And Manipulation, is a free open source 
CFD toolbox [6]. It is a library of C++ code, available for anyone to customize and 
extend. OpenFOAM is written using an object oriented approach with a syntax closely 
resembling the differential equations being solved. This yields a very modular 
software design which eases the transition from physical model to code, making it 
easy to modify and extend [7]. In this study OpenFOAM 1.5dev has been used  [1]. 

OpenFOAM uses the finite volume method on unstructured meshes. It is a very 
capable CFD tool including free-surface flows and mesh motion, among many other 
features. More than 80 solvers for simulation of specific problems and over 170 utility 
applications for meshing, post-processing and similar tasks are included [8].  

Unlike most other CFD software, OpenFOAM is not controlled through a graphical 
user interface (GUI). Instead settings are adjusted via text files called dictionaries and 
everything is controlled via the command line. The lack of a GUI makes the learning 
curve steeper for new users, however once grasped it is a very flexible and easily 
automatable approach. Some documentation and support are available for 
OpenFOAM, but compared to commercial CFD software alternatives it is lacking.  

OpenFOAM is released under the license GNU GPL 2 [9], meaning that it is free for 
anyone to download and use. Commercial software licenses generally limit the 
number of processors per simulation or the number of parallel simulations. 
OpenFOAM offers the flexibility of utilizing all available processors for a single 
simulation, or for launching a large amount of parallel simulations. Thus OpenFOAM 
allows utilizing the available hardware to its full potential. 

The nonexistent license fee is however not the only benefit. The lack of license 
constraints means that OpenFOAM can be customized to suit any workflow. Tasks 
ordinarily requiring manual interaction can be automated. Everything from mesh 
generation, simulation, post-processing and plotting can be automatically performed 
for complex matrices of initial conditions, boundary conditions, fluid properties and 
geometries. All parts of an OpenFOAM simulation, from pre processing to post 
processing, can be automated using the python library PyFoam [10]. 
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4.1.1 blockMesh 
One of the utilities distributed with OpenFOAM is blockMesh, a mesh generator 
for simpler geometries. As with all OpenFOAM utilities, blockMesh is controlled 
through a dictionary, which facilitates easy creation of parametric meshes. A few 
input parameters can thus generate a complete mesh, while a few alterations to these 
parameters might generate a very different mesh. This makes blockMesh 
particularly well suited for studies involving families of geometrically similar meshes, 
such as grid dependence or optimization studies. 

The preprocessing language GNU m4 [11] is commonly utilized for parameterization 
of blockMesh dictionaries. More advanced calculations can be achieved using shell 
scripting, perl or python. 

4.2 ParaView 
ParaView is an open source post processing application for data analysis and 
visualization. Using the Message Parsing Interface (MPI), ParaView can run in 
parallel, enabling fast rendering of large data sets. Post processing can be carried out 
interactively in 3D as for most post processing software. ParaView can however also 
be run in batch mode, enabling rapid and effortless repetition of identical processing 
tasks, and scriptable, automatic post processing [12]. 

All actions performed through the GUI of ParaView can be recorded as macros for 
quick re-use of common processing sequences. The macro feature records the GUIs 
actions using python. These python scripts can also be executed in batch mode, and 
thus fits well into the scriptable workflow of OpenFOAM. 

OpenFOAM is well integrated with ParaView through the wrapper script paraFoam. 
Simulations can be visualized in ParaView without the need for converting or even 
recomposing parallel cases. 

4.3 Matlab 
Matlab has a wide range of applications within scientific computing, such as 
algorithm development, image processing and data visualization. A large number of 
add-on toolboxes can further increase the feature set. The programming syntax in 
Matlab is easier than traditional scientific programming languages such as C/C++ or 
Fortran [13]. 

Data presentation in Matlab allows for highly detailed control over the visualized 
results, making it the authors’ software of choice for generating publication grade 
figures. Matlab scripts can be run interactively, but also in batch mode from the 
command line and thus integrates well with the other software used through scripting. 
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5 Wave Generator Development 
Working with waves travelling across the limited spatial domain of a numerical wave 
tank first requires the waves to be generated. The length of a numerical wave tank is 
generally smaller than the distance travelled by a wave during a normal simulation 
duration. Thus the wave is likely to reach the end of the domain and reflect off of it. 
Reflected waves are generally an unwanted phenomenon since they interfere with the 
tests being conducted in the numerical wave tank. In order to prevent waves reflecting 
off of the domain boundaries wave absorption techniques can be employed. 

Several techniques are available for wave generation in numerical wave tanks. 
Moving paddles, similar to those used for wave generation in real wave tanks, can be 
recreated and analytical formulas can connect each desired wave type to the 
corresponding paddle motion required. This method requires the challenging task of 
simulating a moving paddle. Other methods for generating waves make use of the 
possibility to control mass sources within the continuity equation and thereby 
recreating the mass flux of the desired wave type [14]. 

Absorption of an incoming wave is an even more challenging task than generation of 
the wave. In real wave tanks sponge layers are often used to absorb incoming waves 
and prevent them from reflecting. A common approach for numerical wave tanks is to 
implement a Sommerfeld boundary condition, where a first order wave is prescribed 
at the boundary. The prescribed wave needs to match the incoming wave exactly 
regarding both time and frequency for successful absorption. Any discrepancies 
between the two will result in reflections. Thus the Sommerfeld boundary condition is 
incapable of fully absorbing waves deformed by e.g. a rolling ship in the wave tank. 
Another method for damping waves is to add a viscous damping term to the mass and 
momentum equations [15]. 

5.1 Blending Method 
The blending method can be utilized for both wave generation and wave absorption. 
Unlike wave generating methods based on periodic boundary conditions, the blending 
method can use simple boundary conditions, and it is capable of dissipating an 
incoming wave without prior knowledge on the properties of the wave, or at what 
exact time it will arrive. 

The blending method generates waves in the interior of the basin. It functions by 
substituting the computed solution with an alternative solution after each time 
increment. The solution being enforced could for instance be a wave model or a still 
surface. This substitution should not be performed all at once, as it would result in 
large gradients and produce reflections. Instead the solutions are gradually substituted 
throughout the length of the basin. 

An advantage with the blending method is that it can effectively dissipate incoming 
waves, not only in the damping end of the basin, but also at the generating end. Since 
the same method is used for both generating and damping the waves, it is possible to 
simulate very complex cases having waves propagating in several directions 
simultaneously, impacting the damping zones at any angle. However the blending 
method operate inside the actual basin and require a basin length the magnitude of 
several wavelengths. This significantly increases the required simulation time. 
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The blending method is not included with OpenFOAM and thus requires 
implementation. The method has been successfully implemented in OpenFOAM 
previously by Afshar [16] and Jacobsen [17]. 

Another common name for this method is the relaxation method. This term is not 
chosen by the author, since within CFD the term relaxation is commonly associated 
with a mixing of the calculated solution with zero or with a solution from a previous 
timestep, thereby relaxing the advance of the simulation, making it more stable. 

The chosen term blending on the other hand suggests that the solution is mixed with 
an alternative solution, not necessarily zero or a solution from a previous timestep. 
This is deemed a more suitable name for this method since its purpose is not to 
stabilize the simulation, but rather to propagate a wave. 

The blended solution is calculated according to equation (5.1), 

 𝜙𝑏(𝑥) = 𝛼(𝑥)𝜙𝑐(𝑥) + �1 − 𝛼(𝑥)�𝜙𝑎(𝑥) (5.1) 

where 𝜙𝑏 is the new blended solution, 𝜙𝑐 is the old solution, 𝜙𝑎 is the analytical 
solution being generated, and 𝑎(𝑥) ∈ [0,1] is the blending function. The first term on 
the right hand side, 𝛼(𝑥)𝜙𝑎(𝑥), represents the absorption while the second term, 
�1 − 𝛼(𝑥)�𝜙𝑐(𝑥), controls generation. 

5.1.1 Blending Functions 
Generation and damping of waves using the blending method needs to be performed 
smoothly in order to prevent spurious wave modes and reflections. In order to achieve 
a smooth blending the shape of the blending functions and the length of the blending 
zones needs to be considered. 

Engsig-Karup [15] derives blending function shapes ensuring smooth transition across 
zone boundaries. At the zone boundaries the solution as well as its derivatives needs 
to remain unchanged before and after the blending. Thus 𝛼(𝑥) needs to be equal to 
one when bounding towards the wave tank zone, and equal to zero at walls. 
Homogenous 𝛼(𝑥) derivatives are required near all boundaries, with the exception of 
boundaries where waves travel in only one direction, such as from the wave tank into 
the damping zone. The blending function should ideally contain no discontinuities in 
order to avoid reflections. Due to the interface jump between cells in a discretized 
mesh there will always be some discontinuities. Thus in order to keep errors small a 
fine mesh is required. 

The blending functions used in this project are those proposed by Engsig-Karup, see 
equations (5.2) and (5.3) and the corresponding profiles in a zone layout in Figure 2. 

 𝛼(𝑥) = −2𝑥3 + 3𝑥2 (5.2) 

 𝛼(𝑥) = 1 − 𝑥6 (5.3) 

Equation (5.3) fulfills the requirements of vanishing derivatives at the boundaries, 
while equation (5.2) fulfills only the requirement at one end and is thus better suited 
for damping zones. The profiles can be reversed by a coordinate change, e.g. 
𝛼(1 − 𝑥). The exponent in equation (5.3) is set to 6, in accordance with Afshar [16]. 
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Figure 2 Zone layout including damping function profiles. 

In Figure 2 𝛼(𝑥) is the damping coefficient and 𝑥 is the distance from the generating 
zone border in the propagation direction. Zone 1 depicts the blending function profile 
of equation (5.2), zone 2 is the wave tank and thus no blending is performed while 
zone 3 contains the blending function profile of equation (5.3). 

The actual length of each zone might be one to two wavelengths for the generator 
zone 1 while the wave tank zone 2 needs to be large enough to contain whatever is 
being investigated and the damping zone 3 might require one to three wavelengths 
depending on the incoming waves. 

Zone 1 begins with a completely enforced wave model at the left wall, over which the 
solver has no influence. Gradually along zone 1 the enforcing of the wave model is 
ramped down according to equation (5.2) and the solver is given control over the 
solution. At the end of zone 1 there is no blending, only the solution computed by the 
solver which at this point propagates the waves. 

This unenforced propagation continues throughout all of zone 2 which represents the 
actual wave tank. When the waves reach the end of zone 2 they may be very different 
from when they entered zone 2. Since no blending is performed in the wave tank they 
may have deformed due to interaction with objects in the basin. 

At the beginning of zone 3 the solution computed by the solver, i.e. incoming waves, 
are gradually absorbed according to equation (5.3) and replaced by an enforced still 
surface. At the end of zone 3 the blending function derivatives are non-homogenous. 
This should however not matter since no wave energy should be left to reflect off of 
the bounding wall. 

In some cases it might be necessary to use different zone layouts. Afshar [16] and 
Engsig-Karup [15] for instance employ two zones for generating waves. The 
additional zone is placed next to the basin wall in order to remove the violent behavior 
otherwise arising when enforcing a wave model close to the wall. A large number of 
zone configurations were investigated during the course of this project, and the single 
zone generator layout was found to yield the shortest simulation times due to its 
smaller size. A fluctuating pressure with high magnitude does arise at the wall, 
however it seems to cause no effect on the wave tank. 
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5.1.2 Implementation in OpenFOAM 
It is possible to generate waves in OpenFOAM using the included groovyBC 
package. The blending method however is not included with OpenFOAM, and thus 
requires implementation. 

The blending method is implemented as an extension of the solver interFoam, a 
laminar multiphase solver for incompressible fluids. The interFoam solver 
employs the volume of fluid method for capturing the interface, see Section 3.3, and 
spatial discretization is performed according to the finite volume method, see Section 
3.2. The VOF phase fraction is computed explicitly while velocity and pressure is 
handled implicitly, see Section 3.4. 

All settings within OpenFOAM are controlled by means of text files called 
dictionaries, as previously mentioned in Section 4.1. Each case consists of multiple 
dictionaries organized in a specific file structure, as specified in the OpenFOAM user 
guide [6]. In accordance with this structure, all input parameters required to generate 
waves using the blending method is divided into two dictionaries placed in the 
constant directory. The waveGeneratorsDict specifies all parameters 
concerning the blending zones, and wavesDict contains the wave parameters. 

Multiple zones can be specified in the waveGeneratorsDict dictionary, each 
zone in a separate sub-dictionary. Required input parameters are the zone position, 
dimension and orientation, as well as the blending function and wave type to blend 
with. Any of the wave types specified in the wavesDict dictionary can be used. 
Some of the blending functions accept input parameters for adjusting the profile 
shape. For instance the exponent in equation (5.3) can easily be adjusted. All 
parameters can be specified for the three fields velocity, pressure and VOF phase 
fraction and blending can be turned on or off individually for each field. By enabling 
the debug switch a number of additional fields are saved for each timestep. The 
fields show the position, orientation and wave shape enforced for each zone. Each 
additional field require a large amount of disk space and thus the debug switch 
should only be enabled to initially in order to verify the zone layout. A sample of how 
a blending zone is specified in the waveGeneratorsDict dictionary is seen in 
Figure 3. 

The wavesDict dictionary can contain parameters for several different wave types, 
each in a separate sub-dictionary. Each wave type sub-dictionary contains a wave 
model and its corresponding phase shift, propagation direction, amplitude, frequency 
and basin depth. The wave models implemented in this project are Fentons fifth order 
Stokes model [2], the first order linear Airy wave, and a still surface. A sample of how 
a wave is specified in the wavesDict dictionary is seen in Figure 4 

As explained in Section 2.2 the relation between frequency and wave length is not 
trivial for fifth order Stokes waves. Some cases require a specific wave frequency 
while others require a specific wave length. The utility infoWaves can be used to 
quickly calculate the resulting wave length for any of the wave types specified in the 
wavesDict dictionary. As explained in Section 2.2, the fifth order Stokes wave 
model implemented requires 25 coefficients to be calculated. Fenton [2] publishes 
values for these coefficients for three cases. The infoWaves utility computes the 
coefficient values for the same three cases, thus providing a method for verifying that 
the coefficients have been accurately implemented. 
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The utility initWaves functions similarly to the OpenFOAM bundled setFields 
utility, used to initiate the VOF phase fraction field. However initWaves is also 
capable of initializing wave fields for any of the wave types specified in the 
wavesDict dictionary. Thus it is possible to initialize a simulation with a fully 
developed wave field over the entire basin, or a still surface. 

The algorithm for the developed wave generator is thus: read zone layout and wave 
parameters from the waveGeneratorsDict and wavesDict dictionaries. 
Initialize the desired wave field using the initWaves utility. Start the simulation 
and between each time increment, blend the computed solution in the blending zones 
with the desired wave types. 

 

blendingZone1 
{ 
    velocityBlendingFunction { 
        type            EngsigKarup1; 
        exponent        6; 
    } 
    pressureBlendingFunction { 
        type            EngsigKarup1; 
        exponent        6; 
    } 
    gammaBlendingFunction { 
        type            EngsigKarup1; 
        exponent        6; 
    } 
    blendGamma          on; 
    blendVelocity       on; 
    blendPressure       off; 
    reference           (-3 0 0); 
    forward             (1  0  0); 
    up                  (0  0  1); 
    width               1; 
    length              1.5; 
    wave                fentonFifth; 
    debug               off; 
}; 

Figure 3 A sample of how the blending zone parameters are specified in the 
waveGeneratorsDict dictionary. 

 

fentonFifth 
{ 
    type         Stokes5thOrder; 
    g            (0 0 -9.81); 
    phasesOrigin (1.15 0 -0.0045); 
    direction    (1 0 0); 
    amplitude    0.05; 
    frequency    1.04235; 
    depth        0.9; 
    current      0; 
}; 

Figure 4 A sample of how a wave is specified in the wavesDict dictionary. 

5.2 Discussion Wave Generator Development 
During the development and subsequent utilization of the blending method wave 
generator a number of complications were encountered. This section documents many 



CHALMERS, Naval Architecture, Master’s Thesis X-11/271 16 

of these complications in an effort to aid others working with blending method wave 
generation in OpenFOAM. Highlighting some of the more subtle difficulties to watch 
out for, detailing solutions for certain problems and offering possible resolutions for 
others. 

The phase fraction should be closely monitored throughout the simulations to make 
sure that the surface is not rising or falling. The process may be quite slow and thus 
hard to detect, but it can have a large influence on the results. There are several 
possible causes for this problem. It is often related to boundary conditions or the depth 
of the enforced wave models not matching the actual still water depth. 

The VOF surface capturing method has a tendency to diffuse the interface between air 
and water. As described in Section 3.3 an artificial volume force is applied to 
compress the surface, thereby retaining a sharp interface [18]. The amount of 
compression is controlled via the cGamma setting, or cAlpha in newer versions of 
OpenFOAM. For longer simulations some level of compression was required to 
prevent excessive diffusion. Afshar [16] reported that high levels of compression lead 
to deformation of the wave profile for longer simulations, an issue not encountered 
during this study. Possibly thanks to the semi-implicit solver, or none of the attempted 
simulations were long enough for the problems to appear. 

A particularly troublesome problem is the unwanted high air velocities close to the 
water surface. These unnaturally high air velocities may deform the wave profile and 
lead to premature wave breaking. They result in higher CFL numbers and thus smaller 
time steps and slower simulations. The same phenomenon is reported also by Paterson 
[10] and Afshar [16] who suggest ignoring the air side convective term or relaxation 
of air velocities. The method which best solved the problems of high air velocities in 
this study was treating the VOF phase fraction explicitly and velocity and pressure 
implicitly. Initially all fields were computed explicitly, leading to high air velocities. 
Treating all fields implicitly did not work well together with the volume of fluid 
method, as the surface was quickly diffused despite high cGamma values. The final 
semi implicit solver yielded the best results. 

A problem as of yet unresolved is the raising of the wave trough and decline of the 
wave crest encountered during the verification study. The generated waves are highly 
accurate inside the generating zone, but as soon as they enter the wave basin the 
trough quickly raises, soon followed by a decline of the crest. No combination of 
settings were able to solve this, suggesting that the root of the problem might lie 
deeper, e.g. in the semi implicit solver. 
As explained in Section 5.1.1 a zone layout incorporating a generating zone flush 
against the wall, with full enforcement of the wave model next to the wall, is used for 
the simulations presented in this report. In combination with the no slip impermeable 
boundary condition used this gives rise to a rather violent pressure fluctuation at the 
wall. This has the advantage of reducing the size of the wave generator and thus 
reducing the required simulation time. No influence from the high magnitude pressure 
fluctuation was detected in the actual wave basin. The only drawback encountered as 
a result of this layout is that the high magnitude of the pressure fluctuation 
complicates investigation of the pressure field during post processing, a small 
inconvenience at most. A possible approach to neutralize the fluctuating high 
magnitude pressure field, without extending the dimensions of the wave generator, 
could be to implement a correspondingly fluctuating boundary condition. 
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This implementation of the blending method for wave generation and dissipation is 
currently significantly slower than other alternatives. However no systematic 
approach to increase its speed has been attempted during this project, leaving much 
room for optimization. The large zones required for generation and damping when 
using the blending method could possibly be reduced by finding the optimal blending 
function. 

In the current implementation of the blending method, the aim is to dampen incoming 
waves before they reach the wall and thus reflect off of it. Reflecting waves encounter 
decreasing damping when leaving the damping zone. Perhaps it could be possible to 
separate incoming waves from waves travelling in the opposite direction, and to 
enforce different levels of damping depending on the direction of propagation. As a 
result the required zone sizes could effectively be reduced to half of their current size. 

As explained in Section 5.1, the blending method functions by blending the computed 
solution with a wave model after each time increment. The speed of the blending 
depends on the length of the time increments. Thus zone lengths and blending 
functions suitable for one simulation may not suit a simulation with different timestep 
lengths. When enabling OpenFOAMs adjustableRunTime feature the time step 
length is automatically adjusted and thus varying throughout the simulation. 
Consequently the blending speed will also vary throughout the simulation. A method 
for making the blending speed independent of time increment length should be 
implemented. Perhaps by only blending at predetermined equidistant time increments. 

An aspect further decreasing the speed of implementation of the blending method is 
that it requires a very fine mesh in the surface region to propagate a sharp wave 
profile. Possibly an improved version of the VOF surface capturing method could be 
implemented, e.g. using a local height function. In the current implementation all cells 
with cell center lower than the analytical wave profile get a phase fraction value of 
one, thus representing water, while all other cells are initialized as air. As suggested 
by Afshar [16], by not only initializing phase fractions of one or zero, but also values 
in between, a more accurate representation of the wave profile could be initialized 
using a coarser mesh [17]. 
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6 Forces on Semi Submerged Cylinders 
With interFoam extended to include wave generating and damping capabilities, see 
Chapter 5, and a fifth order Stokes wave model implemented see Section 2.2, a 
suitable validation case is sought.  

The case chosen is a horizontal cylinder, fixed in the surface region. It is chosen 
because it has a comparatively simple setup, and the large amount of previous 
research on the topic offers plenty of data to validate against. 

The purpose of this case is to validate the wave induced forces on a cylinder in the 
surface region. The assumption is that if the forces measured in the simulation match 
those of physical experiments, the underlying models accurately recreates reality. 

6.1 Previous Research on the Topic 
Since the purpose of this case is to validate simulation results against experimental 
data, a good understanding of the experimental setup is required to understand the 
motivations behind the simulation setup. In order to facilitate a better understanding 
of the experimental data, a summary of previous research on the topic is presented in 
this section. The research performed by Dixon et al. [19] and Westphalen et al. [20] 
are described in particular detail in Sections 6.1.1 and 6.1.2, since they contain the 
data chosen to be validated against.  

The Keulegan-Carpenter number 𝑁𝐾𝐶 is the ratio between drag forces and inertial 
forces. A low 𝑁𝐾𝐶 thus indicates that the loads are dominated by inertial forces with a 
negligible contribution from drag forces. For linear waves it can be calculated 
according to equation (6.1). 

 
𝑁𝐾𝐶 =

2𝜋𝑎
𝐷

 (6.1) 

Wave induced forces on fixed horizontal cylinders is a topic with a large amount of 
published research. Prasad [21] reviewed a large number of reports on the topic. 
Easson et al. [22] described the force spectra in Gaussian seas while Kaplan and 
Silbert [23] investigated slamming. More recently, Chaplin [24, 25], Westphalen et al. 
[20] and Hu et al. [26] studied the forces on fixed horizontal cylinders in the surface 
region. Westphalen and Hu validated CFD solvers against experimental data, before 
utilizing the solvers to study wave energy converters. 

The experimental data used in the validation study described in this report, was 
gathered by Dixon et al. [19] and is the same data utilized by Westphalen and Hu. 
Dixons experimental results are chosen for this validation study because of its highly 
detailed description of the experimental results, including detailed time histories of 
the forces as well as numerous variations of the experiment parameters. 

6.1.1 Dixon et al.’s Experimental Study 
Dixon et al. [19] gathered experimental measurements in order to validate a modified 
version of the Morison equation [27]. In a study preceding Dixons, the wave power 
research group at the University of Edinburgh’s department of mechanical 
engineering carried out experiments, measuring the wave forces acting on partially 
submerged fixed cylinders. They found that under certain conditions the resulting 
force becomes completely negative (downwards), during the entire wave cycle, and 
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act at twice the wave frequency. These effects arise for bodies close to the surface, 
due to interaction between buoyancy and inertial forces. Dixon modified the Morison 
equation to account for these effects and then validated the modified equation against 
experimental data. 

The Morison equation is used to predict loads on fixed bodies in oscillatory flow. The 
contributions from inertial forces and velocity dependent drag forces are superposed, 
using empirically determined coefficients to determine the contribution of each. 

 
𝐹ℎ = 𝐶𝑀𝜌𝑉

𝜕𝑈ℎ
𝜕𝑡

+
1
2
𝐶𝐷𝜌𝐴|𝑈ℎ|𝑈ℎ (6.2) 

In the original formulation of the Morison equation (6.2), 𝐹ℎ is the horizontal force, 
acting on a vertical pile of volume 𝑉, 𝜌 is the fluid density, 𝐶𝑀 is the inertia 
coefficient, 𝑈ℎ is the horizontal fluid velocity, 𝐶𝐷 is the drag coefficient, 𝐴 is the 
projected area of the pile normal to the waves and 𝑡 represents time. 
Dixons modifications to this equation involve adding a buoyancy dependent term and 
a time dependent volume, to account for the cylinder being partially submerged. For 
large object to wave amplitude ratios, viscous effects are negligible, and the drag term 
can be removed. 

Dixon introduced a series of dimensionless parameters: 

 𝐹′ =
𝐹

𝜌𝑔 �𝜋𝐷
2𝑙

4 �
 (6.3) 

 𝜂′(𝑡) = 𝜂(𝑡)/𝐷 (6.4) 

 𝑎′ = 𝑎/𝐷 (6.5) 

 𝐿′ = 𝐿/𝐷 (6.6) 

 𝑑′ = 𝑑/𝐷 (6.7) 

The relative force 𝐹′ in equation (6.3) is a measure of the ratio of the wave force 𝐹 to 
the weight of water displaced by a totally submerged cylinder, 𝜌𝑔(𝜋𝐷2𝑙/4), where 𝐷 
is the cylinder diameter and 𝑙 is the cylinder length. Equation (6.4) describes the 
relative wave elevation 𝜂′(𝑡), where 𝜂(𝑡) is the time dependent wave elevation. The 
relative wave amplitude 𝑎′ is described in equation (6.5), where 𝑎 is the wave 
amplitude. Equation (6.6) describes the relative wave length 𝐿′, where 𝐿 is the wave 
length. The relative cylinder axis depth 𝑑′ described in equation (6.7), where 𝑑 is the 
distance between the cylinder axis and the still water level. 

To validate the accuracy of the modified Morison equation, experimental 
measurements were gathered using the same parameters as used in the calculations. 
The values of the parameters 𝑎′ and 𝑑′ were varied, but chosen so that part of the 
cylinder was always exposed to air at some point of a wave cycle. Reflections from 
the tank end were less than 5% and the force measurements were accurate to within 
1% of the largest force measured. The initial force on the cylinder in still water was 
electronically subtracted before the force measurements were taken. 
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Dixon found that cases with high relative wave amplitude 𝑎′, are the most difficult to 
reproduce analytically, since they exhibit a high degree of asymmetry. The agreement 
between the modified Morison equation and the experiments were considered good 
over a wide range of parameter values. As the relative wave amplitude 𝑎′ and relative 
depth 𝑑′ increased the agreement worsened. The experimental measurements showed 
an asymmetry, especially in the crest for high relative- amplitudes and depths, which 
was not predicted by the equation. 

6.1.2 Westphalen et al.’s CFD Solver Validation 
Westphalen et al. [20] utilized Dixon et al.’s [19] experimental measurements in order 
to validate four different CFD codes, and then used these codes to analyze a wave 
energy converter. The codes used were: Smooth Particle Hydrodynamics (SPH), a 
Lagrangian CFD technique not requiring a mesh, a Cartesian Cut Cell method based 
on an artificial compressibility method with shock capturing for the interface 
(AMAZON), and two pressure based Navier-Stokes codes, Finite Volume (FV) and 
Control Volume Finite Element (CV-FE). 

The force measurements from the simulations were non-dimensionalised according to 
equation (6.3), and then compared with Dixons experimental data. This was 
performed for three cases, each with different wave amplitudes and axis depths. First 
order regular waves were generated and the air velocities were set to zero. The results 
agreed well, except for the case with the deepest cylinder submergence. 

6.2 OpenFOAM Numerical Wave Tank Validation 
Modeling physical phenomena involves a series of assumptions and estimations. 
Comparing force measurements from simulations with experimental measurements, 
like those gathered by Dixon et al. [19], is a method for validating that the 
implemented models correctly simulates reality. 

In cases with low Keulegan-Carpenter numbers 𝑁𝐾𝐶, see Table 1, viscous effects are 
negligible. Thus laminar flow can be assumed and no turbulence modeling is required 
for this study. 

6.2.1 Motivation of Chosen Case Setups 
Westphalen et al. [20] validated four different CFD codes against Dixons 
experimental data. Dixon published experimental data for 24 different cases, and 
Westphalen selected three of them to validate against. All three cases include the 
highest possible relative wave amplitude 𝑎′ available, for three different relative 
cylinder axis depths 𝑑′. The axis depths are equidistantly spaced, with the smallest 
available axis depth for the first case and the largest available axis depth for the last 
case. 

According to Dixon cases with high relative amplitude 𝑎′ should offer more of a 
challenge than cases with low relative, and thus be ideal for validation purposes. 

Different levels of relative axis depths 𝑑′ provide different ratios of inertial and 
buoyancy forces. For shallow axis submergences, the resulting force display a highly 
alternating direction, while higher submergence demonstrates a mostly negative 
(downward) force at twice the frequency. Therefore validating against cases with 
different axis submergences should provide an indication of the solver capability to 
deal with different ratios of buoyancy and inertial forces as well as the interplay 
between them. 
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For the reasons described above, the three cases chosen by Westphalen could be 
considered the best cases available for validation purposes. Hence the same three 
cases used by Westphalen are also utilized in this validation study. Comparison with 
Westphalens results also provide a reference for what level of agreement to expect. 
Also, it enables comparison of the OpenFOAM solver not only against experimental 
results, but also against other CFD codes. See Table 1 for the relative- amplitudes 𝑎′ 
and axis depths 𝑑′ of the selected cases. 

6.2.2 Wave Parameters 

The basin is initialized as a still surface and a fifth order Stokes wave is produced in 
the generating zone. In the damping zone at the opposite end of the basin, the 
resulting waves are blended with a flat wave. As described in Section 5 the wave 
properties are specified in the wavesDict dictionary and each wave type is 
specified in separate sub dictionaries. See Table 1 for the wave parameters used in 
each simulation. 

In Table 1, the parameters 𝑑′ and 𝑎′ are calculated according to equations (6.7) and 
(6.5) respectively, with a cylinder diameter of 1 dm. The values are identical to those 
used by Westphalen [20]. A graphical representation of the relative size of cylinder 
diameter, axis depth and wave amplitude is seen in Figure 5. Note that the wave 
length has been shortened in these figures. Since the wave amplitude vary between the 
cases, a slightly different frequency is required for each simulation in order to achieve 
a wavelength, 𝜆, of exactly 1.5 meters. The wave steepness’s are well below the 
breaking limit stated by Fenton [2], see equation (2.9). See equation (6.1) for a 
description of the Keulegan-Carpenter number 𝑁𝐾𝐶. 

Table 1 Wave parameters used in each of the three simulations  

 Simulation 

 1 2 3 

Relative axis depth, 𝑑′ 0.0 0.3 0.6 

Relative wave amplitude, 𝑎′ 0.5 0.2 0.3 

Wave frequency, 𝑓 1.042 1.023 1.028 

Wavelength, 𝜆 [𝑚] 1.5 1.5 1.5 

Wave steepness, 2𝑎/𝜆 0.067 0.027 0.040 

Keulegan-Carpenter number, 𝑁𝐾𝐶 3.142 1.256 1.885 

Dimensionless wave amplitude, 𝑘𝑎 0.209 0.084 0.126 

Dimensionless basin depth, 𝑘ℎ 3.770 3.770 3.770 

 



CHALMERS, Naval Architecture, Master’s Thesis X-11/271 23 

(a) Simulation 1. 𝑑′ = 0.0, 𝑎′ = 0.5 

(b) Simulation 2. 𝑑′ = 0.3, 𝑎′ = 0.2 

(c) Simulation 3. 𝑑′ = 0.6, 𝑎′ = 0.3 
Figure 5 Cylinder axis submergence and wave amplitude for the three simulations 
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6.2.3 Basin Layout 

Both the generating and damping zones have an extension of one wavelength, equal to 
1.5 meters. The extension of the unenforced wave tank is two wavelengths, or 3 
meters, with the cylinder placed in the center. The zone layout is specified in the 
waveGeneratorsDict dictionary as described in Section 5. Blending of velocity 
and phase is turned on, while no blending is performed for the pressure field. Figure 6 
depicts the layout of the various zones.  

The boundary conditions are set to no-slip impermeable walls for the ends as well as 
at the bottom of the basin. The top is specified as an outlet while the front and back 
are set to empty, as is the convention for front and back planes in 2D simulations in 
OpenFOAM. See Figure 6. 

Figure 6 Basin blending zone layout and boundary conditions 
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6.2.4 Mesh Generation 
The meshes are generated using the blockMesh utility supplied with OpenFOAM, 
see Section 4.1.1. Using the macro processing language m4 for parametric refinement 
and python for calculations, the mesh is generated from a few input parameters, see 
Table 2. 

The 𝑐𝑝𝑤 parameter determines the basic cell size from which all other cell sizes are 
calculated. The 𝑓𝑧 parameter determines the height of the refined region around the 
surface. The minimum height of the refined area is equal to the cylinder diameter, and 
is further increased symmetrically around the cylinder if any part of the wave extends 
vertically beyond the limits of the cylinder. An 𝑓𝑧 value of 1.2 yields a refined region 
20% higher than the wave height and cylinder. 

These mesh parameters results in a cell count of 234200, 234200 and 335092 cells for 
simulation 1, 2 and 3 respectively. The meshes for simulation 1 and 2 have an equal 
number of cells since the wave does not extend above or below the cylinder, while the 
mesh for simulation 3 has a higher cell count since the wave extends above the 
cylinder. A close up of the region around the cylinder for simulation 1 can be seen in 
Figure 7. A band along the surface has been refined and above and below this band 
the cell size is gradually stretched outwards. The mesh is finest at the cylinder surface 
and gradually stretched in the radial direction. 

Table 2 Input parameters for mesh generation 

 Simulation 

 1 2 3 

Basin length, x-direction, 𝐿 [𝑚] 6 6 6 

Basin width, y-direction, 𝑊 [𝑚] 1 1 1 

Basin height, z-direction, 𝐻 [𝑚] 1.8 1.8 1.8 

Cylinder axis x-displacement, 𝑑𝑥 [𝑚] 0 0 0 

Cylinder axis z-displacement, 𝑑 [𝑚] 0 -0.03 -0.06 

Cylinder diameter, 𝐷 [𝑚] 0.1 0.1 0.1 

Wave amplitude, 𝑎 [𝑚] 0.05 0.02 0.03 

Cells per wavelength, 𝑐𝑝𝑤 [𝑐𝑒𝑙𝑙𝑠/𝜆] 400 400 400 

Refined region height factor, 𝑓𝑧 1.2 1.2 1.2 
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Figure 7 Close up of the mesh around the cylinder for simulation 1 
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6.2.5 Force Measurement 
The forces on the cylinder are registered using a force function in the controlDict 
dictionary. This method of logging forces has the benefit of saving measurements for 
every time step, not only those matching the specified writeInterval, the setting 
determining at which time steps to save the complete solution. Thus using the force 
function yields a high measurement resolution without requiring as much space as 
saving the complete solution. 

This function logs the forces and moments at the cylinder surface for each time step, 
in all three directions. For this particular case only the vertical forces are of interest. 
Using shell scripting the parameters of interest, time and vertical forces, are extracted 
and the forces are non-dimensionalised according to equation (6.3). Finally the 
normalized force time history is imported into Matlab for plotting. See Figure 8 for a 
flow chart depicting the work flow. 

 
Figure 8 Flow chart depicting the work flow 
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6.3 Results and Discussion 
Figures 9-11 depicts force measurements on semi submerged fixed horizontal 
cylinders. Information about the simulation setup for the OpenFOAM simulations is 
found in Section 6.2. The AMAZON, CV-FE and FV results are extracted from 
simulations performed by Westphalen et. al. [20], see Section 6.1.2. The experimental 
data was gathered by Dixon et. al. [19], see Section 6.1.1. 

The main difference between the simulations is the relative cylinder axis depth 𝑑′ and 
the relative wave amplitude 𝑎′, see equations (6.7) and (6.5) respectively. The values 
of these parameters are found at the top of each figure, and also in Table 1 along with 
other wave parameters. In order to vary the axis depth and wave amplitude, the mesh 
of each simulation differs slightly, as described in Section 6.2.4. 

The vertical axis shows the relative force 𝐹′ in the vertical direction, calculated 
according to equation (6.3). The horizontal axis shows the time 𝑡 divided by the 
length of one wave period 𝑇. Hence one unit distance on the horizontal axis is equal to 
the time required for one wave cycle to pass the cylinder. C and T in the bottom views 
indicate the positions in time of crest and trough respectively. 

In the top view of Figures 9-11 the force time history of the simulations initialization 
and the subsequent ten wave cycles are depicted. The square outlines the wave cycle 
enlarged in the bottom right view. The marked cycle is chosen because it best matches 
Dixon et. al.'s experimental results. 

To better show the agreement between cycles, the bottom left view of Figures 9-11 
depicts the ten first wave cycles superposed. All wave cycles should ideally be 
identical since the simulations lack viscosity. As can be seen this is however not the 
case for this series of simulations. Possibly the damping zone is too short or the 
blending function too steep, causing some reflections.  

In the bottom right view results from the OpenFOAM simulations are superposed 
with Dixon et. al.’s experimental data and Westphalen et. al.’s simulation results. A 
good agreement between simulation and experimental results indicates that the 
generated waves exerts realistic forces on the cylinder, and thereby to some degree 
that the underlying models accurately represents reality. 

It is hard to quantify the agreement between experimental and simulation results by 
mere visual comparison. Westphalens results are included as a reference. They 
provide perspective on which degree of agreement to reasonably expect. From the 
CFD codes used by Westphalen, the CV alternative should be the one most similar to 
the OpenFOAM code used in this report.  

Simulation 1, depicted in Figure 9, is arguably the least difficult case to simulate. The 
wave amplitude is high, yielding high force measurements. The cylinder is placed in 
the center of the still water surface where it is best exposed to the wave forces, further 
increasing the amplitude of the force measurements. However, the wave is relatively 
steep, see Table 1. Steep waves generally are more challenging to simulate. 

Simulation 2, depicted in Figure 10, has a lower wave amplitude and a deeper 
submerged cylinder than simulation 1. Thus the resulting force measurement has 
significantly lower amplitude. Aside from for the somewhat high trough the 
agreement is considered good. 
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Simulation 3, depicted in Figure 11, is arguably the most difficult of the three cases to 
reproduce. Dixon et. al.’s modified Morison equation had troubles recreating it due to 
the asymmetry. Also Westphalen et. al. failed to achieve good agreement. The 
OpenFOAM results exhibit some of the same deficiencies as Westphalens, the force 
curve from the simulation is generally situated higher than the experimental curve. 
However, the overall shape of the curves agrees well. 

Dixon et. al. neglects to mention how the presented experimental results were 
selected. Similar experiments are presented by Chaplin [24, 25], and several 
subsequent wave cycles are published. These results indicate that variations may exist 
between wave cycles for this type of experiment. Thus, evaluating the simulation 
results by merely comparing them to a single experimental wave cycle is not an ideal 
validation method. 

The best results in the presented OpenFOAM simulations are often found among the 
first ten wave cycles. Later waves show signs of degradation. As discussed in Section 
5.2, several complications were encountered during the simulations, all contributing to 
the degradation of the results. 

Figure 12 shows a comparison of surface profiles between Westphalen et. al.’s 
simulation and the corresponding OpenFOAM simulation, for subsequent time steps. 
The surface profiles agree well. 

In summary, the simulation results agree well with the experimental results. Zero 
crossings occur at roughly the same positions and peaks and troughs have 
approximately the same amplitude. Even smaller peaks and troughs tend to occur at 
the same positions in simulation and experiment. Whether the agreement is sufficient 
or not depends on the intended application. A more quantitative judgment regarding 
the curves agreement would require a more sophisticated method of error evaluation 
than visual inspection. 
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Figure 12 Surface profile around the cylinder for simulation 1, 𝑑′ = 0.0,𝑎′ = 0.5. 
Top: from Westphalen et. al. Bottom: from OpenFOAM simulation. (a) 𝑡/𝑇 = 0.0, 
(b) 𝑡/𝑇 = 0.12, (c) 𝑡/𝑇 = 0.36, (d) 𝑡/𝑇 = 0.6, (e) 𝑡/𝑇 = 0.73, (f) 𝑡/𝑇 = 1.0. 

A grid convergence verification study was attempted, however due to unexpectedly 
high errors and lack of convergence with decreasing spatial and temporal 
discretization this study could not be completed. The cause of the unexpectedly high 
errors is as of yet unknown. 

The satisfactory agreement found in the validation study between the OpenFOAM 
results and the experimental data might appear contradictive to the problems 
encountered in the verification study. It begs the question if force measurements is a 
too relaxed method of validation for a wave generator. Part of the answer lies in that 
the cylinder is placed relatively close to the generating zone, thus not allowing much 
time and distance for the wave to degrade before reaching the cylinder. 

The forces are measured on the entire cylinder surface, a relatively large target 
compared to the amplitude of the wave. The resulting force is rather a representation 
of the waves energy, the magnitude and direction of the velocity field, and less 
sensitive to minor changes in the shape of the surface profile.  

During the cylinder validation study, simulation 3 exhibits the worst agreement with 
the experimental results. The reason for this might be that it is the case which has the 
deepest cylinder submergence. The cylinder is completely submerged during large 
parts of the wave cycle. Raising of the trough would have a large effect on how much 
of the cylinder is uncovered. Due to the difference in density between water and air, 
most of the forces experienced by the cylinder is due to the water. Thus altering how 
much air versus water the cylinder is exposed to should significantly affect the 
experienced forces. 

  

(a) (b) 

(d) 

(c) 

(e) (f) 
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7 Conclusions 
This project is performed with the intention of developing a numerical wave tank in 
OpenFOAM, utilizing the blending method for generating and damping waves. The 
wave tank is evaluated with a focus on its potential usefulness within SBMs industrial 
projects. 

The implemented blending method is thoroughly integrated into OpenFOAM 
according to the programming guidelines. This makes it simple to use even for more 
advanced blending zone layouts, and easily extendable with additional blending 
functions and wave models. 

One of the advancements made during the project was moving to the semi implicit 
solver. The fully explicit solver yielded severe problems with unrealistic high air 
velocities while the implicit solver resulted in issues with interface diffusion. The 
semi implicit solver rectifies both these problems. 

The wave induced forces measured on the semi submerged horizontal cylinders agrees 
well with experimental data and performs on par with other CFD codes. However, 
some problems still remain. Severe surface profile deformations hindered completion 
of the grid convergence study. Before the cause of these problems are identified and 
corrected the potential usefulness of the code in an industrial project is limited. 

Additionally, the current implementation is rather slow. This is mainly because such a 
refined mesh is required in the surface region in order to maintain a sharp interface. 
This is further aggravated by the blending methods need for large generating and 
damping zones. Presently no attempts have been made to optimize the codes speed. 
Possibly implementing an improved surface capturing method, e.g. the level set 
method, could drastically decrease the required mesh density. 
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