

Simulation of Wave Induced Forces on
Semi Submerged Horizontal Cylinders
Using OpenFOAM®

Master of Science Thesis in the Master Degree Programme Naval Architecture

JONAS ANDERSSON

Department of Shipping and Marine Technology
Division of Sustainable Ship Propulsion
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2011
Master’s thesis X-11/271

MASTER’S THESIS X-11/271

Simulation of Wave Induced Forces on Semi Submerged

Horizontal Cylinders Using OpenFOAM®

Master of Science Thesis in the Master Degree Programme Naval Architecture

JONAS ANDERSSON

Department of Shipping and Marine Technology
Division of Sustainable Ship Propulsion

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2011

Simulation of Wave Induced Forces on Semi Submerged Horizontal Cylinders
Using OpenFOAM®

© JONAS ANDERSSON, 2011

Master’s Thesis X-11/271
Department of Shipping and Marine Technology
Division of Sustainable Ship Propulsion
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Cover:
Horizontal cylinder in waves from one of the simulations in Section 6.2.

Department of Shipping and Marine Technology
Göteborg, Sweden 2011

I

Simulation of Wave Induced Forces on Semi Submerged Horizontal Cylinders
Using OpenFOAM®

Master of Science Thesis in the Master Degree Programme Naval Architecture
JONAS ANDERSSON
Department of Shipping and Marine Technology
Division of Sustainable Ship Propulsion
Chalmers University of Technology

ABSTRACT
The work presented in this thesis documents the simulation of wave induced forces on
semi submerged horizontal cylinders in OpenFOAM, utilizing the blending method
for generation and damping of waves. The blending method is not included with
OpenFOAM and thus required development before it could be employed. Both a
linear Airy wave model and a fifth order stokes wave model are implemented. The
blending method is implemented as an extension of the laminar multiphase solver
interFoam, utilizing the volume of fluid method for capturing the interface and the
finite volume method for spatial discretization.

A validation study is carried out aiming to confirm that the simulated waves
accurately represent reality. Simulation results are compared with experimental data,
in this study the property compared are wave induced forces on a partially submerged
cylinder. Time force histories for three different cylinder axis submergences and wave
amplitudes are presented. The agreement between experimental forces and simulation
forces is good.

A verification study is attempted. This study shows significant deformation of the
surface profile, most notably a raising of the trough and a lowering of the crest. The
cause of the deformation is still unknown.

Key words: OpenFOAM, Multiphase flow, Wave generation and damping, Wave

Structure Interaction.

II

III

PREFACE
The goal of this study aims towards developing a numerical wave tank for analysis of
ship hydrodynamics. The thesis is submitted as partial fulfillment of a Master of
Science degree in Naval Architecture at Chalmers University of Technology,
Göteborg. The work has been carried out from January to July 2011 as an internship
at the Department of Research and Development, Single Buoy Moorings, Monaco, in
cooperation with the Department of Shipping and Marine Technology, Chalmers
University of Technology.

ACKNOWLEDGEMENTS
I would like to thank my supervisor at Single Buoy Moorings, Computational Fluid
Dynamics Engineer Jean-Luc Pélerin, who generously wrote much of the code and
patiently guided me for countless hours. I also wish to extend my gratitude to my
examiner Dr. Claes Eskilsson at Chalmers University of Technology.

Monaco, July 2011

Jonas Andersson

IV

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 V

Contents

1 INTRODUCTION 1

1.1 Aims and Objectives 2

1.2 Delimitations 2

2 WAVE THEORY 3

2.1 Airy Wave 4

2.2 Fifth Order Stokes Wave 5

3 COMPUTATIONAL FLUID DYNAMICS 7

3.1 Governing Equations 7

3.2 Finite Volume Method 7

3.3 Volume of Fluid Surface Capturing 7

3.4 Implicit and Explicit Numerical Schemes 8

4 SOFTWARE 9

4.1 OpenFOAM 9
4.1.1 blockMesh 10

4.2 ParaView 10

4.3 Matlab 10

5 WAVE GENERATOR DEVELOPMENT 11

5.1 Blending Method 11
5.1.1 Blending Functions 12
5.1.2 Implementation in OpenFOAM 14

5.2 Discussion Wave Generator Development 15

6 FORCES ON SEMI SUBMERGED CYLINDERS 19

6.1 Previous Research on the Topic 19
6.1.1 Dixon et al.’s Experimental Study 19
6.1.2 Westphalen et al.’s CFD Solver Validation 21

6.2 OpenFOAM Numerical Wave Tank Validation 21
6.2.1 Motivation of Chosen Case Setups 21
6.2.2 Wave Parameters 22
6.2.3 Basin Layout 24
6.2.4 Mesh Generation 25
6.2.5 Force Measurement 27

6.3 Results and Discussion 28

7 CONCLUSIONS 35

8 REFERENCES 37

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 1

1 Introduction
Within ship hydrodynamics a number of coefficients are required in order to predict
how ships behave. For instance a sea keeping study might require the roll damping
coefficient, while a load analysis using the Morison equation would require two
coefficients, inertia and drag. These coefficients are usually determined using small
scale model experiments in wave tanks.

Physical experiments involve a number of disadvantages compared to numerical
simulations. Manufacturing of the model is time consuming, potentially causing
costly delays when several iterations of the design are required. The model size is
limited by the size of the wave tank, which generally is several orders of magnitude
smaller than a full size ship. This causes a problem because scaling of the results from
model scale to full scale inevitably involves a loss of accuracy. This all adds up and
makes wave tank experiments a costly venture.

Computational Fluid Dynamics (CFD) can be used to create a numerical wave tank,
consequently providing an alternative method for determining the sought coefficients
without the previously mentioned disadvantages. However, CFD is not yet capable of
replacing physical experiments. A CFD solution can never be more accurate than the
underlying physical models. Currently CFD should be considered a complement to
real experiments.

Single Buoy Moorings, from now on referred to as SBM, designs Floating Production,
Storage and Offloading (FPSO) platforms, mooring terminals and other offshore
equipment. A firm understanding of how their equipment behaves in waves is thus of
central importance for SBM.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 2

1.1 Aims and Objectives
The purpose of this project is to investigate the usage of the open source CFD toolbox
OpenFOAM1, for creation of a numerical wave tank, and its possible usefulness
within SBMs industrial projects.

The direction of the study is aimed towards a numerical wave tank for determination
of ship hydrodynamic coefficients. With an understanding that this is a very ambitious
objective, considering the time and resources dedicated to the project, the objective is
rather to investigate the required building blocks and to provide SBMs personnel with
a better understanding of the subject.

A rough outline of the building blocks required for a numerical wave tank for the
determination of ship hydrodynamic coefficients would include: a CFD solver for
multiphase flows, an interface tracking method, a technique for generating and
absorbing waves, wave models, couplings between wave induced forces and body
motions and capabilities to handle moving objects.

1.2 Delimitations
A prerequisite for this study is that OpenFOAM must be used. There are many
alternatives available, however most of them come with license constraints, limiting
the possibilities to modify and extend the code, see Section 4.1. SBM specifically
wish to investigate the current usefulness of OpenFOAM for wave generation
purposes. Since some development had previously been performed using OpenFOAM
1.5dev [1], this version shall be used also for further development.

The technique used for wave generation and absorption is the relaxation- or blending
method. This is a method not initially included in the OpenFOAM toolbox, thus
requiring implementation.

1This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM
software and owner of the OPENFOAM® and OpenCFD® trade marks.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 3

2 Wave Theory
There are several approaches to generating waves in a numerical wave tank. The same
approach as in an experimental wave tank could be used, i.e. a moving paddle. This
method would however require knowledge of which paddle motion corresponding to
the desired wave shape, as well as a method for moving the paddle, introducing an
unwanted complication. Another approach, used in this project, is generating an
analytical wave model.

No single wave theory describes all types of waves. Currents, water depth and wave
steepness all significantly affect the wave shape. Thus knowledge about these
parameters are required in order to choose a suitable wave model. An improper choice
of wave model will result in a wave unable to retain the generated shape.

The depth of the numerical wave tank in this project is always chosen to be deep,
meaning the water depth is always larger than half the wavelength, ℎ > 1

2𝜆. No current
is applied and the steepness is varied. The two wave models implemented in this
project are the linear Airy wave and Fentons nonlinear fifth order Stokes wave [2].
The difference between the two wave models surface profiles can be seen in Figure 1.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 4

2.1 Airy Wave
The so called Airy wave theory is a linear, or first order, wave model. The surface
profile is symmetric about the mean water level so that peaks have the same shape as
troughs, see Figure 1. It is only valid for small amplitude waves, meaning that the
wave amplitude has to be much smaller than the wave length. It is based on potential
flow and thus does not account for viscosity or vorticity. Since it is linear it is possible
to superpose solutions for different wave frequencies and propagation directions and
thus achieve an irregular sea state [3].

Figure 1 Comparison of surface profiles for Airy and Fenton Stokes 5th order wave models.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 5

The Airy wave model can be computed according to equations (2.1)-(2.7):

 𝜔 = 2𝜋𝑓 (2.1)

 𝑘 =
𝜔2

𝑔
 (2.2)

 𝜆 =
2𝜋
𝑘

 (2.3)

 𝜂 = a ∙ cos(𝑘𝑥 − 𝜔𝑡) (2.4)

 𝑢 =
𝑎𝜔 cosh�𝑘(ℎ + 𝑧)� cos(𝑘𝑥 − 𝜔𝑡)

sinh(𝑘ℎ) (2.5)

 𝑤 =
𝑎𝜔 sinh�𝑘(ℎ + 𝑧)� sin(𝑘𝑥 − 𝜔𝑡)

sinh(𝑘ℎ) (2.6)

 𝑝 = 𝜌𝑔𝜂
cosh�𝑘(ℎ + 𝑧)�

cosh(𝑘ℎ) (2.7)

Where 𝜔 is the angular frequency, 𝑓 the frequency, 𝑘 the angular wave number, 𝑔
gravity, 𝜆 the wavelength, 𝜂 the surface elevation, 𝑎 wave amplitude, 𝑢 the horizontal
particle velocity, 𝑤 the vertical particle velocity, ℎ the still water depth and 𝑝 the
pressure.

2.2 Fifth Order Stokes Wave
Fentons fifth order stokes wave [2, 4] is uniquely defined by three physical
dimensions, the mean water depth 𝑑, the wave height 𝐻, and the wavelength 𝜆.
Several other wave theories employ the wave period instead of wavelength. However
in most real applications there exists a current, and the apparent wave period is
actually Doppler-shifted. When using a Doppler-shifted wave period without
knowledge about the current, the problem is under specified and thus does not
uniquely define the wave. No current velocity is applied in this study, however
possible future applications for this code likely do.

As seen in equation (2.8), the free surface profile 𝜂 is much more complex for a fifth
order wave in comparison to the Airy wave, see Figure 1. The higher order wave has
higher and narrower crests and flatter shallower troughs compared to the Airy wave.

 𝑘𝜂(𝑥) = 𝑘𝑑 + 𝜖 cos(𝑘𝑥) + 𝜖2𝐵22 cos(2𝑘𝑥)
+ 𝜖3𝐵31(cos(𝑘𝑥) − cos(3𝑘𝑥))
+ 𝜖4(𝐵42 cos(2𝑘𝑥) + 𝐵44 cos(4𝑘𝑥))
+ 𝜖5�−(𝐵53 + 𝐵55)� cos(𝑘𝑥)
+ 𝐵53 cos(3𝑘𝑥) + 𝐵55 cos(5𝑘𝑥)

(2.8)

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 6

In equation (2.8) 𝜖 = 𝑘𝐻/2 is the dimensionless wave height and 𝐵𝑖𝑗 are
dimensionless coefficients. Fentons fifth order Stokes model includes 25 of these
coefficients, each described by an intricate formula. These formulas can be found in
[2] and [4]. Fenton lists the following equation [4] for determining the highest stable
wave height as a function of wavelength and depth, equation (2.9):

 𝐻𝑚
ℎ

=
0.141063𝜆ℎ + 0.0095721�𝜆ℎ�

2
+ 0.0077829�𝜆ℎ�

3

1 + 0.0788340𝜆ℎ + 0.0317567�𝜆ℎ�
2

+ 0.0093407�𝜆ℎ�
3 (2.9)

Where 𝐻𝑚 is the maximum wave height, ℎ the depth and 𝜆 the wavelength.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 7

3 Computational Fluid Dynamics
In this project Computational Fluid Dynamics is used to solve the flow in a numerical
wave tank. CFD is a branch of fluid mechanics utilizing numerical methods to solve
fluid flows. This chapter introduces the governing equations behind the CFD software
used in this project, OpenFOAM. The solver used is interFoam, a solver for two
incompressible, isothermal immiscible fluids using the volume of fluid (VOF) method
for capturing the interface.

3.1 Governing Equations
Navier-Stokes equations are nonlinear partial differential equations believed to
exactly describe all fluid flows. The governing equations for a time-dependent three-
dimensional fluid flow and heat transfer of a compressible Newtonian fluid can be
written as equation (3.1) [5].

 𝜕(𝜌𝜙)
𝜕𝑡

+ div(𝜌𝒖𝜙) = div(Γ grad𝜙) + 𝑆𝜙 (3.1)

Where 𝜙 is a general variable representing e.g. velocity. The first term represents the
time rate of change of 𝜙 within a control volume and the second term represents
convection. On the right hand side the first term represents diffusion, where Γ is a
diffusion coefficient, and 𝑆𝜙 is the source term.

Few exact solutions exist and thus the partial differential equations need to be solved
numerically for most engineering problems. Navier-Stokes equations can be solved
directly, however it is too computationally prohibitive for most engineering problems.
Thus simplifying assumptions and models are required in order to make it
economically viable. An assumption made in this project is that the fluid is inviscid,
resulting in the so called Euler equations.

3.2 Finite Volume Method
OpenFOAM uses the finite volume method for spatial discretization of the partial
differential equations. The domain is divided into control volumes, referred to as cells.
The differential form of the partial differential equations are integrated over each cell.
Because the flux into a cell is always equal to the flux out of a cell, the finite volume
method is inherently conservative. Quantities of interest, e.g. pressure or velocity, are
stored at the cells centroid. Values in between the cell centroids are interpolated.

3.3 Volume of Fluid Surface Capturing
The interFoam solver employs the VOF method for capturing the interface. The
VOF method utilizes a property called phase fraction to capture the interface. In
OpenFOAM 1.5dev the phase fraction is denoted 𝛾 while newer versions denote 𝛼.
The phase fraction is convectively transported by the velocity field, see the phase
fraction transport equation (3.2).

 𝜕𝛾
𝜕𝑡

+ 𝒗 ∙ grad 𝛾 = 0 (3.2)

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 8

The phase fraction has a value of zero in cells filled with air and a value of one in
cells filled with water. Cells at the free surface contain both air and water and thus
have a value between zero and one.

The VOF formulation in interFoam tends to artificially diffuse the interface
between air and water. One method for keeping the surface interface sharp is artificial
compression where a pressure is applied normal to the surface. In OpenFOAM the
magnitude of the artificial volume force is controlled via the cGamma setting.

3.4 Implicit and Explicit Numerical Schemes
Since the choice of numerical schemes turned out to have a large influence on
problems experienced during the project, such as surface diffusion and unrealistic air
velocities, a brief description of the differences between implicit and explicit schemes
are given in this section. A more thorough description can be found in Versteeg [5].
For details regarding the problems experienced, see Section 5.2.

With an explicit numerical scheme the solution for the current timestep is computed
only from known previous solutions and thus can be solved directly, see equation
(3.3).

 𝑌(𝑡) = 𝑓�𝑌(𝑡 − ∆𝑡)� (3.3)

𝑌(𝑡) is the solution at the current timestep 𝑡, ∆𝑡 is a time increment and thus
𝑌(𝑡 − ∆𝑡) is the solution at the previous timestep.

In an implicit numerical scheme on the other hand, the solution is evaluated also from
the unknown current timestep. Since the current solution is present on both sides of
the equation it cannot be solved directly, see equation (3.4).

 𝑌(𝑡) = 𝑓�𝑌(𝑡 − ∆𝑡),𝑌(𝑡)� (3.4)

Implicit schemes are much more stable than explicit schemes. Explicit schemes needs
to fulfill the Courant-Friedrich-Levy (CFL) condition in order to guarantee stability,
see equation (3.5).

 𝑈 ∙ ∆𝑡
∆𝑥

= 𝐶𝐹𝐿 (3.5)

𝑈 is the velocity, ∆𝑡 is the timestep length and ∆𝑥 is the cell length. For this condition
to be fulfilled the distance travelled during one timestep is required to be less than one
cell length. Hence high velocities and small cell sizes requires very small timesteps.

Time marching is different for implicit and explicit schemes. With implicit time
marching it is possible to maintain stability while advancing larger temporal distances
than dictated by the CFL condition. This is an attractive behavior for steady state
simulations. The converged solution is correct, however the iteration steps between
initialization and converged solution is not time accurate when using implicit time
marching.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 9

4 Software
This chapter contains brief introductions to the software used in this project. All work
is performed under Linux, which with its powerful scripting capabilities lends itself
well for this particular type of workflow. Several alternatives to the specified
softwares were tried and considered. However, due to the repetitive tasks this type of
simulation work often involve, software alternatives which provide good scripting and
automation capabilities ended up being the preferred choice.

4.1 OpenFOAM
OpenFOAM, short for Open Field Operation And Manipulation, is a free open source
CFD toolbox [6]. It is a library of C++ code, available for anyone to customize and
extend. OpenFOAM is written using an object oriented approach with a syntax closely
resembling the differential equations being solved. This yields a very modular
software design which eases the transition from physical model to code, making it
easy to modify and extend [7]. In this study OpenFOAM 1.5dev has been used [1].

OpenFOAM uses the finite volume method on unstructured meshes. It is a very
capable CFD tool including free-surface flows and mesh motion, among many other
features. More than 80 solvers for simulation of specific problems and over 170 utility
applications for meshing, post-processing and similar tasks are included [8].

Unlike most other CFD software, OpenFOAM is not controlled through a graphical
user interface (GUI). Instead settings are adjusted via text files called dictionaries and
everything is controlled via the command line. The lack of a GUI makes the learning
curve steeper for new users, however once grasped it is a very flexible and easily
automatable approach. Some documentation and support are available for
OpenFOAM, but compared to commercial CFD software alternatives it is lacking.

OpenFOAM is released under the license GNU GPL 2 [9], meaning that it is free for
anyone to download and use. Commercial software licenses generally limit the
number of processors per simulation or the number of parallel simulations.
OpenFOAM offers the flexibility of utilizing all available processors for a single
simulation, or for launching a large amount of parallel simulations. Thus OpenFOAM
allows utilizing the available hardware to its full potential.

The nonexistent license fee is however not the only benefit. The lack of license
constraints means that OpenFOAM can be customized to suit any workflow. Tasks
ordinarily requiring manual interaction can be automated. Everything from mesh
generation, simulation, post-processing and plotting can be automatically performed
for complex matrices of initial conditions, boundary conditions, fluid properties and
geometries. All parts of an OpenFOAM simulation, from pre processing to post
processing, can be automated using the python library PyFoam [10].

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 10

4.1.1 blockMesh
One of the utilities distributed with OpenFOAM is blockMesh, a mesh generator
for simpler geometries. As with all OpenFOAM utilities, blockMesh is controlled
through a dictionary, which facilitates easy creation of parametric meshes. A few
input parameters can thus generate a complete mesh, while a few alterations to these
parameters might generate a very different mesh. This makes blockMesh
particularly well suited for studies involving families of geometrically similar meshes,
such as grid dependence or optimization studies.

The preprocessing language GNU m4 [11] is commonly utilized for parameterization
of blockMesh dictionaries. More advanced calculations can be achieved using shell
scripting, perl or python.

4.2 ParaView
ParaView is an open source post processing application for data analysis and
visualization. Using the Message Parsing Interface (MPI), ParaView can run in
parallel, enabling fast rendering of large data sets. Post processing can be carried out
interactively in 3D as for most post processing software. ParaView can however also
be run in batch mode, enabling rapid and effortless repetition of identical processing
tasks, and scriptable, automatic post processing [12].

All actions performed through the GUI of ParaView can be recorded as macros for
quick re-use of common processing sequences. The macro feature records the GUIs
actions using python. These python scripts can also be executed in batch mode, and
thus fits well into the scriptable workflow of OpenFOAM.

OpenFOAM is well integrated with ParaView through the wrapper script paraFoam.
Simulations can be visualized in ParaView without the need for converting or even
recomposing parallel cases.

4.3 Matlab
Matlab has a wide range of applications within scientific computing, such as
algorithm development, image processing and data visualization. A large number of
add-on toolboxes can further increase the feature set. The programming syntax in
Matlab is easier than traditional scientific programming languages such as C/C++ or
Fortran [13].

Data presentation in Matlab allows for highly detailed control over the visualized
results, making it the authors’ software of choice for generating publication grade
figures. Matlab scripts can be run interactively, but also in batch mode from the
command line and thus integrates well with the other software used through scripting.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 11

5 Wave Generator Development
Working with waves travelling across the limited spatial domain of a numerical wave
tank first requires the waves to be generated. The length of a numerical wave tank is
generally smaller than the distance travelled by a wave during a normal simulation
duration. Thus the wave is likely to reach the end of the domain and reflect off of it.
Reflected waves are generally an unwanted phenomenon since they interfere with the
tests being conducted in the numerical wave tank. In order to prevent waves reflecting
off of the domain boundaries wave absorption techniques can be employed.

Several techniques are available for wave generation in numerical wave tanks.
Moving paddles, similar to those used for wave generation in real wave tanks, can be
recreated and analytical formulas can connect each desired wave type to the
corresponding paddle motion required. This method requires the challenging task of
simulating a moving paddle. Other methods for generating waves make use of the
possibility to control mass sources within the continuity equation and thereby
recreating the mass flux of the desired wave type [14].

Absorption of an incoming wave is an even more challenging task than generation of
the wave. In real wave tanks sponge layers are often used to absorb incoming waves
and prevent them from reflecting. A common approach for numerical wave tanks is to
implement a Sommerfeld boundary condition, where a first order wave is prescribed
at the boundary. The prescribed wave needs to match the incoming wave exactly
regarding both time and frequency for successful absorption. Any discrepancies
between the two will result in reflections. Thus the Sommerfeld boundary condition is
incapable of fully absorbing waves deformed by e.g. a rolling ship in the wave tank.
Another method for damping waves is to add a viscous damping term to the mass and
momentum equations [15].

5.1 Blending Method
The blending method can be utilized for both wave generation and wave absorption.
Unlike wave generating methods based on periodic boundary conditions, the blending
method can use simple boundary conditions, and it is capable of dissipating an
incoming wave without prior knowledge on the properties of the wave, or at what
exact time it will arrive.

The blending method generates waves in the interior of the basin. It functions by
substituting the computed solution with an alternative solution after each time
increment. The solution being enforced could for instance be a wave model or a still
surface. This substitution should not be performed all at once, as it would result in
large gradients and produce reflections. Instead the solutions are gradually substituted
throughout the length of the basin.

An advantage with the blending method is that it can effectively dissipate incoming
waves, not only in the damping end of the basin, but also at the generating end. Since
the same method is used for both generating and damping the waves, it is possible to
simulate very complex cases having waves propagating in several directions
simultaneously, impacting the damping zones at any angle. However the blending
method operate inside the actual basin and require a basin length the magnitude of
several wavelengths. This significantly increases the required simulation time.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 12

The blending method is not included with OpenFOAM and thus requires
implementation. The method has been successfully implemented in OpenFOAM
previously by Afshar [16] and Jacobsen [17].

Another common name for this method is the relaxation method. This term is not
chosen by the author, since within CFD the term relaxation is commonly associated
with a mixing of the calculated solution with zero or with a solution from a previous
timestep, thereby relaxing the advance of the simulation, making it more stable.

The chosen term blending on the other hand suggests that the solution is mixed with
an alternative solution, not necessarily zero or a solution from a previous timestep.
This is deemed a more suitable name for this method since its purpose is not to
stabilize the simulation, but rather to propagate a wave.

The blended solution is calculated according to equation (5.1),

 𝜙𝑏(𝑥) = 𝛼(𝑥)𝜙𝑐(𝑥) + �1 − 𝛼(𝑥)�𝜙𝑎(𝑥) (5.1)

where 𝜙𝑏 is the new blended solution, 𝜙𝑐 is the old solution, 𝜙𝑎 is the analytical
solution being generated, and 𝑎(𝑥) ∈ [0,1] is the blending function. The first term on
the right hand side, 𝛼(𝑥)𝜙𝑎(𝑥), represents the absorption while the second term,
�1 − 𝛼(𝑥)�𝜙𝑐(𝑥), controls generation.

5.1.1 Blending Functions
Generation and damping of waves using the blending method needs to be performed
smoothly in order to prevent spurious wave modes and reflections. In order to achieve
a smooth blending the shape of the blending functions and the length of the blending
zones needs to be considered.

Engsig-Karup [15] derives blending function shapes ensuring smooth transition across
zone boundaries. At the zone boundaries the solution as well as its derivatives needs
to remain unchanged before and after the blending. Thus 𝛼(𝑥) needs to be equal to
one when bounding towards the wave tank zone, and equal to zero at walls.
Homogenous 𝛼(𝑥) derivatives are required near all boundaries, with the exception of
boundaries where waves travel in only one direction, such as from the wave tank into
the damping zone. The blending function should ideally contain no discontinuities in
order to avoid reflections. Due to the interface jump between cells in a discretized
mesh there will always be some discontinuities. Thus in order to keep errors small a
fine mesh is required.

The blending functions used in this project are those proposed by Engsig-Karup, see
equations (5.2) and (5.3) and the corresponding profiles in a zone layout in Figure 2.

 𝛼(𝑥) = −2𝑥3 + 3𝑥2 (5.2)

 𝛼(𝑥) = 1 − 𝑥6 (5.3)

Equation (5.3) fulfills the requirements of vanishing derivatives at the boundaries,
while equation (5.2) fulfills only the requirement at one end and is thus better suited
for damping zones. The profiles can be reversed by a coordinate change, e.g.
𝛼(1 − 𝑥). The exponent in equation (5.3) is set to 6, in accordance with Afshar [16].

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 13

Figure 2 Zone layout including damping function profiles.

In Figure 2 𝛼(𝑥) is the damping coefficient and 𝑥 is the distance from the generating
zone border in the propagation direction. Zone 1 depicts the blending function profile
of equation (5.2), zone 2 is the wave tank and thus no blending is performed while
zone 3 contains the blending function profile of equation (5.3).

The actual length of each zone might be one to two wavelengths for the generator
zone 1 while the wave tank zone 2 needs to be large enough to contain whatever is
being investigated and the damping zone 3 might require one to three wavelengths
depending on the incoming waves.

Zone 1 begins with a completely enforced wave model at the left wall, over which the
solver has no influence. Gradually along zone 1 the enforcing of the wave model is
ramped down according to equation (5.2) and the solver is given control over the
solution. At the end of zone 1 there is no blending, only the solution computed by the
solver which at this point propagates the waves.

This unenforced propagation continues throughout all of zone 2 which represents the
actual wave tank. When the waves reach the end of zone 2 they may be very different
from when they entered zone 2. Since no blending is performed in the wave tank they
may have deformed due to interaction with objects in the basin.

At the beginning of zone 3 the solution computed by the solver, i.e. incoming waves,
are gradually absorbed according to equation (5.3) and replaced by an enforced still
surface. At the end of zone 3 the blending function derivatives are non-homogenous.
This should however not matter since no wave energy should be left to reflect off of
the bounding wall.

In some cases it might be necessary to use different zone layouts. Afshar [16] and
Engsig-Karup [15] for instance employ two zones for generating waves. The
additional zone is placed next to the basin wall in order to remove the violent behavior
otherwise arising when enforcing a wave model close to the wall. A large number of
zone configurations were investigated during the course of this project, and the single
zone generator layout was found to yield the shortest simulation times due to its
smaller size. A fluctuating pressure with high magnitude does arise at the wall,
however it seems to cause no effect on the wave tank.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 14

5.1.2 Implementation in OpenFOAM
It is possible to generate waves in OpenFOAM using the included groovyBC
package. The blending method however is not included with OpenFOAM, and thus
requires implementation.

The blending method is implemented as an extension of the solver interFoam, a
laminar multiphase solver for incompressible fluids. The interFoam solver
employs the volume of fluid method for capturing the interface, see Section 3.3, and
spatial discretization is performed according to the finite volume method, see Section
3.2. The VOF phase fraction is computed explicitly while velocity and pressure is
handled implicitly, see Section 3.4.

All settings within OpenFOAM are controlled by means of text files called
dictionaries, as previously mentioned in Section 4.1. Each case consists of multiple
dictionaries organized in a specific file structure, as specified in the OpenFOAM user
guide [6]. In accordance with this structure, all input parameters required to generate
waves using the blending method is divided into two dictionaries placed in the
constant directory. The waveGeneratorsDict specifies all parameters
concerning the blending zones, and wavesDict contains the wave parameters.

Multiple zones can be specified in the waveGeneratorsDict dictionary, each
zone in a separate sub-dictionary. Required input parameters are the zone position,
dimension and orientation, as well as the blending function and wave type to blend
with. Any of the wave types specified in the wavesDict dictionary can be used.
Some of the blending functions accept input parameters for adjusting the profile
shape. For instance the exponent in equation (5.3) can easily be adjusted. All
parameters can be specified for the three fields velocity, pressure and VOF phase
fraction and blending can be turned on or off individually for each field. By enabling
the debug switch a number of additional fields are saved for each timestep. The
fields show the position, orientation and wave shape enforced for each zone. Each
additional field require a large amount of disk space and thus the debug switch
should only be enabled to initially in order to verify the zone layout. A sample of how
a blending zone is specified in the waveGeneratorsDict dictionary is seen in
Figure 3.

The wavesDict dictionary can contain parameters for several different wave types,
each in a separate sub-dictionary. Each wave type sub-dictionary contains a wave
model and its corresponding phase shift, propagation direction, amplitude, frequency
and basin depth. The wave models implemented in this project are Fentons fifth order
Stokes model [2], the first order linear Airy wave, and a still surface. A sample of how
a wave is specified in the wavesDict dictionary is seen in Figure 4

As explained in Section 2.2 the relation between frequency and wave length is not
trivial for fifth order Stokes waves. Some cases require a specific wave frequency
while others require a specific wave length. The utility infoWaves can be used to
quickly calculate the resulting wave length for any of the wave types specified in the
wavesDict dictionary. As explained in Section 2.2, the fifth order Stokes wave
model implemented requires 25 coefficients to be calculated. Fenton [2] publishes
values for these coefficients for three cases. The infoWaves utility computes the
coefficient values for the same three cases, thus providing a method for verifying that
the coefficients have been accurately implemented.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 15

The utility initWaves functions similarly to the OpenFOAM bundled setFields
utility, used to initiate the VOF phase fraction field. However initWaves is also
capable of initializing wave fields for any of the wave types specified in the
wavesDict dictionary. Thus it is possible to initialize a simulation with a fully
developed wave field over the entire basin, or a still surface.

The algorithm for the developed wave generator is thus: read zone layout and wave
parameters from the waveGeneratorsDict and wavesDict dictionaries.
Initialize the desired wave field using the initWaves utility. Start the simulation
and between each time increment, blend the computed solution in the blending zones
with the desired wave types.

blendingZone1
{
 velocityBlendingFunction {
 type EngsigKarup1;
 exponent 6;
 }
 pressureBlendingFunction {
 type EngsigKarup1;
 exponent 6;
 }
 gammaBlendingFunction {
 type EngsigKarup1;
 exponent 6;
 }
 blendGamma on;
 blendVelocity on;
 blendPressure off;
 reference (-3 0 0);
 forward (1 0 0);
 up (0 0 1);
 width 1;
 length 1.5;
 wave fentonFifth;
 debug off;
};

Figure 3 A sample of how the blending zone parameters are specified in the
waveGeneratorsDict dictionary.

fentonFifth
{
 type Stokes5thOrder;
 g (0 0 -9.81);
 phasesOrigin (1.15 0 -0.0045);
 direction (1 0 0);
 amplitude 0.05;
 frequency 1.04235;
 depth 0.9;
 current 0;
};

Figure 4 A sample of how a wave is specified in the wavesDict dictionary.

5.2 Discussion Wave Generator Development
During the development and subsequent utilization of the blending method wave
generator a number of complications were encountered. This section documents many

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 16

of these complications in an effort to aid others working with blending method wave
generation in OpenFOAM. Highlighting some of the more subtle difficulties to watch
out for, detailing solutions for certain problems and offering possible resolutions for
others.

The phase fraction should be closely monitored throughout the simulations to make
sure that the surface is not rising or falling. The process may be quite slow and thus
hard to detect, but it can have a large influence on the results. There are several
possible causes for this problem. It is often related to boundary conditions or the depth
of the enforced wave models not matching the actual still water depth.

The VOF surface capturing method has a tendency to diffuse the interface between air
and water. As described in Section 3.3 an artificial volume force is applied to
compress the surface, thereby retaining a sharp interface [18]. The amount of
compression is controlled via the cGamma setting, or cAlpha in newer versions of
OpenFOAM. For longer simulations some level of compression was required to
prevent excessive diffusion. Afshar [16] reported that high levels of compression lead
to deformation of the wave profile for longer simulations, an issue not encountered
during this study. Possibly thanks to the semi-implicit solver, or none of the attempted
simulations were long enough for the problems to appear.

A particularly troublesome problem is the unwanted high air velocities close to the
water surface. These unnaturally high air velocities may deform the wave profile and
lead to premature wave breaking. They result in higher CFL numbers and thus smaller
time steps and slower simulations. The same phenomenon is reported also by Paterson
[10] and Afshar [16] who suggest ignoring the air side convective term or relaxation
of air velocities. The method which best solved the problems of high air velocities in
this study was treating the VOF phase fraction explicitly and velocity and pressure
implicitly. Initially all fields were computed explicitly, leading to high air velocities.
Treating all fields implicitly did not work well together with the volume of fluid
method, as the surface was quickly diffused despite high cGamma values. The final
semi implicit solver yielded the best results.

A problem as of yet unresolved is the raising of the wave trough and decline of the
wave crest encountered during the verification study. The generated waves are highly
accurate inside the generating zone, but as soon as they enter the wave basin the
trough quickly raises, soon followed by a decline of the crest. No combination of
settings were able to solve this, suggesting that the root of the problem might lie
deeper, e.g. in the semi implicit solver.
As explained in Section 5.1.1 a zone layout incorporating a generating zone flush
against the wall, with full enforcement of the wave model next to the wall, is used for
the simulations presented in this report. In combination with the no slip impermeable
boundary condition used this gives rise to a rather violent pressure fluctuation at the
wall. This has the advantage of reducing the size of the wave generator and thus
reducing the required simulation time. No influence from the high magnitude pressure
fluctuation was detected in the actual wave basin. The only drawback encountered as
a result of this layout is that the high magnitude of the pressure fluctuation
complicates investigation of the pressure field during post processing, a small
inconvenience at most. A possible approach to neutralize the fluctuating high
magnitude pressure field, without extending the dimensions of the wave generator,
could be to implement a correspondingly fluctuating boundary condition.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 17

This implementation of the blending method for wave generation and dissipation is
currently significantly slower than other alternatives. However no systematic
approach to increase its speed has been attempted during this project, leaving much
room for optimization. The large zones required for generation and damping when
using the blending method could possibly be reduced by finding the optimal blending
function.

In the current implementation of the blending method, the aim is to dampen incoming
waves before they reach the wall and thus reflect off of it. Reflecting waves encounter
decreasing damping when leaving the damping zone. Perhaps it could be possible to
separate incoming waves from waves travelling in the opposite direction, and to
enforce different levels of damping depending on the direction of propagation. As a
result the required zone sizes could effectively be reduced to half of their current size.

As explained in Section 5.1, the blending method functions by blending the computed
solution with a wave model after each time increment. The speed of the blending
depends on the length of the time increments. Thus zone lengths and blending
functions suitable for one simulation may not suit a simulation with different timestep
lengths. When enabling OpenFOAMs adjustableRunTime feature the time step
length is automatically adjusted and thus varying throughout the simulation.
Consequently the blending speed will also vary throughout the simulation. A method
for making the blending speed independent of time increment length should be
implemented. Perhaps by only blending at predetermined equidistant time increments.

An aspect further decreasing the speed of implementation of the blending method is
that it requires a very fine mesh in the surface region to propagate a sharp wave
profile. Possibly an improved version of the VOF surface capturing method could be
implemented, e.g. using a local height function. In the current implementation all cells
with cell center lower than the analytical wave profile get a phase fraction value of
one, thus representing water, while all other cells are initialized as air. As suggested
by Afshar [16], by not only initializing phase fractions of one or zero, but also values
in between, a more accurate representation of the wave profile could be initialized
using a coarser mesh [17].

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 18

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 19

6 Forces on Semi Submerged Cylinders
With interFoam extended to include wave generating and damping capabilities, see
Chapter 5, and a fifth order Stokes wave model implemented see Section 2.2, a
suitable validation case is sought.

The case chosen is a horizontal cylinder, fixed in the surface region. It is chosen
because it has a comparatively simple setup, and the large amount of previous
research on the topic offers plenty of data to validate against.

The purpose of this case is to validate the wave induced forces on a cylinder in the
surface region. The assumption is that if the forces measured in the simulation match
those of physical experiments, the underlying models accurately recreates reality.

6.1 Previous Research on the Topic
Since the purpose of this case is to validate simulation results against experimental
data, a good understanding of the experimental setup is required to understand the
motivations behind the simulation setup. In order to facilitate a better understanding
of the experimental data, a summary of previous research on the topic is presented in
this section. The research performed by Dixon et al. [19] and Westphalen et al. [20]
are described in particular detail in Sections 6.1.1 and 6.1.2, since they contain the
data chosen to be validated against.

The Keulegan-Carpenter number 𝑁𝐾𝐶 is the ratio between drag forces and inertial
forces. A low 𝑁𝐾𝐶 thus indicates that the loads are dominated by inertial forces with a
negligible contribution from drag forces. For linear waves it can be calculated
according to equation (6.1).

𝑁𝐾𝐶 =

2𝜋𝑎
𝐷

 (6.1)

Wave induced forces on fixed horizontal cylinders is a topic with a large amount of
published research. Prasad [21] reviewed a large number of reports on the topic.
Easson et al. [22] described the force spectra in Gaussian seas while Kaplan and
Silbert [23] investigated slamming. More recently, Chaplin [24, 25], Westphalen et al.
[20] and Hu et al. [26] studied the forces on fixed horizontal cylinders in the surface
region. Westphalen and Hu validated CFD solvers against experimental data, before
utilizing the solvers to study wave energy converters.

The experimental data used in the validation study described in this report, was
gathered by Dixon et al. [19] and is the same data utilized by Westphalen and Hu.
Dixons experimental results are chosen for this validation study because of its highly
detailed description of the experimental results, including detailed time histories of
the forces as well as numerous variations of the experiment parameters.

6.1.1 Dixon et al.’s Experimental Study
Dixon et al. [19] gathered experimental measurements in order to validate a modified
version of the Morison equation [27]. In a study preceding Dixons, the wave power
research group at the University of Edinburgh’s department of mechanical
engineering carried out experiments, measuring the wave forces acting on partially
submerged fixed cylinders. They found that under certain conditions the resulting
force becomes completely negative (downwards), during the entire wave cycle, and

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 20

act at twice the wave frequency. These effects arise for bodies close to the surface,
due to interaction between buoyancy and inertial forces. Dixon modified the Morison
equation to account for these effects and then validated the modified equation against
experimental data.

The Morison equation is used to predict loads on fixed bodies in oscillatory flow. The
contributions from inertial forces and velocity dependent drag forces are superposed,
using empirically determined coefficients to determine the contribution of each.

𝐹ℎ = 𝐶𝑀𝜌𝑉

𝜕𝑈ℎ
𝜕𝑡

+
1
2
𝐶𝐷𝜌𝐴|𝑈ℎ|𝑈ℎ (6.2)

In the original formulation of the Morison equation (6.2), 𝐹ℎ is the horizontal force,
acting on a vertical pile of volume 𝑉, 𝜌 is the fluid density, 𝐶𝑀 is the inertia
coefficient, 𝑈ℎ is the horizontal fluid velocity, 𝐶𝐷 is the drag coefficient, 𝐴 is the
projected area of the pile normal to the waves and 𝑡 represents time.
Dixons modifications to this equation involve adding a buoyancy dependent term and
a time dependent volume, to account for the cylinder being partially submerged. For
large object to wave amplitude ratios, viscous effects are negligible, and the drag term
can be removed.

Dixon introduced a series of dimensionless parameters:

 𝐹′ =
𝐹

𝜌𝑔 �𝜋𝐷
2𝑙

4 �
 (6.3)

 𝜂′(𝑡) = 𝜂(𝑡)/𝐷 (6.4)

 𝑎′ = 𝑎/𝐷 (6.5)

 𝐿′ = 𝐿/𝐷 (6.6)

 𝑑′ = 𝑑/𝐷 (6.7)

The relative force 𝐹′ in equation (6.3) is a measure of the ratio of the wave force 𝐹 to
the weight of water displaced by a totally submerged cylinder, 𝜌𝑔(𝜋𝐷2𝑙/4), where 𝐷
is the cylinder diameter and 𝑙 is the cylinder length. Equation (6.4) describes the
relative wave elevation 𝜂′(𝑡), where 𝜂(𝑡) is the time dependent wave elevation. The
relative wave amplitude 𝑎′ is described in equation (6.5), where 𝑎 is the wave
amplitude. Equation (6.6) describes the relative wave length 𝐿′, where 𝐿 is the wave
length. The relative cylinder axis depth 𝑑′ described in equation (6.7), where 𝑑 is the
distance between the cylinder axis and the still water level.

To validate the accuracy of the modified Morison equation, experimental
measurements were gathered using the same parameters as used in the calculations.
The values of the parameters 𝑎′ and 𝑑′ were varied, but chosen so that part of the
cylinder was always exposed to air at some point of a wave cycle. Reflections from
the tank end were less than 5% and the force measurements were accurate to within
1% of the largest force measured. The initial force on the cylinder in still water was
electronically subtracted before the force measurements were taken.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 21

Dixon found that cases with high relative wave amplitude 𝑎′, are the most difficult to
reproduce analytically, since they exhibit a high degree of asymmetry. The agreement
between the modified Morison equation and the experiments were considered good
over a wide range of parameter values. As the relative wave amplitude 𝑎′ and relative
depth 𝑑′ increased the agreement worsened. The experimental measurements showed
an asymmetry, especially in the crest for high relative- amplitudes and depths, which
was not predicted by the equation.

6.1.2 Westphalen et al.’s CFD Solver Validation
Westphalen et al. [20] utilized Dixon et al.’s [19] experimental measurements in order
to validate four different CFD codes, and then used these codes to analyze a wave
energy converter. The codes used were: Smooth Particle Hydrodynamics (SPH), a
Lagrangian CFD technique not requiring a mesh, a Cartesian Cut Cell method based
on an artificial compressibility method with shock capturing for the interface
(AMAZON), and two pressure based Navier-Stokes codes, Finite Volume (FV) and
Control Volume Finite Element (CV-FE).

The force measurements from the simulations were non-dimensionalised according to
equation (6.3), and then compared with Dixons experimental data. This was
performed for three cases, each with different wave amplitudes and axis depths. First
order regular waves were generated and the air velocities were set to zero. The results
agreed well, except for the case with the deepest cylinder submergence.

6.2 OpenFOAM Numerical Wave Tank Validation
Modeling physical phenomena involves a series of assumptions and estimations.
Comparing force measurements from simulations with experimental measurements,
like those gathered by Dixon et al. [19], is a method for validating that the
implemented models correctly simulates reality.

In cases with low Keulegan-Carpenter numbers 𝑁𝐾𝐶, see Table 1, viscous effects are
negligible. Thus laminar flow can be assumed and no turbulence modeling is required
for this study.

6.2.1 Motivation of Chosen Case Setups
Westphalen et al. [20] validated four different CFD codes against Dixons
experimental data. Dixon published experimental data for 24 different cases, and
Westphalen selected three of them to validate against. All three cases include the
highest possible relative wave amplitude 𝑎′ available, for three different relative
cylinder axis depths 𝑑′. The axis depths are equidistantly spaced, with the smallest
available axis depth for the first case and the largest available axis depth for the last
case.

According to Dixon cases with high relative amplitude 𝑎′ should offer more of a
challenge than cases with low relative, and thus be ideal for validation purposes.

Different levels of relative axis depths 𝑑′ provide different ratios of inertial and
buoyancy forces. For shallow axis submergences, the resulting force display a highly
alternating direction, while higher submergence demonstrates a mostly negative
(downward) force at twice the frequency. Therefore validating against cases with
different axis submergences should provide an indication of the solver capability to
deal with different ratios of buoyancy and inertial forces as well as the interplay
between them.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 22

For the reasons described above, the three cases chosen by Westphalen could be
considered the best cases available for validation purposes. Hence the same three
cases used by Westphalen are also utilized in this validation study. Comparison with
Westphalens results also provide a reference for what level of agreement to expect.
Also, it enables comparison of the OpenFOAM solver not only against experimental
results, but also against other CFD codes. See Table 1 for the relative- amplitudes 𝑎′
and axis depths 𝑑′ of the selected cases.

6.2.2 Wave Parameters

The basin is initialized as a still surface and a fifth order Stokes wave is produced in
the generating zone. In the damping zone at the opposite end of the basin, the
resulting waves are blended with a flat wave. As described in Section 5 the wave
properties are specified in the wavesDict dictionary and each wave type is
specified in separate sub dictionaries. See Table 1 for the wave parameters used in
each simulation.

In Table 1, the parameters 𝑑′ and 𝑎′ are calculated according to equations (6.7) and
(6.5) respectively, with a cylinder diameter of 1 dm. The values are identical to those
used by Westphalen [20]. A graphical representation of the relative size of cylinder
diameter, axis depth and wave amplitude is seen in Figure 5. Note that the wave
length has been shortened in these figures. Since the wave amplitude vary between the
cases, a slightly different frequency is required for each simulation in order to achieve
a wavelength, 𝜆, of exactly 1.5 meters. The wave steepness’s are well below the
breaking limit stated by Fenton [2], see equation (2.9). See equation (6.1) for a
description of the Keulegan-Carpenter number 𝑁𝐾𝐶.

Table 1 Wave parameters used in each of the three simulations

 Simulation

 1 2 3

Relative axis depth, 𝑑′ 0.0 0.3 0.6

Relative wave amplitude, 𝑎′ 0.5 0.2 0.3

Wave frequency, 𝑓 1.042 1.023 1.028

Wavelength, 𝜆 [𝑚] 1.5 1.5 1.5

Wave steepness, 2𝑎/𝜆 0.067 0.027 0.040

Keulegan-Carpenter number, 𝑁𝐾𝐶 3.142 1.256 1.885

Dimensionless wave amplitude, 𝑘𝑎 0.209 0.084 0.126

Dimensionless basin depth, 𝑘ℎ 3.770 3.770 3.770

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 23

(a) Simulation 1. 𝑑′ = 0.0, 𝑎′ = 0.5

(b) Simulation 2. 𝑑′ = 0.3, 𝑎′ = 0.2

(c) Simulation 3. 𝑑′ = 0.6, 𝑎′ = 0.3
Figure 5 Cylinder axis submergence and wave amplitude for the three simulations

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 24

6.2.3 Basin Layout

Both the generating and damping zones have an extension of one wavelength, equal to
1.5 meters. The extension of the unenforced wave tank is two wavelengths, or 3
meters, with the cylinder placed in the center. The zone layout is specified in the
waveGeneratorsDict dictionary as described in Section 5. Blending of velocity
and phase is turned on, while no blending is performed for the pressure field. Figure 6
depicts the layout of the various zones.

The boundary conditions are set to no-slip impermeable walls for the ends as well as
at the bottom of the basin. The top is specified as an outlet while the front and back
are set to empty, as is the convention for front and back planes in 2D simulations in
OpenFOAM. See Figure 6.

Figure 6 Basin blending zone layout and boundary conditions

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 25

6.2.4 Mesh Generation
The meshes are generated using the blockMesh utility supplied with OpenFOAM,
see Section 4.1.1. Using the macro processing language m4 for parametric refinement
and python for calculations, the mesh is generated from a few input parameters, see
Table 2.

The 𝑐𝑝𝑤 parameter determines the basic cell size from which all other cell sizes are
calculated. The 𝑓𝑧 parameter determines the height of the refined region around the
surface. The minimum height of the refined area is equal to the cylinder diameter, and
is further increased symmetrically around the cylinder if any part of the wave extends
vertically beyond the limits of the cylinder. An 𝑓𝑧 value of 1.2 yields a refined region
20% higher than the wave height and cylinder.

These mesh parameters results in a cell count of 234200, 234200 and 335092 cells for
simulation 1, 2 and 3 respectively. The meshes for simulation 1 and 2 have an equal
number of cells since the wave does not extend above or below the cylinder, while the
mesh for simulation 3 has a higher cell count since the wave extends above the
cylinder. A close up of the region around the cylinder for simulation 1 can be seen in
Figure 7. A band along the surface has been refined and above and below this band
the cell size is gradually stretched outwards. The mesh is finest at the cylinder surface
and gradually stretched in the radial direction.

Table 2 Input parameters for mesh generation

 Simulation

 1 2 3

Basin length, x-direction, 𝐿 [𝑚] 6 6 6

Basin width, y-direction, 𝑊 [𝑚] 1 1 1

Basin height, z-direction, 𝐻 [𝑚] 1.8 1.8 1.8

Cylinder axis x-displacement, 𝑑𝑥 [𝑚] 0 0 0

Cylinder axis z-displacement, 𝑑 [𝑚] 0 -0.03 -0.06

Cylinder diameter, 𝐷 [𝑚] 0.1 0.1 0.1

Wave amplitude, 𝑎 [𝑚] 0.05 0.02 0.03

Cells per wavelength, 𝑐𝑝𝑤 [𝑐𝑒𝑙𝑙𝑠/𝜆] 400 400 400

Refined region height factor, 𝑓𝑧 1.2 1.2 1.2

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 26

Figure 7 Close up of the mesh around the cylinder for simulation 1

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 27

6.2.5 Force Measurement
The forces on the cylinder are registered using a force function in the controlDict
dictionary. This method of logging forces has the benefit of saving measurements for
every time step, not only those matching the specified writeInterval, the setting
determining at which time steps to save the complete solution. Thus using the force
function yields a high measurement resolution without requiring as much space as
saving the complete solution.

This function logs the forces and moments at the cylinder surface for each time step,
in all three directions. For this particular case only the vertical forces are of interest.
Using shell scripting the parameters of interest, time and vertical forces, are extracted
and the forces are non-dimensionalised according to equation (6.3). Finally the
normalized force time history is imported into Matlab for plotting. See Figure 8 for a
flow chart depicting the work flow.

Figure 8 Flow chart depicting the work flow

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 28

6.3 Results and Discussion
Figures 9-11 depicts force measurements on semi submerged fixed horizontal
cylinders. Information about the simulation setup for the OpenFOAM simulations is
found in Section 6.2. The AMAZON, CV-FE and FV results are extracted from
simulations performed by Westphalen et. al. [20], see Section 6.1.2. The experimental
data was gathered by Dixon et. al. [19], see Section 6.1.1.

The main difference between the simulations is the relative cylinder axis depth 𝑑′ and
the relative wave amplitude 𝑎′, see equations (6.7) and (6.5) respectively. The values
of these parameters are found at the top of each figure, and also in Table 1 along with
other wave parameters. In order to vary the axis depth and wave amplitude, the mesh
of each simulation differs slightly, as described in Section 6.2.4.

The vertical axis shows the relative force 𝐹′ in the vertical direction, calculated
according to equation (6.3). The horizontal axis shows the time 𝑡 divided by the
length of one wave period 𝑇. Hence one unit distance on the horizontal axis is equal to
the time required for one wave cycle to pass the cylinder. C and T in the bottom views
indicate the positions in time of crest and trough respectively.

In the top view of Figures 9-11 the force time history of the simulations initialization
and the subsequent ten wave cycles are depicted. The square outlines the wave cycle
enlarged in the bottom right view. The marked cycle is chosen because it best matches
Dixon et. al.'s experimental results.

To better show the agreement between cycles, the bottom left view of Figures 9-11
depicts the ten first wave cycles superposed. All wave cycles should ideally be
identical since the simulations lack viscosity. As can be seen this is however not the
case for this series of simulations. Possibly the damping zone is too short or the
blending function too steep, causing some reflections.

In the bottom right view results from the OpenFOAM simulations are superposed
with Dixon et. al.’s experimental data and Westphalen et. al.’s simulation results. A
good agreement between simulation and experimental results indicates that the
generated waves exerts realistic forces on the cylinder, and thereby to some degree
that the underlying models accurately represents reality.

It is hard to quantify the agreement between experimental and simulation results by
mere visual comparison. Westphalens results are included as a reference. They
provide perspective on which degree of agreement to reasonably expect. From the
CFD codes used by Westphalen, the CV alternative should be the one most similar to
the OpenFOAM code used in this report.

Simulation 1, depicted in Figure 9, is arguably the least difficult case to simulate. The
wave amplitude is high, yielding high force measurements. The cylinder is placed in
the center of the still water surface where it is best exposed to the wave forces, further
increasing the amplitude of the force measurements. However, the wave is relatively
steep, see Table 1. Steep waves generally are more challenging to simulate.

Simulation 2, depicted in Figure 10, has a lower wave amplitude and a deeper
submerged cylinder than simulation 1. Thus the resulting force measurement has
significantly lower amplitude. Aside from for the somewhat high trough the
agreement is considered good.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 29

Simulation 3, depicted in Figure 11, is arguably the most difficult of the three cases to
reproduce. Dixon et. al.’s modified Morison equation had troubles recreating it due to
the asymmetry. Also Westphalen et. al. failed to achieve good agreement. The
OpenFOAM results exhibit some of the same deficiencies as Westphalens, the force
curve from the simulation is generally situated higher than the experimental curve.
However, the overall shape of the curves agrees well.

Dixon et. al. neglects to mention how the presented experimental results were
selected. Similar experiments are presented by Chaplin [24, 25], and several
subsequent wave cycles are published. These results indicate that variations may exist
between wave cycles for this type of experiment. Thus, evaluating the simulation
results by merely comparing them to a single experimental wave cycle is not an ideal
validation method.

The best results in the presented OpenFOAM simulations are often found among the
first ten wave cycles. Later waves show signs of degradation. As discussed in Section
5.2, several complications were encountered during the simulations, all contributing to
the degradation of the results.

Figure 12 shows a comparison of surface profiles between Westphalen et. al.’s
simulation and the corresponding OpenFOAM simulation, for subsequent time steps.
The surface profiles agree well.

In summary, the simulation results agree well with the experimental results. Zero
crossings occur at roughly the same positions and peaks and troughs have
approximately the same amplitude. Even smaller peaks and troughs tend to occur at
the same positions in simulation and experiment. Whether the agreement is sufficient
or not depends on the intended application. A more quantitative judgment regarding
the curves agreement would require a more sophisticated method of error evaluation
than visual inspection.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 30

F
igure 9 Top: tim

e force history for the first cycles of sim
ulation 1. Bottom

 left: the ten first w
ave cycles superposed. Bottom

 right: the second
w

ave cycle, also m
arked in the top plot, superposed w

ith D
ixon et. al.’s experim

ental results and W
estphalen et. al.’s sim

ulation results.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 31

F
igure 10 Top: tim

e force history for the first cycles of sim
ulation 2. Bottom

 left: the ten first w
ave cycles superposed. Bottom

 right: the second
w

ave cycle, also m
arked in the top plot, superposed w

ith D
ixon et. al.’s experim

ental results and W
estphalen et. al.’s sim

ulation results.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 32

F
igure 11 Top: tim

e force history for the first cycles of sim
ulation 3. Bottom

 left: the ten first w
ave cycles superposed. Bottom

 right: the second
w

ave cycle, also m
arked in the top plot, superposed w

ith D
ixon et. al.’s experim

ental results and W
estphalen et. al.’s sim

ulation results.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 33

Figure 12 Surface profile around the cylinder for simulation 1, 𝑑′ = 0.0,𝑎′ = 0.5.
Top: from Westphalen et. al. Bottom: from OpenFOAM simulation. (a) 𝑡/𝑇 = 0.0,
(b) 𝑡/𝑇 = 0.12, (c) 𝑡/𝑇 = 0.36, (d) 𝑡/𝑇 = 0.6, (e) 𝑡/𝑇 = 0.73, (f) 𝑡/𝑇 = 1.0.

A grid convergence verification study was attempted, however due to unexpectedly
high errors and lack of convergence with decreasing spatial and temporal
discretization this study could not be completed. The cause of the unexpectedly high
errors is as of yet unknown.

The satisfactory agreement found in the validation study between the OpenFOAM
results and the experimental data might appear contradictive to the problems
encountered in the verification study. It begs the question if force measurements is a
too relaxed method of validation for a wave generator. Part of the answer lies in that
the cylinder is placed relatively close to the generating zone, thus not allowing much
time and distance for the wave to degrade before reaching the cylinder.

The forces are measured on the entire cylinder surface, a relatively large target
compared to the amplitude of the wave. The resulting force is rather a representation
of the waves energy, the magnitude and direction of the velocity field, and less
sensitive to minor changes in the shape of the surface profile.

During the cylinder validation study, simulation 3 exhibits the worst agreement with
the experimental results. The reason for this might be that it is the case which has the
deepest cylinder submergence. The cylinder is completely submerged during large
parts of the wave cycle. Raising of the trough would have a large effect on how much
of the cylinder is uncovered. Due to the difference in density between water and air,
most of the forces experienced by the cylinder is due to the water. Thus altering how
much air versus water the cylinder is exposed to should significantly affect the
experienced forces.

(a) (b)

(d)

(c)

(e) (f)

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 34

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 35

7 Conclusions
This project is performed with the intention of developing a numerical wave tank in
OpenFOAM, utilizing the blending method for generating and damping waves. The
wave tank is evaluated with a focus on its potential usefulness within SBMs industrial
projects.

The implemented blending method is thoroughly integrated into OpenFOAM
according to the programming guidelines. This makes it simple to use even for more
advanced blending zone layouts, and easily extendable with additional blending
functions and wave models.

One of the advancements made during the project was moving to the semi implicit
solver. The fully explicit solver yielded severe problems with unrealistic high air
velocities while the implicit solver resulted in issues with interface diffusion. The
semi implicit solver rectifies both these problems.

The wave induced forces measured on the semi submerged horizontal cylinders agrees
well with experimental data and performs on par with other CFD codes. However,
some problems still remain. Severe surface profile deformations hindered completion
of the grid convergence study. Before the cause of these problems are identified and
corrected the potential usefulness of the code in an industrial project is limited.

Additionally, the current implementation is rather slow. This is mainly because such a
refined mesh is required in the surface region in order to maintain a sharp interface.
This is further aggravated by the blending methods need for large generating and
damping zones. Presently no attempts have been made to optimize the codes speed.
Possibly implementing an improved surface capturing method, e.g. the level set
method, could drastically decrease the required mesh density.

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 36

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 37

8 References
1. OpenFOAM extended, http://sourceforge.net/projects/openfoam-extend, 2011.

2. Fenton, J. D. (1985), A Fifth-Order Stokes Theory for Steady Waves. Journal
of Waterway, Port, Coastal and Ocean Engineering, vol. 111, no. 2, pp. 216-
234.

3. Bergdahl, L. A. (2008), Wave-Induced Loads and Ship Motions, Department
of Civil and Environmental Engineering, Chalmers University of Technology,
no: 2008:1: Göteborg.

4. Fenton, J. D. (1990), Nonlinear Wave Theories. The Sea, vol. 9, pp. 3-25.

5. Versteeg, H. K. and Malalasekera, W. (2007), An Introduction to
Computational Fluid Dynamics: The Finite Volume Method: Prentice Hall.

6. OpenCFD Ltd., http://www.openfoam.com/, 2011, The Open Source CFD
Toolbox and OpenFOAM User Guide.

7. Jasak, H., Jemcov, A., and Tukovi´c, Ž. (2007), OpenFOAM: A C++ Library
for Complex Physics Simulations, in International Workshop on Coupled
Methods in Numerical Dynamics: Dubrovnik, Croatia.

8. CFD Online, http://www.cfd-online.com, 2011, An Online Center for
Computational Fluid Dynamics.

9. GNU GPL 2, http://www.gnu.org/copyleft/gpl.html, 2011, GNU General
Public License.

10. Paterson, E. G. (2008), Multiphase and Free-Surface Flow Simulations. in 3rd
OpenFOAM Workshop. Politecnico di Milano, Milan, Italy: Applied Research
Laboratory and Department of Mechanical Engineering, The Pennsylvania
State University.

11. Seindal, R. (2006), GNU M4, Version 1.4. 7, A Powerful Macro Processor.
12. Kitware Public,

http://www.itk.org/Wiki/ParaView/Users_Guide/Table_Of_Contents, 2011,
ParaView User's Guide (v3.12)

13. Jönsson, P. (2006), MATLAB-beräkningar inom teknik och naturvetenskap:
Studentlitteratur.

14. Lin, P. P., L.F.L. (1999), Internal Wave-Maker for Navier-Stokes Equations
Models. Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 125,
no. 4, pp. 207-215.

15. Engsig-Karup, A. P. (2006), Unstructured Nodal DG-FEM Solution of High-
Order Boussinesq-Type Equations, PhD Thesis, Technical University of
Denmark, Department of Mechanical Engineering, Section of Coastal,
Structural and Maritime Engineering.

16. Afshar, M. A. (2010), Numerical Wave Generation in OpenFOAM, MSc
Thesis, Chalmers University of Technology, Department of Shipping and
Marine Technology.

17. Jacobsen, N. G. (2010), A Generic Wave Generation and Wave Relaxation
Framework. in 5th OpenFOAM Workshop. Gothenburg: Section of Coastal,

http://sourceforge.net/projects/openfoam-extend/
http://www.openfoam.com/
http://www.cfd-online.com/
http://www.gnu.org/copyleft/gpl.html
http://www.itk.org/Wiki/ParaView/Users_Guide/Table_Of_Contents

CHALMERS, Naval Architecture, Master’s Thesis X-11/271 38

Maritime and Structural Engineering, Department of Mechanical Engineering,
Technical University of Denmark.

18. Rusche, H. (2002), Computational Fluid Dynamics of Dispersed Two-Phase
Flows at High Phase Fractions.

19. Dixon, A. G., Greated, C. A., and Salter, S. H. (1979), Wave Forces on
Partially Submerged Cylinders. Journal of the Waterway Port Coastal and
Ocean Division, vol. 105, no. 4, pp. 421-438.

20. Westphalen, J., et al. (2009), Extreme Wave Loading on Offshore Wave
Energy Devices using CFD: a Hierarchical Team Approach. in 8th European
Wave and Tidal Energy Conference. Uppsala, Sweden.

21. Prasad, S. (1994), Wave Impact Forces on a Horizontal Cylinder, University
of British Columbia, Department of Civil Engineering.

22. Easson, W. J., Greated, C. A., and Duranni, T. S. (1985), Force Spectra from
Partially Submerged Circular Cylinders in Random Seas. Journal of
Waterway, Port, Coastal and Ocean Engineering, vol. 111, no. 5, p. 856.

23. Kaplan, P. and Silbert, M. (1976), Impact forces on platform horizontal
members in the splash zone. in 8th Offshore Tech. Conf. Houston, Texas. pp.
749-758.

24. Chaplin, J. R. (2001), Non-Linear Wave Interactions with a Submerged
Horizontal Cylinder. in 11th International offshore and polar engineering
conferenc. Stavanger, Norway. pp. 272-279.

25. Chaplin, J. R. and Subbiah, K. (1997), Large Scale Horizontal Cylinder
Forces in Waves and Currents. Applied Ocean Research, vol. 19, no. 3-4, pp.
211-223.

26. Hu, Z. Z., et al. (2011), Numerical Simulation of Floating Bodies in Extreme
Free Surface Waves. Natural Hazards and Earth System Sciences, vol. 11, pp.
519-527.

27. Morison, J. R., et al. (1950), The Force Exerted by Surface Waves on Piles.
Petroleum Transaction, American Institute of Mining, Metallurgical and
Petroleum Engineers, vol. 189, pp. 149-154.

	Contents
	1 Introduction
	1.1 Aims and Objectives
	1.2 Delimitations

	2 Wave Theory
	2.1 Airy Wave
	2.2 Fifth Order Stokes Wave

	3 Computational Fluid Dynamics
	3.1 Governing Equations
	3.2 Finite Volume Method
	3.3 Volume of Fluid Surface Capturing
	3.4 Implicit and Explicit Numerical Schemes

	4 Software
	4.1 OpenFOAM
	4.1.1 blockMesh

	4.2 ParaView
	4.3 Matlab

	5 Wave Generator Development
	5.1 Blending Method
	5.1.1 Blending Functions
	5.1.2 Implementation in OpenFOAM

	5.2 Discussion Wave Generator Development

	6 Forces on Semi Submerged Cylinders
	6.1 Previous Research on the Topic
	6.1.1 Dixon et al.’s Experimental Study
	6.1.2 Westphalen et al.’s CFD Solver Validation

	6.2 OpenFOAM Numerical Wave Tank Validation
	6.2.1 Motivation of Chosen Case Setups
	6.2.2 Wave Parameters
	6.2.3 Basin Layout
	6.2.4 Mesh Generation
	6.2.5 Force Measurement

	6.3 Results and Discussion

	7 Conclusions
	8 References

