
Chalmers Publication Library

BDD-based supervisory control on extended finite automata

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

2011 7th IEEE International Conference on Automation Science and Engineering, CASE

2011; Trieste; 24 August 2011 through 27 August 2011 (ISSN: 2161-8070)

Citation for the published paper:
Miremadi, S. ; Lennartson, B. ; Åkesson, K. (2011) "BDD-based supervisory control on
extended finite automata". 2011 7th IEEE International Conference on Automation Science
and Engineering, CASE 2011; Trieste; 24 August 2011 through 27 August 2011 pp. 25-31.

http://dx.doi.org/10.1109/CASE.2011.6042480

Downloaded from: http://publications.lib.chalmers.se/publication/150976

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/CASE.2011.6042480
http://publications.lib.chalmers.se/publication/150976


BDD-based Supervisory Control on Extended Finite Automata

S. Miremadi, B. Lennartson and K. Åkesson

Department of Signals and Systems, Chalmers University of Technology

SE-412 96 Gothenburg, Sweden

{miremads, bengt.lennartson, knut}@chalmers.se

Abstract— In this paper, we settle some problems that are
encountered when modeling and synthesizing complex indus-
trial systems by the supervisory control theory. First, modeling
such huge systems with explicit state-transition models typi-
cally results in an intractable model. An alternative modeling
approach is to use extended finite automata (EFAs), which is
an augmentation of ordinary automata with variables. The
main advantage of utilizing EFAs for modeling is that more
compact models are obtained. The second problem concerns
the ease to understand and implement the supervisor. To
handle this problem, we represent the supervisor in a modular
manner by extending the original EFAs by compact conditional
expressions generated from the monolithic supervisor. In order
to, potentially, be able to handle complex systems efficiently,
the models are symbolically represented by binary decision
diagrams (BDDs). All computations that are performed in this
framework are based on BDD operations. The framework has
been implemented in a supervisory control tool and applied to
industrially relevant benchmark problems.

Index Terms— Supervisory control theory, extended finite
automata, supervisor representation, symbolic representation,
binary decision diagrams.

I. INTRODUCTION

When designing control functions for discrete event systems,

a model-based approach may be used to conveniently un-

derstand the system’s behavior. It is also possible to easily

apply different modifications to models and decrease the

testing and debugging time. A well known example of

such a model-based approach is supervisory control theory

(SCT) [1]. Having a plant (the system to be controlled)

and a specification, SCT automatically synthesizes a control

function, called supervisor, that restricts the conduct of the

plant to ensure that the system never violates the given

specification. SCT has various applications in different areas

such as automated manufacturing and embedded systems,

e.g. [2], [3].

Generally, a supervisor is a function that, given a set of

events, restricts the plant to execute some events so that the

specification is satisfied. A typical issue is how to compute

such a control function efficiently and represent it lucidly

for the users. A standard approach is to model the system by

finite automata, synthesize the supervisor, and then explicitly

represent all the states that are allowed to be reached in the

closed-loop system.

However, regarding systems of industrially interesting

sizes, the standard approach has some drawbacks:

This work was carried out at the Wingquist Laboratory VINN Excellence
Centre within the Area of Advance - Production at Chalmers, supported by
the Swedish Governmental Agency for Innovation Systems (VINNOVA).
The support is gratefully acknowledged.

• Modeling complex systems with ordinary automata can

make the model large and intractable.

• Exploring all reachable states in the closed-loop system

explicitly is computationally expensive, in terms of both

time and memory, due to the state-space explosion

problem.

• The monolithic supervisor for such systems, typically,

consists of a huge number of states, which makes

it difficult for the user to understand it thoroughly.

In addition, representing the supervisor as a single

automaton will require more memory than available on

the hardware.

Various researchers have settled these issues, yet no work

has considered all three topics together.
One way to obtain compact models is to use variables. The

variables can then appear in guards and actions. Guard ex-

pressions at the transitions restrict the behavior of the system,

while actions update the variables. Naturally, physical signals

that are stored in memories or sent between controllers can

be modeled as global variables, e.g., sensors, actuators and

buffers.
In [4], a framework called extended finite automata (EFAs)

was presented, which is an augmentation of an ordinary au-

tomaton extended with variables, guard expressions and ac-

tion functions. The guards and action functions are attached

to the transitions, which admits local design techniques of

systems consisting of many different parts. The main feature

of EFAs is that they are suitable for the SCT framework.
In [5], the authors present an approach to compute the opti-

mal nonblocking supervisor based on a number of EFAs. The

principle is that based on an EFA plant and a set of forbidden

locations, iteratively strengthen the guards of the plant so

that forbidden or blocking states become unreachable in the

controlled plant. For problems with a huge number of EFAs,

the approach can suffer from an early state-space explosion

while generating the plant with the forbidden locations. In

addition, the focus is not to obtain comprehensible guards

for the users.
Although extended frameworks allow compact represen-

tations of huge state-spaces, when it comes to analysis the

number of states will not be affected and could potentially

cause state-space explosion problem that typically occurs

when the behavior of interacting sub-systems is studied. A

well-known approach to handle this problem is to symbol-

ically represent the state-space and transitions using binary

decision diagrams (BDDs) [6]; powerful data structures for

representing Boolean functions. Several researchers have

tackled the state-space explosion problem in the context of

2011 IEEE International Conference on
  Automation Science and Engineering
Trieste, Italy - August 24-27, 2011

ThA1.3

978-1-4577-1732-1/11/$26.00 ©2011 IEEE 25



SCT using BDDs such as [7], [8], however, most of them are

based on state transition systems without the introduction of

variables.

The contribution of this paper is the development of a

framework, where both the plant/specification and the super-

visor are modeled by EFAs. In addition, we show how EFAs

and their nontrivial full synchronous composition operator

by BDDs including proof of correctness. The framework

has been applied to a set of industrially relevant benchmark

problems and showing that the results can be obtained

efficiently.

Our approach has some advantages from different per-

spectives. By modeling a system based on EFAs, a compact

representation of complex systems with huge state-space

can potentially be obtained. Another advantage is that the

system is symbolically represented using BDDs, and all

the computations are based on BDD operations, making it

possible to handle large systems and overcome the state-

space explosion problem in many cases. Representing the

supervisor by EFAs in a modular manner, in contrast to

a monolithic manner, also makes it more comprehensible

and tractable for the users. In addition, typically, a modular

supervisor consumes less memory in a controller. The reason

is that the synchronization will be performed online in the

controller (see [9], [10]) which can alleviate the problem

of exponential growth of the number of states in the syn-

chronization. Furthermore, since EFAs include guards and

actions, they are often easier to interpret than purely event

based ordinary modular automata. They can also easily be

converted to controller programming languages e.g. SFC or

ladder diagrams. EFAs can also easily be converted to well-

known verification tools such as NuSMV [11]. Also, from

an engineering perspective, EFAs are attractive models due

to their similarity to UML and state diagrams.

II. PRELIMINARIES

This section provides some preliminaries that are used

throughout this paper.

A. Extended Finite Automata

An EFA, introduced in [4], is an augmentation of the ordi-

nary finite automaton (FA) with guard predicates and action

functions. The guard predicates and actions are associated to

the transitions of the automaton. A transition in an EFA is

enabled if and only if its corresponding guard predicate is

evaluated to true, and when a transition is taken, updating

actions of a set of variables may follow. Guard predicates

can be realized by their characteristic functions.

Definition II.1 (Characteristic Function). Let W be a finite

set so that W ⊆ U , where U is the finite universal set. A

characteristic function χW : U → B is defined by:

χW (a) =

{
1 iff a ∈W

0 iff a 6∈W
. (1)

Since the set U is finite, say with size n, in practice

its elements are represented with numbers in Zn or binary

m-tuples in B
m (m = ⌈logn

2 ⌉). For binary characteristic

functions, an injective function θ : U → B
m is used to map

the elements in U to elements in B
m. In general, χW (a) is

constructed as

χW (a) =
∨

w∈W

a↔ θ(w), (2)

where ↔ on two m-tuples v1 and v2 is defined as

v1 ↔ v2 ,
∧

0≤i<m

(vi
1 ↔ vi

2). (3)

vi denotes the i:th element in the binary m-tuple v.
As we will see later, characteristic functions can also be

used to represent BDDs.

Definition II.2 (Extended Finite Automaton).

An extended finite-state automaton E is a 6-tuple

E = 〈LE × V,ΣE ,G,A,→, (ℓE0 , v0)〉,

where:

(i) LE ×V is the extended finite set of states, denoted by

Q, where LE is a set of locations and V is the domain

of definition of the variables;

(ii) ΣE is a nonempty finite set of events;

(iii) G = {χW | W ∈ 2V } is the set of guard predicates

over V ;

(iv) A = {a | a : V → V } is a collection of action

functions;

(v) →⊆ LE × Σ × G ×A× LE is the transition relation;

(vi) (ℓE0 , v0) ∈ LE × V is the initial state.

The finite set V = V 1×...×V n is the domain of definition of

an n-tuple of variables v = (v1, . . . , vn) with initial values

v0 = (v1
0 , . . . , v

n
0 ) ∈ V . A guard g(v) is a predicate over the

variables that relate each element of V to either 1 (true) or

0 (false). Actions are written as

v́ := a(v) = (a1(v), . . . , an(v)),where v́ ∈ V.

The symbol ξ is used to denote implicit actions that do not

update the value of variables. For instance, if ai(v) = ξ, it

means that action ai does not update variable vi, i.e. v́i = vi.
A partial transition relation is written as ℓ

σ
→g/a ℓ́, where

ℓ, ℓ́ ∈ L, σ ∈ Σ, g ∈ G and a ∈ A. If g is absent, denoted

by ℓ
σ
→a ℓ́, it is assumed that g always evaluates to true. If

a is absent, denoted by ℓ
σ
→g ℓ́, it is assumed that a(v) = Ξ,

where Ξ is the vector notation for (ξ, ξ, . . . , ξ), indicating

that no variable is updated during the transition.
For convenience, the states (locations and variable values)

can explicitly be written out in system transitions according

to the following definition.

Definition II.3 (Explicit State Transition Relation).

Let E = 〈LE ×V,ΣE, 7→, (ℓE0 , v0)〉 be an EFA. The explicit

state transition relation of E is defined as

7→ , {(ℓE, v, σ, ℓ́E , v́) ∈ LE × V × Σ × LE × V |

∃ℓE
σ
→g/a ℓ́

E : v ∈ SATG(g) ∧ (v, v́) ∈ SATA(a)},

where v and v́ are the values of the variables before and after

executing the transition, respectively; SATG denotes the set

of variable assignments that satisfies the guard g(v),

SATG(g) , {v ∈ V | v � g}; (4)

26



and SATA denotes the following set:

SATA(a) , {(v, v́) ∈ V × V | v́ = a(v)}. (5)

Note that a special case of v́ = a(v) is when v́ = v, that

is a(v) = Ξ. The explicit state transition relation is written

(ℓ, v)
σ
7→ (ℓ́, v́) and can recursively be extended to strings in

Σ∗.

We denote the explicit representation of a partial transition

ℓ
σ
→g/a ℓ́ by 7→

ℓ
σ
→g/a ℓ́

.

For an EFA E, we write ΓE(ℓE , v) to denote all the events

that are defined from a state (ℓE , v) ∈ LE × V . Formally,

ΓE(ℓE , v) = {σ ∈ ΣE | ∃(ℓ́E , v́) ⇒ (ℓE , v)
σ
7→ (ℓ́E , v́)}.

Definition II.4 (Deterministic EFA).

An EFA E = 〈LE × V,Σ, 7→, (ℓE0 , v0)〉 is deterministic if

(ℓE , v)
σ
7→ (ℓ́E , v́) and (ℓE , v)

σ
7→ (ℓ̀E , v̀) always implies

(ℓ́E , v́) = (ℓ̀E , v̀).

Since we are interested in deterministic systems, we

merely focus on deterministic EFAs. In the sequel, for the

sake of brevity, we simply write EFAs for deterministic

EFAs.

The composition of two EFAs is defined by the extended

full synchronous composition (EFSC).

Definition II.5 (Extended Full Synchronous Composition).

Let Ek = 〈LEk × V,ΣEk ,→Ek
, (ℓEk

0 , v0)〉, k = 1, 2, be

two EFAs using the shared variables v = (v1, . . . , vn). The

Extended Full Synchronous Composition (EFSC) of E1 and

E2 is

E1‖E2 = 〈LE1 × LE2 × V,ΣE1 ∪ ΣE2 ,→, (ℓE1

0 , ℓE2

0 , v0)〉

where the state transition relation → is defined as

1) (ℓE1 , ℓE2)
σ
→g/a (ℓ́E1 , ℓ́E2), σ ∈ Σ1 ∩ Σ2 if

∃ ℓE1
σ
→g1/a1

ℓ́E1 ∈→E1
and

∃ ℓE2
σ
→g2/a2

ℓ́E2 ∈→E2
such that:

(i) g = g1 ∧ g2,

(ii) For i = 1, . . . , n and ∀v ∈ V :

ai(v) =






ai
1(v) if ai

1(v) = ai
2(v)

ai
1(v) if ai

2(v) = ξ

ai
2(v) if ai

1(v) = ξ

vi otherwise

2) (ℓE1 , ℓE2)
σ
→g/a (ℓ́E1 , ℓ́E2), σ ∈ Σ1\Σ2 if

(ℓE1 , σ, g, a, ℓ́E1) ∈→E1
and ℓE2 = ℓ́E2;

3) (ℓE1 , ℓE2)
σ
→g/a (ℓ́E1 , ℓ́E2), σ ∈ Σ2\Σ1 if

(ℓE2 , σ, g, a, ℓ́E2) ∈→E2
and ℓE1 = ℓ́E1 .

The EFSC operator is both commutative and associative.

Note that, in the case where the action functions of E1 and

E2 explicitly try to update a shared variable to different

values, we assume that the variable is not updated. It can

indeed be discussed whether the transition should be exe-

cuted. In that case, the definition of EFSC need to be more

modified compared to FSC, which is not desired. In addition,

a situation where two values are conflicting, is usually a

consequence of bad modeling, and thus it is more reasonable

to inform the user by a message rather than disabling the

transition. For more details about EFAs, refer to [4] including

the procedure of converting an EFA model to an FA model.

III. SUPERVISORY CONTROL THEORY

Supervisory Control Theory (SCT) [1], [12] is a general

theory to automatically synthesize supervisors based on a

given plant and specification. A specification describes the

allowed and inhibited behaviors. A supervisor restricts the

conduct of the plant to guarantee that the system never

violates the given specification. In SCT, some states of an

automaton E, which is typically a specification, are consid-

ered as marked states. These are the states that are desired

to be reached from the initial state. The set of marked states

of a composed automaton E1 ‖ E2 is the cartesian product

of the corresponding sets of marked states. In addition, some

states can be specified as explicitly forbidden, QE
ex,which are

states that should not be reached from the initial state. The

set of forbidden states of a composed automaton E1 ‖ E2 is

QE1
ex × QE2 ∪ QE1 × QE2

ex . In SCT, the events are divided

into two disjoint subsets: controllable events, denoted by

Σc, that can be prevented from executing by the supervisor;

and uncontrollable events, denoted by Σuc, which cannot be

influenced by the supervisor [1], [12]. A plant P can be

described by the synchronization of a number of sub-plants

P = P1 ‖ P2 ‖ . . . ‖ Pl, and similarly for a specification

Sp = Sp1 ‖ Sp2 ‖ . . . ‖ Spm. In our computations, we

assume that a supervisor S always refines the plant, i.e. S =
S||P . A first candidate of the supervisor is the composed

automaton P ‖ Sp, which we refer to as S0 in the sequel.

After the synthesis procedure, some states are identified as

blocking or uncontrollable, referred to as forbidden states,

which should be excluded from S0 in order to obtain the

supervisor. The states that belong to the supervisor are called

safe states, denoted by Qsup. For and EFA E, blocking

states are states where no marked states are reachable. For

a supervisor candidate Ŝ that is a sub-automaton of S0,

the set of uncontrollable states are the reachable states in

P ‖ Ŝ for which an uncontrollable event is defined for the

plant P but not for the supervisor Ŝ. The safe states can be

computed by fixed point iterations [7]. For a more formal

and detailed explanation of supervisory synthesis, see [1],

[10], [12]. For large systems the number of states can grow

exponentially. To this end, we use BDDs to represent the

EFAs and perform different operations. BDDs can improve

the efficiency of set and Boolean operations performed on

the state sets dramatically [7], [13], [14]. The corresponding

BDD for a finite set W ⊆ U (U is the universal set), can

be represented using the characteristic function χ presented

in Equation (1). In the sequel, we will use characteristic

functions to represent BDDs.

IV. SYMBOLIC COMPUTATION OF S0

This section describes how S0 = P ‖ Sp can be symbolically

represented.

There are basically two approaches for computing χ 7→S0
:

1) Transforming the EFAs to FAs and then applying the

synthesis procedure.

27



2) Applying the synthesis procedure directly on the EFAs

without transforming them to FAs.

In the former case, the EFAs are initially transformed to FAs

based on an algorithm explained in [4]. χ 7→S0
can then be

computed based on the FAs. A drawback of this approach

is that the number of transitions often grows very rapidly

when transforming EFAs to FAs, incurring an inefficient

performance.

To overcome the above-mentioned obstacle we settle on

the second approach, that is showing how χ 7→S0
can be

computed without transforming EFAs to FAs.

A. BDD representation of an EFA

The characteristic function of the transition function of an

EFA can be computed based on Definition II.3. Two different

sets of boolean (BDD) variables are used to represent the

current values of different locations and variables, denoted

by bL and bV
i

, respectively. Since we have to differ between

the boolean variables used to represent current and updated

values, b́L and b́V
i

are used to represent the updated values.

bΣ denotes the boolean variables used to represent the

alphabet.

Proposition IV.1. The characteristic function of an explicit

partial transition 7→
ℓ

σ
→g/aℓ́

is:

χ 7→
ℓ

σ
→g/aℓ́

=
( ∨

(v,v́)∈SATA(a)|v∈SATG(g)

n∧

i=1

bV
i

↔ θ(vi) ∧ b́V
i

↔ θ(v́i)
)
∧

bL ↔ θ(ℓ) ∧ b́L ↔ θ(ℓ́) ∧ bΣ ↔ θ(σ).

For brevity, we write χ
ℓ

σ
→g/aℓ́

rather than χ 7→
ℓ

σ
→g/aℓ́

. We

represent integers in the two’s complement system as an

array of BDDs [15]. In our framework, we assume that

overflows on variables are not allowed and thus we omit

the cases where an overflow occurs. This is performed by

removing all the variable assignments that result in values

outside the domain of the variables. Consequently, the char-

acteristic function of the transition relation of an EFA E will

be

χ 7→E =
∨

ℓ
σ
→g/aℓ́∈→E

χ
ℓ

σ
→g/a ℓ́

∧

n∧

i=1

χV i(bV
i

) ∧

n∧

i=1

χV i(b́V
i

). (6)

B. BDD representation of EFSC on EFAs

Based on Definition II.5 for the extended full synchronous

composition, we compute χ 7→S0
in three steps:

1) Compute a characteristic function, representing 7→S0

without including the actions, denoted by χ′
7→S0

.

2) Compute a characteristic function, representing the

update of the EFA variables, denoted by χ 7→v
S0

.

3) Based on χ′
7→S0

and χ 7→v
S0

, compute χ 7→S0
.

Since S0 is the synchronization of a number of sub-plants

and sub-specifications in form of EFAs, in all of the follow-

ing computations we focus on N ≥ 2 EFAs E1, . . . , EN .

Note that the result will be incorrect if steps 1 and 2 are

carried out in a single step. For deterministic FAs without

variables, this is not the case. For N FAs A1, . . . , AN ,

we have χ 7→A1‖...‖AN
=

∧N
k=1 χ 7→Ak

. This comes from

the fact that the full synchronous operator corresponds to

’intersection’ on languages, and ’intersection’ corresponds

to the AND operator on characteristic functions. For N ≥ 2
EFAs E1, . . . , EN ,

χ 7→E1‖...‖EN
6=

N∧

k=1

χ 7→Ek
.

Because then it would not be possible to keep track of

the variables that are not updated (don’t-care updates). Fur-

thermore, the action conflicts will disable the corresponding

events. However, based on Definition II.5, the result should

be a transition where the variables will be remained un-

changed.

When computing the synchronous composition based on

the characteristic functions, we have to assume that the EFAs

have the same alphabet. To make this possible we extend the

transition relations of each EFA by adding self-loops with

events that are not in the alphabet of the EFA.

Definition IV.1 (Extended explicit transition relation, #Ek
).

For N ≥ 2 EFAs E1, . . . , EN , the extended explicit transi-

tion relation of Ek, denoted by #Ek
, represents the explicit

transition relation of Ek together with self-loops on all states

with events that are not in the alphabet of Ek

#Ek
, 7→Ek

∪{(ℓ, v, σ, ℓ́, v́) | ∀ℓ ∈ LEk , ∀v, v́ ∈ V :

σ ∈ (ΣE1‖...‖EN \ΣEk) ∧ ℓ = ℓ́}.

By this extension, all EFAs in the model will have the

same alphabet and thus the definition of extended full syn-

chronous composition (Definition II.5) will be simplified to

case 1 that only considers common events.

Proposition IV.2. Let E1, . . . , EN be N ≥ 2 EFAs. Then,

χ′
#E1‖...‖EN

=

N∧

k=1

χ′
#Ek

.

At this stage, we are done with step 1 in the procedure

of computing 7→E1‖...‖EN
. The next step is to compute a

characteristic function that represents the updating of EFA

variables. First, we have to compute a characteristic function

that represents all partial transitions that include the resulting

action function of synchronizingN EFAs based on Definition

II.5. In the following computations, we start to focus on a

single variable vi and then extend it to all variables in the

model, i.e., v. Hence, for each EFA Ek and each variable

vi in the model, it is necessary to compute the transitions in

Ek on which the variable vi is updated.

Definition IV.2 (Updated transition relation, #vi,E).

For an EFA E and a variable vi, the updated transition

relation for variable vi, denoted by #vi,E , represents the

28



set of partial transitions in E on which the variable vi is

updated:

#vi,E, {(ℓ, v, σ, ℓ́, v́) | ∀(ℓ, v, σ, ℓ́, v́) ∈#E ∧v́i 6= vi}.

Remark. In a deterministic EFA, the combination of source-

location, event, guard and target-location will uniquely define

a transition.

Recall that, from Definition II.5, the result of ai(v) can

be divided into four if-then constructs, which we denote by

Cj . Each Cj consists of an if part, denoted by Ij , and a

then part, denoted by Tj .

Lemma IV.3. Let vi be an arbitrary variable of an n-tuple

v, and for k ≥ 2 EFAs E1, . . . , Ek, let #vi,k be defined as

follows:

χ#vi,k
:=

4∨

j=1

(χ̂
Ij

vi,k ∧ χ̂
Tj

vi,k),

where

χ̂I1
vi,k := χ̂T1

vi,k = χ#
vi,k−1

∧ χ#
vi,Ek

;

χ̂I2
vi,k := χ′

#vi,k−1
∧ ¬χ′

#vi,Ek

, χ̂T2

vi,k := χ#vi,k−1
;

χ̂I3
vi,k := ¬χ′

#vi,k−1
∧ χ′

#vi,Ek

, χ̂T3

vi,k := χ#vi,Ek
;

χ̂I4
vi,k := ¬(χ̂I1

vi,k ∨ χ̂I2
vi,k ∨ χ̂I3

vi,k) , χ̂T4

vi,k := χSATA(v́i=vi);

and

χ′
#vi,k

:= χ′
#vi,k−1

∨ χ′
#vi,Ek

;

χ#vi,1
:= χ#vi,E1

;

χ′
#vi,1

:= χ′
#vi,E1

.

Then, the following statement holds:

n∧

i=1

χ#vi,k
= χ#E1‖...‖Ek

∨ ψ,

where ψ ∧ χ′
#E1‖...‖Ek

� false.

For the proof, see [16].

Theorem IV.4. For N ≥ 2 EFAs E1, . . . , EN , and an n-

tuple of variables v = (v1, . . . , vn), the following statement

holds:

χ#E1‖...‖EN
=

n∧

i=1

χ#vi,N
∧ χ′

#E1‖...‖EN
.

Proof.

n∧

i=1

χ#
vi,N

∧ χ′
#E1‖...‖EN

=

(χ#E1‖...‖Ek
∨ ψ) ∧ χ′

#E1‖...‖EN

(χ#E1‖...‖Ek
∧ χ′

#E1‖...‖EN
) ∨ (ψ ∧ χ′

#E1‖...‖EN
)

(χ#E1‖...‖Ek
∧ χ′

#E1‖...‖EN
) ∨ false

= χ#E1‖...‖EN
.

Consequently, for a plant P and a specification Sp,

χ#P‖Sp
, i.e., χ#S0

, can be computed based on Lemma IV.4.

Furthermore, since χ#S0
and χ 7→S0

have the same alphabet,

χ#S0
and χ 7→S0

are equal.

V. REPRESENTATION OF THE SUPERVISOR AS EFAS

The last step is to compute the supervisor represented as

EFAs. This computation is performed in three steps:

1) Compute a BDD representing the safe states, i.e., the

corresponding BDD for χQsup .

2) Transform the computed BDD to guard expressions.

3) Attach the guards to the original EFAs.

χQsup is computed by fixed point computations based on

the synthesis algorithm described in [7]. Note that for a set

of EFAs, the reachability algorithms performed on χ 7→S0
do

not differ from the algorithms used for FAs. The algorithm

requires four arguments: χ
{q

S0
0

}
, χ 7→S0

, χQx and χ 7→uc
S0

. Qx

is the union of the explicitly forbidden states and the initially

uncontrollable states, described in in Section III. In the last

argument, 7→uc
S0

denotes the transitions in S0 that include

uncontrollable events. χ 7→uc
S0

can be computed as follows:

χ 7→uc
S0

= χ 7→S0
∧ χΣuc .

In stage 2, based on Qsup, we create two sets of states

[17]:

• Qσ
a : The set of states in the supervisor where the

execution of σ is defined for the supervisor.

• Qσ
f : The set of states in the supervisor where the exe-

cution of σ is defined for S0, but not for the supervisor.

By utilizing Qσ
a and Qσ

f a guard expression

Gσ(〈qE1 , qE2 , . . . , qEn〉) is generated for each controllable

event σ ∈ ΣS0
c :

Gσ(〈qE1 , qE2 , . . . , qEn〉) =




true (〈qE1 , qE2 , . . . , qEn〉) ∈ Qσ
a

false (〈qE1 , qE2 , . . . , qEn〉) ∈ Qσ
f

don′t − care otherwise

where qEi represents the current state of EFA Ei.

Gσ(〈qE1 , qE2 , . . . , qEn〉) evaluates to true if σ is allowed to

be executed from the state 〈qE1 , qE2 , . . . , qEn〉. The size of a

guard G, denoted by |G|, is defined by the number of atomic

equality and nonequality terms in the guard expression.

A. Guard Generation

The guards are computed in three consequent steps. First,

the corresponding BDDs for the state sets are computed.

Next, the BDDs are converted to their corresponding integer

decision diagrams (IDDs) [18], which will be used to gen-

erate the guards in the last step. An IDD is an extension of

a BDD where the number of terminals is arbitrary and the

domain of the variables in the graph is an arbitrary set of

integers. For our purpose, we use an IDD with two terminals,

0-terminal and 1-terminal.

To represent a state 〈qE1 , qE2 , . . . , qEn〉 in the closed-loop

automaton E1 ‖ . . . ‖ En, each IDD-variable is associated to

an EFA Ei that has QEi as its domain. This domain can be

mapped to an integer that is represented as an IDD. In other

29



words, each outgoing edge from node Ei represents a state

in Ei. Hence the maximum number of edges from a node

Ei is |QE
i |. As for BDDs the number of edges and nodes

for an IDD can also be reduced. For simplicity, we use the

names of the states on the IDD-edges rather than integers in

the sequel.

Using IDDs to generate guards has some advantages in

comparison to BDDs: 1) they make it easier to handle and

manipulate propositional formulae; 2) they exploit some of

the common subexpressions in a guard yielding a more

factorized and smaller formula; 3) they depict a more under-

standable model of the state set, since the nodes and edges

represent names of the EFAs and states, respectively.The

procedure of converting a BDD to an IDD is presented in

[17].

The result is correct under the assumption that the BDD

has a fixed variable ordering. A pseudo-algorithm of this

process has been presented in [17].

The last step of obtaining the guard is to convert the IDDs

to propositional formulae. For a given IDD, a top-down depth

first search is used to traverse the graph and generate its

corresponding propositional formula. The algorithm starts

from the root and visits the nodes whilst generating the

expression and ends at the 1-terminal.

R

A

B B

1

r

p1 p2

S1 S2

Fig. 1: Recursive represen-
tation of an IDD.

For each node in the IDD,

the corresponding expressions

of the edges belonging to the

same level (the children of that

node) are logically disjuncted

and if the edges belong to dif-

ferent levels they are logically

conjuncted. Hence, the proposi-

tional formula for the IDD in

Fig. 1 is

r ∧ ((p1 ∧ S1) ∨ (p2 ∧ S2)),

where pi is the corresponding expression of the edge that lead

to one of A’s children and Si is the corresponding expression

from the node to the 1-terminal, that is recursively computed.

A pseudo-algorithm of this process has been presented in

[17].

B. Guard Attachment

Since qEi ∈ LEi × V , the generated guard will be a

combination of ℓEi = ℓEi
ı (or ℓEi 6= ℓEi

ı ) and vi = vi


(or vi 6= vi
) expressions. Each variable ℓEi holds the current

location of EFA Ei. However, since they are not defined

in the model, they should be declared and added to the set

of variables in the model. Thus, the variable v is extended

to v+ = (v1, . . . , vn, ℓE1 , . . . , ℓEN ). Hence, the transition

function of each automaton Ei is extended as follows:

→+
Ei

= {ℓEi
σ
→g/a+ ℓ́Ei | ∀ℓEi

σ
→g/a ℓ́

Ei ∈→Ei ,

a+(v+) = (a1(v), . . . , an(v), ℓE1 , . . . , ℓ́Ei , . . . , ℓEN ).

Nevertheless, this extension can be performed implicitly so

that it becomes transparent to the user. Finally, for each EFA

Ei in the model, each generated guard Gσ is conjuncted with

the guards in →+
Ei

that include event σ; forming a new EFA

E
sup
i where

→Esup
i

={ℓ
σ
→g+/a+ ℓ́ |

∀ℓ
σ
→g/a+ ℓ́ ∈→+

Ei
, g+ = g ∧ Gσ}.

Consequently, the supervisor can be represented in a modular

manner, deducing that E
sup
1 ‖ . . . ‖ E

sup
N satisfies the

specification without any forbidden states.

VI. CASE STUDY

We have applied the presented framework to a set of

industrial benchmark examples. The framework has been

implemented and integrated in the supervisory control tool

Supremica [19], [20], which uses JavaBDD [21] as the BDD

package. The examples were conducted on a standard PC

(Intel Core 2 Quad CPU @ 2.4 GHz and 3GB RAM) running

Windows 7. In our implementation, the BDDs follow a fixed

variable ordering based on the approach presented in [22].

The benchmark examples are: Resource Allocation System

(RAS) [23], Collision Avoidance System (CAS) [24], Control

Logic Development (CLD) [25], Automated Guided Vehicles

(AGV) [26].

Table I shows the results of the reachability analysis. SIZE

represents the number of EFAs and variables in the model.

|QT | is the number of theoretically reachable states in the

model, which is equal to
∏N

k=1 |L
Ek | ·

∏n
i=1 |V

i|. |Qreach|
represents the number of reachable states in the closed-loop

model. The table also includes the time for computing the

supervisor.

Table II shows the results of the guard generation process.

|Q⊗| is the number of forbidden states, equal to |Qreach| −
|Qsup|. The number of controllable events, |Σc|, is equal to

the number of generated guards. The table also includes the

minimum, maximum and average sizes of the guards and

the time for generating the guards. The table tries to give

an overview of how much easier it will be for the user to

tract the synthesis results. For instance, in the AGV model,

9 million states are prevented to be reached by introducing

only 10 new guards with an average size of 17.6 terms.

Furthermore, in the CAS model around 63% of the reachable

states are prevented to be reached by 142 guards with an

average size of 1.4 terms. Hence, it would be easier for the

users to tract the synthesis results. It can be observed that

with 1 second computation time, the algorithm works quite

efficiently for these examples. We believe that it is possible

to efficiently generate guards for much larger and more

complicated examples, however, due to state-space explosion

in the synthesis procedure we were not able to compute the

supervisor for larger examples.

TABLE I: Reachability analysis.

Model SIZE |QT | |Qreach| |Qsup| Time (s)

RAS 26 7.3 × 108 26750 21581 4

AGV 16 5.2 × 10
10

2.6 × 10
7

1.7 × 10
7 5

CLD 20 2.1 × 1012 121 110 27

CAS 142 5.6 × 10
67

5.4 × 10
8

2 × 10
8 9

30



TABLE II: Tractability analysis.

Model |Q⊗| |Σc|
|G|

Time (s)
min max avg

RAS 5169 20 1 178 31.5 1
AGV 9 × 106 10 4 44 17.6 1
CLD 11 3 1 4 2.3 1

CAS 3.4 × 10
8 142 1 28 1.4 1

VII. CONCLUSIONS

In this paper we presented an approach that, given a system

modeled by EFAs, symbolically computes the supervisor. In

particular, this approach provides a seamless framework for

generating and modifying control functions that are modeled

by EFAs. Specifically, after modeling a system with EFAs,

the users can obtain the control function in form of the

original EFAs extended with some additional guards. Hence,

during the design phase, the users remain in the same model

domain, i.e., EFAs. The main advantage of this approach

is that the users can iteratively update both the models and

the intermediate control functions. All the computations are

performed by BDDs, which are transparent to the users, and

the only interface the users deal with is the EFA framework.

The entire procedure was applied to a set of academic and

industrial benchmark examples.

There are some possible directions for future work that

are worth pursuing. As mentioned in Section VI, the BDD-

based algorithms need to be complemented by partitioning

techniques that are normally used for ordinary automata.

Then, it would be possible to handle much larger and more

complicated systems. In addition, there is a potential to

improve the variable ordering of the BDDs. We also believe

that the guards can be more reduced in some cases, which

is a work in progress.

REFERENCES

[1] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[2] L. Feng, W. M. Wonham, and P. S. Thiagarajan, “Designing commu-
nicating transaction processes by supervisory control theory,” Form.
Methods Syst. Des., vol. 30, no. 2, pp. 117–141, 2007.

[3] K. Andersson, J. Richardsson, B. Lennartson, and M. Fabian, “Coor-
dination of Operations by Relation Extraction for Manufacturing Cell
Controllers,” IEEE Trans. on Control Systems Technology, vol. 18,
no. 2, pp. 414–429, 2010.

[4] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of discrete
event systems using finite automata with variables,” Decision and
Control, 2007 46th IEEE Conference on, pp. 3387–3392, 2007.

[5] L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson, “Symbolic ap-
proach to nonblocking and safe control of Extended Finite Automata,”
in 2010 IEEE International Conference on Automation Science and
Engineering. IEEE, Aug. 2010, pp. 471–476.

[6] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on
Computers, vol. 27, pp. 509–516, Jun. 1978.

[7] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory
synthesis of large systems,” Control Engineering Practice, vol. 14,
no. 10, pp. 1157–1167, Oct. 2006.

[8] C. Ma and W. M. Wonham, “Nonblocking supervisory control of state
tree structures,” IEEE Transactions on Automatic Control, vol. 51,
no. 5, pp. 782–793, May 2006.

[9] A. Hellgren, B. Lennartson, and M. Fabian, “Modelling and PLC-
based implementation of modular supervisory control,” in Discrete
Event Systems, 2002. Proceedings. Sixth International Workshop on,
2002, pp. 371–376.

[10] K. Åkesson, “Methods and tools in supervisory control theory: op-
erator aspects, computation efficiency and applications,” Ph.D. dis-
sertation, Signals and Systems,Chalmers University of Technology,
Gothenburg, Sweden, 2002.

[11] A. Voronov and K. Åkesson, “Verification of Supervisory Control
Properties of Finite Automata Extended with Variables,” Department
of Signals and Systems, Chalmers University of Technology, Tech.
Rep., 2009.

[12] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

[13] S. Miremadi, K. Åkesson, M. Fabian, A. Vahidi, and B. Lennartson,
“Solving two supervisory control benchmark problems using Suprem-
ica,” in 9th International Workshop on Discrete Event Systems, 2008.
WODES 2008., May 2008, pp. 131–136.

[14] C. Ma and W. M. Wonham, “STSLib and its application to two bench-
marks,” in 9th International Workshop on Discrete Event Systems,
2008. WODES 2008., May 2008, pp. 119–124.

[15] E. M. Clarke, K. L. Mcmillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral Transforms for Large Boolean Functions withApplications
to Technology Mapping,” Form. Methods Syst. Des., vol. 10, no. 2-3,
pp. 137–148, 1997.

[16] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based Ap-
proach for Modeling Plant and Supervisor by Extended Finite Au-
tomata,” 2011.

[17] S. Miremadi, K. Åkesson, and B. Lennartson, “Symbolic Computation
of Reduced Guards in Supervisory Control,” Accepted for IEEE
Transactions on Automation Science and Engineering, 2011.

[18] J. Gunnarsson, “Symbolic Methods and Tools for Discrete Event Dy-
namic Systems,” Ph.D. dissertation, Electrical Engineering, Linköping
University, Linköping, Sweden, 1997.

[19] K. Å kesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—
an integrated environment for verification, synthesis and simulation
of discrete event systems,” in Proceedings of the 8th international
Workshop on Discrete Event Systems, WODES’08, Ann Arbor, MI,
USA, 2006, pp. 384–385.

[20] K. Å kesson, M. Fabian, H. Flordal, and A. Vahidi, “Supremica—a
Tool for Verification and Synthesis of Discrete Event Supervisors,” in
11th Mediterranean Conference on Control and Automation, Rhodos,
Greece, 2003.

[21] “JavaBDD.” [Online]. Available: http://javabdd.sourceforge.net
[22] A. Aziz, S. Tasiran, and R. K. Brayton, “BDD variable ordering for

interacting finite state machines,” in Proceedings of the 31st annual
Design Automation Conference, DAC ’94. New York, NY, USA:
ACM, 1994, pp. 283–288.

[23] A. Nazeem and S. Reveliotis, “A practical approach to the
design of maximally permissive liveness-enforcing supervisors
for complex resource allocation systems,” in 6th IEEE
Conference on Automation Science and Engineering (CASE),
Toronto, Ontario, Canada, 2010, pp. 451–458. [Online]. Available:
http://www.isye.gatech.edu/∼spyros/publications/CASE-2010.pdf

[24] M. R. Shoaei, B. Lennartson, and S. Miremadi, “Automatic generation
of controllers for collision-free flexible manufacturing systems,” in 6th

IEEE International Conference on Automation Science and Engineer-
ing, Aug. 2010, pp. 368–373.

[25] G. Čengić, O. Ljungkrantz, and K. Åkesson, “Formal Modeling
of Function Block Applications Running in IEC 61499 Execution
Runtime,” in Proceedings of the 11th IEEE International Conference
on Emerging Technologies and Factory Automation, Prague, Czech
Republic, 2006.

[26] L. E. Holloway and B. H. Krogh, “Synthesis of Feedback Control
Logic for a Class of Controlled Petri Nets,” IEEE Transactions on
Automatic Control, vol. 35, no. 5, pp. 514–523, 1990.

31


