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ABSTRACT. Based on the methodology of the 2D models presented at QNDE 2008 and QNDE 2009,
this paper presents an extension to 3D of a model of ultrasonic testing for cracks near a non-planar back
surface. The elastic wave scattering in a thick-walled component by an interior rectangular crack located
near a back surface of arbitrary geometry is considered. The 3D wave scattering problem is solved
using a hybrid boundary integral equation method (BIEM): a displacement boundary element method
(BEM) for the back surface displacements is combined with an analytical technique for the hypersingular
traction integral equation for the crack-opening displacements. The action of ultrasonic transducers in
transmission and reception is taken into account in the model, and a few numerical examples illustrating
the influence of the back surface geometry are given.
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INTRODUCTION

Quantitative methods of nondestructive evaluation (NDE) today play an important role
in in-service inspection and maintenance of structures, with especially important applications
in the aerospace and nuclear industries where failures can have very severe consequences.
Among the several methods of NDE that exist today the ultrasonic techniques, the focus of
the present paper, are arguably the most important.

Common to all methods of NDE is the need of a measurement model, i.e. a model
of the complete testing situation, and the purpose of the present work is to develop such a
model for the case of ultrasonic testing for cracks located close to a non-planar back surface.
This situation occurs e.g. in the nuclear power industry in the testing of thick-walled pipes
featuring diameter changes or connections. The interaction between the non-planar back
surface and the defect then complicates the testing because the signal response from the
defect may be masked by the response from the back surface.

The solution method employed in the model is based on boundary integral equation
methods, BIEMs, with the major advantage of being essentially exact methods such that the
results are valid both for low, intermediate and high frequencies. This is in contrast to approx-
imate theories such as the Geometrical Theory of Diffraction (GTD) and the elastodynamic
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Kirchhoff theory. These approximate theories provide powerful and efficient methods with
the possibility to treat complex geometries, but finding the bounds of applicability of the the-
ories in a specific case can be difficult. The identification of such bounds may actually be one
of the important areas of application of an essentially exact model, as discussed in the paper
by Schafbuch et al [1].

PROBLEM FORMULATION

The scattering geometry is depicted in Fig. 1, where an interior rectangular crack with
sides 2a; and 2as is located in a thick-walled component with a non-planar back surface.
Conventional transmitting and receiving ultrasonic contact probes (T') and (R), respectively,
scan along the surface of the component. The same probe may also be used in both transmis-
sion and reception, in the common case of pulse-echo testing.

The figure also introduces four coordinate systems: the crack coordinate system ¢,
the back surface system z”, the transmitter system z* and the receiver system x". The super-
scripts ‘c’, ‘b’, ‘t” and ‘r’ on quantities indicate that they are represented in the corresponding
coordinate system. Omitted superscripts indicate expressions which hold in any of the coor-
dinate systems.

The location of the crack centre relative the back surface coordinate system is given by
the vector d, and the crack orientation relative the back surface coordinate system is described
by the three Euler angles (¢, 6°,¢°). Here ¢° is the rotation around the z5-axis, 6° the
rotation around the intermediate x,-axis and )¢ the rotation around the x§-axis. The standard
transformation rules for the transformation between the coordinate systems apply, with the
rotation matrix R¢ from x" to x°. The positions of the transmitting and receiving probes
relative the back surface coordinate system are given by the vectors d' and d®, respectively,
and the probe systems and the back surface system are assumed to be collinear.

The shape of the back surface is described by the function g(2®, %) which is allowed
to be quite arbitrary, as long as it features no cusps which would introduce additional back
surface scattering not accounted for in the model. In the subsequent numerical solution pro-
cedure the infinite back surface is truncated and discretized, and (73, T,) and (73, T;) denote
the corresponding lower and upper truncation limits in the %- and z:5-directions, respectively.

The component is linearly elastic, isotropic and homogeneous in the exterior of the
crack, with Lamé constants A and p and density p. The distance between the crack and the
back surface may be arbitrary as long as the crack is interior, but the distance between the
scanning surface of the component and the crack and back surface is assumed to be at least a
couple of wavelengths so that multiple scattering between these surfaces may be neglected.

Only time-harmonic elastodynamics is considered and the time-factor e, with w
denoting the angular frequency and ¢ the time, is suppressed throughout. The elastodynamic
equations of motion are then:

k2V(Vew) —k°V x (VX u) +u =0, (1)

where k, = w/c, is the pressure wave number, ¢, = /(A + 2/1)/p the pressure wave speed,

ks = w/cs the shear wave number and ¢ = +/p/p the shear wave speed. Adding the
traction-free boundary conditions on the crack and back surface, a specified incident wave
field and the usual outgoing radiation condition at infinity completes the formulation of the
wave scattering problem at hand.
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FIGURE 1. The geometry with a rectangular crack in a component with a non-planar back surface.

THE INTEGRAL EQUATIONS

The wave scattering problem is solved using boundary integral equation (BIE) meth-
ods; the scattering problem is reformulated as two coupled BIEs which are then solved si-
multaneously. The BIE-reformulation is based on use of the isotropic free-space outgoing
wave Green’s tensor denoted U*(x, y;w) with corresponding stress tensor X (x, y;w) =
C : VU"(x,y;w), where C is the elastic stiffness tensor and k = 1,2,3 denotes the di-
rection of the applied point load. Throughout the paper, the V-operator always acts on the
ax-coordinates. The Green’s tensor is given in closed form by e.g. Bonnet [2] and on Fourier
integral form by Bostrom and Bovik [3].

The back surface integral equation may be derived directly using the Green’s tensor,
the divergence theorem and a limiting process. However, in order to avoid strongly singular
integrals an indirect regularization approach (see Bonnet [2]) is also followed. This approach
transfers the singularity of the dynamic Green’s stress tensor X*(x, y; w) to the static Green’s
stress tensor X*(x,y) = C : VU*(x,y), with U*(x, y) denoting the corresponding static
displacement tensor. This Green’s tensor is the corresponding fundamental solution for w =
0, and it is given explicitly by e.g. Bonnet [2]. By transferring the singularity to the static
Green'’s tensor it becomes possible to evaluate the strongly singular integral analytically. The
result is a back surface BIE containing no worse than weakly singular integrals, granted that
the displacement w satisfies the usual Holder-continutity assumption [2].

The derivation of the back surface BIE and the regularization is a straightforward
extension to 3D of the results in the paper by Westlund and Bostrom [4], resulting in the
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following regularized back surface integral equation:
[ et [Eh eyt - St )] m(e) dS.s
St
# [ B - )] ity ) dss

(2)
+R§,R3 / / Aug(x], 25)% ((RC)T{xi,xg,O}—ﬁ—db,yb;w) dxf das
1 ln
—§U2(y ) +up"(y) = 0,

where y € Sy, u is the total displacement field, n the upward unit normal vector of the
back surface, Au the crack opening displacement (COD): Aw(z5, 25) = w({z§, z5,01}) —
w({z$,25,07}), u™ the incident displacement field from the transmitting probe and k& =
2, 3. In this integral equation the integrals over the infinite back surface have been replaced
by integrals over the truncated back surface Sp. This approximation is expected to be valid
for sufficiently large truncation limits (77, 7%) and (73, T}).
The crack integral equation follows immediately from an integral representation of
u by applying Hooke’s law and invoking the traction-free boundary condition on the crack.
The result is the integral equation:

0
thn U (yb y27 yB) / u:n(mc>cz3kl ay Z (w ) {yi yga 0}7 w)n;(wc) dSﬂ?C
l

al a
+ lim / / Aug (25, 5)Cispr=—— o7 SFo({a$, 25,0}, y% w) daS dzs  (3)
1

y5—0
+C¢3kla : mc({@/pywo})

where i = 1,2, 3, |y§| < a1, |y5| < as and C;;); are the components of the isotropic elastic
stiffness tensor C. The second integral in this equation is of the hypersingular type, so the
limit cannot be moved inside the integral. However, the present solution method enables an
explicit evaluation of the limit at a later stage, as described below.

PROBE MODELING

In order to account for the action of a conventional ultrasonic contact probe in trans-
mission the probe model developed by Bostrom and Wirdelius [5] is used. This model is
based on prescribing the traction on the scanning surface of the component, and the traction
is taken as that due to a plane SH-, SV- or P-wave with given amplitude and propagation
direction. For the transmitting probe (T'), the boundary condition on the upper surface of the
component is then taken as the traction:

2

k . .
iAo fpk, {(5 SIn 29; €, + (k—; — 2sin? %> emg] o ikpa} SN P probe,

P
t = s )
iAo f ks [—5 COS 27; €t + sin 27 exg] e iksesinye SV probe,
1Ag f k0 cos v ey e iksisiny SH probe,

beneath the surface of the probe and ' = 0 elsewhere. The surface of the probe is assumed
to be either elliptical or rectangular, and the function f is introduced in order to allow for
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a non-constant traction tapering off towards the edges of the probe. The transmitting probe
angle v is the rotation in the x}-direction measured from the negative x4-axis, the parameter
0 accounts for the effect of a couplant applied between the probe and scanning surface and
Ay is the amplitude of the plane wave.

When multiple reflections between the scanning surface and the crack and back sur-
face are neglected, a prescription of the traction in this fashion enables an explicit solution
of the boundary value problem for the incident field using a double Fourier transform. The
explicit expressions and all details are given in the paper by Bostrém and Wirdelius [5] and
are not repeated here.

In order to predict the signal response measured in an ultrasonic testing situation, the
action of the receiving probe is modelled using the electromechanical reciprocity relation by
Auld [6]. Applied to this case the reciprocity relation gives the crack signal response as:

5o = 2 / / A (a5, 25)0"5 (a5, 25, 0) da s, 5)

and the back surface signal response as:

lw re, D in D
s =5 [, (@)} (@) (z) dSg. (6)

In these equations the superscript ‘re’ denotes quantities computed with the back surface
present but the crack absent and the incoming field generated by the receiving probe acting
as transmitter, and the superscript ‘in” denotes quantities computed with both back surface
and crack absent and the incoming field generated by the transmitting probe. The COD Auw;
is due to an incoming field from the transmitting probe with both crack and back surface
present. The probes are transmitting at the fixed angular frequency w, and the quantity P is
essentially the power supplied to the transmitting probe.

NUMERICAL SOLUTION AND EXAMPLES

The two coupled boundary integral equations (2) and (3) are solved by discretizing
them and subsequently solving the resulting system of linear algebraic equations. For the
COD a series expansion in Chebyshev functions is used. The Chebyshev functions are defined
by:

wn(v) =

%Cos(narcsinv), n=13,...,
= sin(n arcsin v), n=24,...,

such that the expansion reads:

Au Il? $2 Z Z Oémmzwm 551/@1)%2 (322/6L2> (7)

ni= 1n2 1

This expansion allows for an analytical evaluation of the crack integrals arising in the crack
BIE, due to the fact that the Chebyshev functions satisfy the integral relation:

/ ) e do = " 3,(4), ®)
—1 g

where J,, is the Bessel function of the first kind and order n. The expansion also exhibits the
correct behaviour at the crack edges.
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A standard boundary element discretization (see e.g. [2,7]) of the back surface is per-
formed using nine-noded quadrilateral elements and isoparametrical interpolation, thus en-
forcing the Holder-continuity assumed in the derivation of the back surface BIE. With N,
denoting the number of nodes on the truncated back surface Sy after it has been discretized
into NV, elements, the number of unknowns on the back surface is 3V,,,4.. The discretization
of the COD given by Eq. (7) results in 3N; N, unknown expansion coefficients «;;,,,,, such
that the total number of unknowns is Ng,; = 3(Nyoqe + N1/N2). The same number of equa-
tions is obtained by collocating the back surface BIE at each node point y,,, on St and by
using the Galerkin method for the crack BIE, i.e. projecting the BIE on the /N; N, expansion
functions. To solve the wave scattering problem it remains to evaluate all boundary element
and crack integrals numerically, assemble the system of linear algebraic equations and solve
for the unknown back surface node displacements and COD expansion coefficients.

It should be noted that after discretizing the crack integral equation using the Cheby-
shev functions the limit in front of the hypersingular integral in Eq. (3) can be evaluated
analytically, since the expansion and projection leads to convergent integrals. The result-
ing integrals are also straightforward to compute numerically in an efficient way. The series
expansion of the COD thus results in a solution method with an effective treatment of the
hypersingularity.

The discretization of the back surface yields a very large coefficient matrix. This
matrix may in general, as usual in the BEM, be both unsymmetric and fully populated. How-
ever, due to the spatial decay of the Green’s tensors many off-diagonal matrix elements may
be very small, and by setting all elements beneath a given threshold level to zero the system
matrix becomes more or less sparse. A sparse solver can then be used, and the total com-
putation times significantly reduced. For the examples considered in this paper a threshold
resulting in a sparse system matrix with about 10% non-zero elements was used, and the
equations were solved using the sparse parallel direct solver PARDISO [8].

As stated in the problem formulation, the shape of the back surface may be quite
arbitrary. For the numerical results presented in this section two simple examples of back
surfaces are used as illustrations, the first being a smooth transition in the form of a quarter-
wavelength sine function. The transition is from % = 0 to 25 = 1.5 mm over the interval
from ¥ = —3mm to #¥ = 3mm, independent of z5. The second example is a planar
back surface with a local, smooth bump in the form of a product of two half-wavelength
sine functions. The height of the bump is 1.5mm and it is located at (2}, 25) € [—3,3] x
[—2,2] mm so that outside this domain the back surface is planar with 25 = 0. The peak
of the bump is thus located at (zb,25) = (0,0). This second example is chosen to give
an illustration of the influence on the signal response of a back surface with a very locally
non-planar geometry.

In both cases the results of a pulse-echo testing sitation are given, i.e. the same
probe is working as both transmitter and receiver. The probe is scanning along a scan surface
parallel to the 2b25-plane and located at a distance of 10 mm from the lowermost part of the
back surface. The probe is a square 10 x 10 mm SV-probe with angle v, = —45° and fluid
coupling so that 6 = 0. The results are for a single frequency of 1 MHz, i.e. most relevant for
a narrow bandwidth probe.

For the steel material considered the Lamé constants are A = 113.2GPa, y =
80.9 GPa and the density is p = 7900 kg/m?. To account for the effects of material damping
the Lamé constants are given imaginary parts of 1 % of the real parts. The crack is rectangular
with sides a; = 2mm and a; = 3 mm and the crack centre located at d® = {—4,0, 3} mm.
The Euler angles are ¢© = ¢¢ = 0° but §° = 60°.

Figure 2 shows the pulse-echo signal response as a function of probe position (i.e.
the C-scan), for the case of the back surface with a transition from 25 = 0 to 25 = 1.5mm.
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(a) Back surface signal response. (b) Total signal response.

FIGURE 2. The echo amplitude as a function of probe position, for the first back surface geometry.
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(a) Back surface signal response. (b) Total signal response.

FIGURE 3. The echo amplitude as a function of probe position, for the second back surface geometry.

Figure 2(a) shows the back surface signal response, i.e. the response in the absence of the
crack, whereas Fig. 2(b) shows the total signal response from both the back surface and the
crack. Figure 3 shows the corresponding results for the second back surface type, with a
local bump. In all the figures the same normalization is used, and a decibel (dB) scale is used
with a 40 dB difference between black (strongest) and white (weakest), in steps of 5dB. As
expected, the planar parts of the back surface give only a very weak signal response for the
angled probe considered, and this response is seen to be equal for the planar parts of the back
surface in all the figures. The independence of 5 for the first back surface type is also clearly
seen in the signal response in Fig. 2(a). For the considered crack orientation the geometry
is also symmetric about the line 25 = 0, and this symmetry is apparent also in the C-scans.
Finally, it can also be noted that the interaction of the back surface and the crack gives rise to
quite complicated signal responses in Figs. 2(b) and 3(b).

CONCLUSIONS

In this paper a model of ultrasonic nondestructive testing is developed. The model in-
cludes transmitting and receiving ultrasonic contact probes located on a thick-walled compo-
nent with a non-planar back surface and containing an interior rectangular crack. The action
of the transmitting probe is accounted for in a probe model based on prescribing the traction
on the scanning surface, while an electromechanical reciprocity argument is used to model
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the receiving probe and yield expressions for the signal response due to the crack and back
surface. The wave scattering problem is solved by reformulating it as two coupled boundary
integral equations for the unknown crack opening and back surface displacements. By using a
combination of a series expansion of the crack opening displacement and a boundary element
discretization of the back surface to solve the coupled integral equations, the hypersingularity
in the crack BIE can be treated effectively while still allowing for a back surface of a general,
complex geometry.

A few numerical results are presented, but these are for a single frequency computa-
tion only. A straightforward extension of the model is to include an inverse temporal Fourier
transform to obtain the time traces (A-scans). Further, in real testing situations calibration
against a standard scatterer such as a side-drilled hole is usually performed, and work is in
progress to include such calibration in the model. Finally it is believed that defects which may
be treated by the T-matrix method are well suited for incorporation in the present framework,
and this is currently under investigation.
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