
Accelerating Race Condition
Detection through Procrastination ∗

Thomas Arts John Hughes Ulf Norell Nicholas Smallbone Hans Svensson
Chalmers University of Technology

{arts,rjmh,ulfn,nicsma,hanssv}@chalmers.se

Abstract
Race conditions are notoriously frustrating to find, and good tools
can help. The main difficulty is reliably provoking the race condi-
tion. In previous work we presented a randomising scheduler for
Erlang that helps with this task.

In a language without pervasive shared mutable state, such as
Erlang, performing scheduling decisions at random uncovers race
conditions surprisingly well. However, it is not always enough.
We describe a technique, procrastination, that aims to provoke
race conditions more often than by random scheduling alone. It
works by running the program and looking for pairs of events that
might interfere, such as two message sends to the same process.
Having found such a pair of events, we re-run the program but try
to provoke a race condition by reversing the order of the two events.

We apply our technique to a piece of industrial Erlang code.
Compared to random scheduling alone, procrastination allows us
to find minimal failing test cases more reliably and more quickly.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Distributed debugging

General Terms Verification

Keywords QuickCheck, Race Conditions, Erlang

1. Introduction
Now that multicore processors are ubiquitous, concurrent program-
ming has become as inescapable as it is difficult. The Erlang pro-
gramming language [Arm07] was designed to make concurrent
programming easy, by making common concurrency mistakes im-
possible. Erlang processes do not share memory, and thus cannot
corrupt each others’ data. Erlang data structures are immutable, and
thus can be freely copied between process heaps, or between dis-
tributed nodes. Erlang processes communicate and synchronize by
passing immutable messages from one process to another. These
design decisions make data races, the scourge of concurrent im-
perative programming, absolutely impossible.

Nevertheless, Erlang programmers make plenty of concur-
rency errors. The order of message delivery can vary, leading

∗ This project was supported by the EU FP7 project ProTest, grant nr.
215868

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’11, September 23, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0859-5/11/09. . . $10.00

to scheduling-dependent behaviour. Erlang processes can access
global tables managed by the virtual machine—admittedly via an
atomic API—but table entries can be used as global variables to
recreate the same kind of data races found in other languages. The
file store also represents a global state that can lead to race con-
ditions between processes. Erlang’s design ameliorates, but does
not eliminate race conditions—and thus, tools for race condition
testing are still highly relevant.

In previous work, we have implemented a randomizing sched-
uler for Erlang, and used it to find race conditions in industrial Er-
lang code [CPS+09]. While data races take only a limited number
of forms [VTD06], races in message-passing programs are harder
to characterize, and so we detected races in a black box manner,
as violations in serializability of an API under test. We combined
our scheduler with a random testing tool, QuickCheck [AHJW06],
which generates and simplifies random tests containing sequential
and parallel invocations of the API under test. In this way we were
able to find minimal test cases that exhibit serializability violations,
and from them diagnose the underlying race conditions with rela-
tive ease.

The search for minimal failing test cases proceeds in two
phases: first we search for any failing test, then having found one,
we search for simplifications of that test that also fail. In both
phases, we need to determine whether a candidate test case can
provoke a race, and in our previous work we did so by running
each test many times with different random schedules. If the race
we are looking for occurs only rarely, then we may need to run each
test case very many times to determine with reasonable accuracy
whether or not the race is present. Failure to provoke the race may
lead either to failure to find a failing test at all (in the first phase), or
failure to simplify the failed test to a minimal example. In our case
study, we found we needed to run each smaller test around 10–100
times to obtain good results. This makes testing quite slow.

Finding data races in imperative programs by random schedul-
ing is much more difficult, because we must schedule each mem-
ory access to shared data, rather than larger scale atomic operations
such as message delivery or table access. This motivated Sen to in-
troduce race directed random testing [Sen08], in which a test is run
once using a random schedule, possible races are identified from
this first run, and the test is then run again many times using sched-
ules which are specially constructed to provoke each possible race.
In Sen’s case, a possible race consists of two memory accesses A
and B to the same location in different threads, whose execution
potentially could be reversed, and the specially constructed sched-
ule tries to delay A until after the execution of B. We call this pro-
cess of delaying A “procrastination”. While Sen’s paper discusses
delaying memory accesses, it is clear that the same idea can be ap-
plied to the schedules we construct for Erlang programs—and that,
by improving the probability of provoking a race, it could enable
us to find minimal failing test cases much more quickly.

The contributions we present in this paper are

• We transferred to Erlang the idea of using potentially conflict-
ing actions to guide a search for race conditions, which is ex-
plained in Section 3.

• Validation of procrastination on an industrial example (Section
4). We show that procrastination is effective and that first-order
procrastination seems more useful than higher-order procrasti-
nation for this example.

• We extended PULSE to be able to run infeasible schedules
(Section 3), in order to re-use as much as possible from a
given schedule. This saves a lot of expensive analysis that other
approaches need to deal with.

• We experimented with procrastination while shrinking test
cases (Section 6) and noticed that in particular the ability to
re-use a schedule was very effective (Section 6.3).

In Section 2 we provide background on QuickCheck and PULSE
the framework to which we added procrastination. In Section 7 we
compare our approach with other approaches to race detection in
different contexts.

2. Background
QuickCheck
QuickCheck [CH00] is a tool that tests universally quantified prop-
erties, instead of single test cases. QuickCheck generates random
test cases from each property, tests whether the property is true in
each case, and reports cases for which the property fails. Recent
versions also “shrink” failing test cases automatically, by searching
for similar, but smaller test cases that also fail. The result of shrink-
ing is a “minimal”1 failing case, which often makes the root cause
of the problem very easy to find.

Quviq QuickCheck is a commercial version that includes sup-
port for model-based testing using a state machine model [Hug07].
It has been used to test a wide variety of industrial software, such
as Ericsson’s Media Proxy [AHJW06] among others. State machine
models define a set of API calls to include in test cases, pre- and
post-conditions for each call, and the corresponding state transi-
tions on a model state. QuickCheck then generates well-formed
call sequences (satisfying all preconditions, for example), executes
them, and checks postconditions with respect to the model state.

Although these state machine models specify the sequential
behaviour of the API under test, surprisingly, they can also be
used to test for race conditions! Assuming that the API calls are
intended to behave atomically, then we can generate parallel call
sequences and adjudge the test by determining whether there is any
interleaving of the calls that can explain the actual results observed.
Our parallel test cases consist of a random sequential prefix to put
the system into a random state, followed by two or more random
call sequences executed in parallel. If there is no serialization of the
test case that satisfies the postconditions in the model, then the test
fails. Details of the method can be found in [CPS+09].

Note that this is a form of black box race condition testing: we
are only interested in races that cause a violation of the postcon-
ditions, not in races that lead to non-deterministic, but still valid
results. Also, note that the approach is only applicable to APIs that
are intended to behave atomically. This is of course a limitation, but
very many APIs do have this property (or at least, important parts
of them do), and the payoff is that very little extra work is required
to reuse a sequential state machine model for parallel testing too.
(In many cases, it simply requires changing a call of commands to
a call of parallel_commands.)

1 Minimal in the sense that none of the similar, smaller tests failed.

Simplest is to execute the parallel tests using native Erlang
concurrency, relying on the inherent non-determinism of execution
on a multicore processor to provoke races. However, because of
determinism in the native Erlang scheduler—and perhaps in the
processor itself—finding races in this manner can be slow. To
speed up their detection, we implemented our own randomizing
scheduler, PULSE.

PULSE
PULSE is a user-level scheduler, sitting on top of the normal Erlang
scheduler [CPS+09]. Its aim is to take control over the sources
of non-determinism in Erlang programs introduced by scheduling
decisions. This means that we can introduce more randomness in
schedules, but also that we can repeat a test using exactly the same
schedule by simply recording the scheduling decisions: this makes
tests repeatable.

Since PULSE is a user-level scheduler, to give it control over
a piece of code the code must be instrumented to co-operate with
PULSE. Rather than forcing the user to instrument their code them-
selves, we have a parse_transform which does this automati-
cally. We also provide a macro that takes care of running a piece
of code under PULSE and collecting the results, so that it takes a
reasonably small amount of effort to use PULSE during testing.

The central idea is to provide absolute control over the order of
relevant events. Relevant events are interaction of a process with its
environment, so called side-effects. Code instrumentation replaces
each call to side-effect containing functions by a function that gives
control to PULSE. Of particular interest in Erlang is the way pro-
cesses interact by message passing, which is asynchronous. Mes-
sage channels, containing messages that have been sent but not yet
delivered, are thus part of the environment and explicitly modeled
as such in PULSE. It makes sense to separate side-effects into two
kinds: outward side-effects, that influence only the environment
(such as sending a message over a channel, which does not block
and cannot fail, or printing a message), and inward side-effects,
that allow the environment to influence the behaviour of the pro-
cess (such as receiving a message from a channel, or asking for the
system time).

PULSE controls its processes by allowing only one of them to
run at a time. It employs a cooperative scheduling method: At each
decision point, PULSE randomly picks one of its waiting processes
to proceed, and wakes it up. The process may now perform a
number of outward side-effects, which are all recorded and taken
care of by PULSE, until the process wants to perform an inward
side-effect. At this point, the process is put back into the set of
waiting processes, and a new decision point is reached.

In addition to sending and receiving messages between them-
selves, the processes under test can also interact with uninstru-
mented code. PULSE then controls the order in which those in-
teractions take place. We allow the programmer to specify which
external functions have side-effects. Each call of a side-effecting
function is then instrumented with code that yields before per-
forming the real call, allowing PULSE to run another process at that
point.

Side-effecting functions are treated as atomic which is also
an important feature that aids in testing systems built of multiple
components. Once we establish that a component contains no race
conditions we can remove the instrumentation from it and mark
its operations as atomic side-effects. We will then be able to test
other components that use it and each operation marked as side-
effecting will show up as a single event in a trace. Therefore, it is
possible to test a component for race conditions independently of
the components that it relies on.

example() ->
C = self(),
B = proxy(100, C),
A = spawn(fun() ->

C ! hello,
B ! world

end),
receive Msg1 -> ok end,
receive Msg2 -> ok end,
{Msg1, Msg2}.

proxy(0, Pid) ->
Pid;

proxy(N, Pid) ->
Proxy = proxy(N-1, Pid),
proxy(Proxy).

proxy(Pid) ->
spawn(fun() ->

receive Msg -> Pid ! Msg end
end).

Figure 1. World-Hello with Proxy

A Problem!
As we showed in [CPS+09], randomized scheduling worked well,
almost surprisingly well. However, there are still many situations
where a completely random schedule fails to expose an error, and
where steering the scheduler can improve the search efficiency.
To illustrate the problem, consider the example in Fig. 1. In the
example we spawn a process A, that first sends the message hello
directly to a process C, and then sends the message world to B,
which forwards it through a chain of 100 proxy processes to C.
In this (contrived) example there is an obvious race between the
two messages, i.e. whether C first receives hello or world. Still,
in practice, regardless of whether the normal Erlang scheduler or
PULSE is used, hello will never2 arrive after world. If we use
PULSE to schedule a run of the example we have to choose, 100
times in a row, to forward the world message instead of delivering
hello. This will happen in 1 out of 2100 cases.

3. Procrastination
The main idea behind the procrastination technique is simple: iden-
tify potentially conflicting actions, and use the potential conflicts to
steer the scheduler. The idea is inspired by race-condition testing of
C and Java programs [LCC10, SBN+97], where conflicting mem-
ory accesses are recorded and used to steer scheduling.

PULSE records all scheduling decisions taken during program
execution. Below is an excerpt from a schedule obtained running
the “world hello” example. Here the only side-effect is message
delivery: {A,{deliver,B}} means that a message from B was de-
livered to A. Other side-effects would show up as yields, where
{A,yield,{Fun,Args}} means that process A performed the
side-effecting function Fun (with arguments Args).

[{root-proxy99, {deliver, root-example.A }},
{root, {deliver, root-example.A }},
{root-proxy98, {deliver, root-proxy99 }},
{root-proxy97, {deliver, root-proxy98 }},
...
{root, {deliver, root-proxy }}]

2 As in: not in our lifetime!

Given a schedule we can identify potential conflicts. For mes-
sage delivery there is a potential conflict whenever a process re-
ceives messages from two other distinct processes. In the case of
user defined side-effects, we rely on the user to define which oper-
ations potentially conflict, via a simple call-back function.

As an example consider the fictitious schedule in which process
A receives a message from both B and C:

[{process_A, {deliver, process_B}},
{process_B, yield, {do_it,[1,2,3]}},
...
{process_A, {deliver, process_C}},
...]

Our algorithm detects a potential conflict between the two deliver
actions in the schedule. To use this conflict to steer PULSE we
create the re-ordered schedule:

[{process_B, yield, {do_it,[1,2,3]}},
...
{process_A, {deliver, process_C}},
{process_A, {deliver, process_B}},
...]

By feeding the re-ordered schedule to PULSE we delay (pro-
crastinate!) the delivery from process_B until after the delivery
from process_C. However, there is a caveat, namely that the re-
ordered schedule might not be feasible. For instance, it might be
that the message from process_C is a response to a request that
process_A makes after receiving the message from process_B.
In this case, when running the re-ordered schedule, we will get
to the point where we’re supposed to deliver the message from
process_C but there will be no such message waiting to be deliv-
ered.

There are two main solutions to the problem with infeasible
schedules: (1) make the analysis more exact to avoid creating in-
feasible schedules, or (2) allow the scheduler to follow infeasi-
ble schedules in some way. We opted for the second solution, and
adapted PULSE accordingly. The new version of PULSE tries to
follow the given schedule, but whenever there is a scheduling de-
cision that is infeasible (such as delivering a message that has not
in fact been sent—such decisions are easy to detect at runtime), it
is discarded and PULSE tries the next action in the schedule. With
this relaxed strategy PULSE might run out of schedule to follow—if
this happens then it reverts to its original, purely random, strategy.
Interestingly, in most of the related work, the opposite approach
is taken, and various techniques such as “happens before”-relations
are used, e.g. [LCC10]. There is good reason for this extra analysis,
since an infeasible schedule in a normal scheduler (for example the
Java VM) might result in a dead-lock of the whole system. Here,
since we have full control of the scheduler, we are in a better posi-
tion and can take the simpler path without expensive analysis.

It is easy to detect at runtime when a scheduling decision is
infeasible: we simply look at the set of actions that we would’ve
chosen from had we been following a random schedule, and check
that the action we are about to take is in that set. This also makes
it impossible for procrastination to behave incorrectly—i.e. to fail
to respect the semantics of Erlang—since the behaviours that we
provoke are ones that our purely random scheduler could also have
provoked, given enough luck.

3.1 Procrastinating World Hello
What happens now if we apply procrastination to the “world hello”
example? We have a schedule from PULSE as shown before where
there is actually only one potential conflict, namely between the de-
livery from root-example.A and the delivery from root-proxy
to root. (Where root is C in the example, root-example.A is A

and root-proxy is the last process in the proxy chain.) Our re-
ordered schedule would then be:

[{root-proxy99, {deliver, root-example.A }},
{root-proxy98, {deliver, root-proxy99 }},
...
{root, {deliver, root-proxy }},
{root, {deliver, root-example.A }}]

If we supply this schedule to PULSE the result of running the
program is what we tried to achieve, namely {world,hello}.
(This process is normally automatic, we show the concrete steps
as an explanation.)

27> pulse:run(fun() -> example() end,
[{schedule,ReOrderedSchedule}]).

...
{world,hello}

4. The ProcReg Example
Procrastination works well in the simple “world hello” example—
but how does it perform in a more realistic setting? To investigate
this question, we applied it to the industrial case study used in our
previous work [CPS+09]—the proc reg process registry.

In Erlang, every process has a unique, dynamically assigned
process identifier (pid); the only way to communicate with a pro-
cess is via its pid. To enable processes to find each other’s pids,
Erlang provides a process registry—a kind of local name server—
which associates names with pids. The registry provides an API
with operations to register a process with a name, look up the pid
associated with a name, and unregister a name. It is heavily used
to provide access to system services: a newly started Erlang node
already contains thirteen registered processes.

However, the built-in registry does impose sometimes-unwanted
restrictions. Names are restricted to be Erlang atoms, rather than
more general terms. No process may simultaneously be registered
with two different names. To lift these restrictions, Wiger devel-
oped an extended process registry in Erlang—much easier to mod-
ify than the one built into the virtual machine. Wiger’s code has
been in use in Ericsson products for several years [Wig07].

Our case study is a prototype version of Wiger’s registry, with a
known race condition. This prototype consists of a registry server
that responds to client requests and stores registration data in a so-
called ets table—hash tables built in to the virtual machine. The
use of a single server process serializes operations on the ets table.
But, as an optimization, the prototype performs some ets table
operations on the client side—thus introducing the possibility of
a race condition. And indeed, a race condition occurs. One case
that can provoke it is illustrated by this diagram:

Here a process is created and killed, resulting in a dead process,
registered with the name a, then registered twice in parallel under
the same name. The intention is that the registry contain only live
processes, and that requests to register a dead pid are ignored.

For consistency with the built-in registry, registering a dead pid
should return true. But in this example, one of the parallel calls
of register occasionally raises an exception instead.

Our QuickCheck specification of the registry models the state
as a set of alive pids, a set of dead pids, and a set of name/pid
pairs. The specification also defines transition functions on this
state for each operation, and checks postconditions against this
model state. In this example, the model tells us that Pid is a dead
process, and therefore the postcondition for register requires the
result to be true. We adjudge parallel test cases like this one by
determining whether there is any serialization of the test case in
which all the postconditions hold. In this example there are only
two serializations, and in both of them, all the calls of register
should return true. When an exception is raised instead, then our
QuickCheck property fails.

In fact, this prototype version was abandoned in 2005, after
QuickCheck revealed the existence of a race condition, but we were
unable to diagnose it. At that time we could only generate very large
failing test cases. It was not until 2009 that we were able to shrink
the failing test cases to the example above, and with its help, find
and correct the error in the code. But now we know what the bug
is; in this paper our focus is on the performance of our testing.

The QuickCheck properties that we use to test the process
registry generate sequences of operations to spawn, kill, register, or
unregister a process, or look up a name, all with equal probability.
We generate parallel tests by splitting the tail end of the sequence
into two parallel sequences (respecting preconditions). We then run
these parallel tests in a variety of different ways.

4.1 Measurements
The simplest approach is just to run the tests using the built-in
Erlang scheduler on a multicore computer (we used an eight core
i7 machine with 16GB RAM for all our tests). That is, we relied
on the non-determinism inherent in parallel execution to provoke
race conditions. When we did so, we found that slightly less than
0.1% of tests failed, which enabled us to find 59 failing cases in 30
minutes of testing (or a mean-time-to-failure of 30.5s). Note that
since the known race condition depends on trying to register a dead
process twice in parallel, then many generated test cases cannot
fail at all. For this particular bug, around 8% of the generated test
cases can fail. On the other hand, even a test case that potentially
provokes the race will pass in many cases. We found that the failing
tests we found in this way, relying solely on parallel execution,
failed in approximately one of every 30 runs.

When we ran the same tests using PULSE, our randomizing
scheduler, then we saw 741 failures in 30 minutes—more than
twelve times as many (mean-time-to-failure 2.43s, c.f. Figure 2).
This is despite the overheads that PULSE imposes—each test ran
1.5 times slower under PULSE than with the native scheduler. This
demonstrates the benefits of randomising the schedule very clearly.

5. Procrastinating ProcReg
We need to refine the ideas of Section 3 a little in order to be able
to cope with real-world Erlang code such as ProcReg.

Dealing with side effects Unlike the “world hello” example, the
ProcReg example contains side effects other than message passing,
namely reads and writes to the Erlang mutable term storage, ets.

As described in Section 2, PULSE can deal with arbitrary side-
effecting operations: we may register the ets functions as having a
side effect. Thereafter, whenever a process wants to read or write

to an ets table, it will first ask PULSE for permission; at this point
PULSE might delay the execution of the process arbitrarily.3

These side effects are recorded as decisions in the schedule that
PULSE produces. Thus, if our program manipulates ets tables then
we will get entries such as

{process_A, yield, {ets, insert, [...]}}
{process_B, yield, {ets, lookup, [...]}}

in our schedule. Each entry represents the point when a process was
given permission to execute a particular side effect. We can apply
procrastination to side effecting functions in exactly the same way
that we do with message deliveries: given a schedule, we identify
pairs of function calls that might conflict (such as an ets:insert
and an ets:lookup), and attempt to delay the execution of the first
function call until after the execution of the second.

Not all pairs of function calls can conflict, and it is not useful
to try to swap the order of two function calls that do not conflict.
We allow the user to specify which function calls can conflict:
this reduces the total number of procrastinations we try by ruling
out some procrastinations that can never be fruitful. PULSE will
assume that any two side-effecting functions can conflict if not
specified otherwise: this is safe, but by giving more fine-grained
conflict information the user can reduce the number of fruitless
procrastinations that are tried. In the case of ets, we say that two
operations conflict if they operate on the same ets table and at least
one of them is a write.

Implementing procrastination Our implementation of procrasti-
nation consists of four steps: (1) run the test case with a random
schedule using PULSE, (2) for each scheduling decision identify
later potentially conflicting decisions, (3) for each scheduling de-
cision try, by running a modified schedule with PULSE, to move it
past the last potentially conflicting decision, using the techniques
of section 3 to detect infeasible schedules, and record which poten-
tially conflicting decisions we managed to move it past (we call
these pairs of potentially conflicting schedule decisions feasible
procrastinations), and (4) for each such feasible procrastination,
construct and execute the procrastinated schedule.

Controlling the amount of procrastination There may be many
possible ways to procrastinate a given schedule. Thus, for a given
test case QuickCheck might spend a considerable amount of time
repeating the test case, trying various procrastinations for that test
case. However, if the test case is one that cannot provoke a bug then
this will get us nowhere! So there is a trade-off between exploring
many procrastinations of a single test case and trying many test
cases. Therefore we allow the user to choose how many of the
feasible procrastinations to try for each schedule.

Higher-order procrastination In our basic approach we find two
conflicting scheduling decisions and try to reverse their order. How-
ever, it might in general be necessary to procrastinate several de-
cisions at once—especially if the schedule is large. We call this
higher-order procrastination. Since procrastinating one decision
may make other procrastinations possible or impossible, it does
not really make sense to apply several simultaneous procrastina-
tions to one schedule. Instead, we first apply one procrastination
and re-run the test case to get a new schedule. If that procrastina-
tion succeeded we can then apply further levels of procrastination
to the new schedule.

Since the number of procrastinated schedules is exponential in
the number of levels of procrastination we try, this technique is not

3 This treatment assumes that side effects are atomic, because we never
attempt to execute two side effecting operations in parallel—a perfectly
reasonable assumption in our case, but one which does not make sense for
traditional shared state concurrency.

Scheduler Level Limit Time (s)
VM 30.5
PULSE 2.43
PULSE 1 〈10〉 1.32
+ procrastination 1 〈∞〉 3.01

2 〈5, 1〉 3.90
2 〈10, 3〉 6.47
2 〈10, 10〉 8.91
2 〈20, 20〉 16.1

Figure 2. Mean time to failure

always useful: we allow the user to say if we should apply it or not
and how many levels of procrastination to try.

5.1 Measurements
We re-ran the experiment of section 4.1—testing ProcReg and
recording how many failing test cases QuickCheck was able to find
in 30 minutes—but using procrastination. The results are shown in
Figure 2.

The “Level” column indicates how many levels of procrastina-
tion we tried (see paragraph “Higher-order procrastination”) and
the “Limit” column shows how many procrastinated schedules we
tried at each level (see paragraph “Controlling the amount of pro-
crastination”), ∞ meaning that we try all possible procrastinations.
“Time” is, as before, the mean time to failure.

We can see that procrastination almost doubled the number
of failures we were able to provoke in 30 minutes, compared to
using random scheduling alone—a reasonable success. However,
higher-order procrastination actually made things worse than not
procrastinating at all. This is because we repeat each test case over
and over again even if that test case simply cannot fail—too much
procrastination is a bad thing. According to the table above, for
ProcReg the happy medium is one level of procrastination with ten
decisions from each schedule chosen for procrastination.

Measuring failure reproduction The results above may be de-
ceptive because they take no notice of which race conditions each
testing method is able to provoke. If a method only works well with
simple test cases, it will still get a low mean time to failure if it runs
each test quickly—even if it is completely unable to provoke race
conditions in more complicated cases.

Therefore, we also tried using each testing method to reproduce
bugs that were found by the other testing methods. We collected a
variety of bug-provoking test cases that were found by each testing
method, and for each test case, we repeatedly ran each method
on that test case until it reproduced the bug, recording how many
attempts we needed to find the bug in each case and how long it
took.

The results are shown in figure 3. The “Origin” column shows
which method we used to originally find the bug and “Scheduler”
shows which method we were using to try to reproduce the bug. We
list the average amount of time taken to make each test case fail and
the average number of times we had to repeat each test case before
it failed.

Using the virtual machine’s scheduler performs very poorly, as
we expect. Even on test cases that were originally found without
the help of PULSE, we have a very low probability—about 1

100
on

average—of reproducing the bug when we run the test case. For test
cases that were found by PULSE, we need to repeat each test case
thousands of times, and because of that, using the virtual machine
increases the time taken to reproduce the bugs by a factor of 100.

PULSE is easily able to reproduce bugs that were found us-
ing the VM’s scheduler, even without procrastination—and here

Origin Scheduler Level Limit Time (s) Avg #tests
VM VM 0.82 101.3

PULSE 0.14 2.0
PULSE 1 〈10〉 0.28 1.0
+ procrastination

PULSE VM 20.16 3584.1
PULSE 0.24 13.6
PULSE 1 〈10〉 0.36 1.16
+ procrastination

PULSE VM 35.03 7126.6
+procrastination PULSE 0.83 70.9

PULSE 1 〈10〉 0.32 1.54
+ procrastination

Figure 3. Failure detection—grouped by origin

procrastination slows things down by a factor of two. This is be-
cause we can only find very small counterexamples using the VM’s
scheduler and for those random scheduling is enough.

For bugs that were found by PULSE without the help of procras-
tination, it might seem from figure 3 as though using procrastination
greatly reduces the number of tests we need to run. However, using
procrastination, each “test” executes the program several times—
once for each procrastinated schedule—so the number of tests is a
deceptive measure. Looking at the time taken shows that in reality
PULSE without procrastination wins here, too.

However, on bugs that we originally found with the help of
procrastination, PULSE with procrastination is the surefire winner.
We see that for those test cases, using procrastination is more than
twice as fast as not using it, and more than 100 times faster than
using the VM’s scheduler. Since each test using procrastination
executes the test case at most 11 times (we are using a limit of
10 procrastinations), we can see that using procrastination reduced
the number of times we had to execute the program by a factor of
at least 3.

Thus, procrastination really is better at provoking complex
race conditions than random scheduling alone. There is one test
case in particular for which PULSE without procrastination has
great trouble. It is short—7 commands long, and the test case it-
self is completely sequential—but PULSE without procrastination
takes on the order of 1000 attempts to find it on average. Us-
ing procrastination—even first-order procrastination with a limit
of 10 procrastinated schedules—we find the bug first time, every
time. We conjecture that in more complex systems—where there
are more scheduling decisions to be made than in our ProcReg
example—there are many such bugs that require extremely good
luck to find using random testing but where adding a small amount
of procrastination can reliably provoke the error. In particular, with
a purely random scheduler, once a particular action is possible then
it is likely to be chosen within a few steps, since at each step there
is a reasonable probability that the scheduler will choose that ac-
tion. Thus an action will not be delayed for very long in a purely
random scheduler; this is what happens in the “world hello” ex-
ample of section 2, where to provoke an error we need to delay a
message delivery for 100 steps and have only a one in 2100 chance
of doing that. With procrastination, we can delay some decisions
for an arbitrary amount of time.

6. Shrinking Counterexamples
In order to understand an error it is important that the failing test
case is reasonably small. In the case of the process registry example
it was not until we were able to shrink the failing test cases to
the one shown in Section 4 that the error could be successfully

diagnosed. To achieve this QuickCheck, having found one failing
test case, then shrinks it by trying many smaller, similar tests. If
any of these fail, the original failing test is replaced by the smaller
one and the shrinking process continues. When no smaller tests fail,
then a “minimal” failing case has been found.

Since the outcome of a test is non-deterministic, it might be that
a test succeeds even though the test case is one that sometimes pro-
vokes a bug in our program, if when we run the test we are unlucky
with the scheduling decisions we choose. If this happens for all of
the candidate shrunk test cases, the shrinking process stops with a
result that is not necessarily minimal. Thus it is particularly impor-
tant during shrinking that test cases that contain the race condition
reliably fail when they are executed.

6.1 Improving shrinking by repeating tests
One method for improving the reliability of shrinking is to run
each test N times during the shrinking process. If the test fails in
any one of these runs it is considered to be a failing case. This
increases the likelihood of successfully identifying test cases that
contain the race condition at the expense of making shrinking more
time consuming. This is the method we used originally to find the
minimal failing case for the process registry.

To measure the performance of shrinking we ran the 45 random
test cases we collected in which the race condition is present,
varying the scheduler (the Erlang virtual machine scheduler or
PULSE) and the value of N . For each execution we measured the
length of the shrunk test case, the time taken by the shrinking
process, and whether or not the shrunk test case was minimal4.
We measured this 10 times to reduce the impact of coincidentally
getting the best performance. Figure 4 shows the results for each
scheduler and value of N .

The first observation we can make is that when running with
PULSE, increasing N improves the quality of the shrinking as we
expect, but when running with the Erlang scheduler it has hardly
any effect. This is likely due to the Erlang scheduler being quite
deterministic and not gratuitously delaying actions, so if a test case
does not reveal a race condition the first run it is unlikely to do so
in later runs.

Another interesting observation is that going from N = 1 to
N = 10 does not affect the shrinking time significantly. This
can be explained by the fact that when shrinking, QuickCheck
first tries to take big shrinking steps, throwing away much of the
original test case, and only if that fails tries smaller steps like
taking out a single command. By repeating each test case during
shrinking, QuickCheck is more likely to provoke an error with the

4 We deem a test case minimal if we could not provoke a bug in any of its
shrinkings within 50 tests using any of the methods at our disposal.

Scheduler N Time (s) Avg Len Max Len Minimal
VM 1 1.74 11.4 45 0.0 %

10 2.68 10.4 45 0.5 %
25 4.19 9.7 47 2.2 %

100 29.04 11.5 48 1.0 %
PULSE 1 2.42 12.0 38 0.7 %

10 3.20 7.1 26 17 %
25 5.14 5.9 28 43 %
50 8.22 5.2 27 67 %

100 14.28 4.6 9 90 %

Figure 4. Shrinking performance when repeating each test N times.

large shrinking steps, which reduces the number of steps required
to reach a minimal test case.

6.2 Shrinking with procrastination
Procrastination works in a similar way to the repeated test strategy
described in the previous section in that we are executing each
test case several times looking for a failure, but instead of blindly
rerunning the test hoping for a random schedule that reveals a race
condition, we choose schedules that are likely to do so. Thus we
would expect shrinking with procrastination to outperform repeated
testing with random schedules. This is indeed the case as shown by
the shrinking results for procrastination in Figure 5.

We can see that using procrastination we find minimal test cases
around 60% of the time for all of the parameter values that we
tried, but the time spent shrinking varies a lot. In this example, it
seems that sticking to first order procrastination and only trying a
small number of conflicting actions is most efficient. In fact this is
faster than any of the previously attempted shrinking strategies, and
reaching the same quality of shrinking using repeated tests would
take somewhere around 2 to 3 times longer.

Which parameters to give when procrastinating depends very
much on the nature of the race condition: If the race condition is
present in many test cases but requires very specific scheduling to
be revealed we need thorough procrastination. If, on the other hand,
few test cases contain the race condition—which is to say that many
of the candidate shrunk test cases will not be able to provoke the
bug—then thorough procrastination will waste a lot of time on test
cases that cannot fail. In our example only around 8% of the test
cases contain the race condition and finding it when it is present
seems to be relatively easy, so we can get away with less thorough
procrastination.

It is interesting to note that higher order procrastination does
improve the quality of shrinking, in particular in the worst case, but
it is not obviously better than simply repeating each test 100 times.

6.3 Reusing old schedules when shrinking
When implementing procrastination we had to modify PULSE to
enable it to follow schedules that contain infeasible decisions. This
led us to another idea for improving shrinking: what if, instead of
running the smaller test cases on completely random schedules, we
reused the schedule that made the bigger test case fail. That is, we
try as far as possible to repeat the scheduling decisions that we
know led to a failure for the bigger test case. The rationale for this
is that if the smaller test case still contains the race condition, then
the scheduling decisions that revealed the race condition for the
bigger test case are likely to be valid also for the smaller one.

Naming of processes An issue that showed up when we started
to reuse schedules during shrinking, that is not present for procras-
tination was that we had to be more careful about how processes
are named. If a schedule says to deliver a message from process A

to process B it is important that we use the names A and B for these
processes when reusing that schedule.

The names are chosen automatically by PULSE. With our de-
fault naming scheme, the name chosen for a process depends on the
names of the processes that have already been spawned, since each
process needs a unique name. For instance, in the ”world hello” ex-
ample the first process to be spawned in the proxy chain is named
root-proxy, the second root-proxy1, then root-proxy2 and
so on. This means that if a shrinking step removes the spawning of
a process that could affect the names of processes that are spawned
later in the test, and the schedule from the original test case would
not make much sense for the shrunk test case, because the shrunk
test case and the original test case would name their processes dif-
ferently. To solve this problem we record in the schedule when
a process is spawned and what name it’s given. When following
an existing schedule PULSE then reads the process name from the
schedule instead of generating a fresh one. This is not a perfect
solution, but it is a significant improvement over the previous situ-
ation.

Results In the process registry case reusing the schedule during
shrinking turns out to work amazingly well (see Figure 6). Shrink-
ing is more than 3 times faster than using procrastination and the
shrunk test cases are as small as what we obtained using procrasti-
nation. The number of minimal test cases, however, is surprisingly
low. The reason for this is that schedule reuse works poorly when
shrinking moves commands from one process to another, for in-
stance moving a command from one of the parallel sequences to
the initial sequential part. This is because actions performed by the
moved command will take place in a different process, so the cor-
responding scheduling decisions will be invalid. On the other hand
it works very well for shrinking steps where the structure of the test
case stays the same and we just remove unnecessary commands.

Note that in this case we did not repeat any tests during shrink-
ing. When reusing the schedule this makes less sense, since each
repeated test would start from the same schedule. It could still be
of some benefit since PULSE reverts to random scheduling when
there are no more feasible scheduling decisions.

Combining schedule reuse with procrastination improves both
the quality and speed of shrinking, the proportion of minimal test
cases goes from 60% to 80% compared to procrastination without
schedule reuse and the worst case is significantly improved.

It is still more than twice as fast to just use schedule reuse
when shrinking without compromising the quality of shrinking
significantly. The reason why procrastination is so much slower
is that it is spending quite a lot of time procrastinating shrunk
test cases that cannot fail. One possible improvement would be
to interleave the procrastinations for all shrinkings, that is, first
try each smaller test case once, and if none of them fails try one
procrastination for each case, and so on. This should result in
similar performance to schedule reuse with no procrastination, but

Level Limit Time (s) Avg Len Max Len Minimal
1 〈10〉 2.25 5.6 27 60 %
1 〈∞〉 3.80 5.6 25 56 %
2 〈5, 1〉 7.01 5.3 15 66 %
2 〈10, 3〉 8.93 5.2 14 65 %
2 〈10, 10〉 10.54 5.2 14 66 %
2 〈20, 20〉 19.36 5.3 13 63 %

Figure 5. Shrinking performance with procrastination.

Scheduler Level Limit Time (s) Avg Len Max Len Minimal
PULSE 0.74 5.3 14 33 %
Procrastination 1 〈∞〉 3.31 4.6 9 80 %

1 〈10〉 1.87 4.6 9 78 %
2 〈5, 1〉 5.93 4.6 9 86 %
2 〈10, 3〉 10.08 4.6 10 84 %
2 〈10, 10〉 12.03 4.6 10 82 %
2 〈20, 20〉 21.74 4.6 9 83 %

Figure 6. Shrinking performance with schedule reuse.

with procrastination’s quality. We leave the implementation of this
strategy to future work.

7. Related Work
Much of the work regarding race condition detection has been fo-
cused around imperative (object oriented) programming languages,
such as C, C++, and Java. In these languages a data race, in its sim-
plest form, is when a shared piece of data is accessed and updated
in a malign pattern. Several techniques have been proposed for de-
tection of such data races, like [OC03] and [SBN+97]. A problem,
however, is that a large portion of the potential data races found are
benign. As a result, research effort has focused on atomicity and/or
serializability violations [FF04, WS06]. By defining units of work
to be atomic/serializable, it is possible to more accurately detect
true concurrency bugs.

A problem with the previously mentioned techniques is that
they do not take into account, potential correlations between the
shared variables. Thus, it is possible to miss high-level data races
and also to report false warnings. Vaziri et al. [VTD06] address
this problem with a more involved correctness criterion, namely
atomic-set serializability. All of the race conditions above, simple
data races, high-level data races, atomicity, and serializability, can
be characterized by atomic-set serializability. The idea is to choose
(parts of) the (object) state as atomic sets and methods/functions
as units of work, and identify problematic interleavings of units of
work in relation to the atomic sets.

Atomic-set serializability has proved to be accurate in discover-
ing true concurrency bugs [KRDV09], and the tool ASSETFUZZER
[LCC10] is based on this technique.

Techniques where the scheduling is randomized has success-
fully been tried for concurrent, multi-threaded, programs [Sto02,
CPS+09]. Although effective, the simple random technique is de-
pending on the fact that harmful schedules are not too hard to find.
To improve the situation, active randomized scheduling is used.
The idea was introduced by RACEFUZZER [Sen08], and further
improved by ASSETFUZZER [LCC10]. The technique is similar
to our procrastination: the program is run, the obtained schedule
is analyzed for potential conflicts, and finally the program is re-
run with a schedule that is (more) likely to trigger a conflict. A
problem with this technique is thrashing [JPSN09], where tests are
failing because the calculated, potentially problematic, schedule is

not feasible and the program dead-locks. Luckily, with our relaxed
schedules, this is not a problem for us.

In contrast to using a race condition detection criterion, and
detecting violations in terms of crashes or memory access patterns,
we use properties to decide whether a test has passed or not.
When parallel commands is used with QuickCheck, PULSE,
and procrastination, the end result is close functionality-wise to
ASSETFUZZER.

Another often used approach is to systematically try all possi-
ble schedulings, either in the form of ordinary model checking or
a repeated-test strategy. CHESS [MQB+08] uses the latter, it sys-
tematically generates all (non-equivalent) interleavings for a given
test scenario. By using some model checking techniques the num-
ber of explored interleavings can be kept at a reasonable level. For
Erlang programs, McErlang is a traditional model checker that can
find concurrency bugs [FS07]. Although, in theory, the idea to ex-
plore all possible execution paths is tempting, there are usually
problem for these methods to scale to larger programs. CHESS re-
ports on some success [MQB+08] on this issue, while Kidd et al.
[KRDV07] concludes that their approach is not scalable even for
medium-sized programs.

8. Conclusions
Testing concurrent programs is difficult, even when the program is
written in Erlang. We have shown how we can introduce procrasti-
nation into the earlier developed user-level scheduler PULSE. With
procrastination, potential race conditions are detected in a given
schedule and a new schedule is computed to provoke such poten-
tial races. We changed PULSE in such a way that it can run infea-
sible schedules, i.e., it runs a schedule as far as possible and con-
tinues with random scheduling when the given schedule cannot be
followed any longer. This allowed us to use computationally inex-
pensive heuristics to compute new schedules from a schedule with
a potential race condition. Nevertheless, our procrastination is very
effective in provoking race conditions as our empirical data shows.

We use procrastination in combination with QuickCheck. Test
cases are automatically generated and by executing PULSE with
procrastination, we are able to find race conditions effectively. A
beneficial side-effect of the changes made to PULSE, is that in order
to facilitate the usage of infeasible schedules, we are also able to
re-use a schedule for a different test case. This can be exploited

while shrinking, where we can now re-use the failing schedule
when we test a shrunk, very similar test case. For the running
example of this paper, this turned out to be amazingly effective.
In fact, rather unexpectedly, just re-using of the schedule and no
procrastination during shrinking gave the quickest shrinking, albeit
not the smallest counterexamples. In our further research we will
examine additional examples in order to develop a good strategy
in mixing procrastination and schedule reuse during shrinking in
order to quickly find the smallest counterexamples.

References
[AHJW06] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger.

Testing Telecoms Software with Quviq QuickCheck. In ER-
LANG ’06: Proc. of the 2006 ACM SIGPLAN workshop on
Erlang. ACM, 2006.

[Arm07] Joe Armstrong. Programming Erlang: Software for a Concur-
rent World. Pragmatic Bookshelf, July 2007.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. In ICFP ’00:
Proc. of the fifth ACM SIGPLAN international conference
on Functional programming, pages 268–279, New York, NY,
USA, 2000. ACM.

[CPS+09] Koen Claessen, Michal Palka, Nicholas Smallbone, John
Hughes, Hans Svensson, Thomas Arts, and Ulf Wiger. Finding
race conditions in erlang with quickcheck and pulse. In ICFP,
pages 149–160, 2009.

[FF04] C. Flanagan and S.N. Freund. Atomizer: a dynamic atomic-
ity checker for multithreaded programs. In Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 18th In-
ternational, page 269, April 2004.

[FS07] Lars-Åke Fredlund and Hans Svensson. McErlang: a model
checker for a distributed functional programming language.
SIGPLAN Not., 42(9):125–136, 2007.

[Hug07] John Hughes. QuickCheck Testing for Fun and Profit. In
9th Int. Symp. on Practical Aspects of Declarative Languages.
Springer, 2007.

[JPSN09] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik.
A randomized dynamic program analysis technique for detect-
ing real deadlocks. In Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implemen-
tation, PLDI ’09, pages 110–120, New York, NY, USA, 2009.
ACM.

[KRDV07] Nicholas Kidd, Thomas Reps, Julian Dolby, and Ana Vaziri.
Static detection of atomic-set-serializability violations. In
Technical Report 1623, University of Wisconsin-Madison,
2007.

[KRDV09] Nicholas Kidd, Thomas Reps, Julian Dolby, and Mandana
Vaziri. Finding concurrency-related bugs using random iso-
lation. In Neil Jones and Markus Müller-Olm, editors, Verifi-
cation, Model Checking, and Abstract Interpretation, volume
5403 of Lecture Notes in Computer Science, pages 198–213.
Springer Berlin / Heidelberg, 2009.

[LCC10] Zhifeng Lai, S. C. Cheung, and W. K. Chan. Detecting
atomic-set serializability violations in multithreaded programs
through active randomized testing. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE ’10, pages 235–244, New York, NY, USA,
2010. ACM.

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard
Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu.
Finding and reproducing heisenbugs in concurrent programs.
In Proceedings of the 8th USENIX conference on Operating
systems design and implementation, OSDI’08, pages 267–280,
Berkeley, CA, USA, 2008. USENIX Association.

[OC03] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data
race detection. In Proceedings of the ninth ACM SIGPLAN

symposium on Principles and practice of parallel program-
ming, PPoPP ’03, pages 167–178, New York, NY, USA, 2003.
ACM.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobal-
varro, and Thomas Anderson. Eraser: a dynamic data race de-
tector for multithreaded programs. ACM Trans. Comput. Syst.,
15:391–411, November 1997.

[Sen08] Koushik Sen. Race directed random testing of concurrent pro-
grams. In Proceedings of the 2008 ACM SIGPLAN conference
on Programming language design and implementation, PLDI
’08, pages 11–21, New York, NY, USA, 2008. ACM.

[Sto02] Scott D. Stoller. Testing concurrent java programs using ran-
domized scheduling. Electronic Notes in Theoretical Com-
puter Science, 70(4):142 – 157, 2002. RV’02, Runtime Ver-
ification 2002 (FLoC Satellite Event).

[VTD06] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating
synchronization constraints with data in an object-oriented
language. In Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
POPL ’06, pages 334–345, New York, NY, USA, 2006. ACM.

[Wig07] Ulf T. Wiger. Extended process registry for Erlang. In ER-
LANG ’07: Proc. of the 2007 SIGPLAN workshop on ERLANG
Workshop, pages 1–10, New York, NY, USA, 2007. ACM.

[WS06] Liqiang Wang and Scott D. Stoller. Runtime analysis of atom-
icity for multithreaded programs. IEEE Transactions on Soft-
ware Engineering, 32:93–110, 2006.

